On the development of compound semi-conductor thallium bromide detectors for astrophysics

Size: px
Start display at page:

Download "On the development of compound semi-conductor thallium bromide detectors for astrophysics"

Transcription

1 On the development of compound semi-conductor thallium bromide detectors for astrophysics A. Owens *1, M. Bavdaz 1, I. Lisjutin 2, A. Peacock 1, S. Zatoloka 2 1 Astrophysics Division, ESA/ESTEC, Postbus 299, 2200AG Noordwijk, Netherlands 2 Baltic Scientific Instruments, 26 Ganibu dambis, PO Box 33, Riga LV-1005, Latvia We discuss the detector requirements for future X-ray astrophysics missions and present preliminary results from our compound semiconductor program designed to produce X-ray detectors with high spatial and spectral resolution across the energy range 1 kev to 200 kev. Several prototype detectors have been fabricated from monocrystalline TlBr and tested at hard X-ray wavelengths in our laboratories and at the ESRF synchrotron research facility. Energy resolutions of 1.6 kev (fwhm) at 5.9 kev and 2.6 kev (fwhm) at 26 kev have been achieved, although we find that performance is highly variable due to polarisation effects. The resolution function is dominated by high leakage current at all energies. From pulse height measurements of Am 241 as a function of detector bias, we derive the electron mobility-lifetime product at -2 o C to be (2.9±0.2) 10-4 cm 2 V -1. This is about an order of magnitude higher than previously reported values. Keywords: Compound semiconductors, TlBr, X-ray astronomy PACS: 07.85N, 29.40W 1. Introduction In astrophysics, the hard X-ray regime between 10 kev and 200 kev is relatively unexplored even though it includes the important transition region between thermal and non-thermal emission processes predicted to occur throughout the Galaxy. Likewise in planetary physics, Solar X-ray fluorescence imaging of planets and small solar system bodies can yield scientifically important composition maps. At present there is a paucity of such data. Information on non-thermal processes has been largely gleaned from gamma-ray measurements, which are fraught with difficulties due to poor detection efficiencies, high backgrounds and poor directional discrimination. Hard X-ray measurements can provide a direct channel with which to probe a wide variety of non-thermal processes, but to date such measurements have been limited by the lack of efficient detectors and focusing or concentrating optics. Recent developments in microchannel plate optics [1] offer a possible solution to the later, while developments in compound semi-conductors show that such materials offer a * Corresponding author. aowens@astro.estec.esa.nl, tel , fax

2 viable alternative to Si or Ge. In addition, materials drawn from group III-VI compounds have high enough atomic numbers to ensure good detection efficiencies above 10 kev. They also have an additional advantage in that their band-gaps are sufficiently high so they do not require cryogenic cooling but low enough that subkev spectral resolution can be achieved at hard X-ray energies. For higher energies, thallium bromide is a particularly attractive material because of its wide bandgap (2.678 ev), high atomic number (Tl=81, Br=35) and high density (7.5 gm cm -3 ) and hence good stopping power for hard X- and gamma rays [2]. In this paper we present preliminary results from several prototype TlBr monolithic detectors which have been tested in our laboratories and at the ESRF synchrotron research facility. Fig. 1. Schematic of the prototype detector design. 2. Detector fabrication TlBr has a CsCl-type simple cubic crystal structure. Its physical properties are amenable to easy and rapid purification and standard growth techniques. It melts congruently at 480 o C, allowing good quality crystals to be grown directly from melt. The detectors studied here were cut from a thermally grown monocrystal. The boule 2

3 was sawn into several 1 and 2 mm thick slices and the detectors diced from the wafers. The typical dimensions were mm 3. The samples were mechanically lapped followed by mechanical and chemical polishing. Aquadag contacts were then applied to the polished surfaces and the device connected to the outside world by a pressure-contacted copper rod on the bottom surface and a beryllium-bronze leaf spring on the top. A schematic view of a detector is shown in Fig.1. Figure 2. Composite response of the detector 2.7 to an Am 241 and Fe 55 radioactive sources. The detector numbering convention is defined as follows. Detector 2.7 is the seventh detector diced from wafer two. 3. Experimental After initial stability and noise tests of 4 devices, three were packaged into detectors. They were mounted in ceramic holders and glued to two-stage Peltier coolers capable of cooling the devices to ~ -35 o C. The analog chain consisted of a charge sensitive preamplifier (with a FET 2N4416 input FET and feedback resistor, R f = 1 GΩ) used in conjunction with an Ortec 671 spectroscopy amplifier. From the I-V characteristics, their resistivities were found to be in the range (6-10) Ω cm. At nominal biases of ~ 130V, the average recorded leakage currents were ~10 na at room temperature and 1 na at -2 o C. Two devices (detectors 2.7 and 3.1) were used for testing in our laboratories and a third (detector 2.3) at the ESRF synchrotron. 3

4 Fig. 3. The linearity of detector 2.7 measured over the energy range 6-60 kev. The lower panel shows the residuals of a best-fit linear regression to the data. Fig. 4. The measured fwhm energy resolution ( E) of detector 2.7 under full uniform illumination. The solid line shows the best fit resolution function to the combined data set. Here e is the electronic noise of the system measured with a pulser. 4

5 The detector numbering convention is defined as follows - detector 2.3 means it was the third detector diced from wafer two. Initial tests showed that biasing the detector to preferentially collect holes gave quantitatively better spectral resolution than collecting electrons. Furthermore, there was no optimum operating temperature when collecting electrons, in agreement with results of Shoji et al. [3]. However, an optimum operating temperature was -2 o C was found when collecting holes. The detectors measured in our laboratories were biased to collect holes. A shaping time of 3 µs was used for most measurements. 3.1 Laboratory measurements Figure 2 shows a composite response of detector 2.7 to Fe 55 and Am 241 radioactive sources. The fwhm energy resolution was measured to be 1.6 kev at 5.9 kev and is dominated by electronic noise ( e=1.6 kev fwhm). (Detector 3.1 give a slightly worse resolution of 1.9 kev fwhm). The noise threshold is 3 kev. The measured energy resolutions for the Np Lα X-ray at 13.9 kev and the nuclear line at 26.3 kev were 1.8 kev and 2.6 kev, respectively. In Figure 3 we show the linearity curve of the detector over the energy range 6-60 kev. From a best-fit straight line to the peak channel versus energy data, we determine the average non-linearity to be 0.6%. The lower panel shows the residuals, i.e., (measured energy - energy)/ energy 100%. In Figure 4, we show the energy dependent fwhm energy resolution of the detector. For comparison the electronic noise of the system is also shown. The mobility-lifetime product for electrons (µτ) e was determined the Np Lα, Lβ and Lγ X-ray peaks of Am 241 at 13.9, 17.5 and 21.0 kev and the nuclear line at kev. The photopeak pulse heights were measured as a function of detector bias and fit to a single carrier Hecht equation [4] given by, H / H o = ((µτ) e V / d 2 ){1 exp( d 2 /(µτ) e V )} (1) where H is the measured pulse height, H o is the pulse height that would be obtained if the detector was 100% efficient, V is the bias potential applied to the detector and d is the thickness. Assuming that, d 2 /(µτ) e V << 1, then H/H o 1/V and (µτ) e is related to the slope of H/Ho versus 1/V. A best-fit straight line yielded a χ 2 of 9 for 10 degrees of freedom. The derived (µτ) e product was (2.9±0.2) 10-4 cm 2 V -1 at -2 o C which is about an order of magnitude higher than previously reported values [5,6]. 3.2 Synchrotron measurements The third detector (number 2.3) was tested on the open bending magnet (BM5) high energy beam line at the European Synchrotron Research Facility (ESRF). The beamline uses a double Si[111] crystal monochromator to produce highly 5

6 monochromatic X-ray beams tuneable over the energy range 7-35 kev with an intrinsic energy resolution of ~15 ev. The detector was mounted on a 2-axis X-Y table capable of positioning the detector to a precision of ~ 1 µm. For the majority of measurements, the beam was normally incident on the centre of the detector and had a typical spot size of µm 2. Fig. 5. ESRF room temperature response of detector 2.3 to incident radiation of energy 25 kev. In Figure 5 we show the detectors response to 25 kev incident X-rays from which it is clear that the detector is noisier that the one used in the laboratory measurements. The temperature of the detector was 25 o C. The peaks at 75 kev and 100 kev are the 3rd and 4th harmonics (the 2nd harmonic is forbidden for Si[111] reflections). From the figure, we conclude that the detector response is dominated by leakage current since the widths of the peaks are independent of energy. The measured fwhm energy resolution at 25 kev is (7.7±0.2) kev. No further energies were measured due to a detector malfunction. The detector was raster scanned in the plane perpendicular to the beam axis to map the spatial uniformity of the count rate response. Figure 6 shows the count rate profile at 25 kev from which we see that the spatial response is highly non-uniform with the bulk on the charge collection occurring close to the contact. We interpret the 6

7 horizontal depression running across the count rate profile as X-ray absorption in the contact wire, since its width is compatible to the wire thickness of 0.3 mm. Fig. 6. Spatial response of detector 2.3 measured at the ESRF. The incident beam energy is 25 kev and the spatial resolution is 150 µm. The beam size is µm Discussion and conclusions The results obtained from our prototype detectors are encouraging yielding performances similar to other well established compound semiconductor technologies. The derived value of (µτ) e is about a factor of 10 higher than previously reported [5,6] and as good as those reported for established materials such CdTe and HgI 2 [7]. Although the transport properties of electrons and holes in TlBr are similar [6] (and thus a relatively large number of carriers are detected per X-ray event), shot noise caused by high leakage currents currently dominates the energy resolution function. This is believed to be a direct consequence of the relative softness of TlBr compared to other materials (Knoop hardness=12 kg mm -2 ). Any mechanical treatment (i.e., cutting, lapping and polishing) generates a high concentration of intrinsic structural defects by local plastic deformation. The depth of these defects can be surprisingly large (up to 1 mm). We are now experimenting with new handling and surface treatment procedures. Lastly, based on the non-uniform spatial response we are now developing other contacting technologies although for basic material 7

8 investigations, aquadag contacting is still a quick, inexpensive and convenient alternative. References [1] M. Beijerbergen, M. Bavdaz, A. Peacock, E. Tomaselli, G. Fraser, A. Brunton, E. Flyckt, M. Krumrey and A. Souvorov, Proceedings of the SPIE, 3765 (1999) 452. [2] K. Shah, J. Lund, F. Olschner, L. Moy and M. Squillante, IEEE Trans. Nucl. Sci., 36 (1989) 199. [3] T. Shoji, K. Hitomi, O. Muroi, T. Suehiro, and Y. Hiratate, IEEE Trans. Nucl. Sci., in press. [4] K. Hecht, Z. Physik, 77 (1932) 235. [5] F. Olscher, M. Toledo-Quinones, K. Shah, and J. Lund, IEEE trans. Nucl. Sci., 37 (1990) [6] K. Hitomi, T. Murayama, T. Shoji, T. Suehiro, and Y. Hiratate, Nucl. Instr. and Meth., A428 (1999) 372. [7] D. McGregor, in Semiconductors for room temperature nuclear detection applications, eds. T. Schlesinger and R. Jones, Academic press, New York (1995)

Development of compound semiconductors for planetary and astrophysics space missions

Development of compound semiconductors for planetary and astrophysics space missions Development of compound semiconductors for planetary and astrophysics space missions Alan Owens a1, M. Bavdaz a, H. Andersson b, G. Bertuccio c, T. Gagliardi d, V. Gostilo e, I. Lisjutin e, D. Martin a,

More information

Hard X- and g-ray measurements with a large volume coplanar grid CdZnTe detector

Hard X- and g-ray measurements with a large volume coplanar grid CdZnTe detector Nuclear Instruments and Methods in Physics Research A 563 (26) 242 248 www.elsevier.com/locate/nima Hard X- and g-ray measurements with a large volume coplanar grid CdZnTe detector Alan Owens a,, T. Buslaps

More information

Efficiency and Attenuation in CdTe Detectors

Efficiency and Attenuation in CdTe Detectors Efficiency and Attenuation in CdTe Detectors Amptek Inc. Bob Redus, May 5, 00 Amptek s XR-00T-CdTe is a high performance x-ray and gamma ray detector system. Like Amptek s other XR00 products, a detector

More information

Development and characterization of 3D semiconductor X-rays detectors for medical imaging

Development and characterization of 3D semiconductor X-rays detectors for medical imaging Development and characterization of 3D semiconductor X-rays detectors for medical imaging Marie-Laure Avenel, Eric Gros d Aillon CEA-LETI, DETectors Laboratory marie-laure.avenel@cea.fr Outlines Problematic

More information

Outline. Introduction, motivation Readout electronics, Peltier cooling Input J-FETsJ

Outline. Introduction, motivation Readout electronics, Peltier cooling Input J-FETsJ Progress in low energy X-rayX spectroscopy using semi-insulating insulating GaAs detectors F. Dubecký 1, B. Zaťko 1, P. Boháček 1, L. Ryć 2, E. Gombia 2, and V. Nečas 3 1 IEE SAS, Bratislava, Slovakia

More information

Gamma and X-Ray Detection

Gamma and X-Ray Detection Gamma and X-Ray Detection DETECTOR OVERVIEW The kinds of detectors commonly used can be categorized as: a. Gas-filled Detectors b. Scintillation Detectors c. Semiconductor Detectors The choice of a particular

More information

Detectors for High Resolution Gamma-ray Imaging Based on a Single CsI(Tl) Scintillator Coupled to an Array of Silicon Drift Detectors

Detectors for High Resolution Gamma-ray Imaging Based on a Single CsI(Tl) Scintillator Coupled to an Array of Silicon Drift Detectors 1 Detectors for High Resolution Gamma-ray Imaging Based on a Single CsI(Tl) Scintillator Coupled to an Array of Silicon Drift Detectors C. Fiorini, A. Longoni, F. Perotti, C. Labanti, E. Rossi, P. Lechner,

More information

Energetic particles and their detection in situ (particle detectors) Part II. George Gloeckler

Energetic particles and their detection in situ (particle detectors) Part II. George Gloeckler Energetic particles and their detection in situ (particle detectors) Part II George Gloeckler University of Michigan, Ann Arbor, MI University of Maryland, College Park, MD Simple particle detectors Gas-filled

More information

Measurement of material uniformity using 3-D position sensitive CdZnTe gamma-ray spectrometers

Measurement of material uniformity using 3-D position sensitive CdZnTe gamma-ray spectrometers Nuclear Instruments and Methods in Physics Research A 441 (2000) 459}467 Measurement of material uniformity using 3-D position sensitive CdZnTe gamma-ray spectrometers Z. He *, W.Li, G.F. Knoll, D.K. Wehe,

More information

X-ray spectrometry with Peltier-cooled large area avalanche photodiodes

X-ray spectrometry with Peltier-cooled large area avalanche photodiodes Nuclear Instruments and Methods in Physics Research B 213 (24) 267 271 www.elsevier.com/locate/nimb X-ray spectrometry with Peltier-cooled large area avalanche photodiodes L.M.P. Fernandes, J.A.M. Lopes,

More information

Investigation of the Asymmetric Characteristics and Temperature Effects of CdZnTe Detectors

Investigation of the Asymmetric Characteristics and Temperature Effects of CdZnTe Detectors 2068 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 52, NO. 5, OCTOBER 2005 Investigation of the Asymmetric Characteristics and Temperature Effects of CdZnTe Detectors Benjamin W. Sturm, Student Member, IEEE,

More information

THE mobility-lifetime product (μτ) is used to characterize

THE mobility-lifetime product (μτ) is used to characterize 1832 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 63, NO. 3, JUNE 2016 A Correction Factor to the Two-Bias Method for Determining Mobility-Lifetime Products in Pixelated Detectors Will Koehler, Michael Streicher,

More information

Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy. Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy

Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy. Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy Topic 2b: X-ray Fluorescence Spectrometry Text: Chapter 12 Rouessac (1 week) 4.0 X-ray Fluorescence Download, read and understand EPA method 6010C ICP-OES Winter 2009 Page 1 Atomic X-ray Spectrometry Fundamental

More information

Recent Advances of Planar Silicon APD Technology

Recent Advances of Planar Silicon APD Technology Recent Advances of Planar Silicon APD Technology M. McClish 1, R. Farrell 1, R. Myers 1, F. Olschner 2, G. Entine 1, K.S. Shah 1 1 Radiation Monitoring Devices Inc., Watertown, MA 2 Cremat Inc., Newton,

More information

Application Note ANCZT-2 Rev. 3 Charge Trapping in XR-100T-CdTe and -CZT Detectors

Application Note ANCZT-2 Rev. 3 Charge Trapping in XR-100T-CdTe and -CZT Detectors Application Note ANCZT-2 Rev. 3 Charge Trapping in XR-1T-CdTe and -CZT Detectors Robert Redus, November 27 ANCZT-2 Rev 3 The XR-1T-CdTe and CdTe-Stack detectors are high performance X-ray and γ-ray detection

More information

NEW X-RAY DETECTORS FOR XRF ANALYSIS. Jan S. Iwanczyk & Bradley E. Patt Photon Imaging, Inc., Northridge, CA 91324

NEW X-RAY DETECTORS FOR XRF ANALYSIS. Jan S. Iwanczyk & Bradley E. Patt Photon Imaging, Inc., Northridge, CA 91324 951 NEW X-RAY DETECTORS FOR XRF ANALYSIS Jan S. Iwanczyk & Bradley E. Patt Photon Imaging, Inc., Northridge, CA 91324 Abstract The use of miniaturized XRF instrumentation for in-vivo applications imposes

More information

Performance of high pressure Xe/TMA in GEMs for neutron and X-ray detection

Performance of high pressure Xe/TMA in GEMs for neutron and X-ray detection Performance of high pressure Xe/TMA in GEMs for neutron and X-ray detection R. Kreuger, C. W. E. van Eijk, Member, IEEE, F. A. F. Fraga, M. M. Fraga, S. T. G. Fetal, R. W. Hollander, Member, IEEE, L. M.

More information

Electron Microprobe Analysis 1 Nilanjan Chatterjee, Ph.D. Principal Research Scientist

Electron Microprobe Analysis 1 Nilanjan Chatterjee, Ph.D. Principal Research Scientist 12.141 Electron Microprobe Analysis 1 Nilanjan Chatterjee, Ph.D. Principal Research Scientist Massachusetts Institute of Technology Electron Microprobe Facility Department of Earth, Atmospheric and Planetary

More information

Electron Microprobe Analysis 1 Nilanjan Chatterjee, Ph.D. Principal Research Scientist

Electron Microprobe Analysis 1 Nilanjan Chatterjee, Ph.D. Principal Research Scientist 12.141 Electron Microprobe Analysis 1 Nilanjan Chatterjee, Ph.D. Principal Research Scientist Massachusetts Institute of Technology Electron Microprobe Facility Department of Earth, Atmospheric and Planetary

More information

SENSITIVITY ANALYSIS TO EVALUATE THE TRANSPORT PROPERTIES OF CdZnTe DETECTORS USING ALPHA PARTICLES AND LOW-ENERGY GAMMA-RAYS

SENSITIVITY ANALYSIS TO EVALUATE THE TRANSPORT PROPERTIES OF CdZnTe DETECTORS USING ALPHA PARTICLES AND LOW-ENERGY GAMMA-RAYS http://dx.doi.org/10.5516/net.2011.43.6.567 SENSITIVITY ANALYSIS TO EVALUATE THE TRANSPORT PROPERTIES OF CdZnTe DETECTORS USING ALPHA PARTICLES AND LOW-ENERGY GAMMA-RAYS KYUNG-O KIM 1, WOO SANG AHN 2,

More information

Gamma-ray Spectroscopy with LaBr 3 :Ce Scintillator Readout by a Silicon Drift Detector

Gamma-ray Spectroscopy with LaBr 3 :Ce Scintillator Readout by a Silicon Drift Detector Gamma-ray Spectroscopy with LaBr 3 :Ce Scintillator Readout by a Silicon Drift Detector C. Fiorini, member, IEEE, A. Gola, M. Zanchi, A. Longoni, P. Lechner, H. Soltau, L. Strüder Abstract In this work

More information

Synchrotron studies of carrier physics in a CZT ring detector

Synchrotron studies of carrier physics in a CZT ring detector Synchrotron studies of carrier physics in a CZT ring detector VG 1-5 th NDIP conference - Aix-les-Bains - 15 20 June 2008 - Roland den Hartog R. den Hartog, A. Owens, European Space Agency, ESTEC / SCI-PAT,

More information

ORTEC. SLP Series Silicon Lithium-Drifted Planar Low-Energy X Ray Detector Product Configuration Guide

ORTEC. SLP Series Silicon Lithium-Drifted Planar Low-Energy X Ray Detector Product Configuration Guide ORTEC SLP Series Silicon Lithium-Drifted Planar Low-Energy Ray Detector For x-ray spectroscopy with a nuclear accelerator, radioactive source, or x-ray tube. Premium performance spectroscopy from 1 kev

More information

Chemistry Instrumental Analysis Lecture 19 Chapter 12. Chem 4631

Chemistry Instrumental Analysis Lecture 19 Chapter 12. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 19 Chapter 12 There are three major techniques used for elemental analysis: Optical spectrometry Mass spectrometry X-ray spectrometry X-ray Techniques include:

More information

New trends in CdTe detectors for X and γ-ray applications

New trends in CdTe detectors for X and γ-ray applications New trends in CdTe detectors for X and γ-ray applications Olivier Limousin CEA Saclay / DSM / DAPNIA Service d Astrophysique France New developments in photodetection, Beaune 2002 / Solid state detectors

More information

PERFORMANCE IMPROVEMENT OF CZT DETECTORS BY LINE ELECTRODE GEOMETRY

PERFORMANCE IMPROVEMENT OF CZT DETECTORS BY LINE ELECTRODE GEOMETRY Applications of Nuclear Techniques (CRETE3) International Journal of Modern Physics: Conference Series Vol. 27 (24) 4644 (8 pages) The Authors DOI:.42/S294546446 PERFORMANCE IMPROVEMENT OF CZT DETECTORS

More information

THE spectroscopic performance of large volume CdZnTe

THE spectroscopic performance of large volume CdZnTe 3098 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 51, NO. 6, DECEMBER 2004 Analysis of Detector Response Using 3-D Position-Sensitive CZT Gamma-Ray Spectrometers Feng Zhang, Student Member, IEEE, Zhong He,

More information

Effects of Etching and Chemo-Mechanical Polishing on the Electrical Properties of CdZnTe Nuclear Detectors

Effects of Etching and Chemo-Mechanical Polishing on the Electrical Properties of CdZnTe Nuclear Detectors American Journal of Materials Science 5, 5(3A): 6- DOI:.593/s.materials.5.3 Effects of Etching and Chemo-Mechanical Polishing on the Electrical Properties of CdZnTe Nuclear Detectors Stephen U. Egarievwe,,3,*,

More information

Detecting high energy photons. Interactions of photons with matter Properties of detectors (with examples)

Detecting high energy photons. Interactions of photons with matter Properties of detectors (with examples) Detecting high energy photons Interactions of photons with matter Properties of detectors (with examples) Interactions of high energy photons with matter Cross section/attenution length/optical depth Photoelectric

More information

Development of Gamma-ray Monitor using CdZnTe Semiconductor Detector

Development of Gamma-ray Monitor using CdZnTe Semiconductor Detector Development of Gamma-ray Monitor using CdZnTe Semiconductor Detector A. H. D. Rasolonjatovo 1, T. Shiomi 1, T. Nakamura 1 Y. Tsudaka 2, H. Fujiwara 2, H. Araki 2, K. Matsuo 2, H. Nishizawa 2 1 Cyclotron

More information

Development of High-Z Semiconductor Detectors and Their Applications to X-ray/gamma-ray Astronomy

Development of High-Z Semiconductor Detectors and Their Applications to X-ray/gamma-ray Astronomy Development of High-Z Semiconductor Detectors and Their Applications to X-ray/gamma-ray Astronomy Taka Tanaka (SLAC/KIPAC) 9/19/2007 SLAC Advanced Instrumentation Seminar Outline Introduction CdTe Diode

More information

Improved scintillation proportionality and energy resolution of LaBr 3 :Ce at 80K

Improved scintillation proportionality and energy resolution of LaBr 3 :Ce at 80K Improved scintillation proportionality and energy resolution of LaBr 3 :Ce at 80K Ivan V. Khodyuk, Mikhail S. Alekhin, Johan T.M. de Haas, and Pieter Dorenbos Luminescence Materials Research Group, Faculty

More information

Boron-based semiconductor solids as thermal neutron detectors

Boron-based semiconductor solids as thermal neutron detectors Boron-based semiconductor solids as thermal neutron detectors Douglas S. McGregor 1 and Stan M. Vernon 2 1 S.M.A.R.T. Laboratory, Department of Nuclear Engineering and Radiological Sciences, University

More information

arxiv:astro-ph/ v1 6 Mar 2001

arxiv:astro-ph/ v1 6 Mar 2001 Investigation of charge sharing among electrode strips for a CdZnTe detector E. Kalemci a,1 J. L. Matteson a arxiv:astro-ph/0103097v1 6 Mar 2001 Abstract a Center for Astrophysics and Space Sciences, University

More information

Semiconductor X-Ray Detectors. Tobias Eggert Ketek GmbH

Semiconductor X-Ray Detectors. Tobias Eggert Ketek GmbH Semiconductor X-Ray Detectors Tobias Eggert Ketek GmbH Semiconductor X-Ray Detectors Part A Principles of Semiconductor Detectors 1. Basic Principles 2. Typical Applications 3. Planar Technology 4. Read-out

More information

Beta Spectrum. T β,max = kev kev 2.5 ms. Eγ = kev

Beta Spectrum. T β,max = kev kev 2.5 ms. Eγ = kev HOM, 1/14/05; DVB 014-Jan-9, 01-Dec-17, 013-Oct-16 Beta Spectrum Goal: to investigate the spectrum of β rays emitted by a 137 Cs source. The instrument used is a so-called 180 o magnetic spectrometer that

More information

Electrical Characteristics and Fast Neutron Response of Semi-Insulating Bulk Silicon Carbide

Electrical Characteristics and Fast Neutron Response of Semi-Insulating Bulk Silicon Carbide Electrical Characteristics and Fast Neutron Response of Semi-Insulating Bulk Silicon Carbide Peter A. Bryant, Annika Lohstroh, Member IEEE, and Paul J. Sellin, Member IEEE Abstract The electrical characteristics

More information

BREAST cancer is a major health concern for women, and

BREAST cancer is a major health concern for women, and IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 53, NO. 3, JUNE 2006 1403 Surgical Gamma Probe With TlBr Semiconductor for Identification of Sentinel Lymph Node Fábio E. da Costa, Paulo R. Rela, Icimone B.

More information

Semiconductor Detectors

Semiconductor Detectors Semiconductor Detectors Summary of Last Lecture Band structure in Solids: Conduction band Conduction band thermal conductivity: E g > 5 ev Valence band Insulator Charge carrier in conductor: e - Charge

More information

Performance of semi-insulating. insulating GaAs-based radiation detectors: Role of key physical parameters of base material

Performance of semi-insulating. insulating GaAs-based radiation detectors: Role of key physical parameters of base material Institute of Electrical Engineering Slovak Academy of Sciences, Bratislava Slovak republic Performance of semi-insulating insulating GaAs-based radiation detectors: Role of key physical parameters of base

More information

Single Photon detectors

Single Photon detectors Single Photon detectors Outline Motivation for single photon detection Semiconductor; general knowledge and important background Photon detectors: internal and external photoeffect Properties of semiconductor

More information

SLS Symposium on X-Ray Instrumentation

SLS Symposium on X-Ray Instrumentation SLS Symposium on X-Ray Instrumentation Tuesday, December 7, 2010 10:00 to 12:15, WBGB/019 10:00 The optics layout of the PEARL beamline P. Oberta, U. Flechsig and M. Muntwiler 10:30 Instrumentation for

More information

Quantitative determination of the effect of the harmonic component in. monochromatised synchrotron X-ray beam experiments

Quantitative determination of the effect of the harmonic component in. monochromatised synchrotron X-ray beam experiments Frascati Physics Series Vol. XXX (1997), pp. 000-000 Conference Title - Conference Town, Oct 3rd, 1996 Quantitative determination of the effect of the harmonic component in monochromatised synchrotron

More information

Readout of LYSO using a new silicon photodetector for positron emission tomography

Readout of LYSO using a new silicon photodetector for positron emission tomography University of Wollongong Research Online Faculty of Engineering - Papers (Archive) Faculty of Engineering and Information Sciences 23 Readout of LYSO using a new silicon photodetector for positron emission

More information

The GERDA Phase II detector assembly

The GERDA Phase II detector assembly The GERDA Phase II detector assembly Tobias Bode 1, Carla Cattadori 2, Konstantin Gusev 1, Stefano Riboldi 2, Stefan Schönert 1, Bernhard Schwingenheuer 3 und Viktoria Wagner 3 for the GERDA collaboration

More information

Chapter 4 Scintillation Detectors

Chapter 4 Scintillation Detectors Med Phys 4RA3, 4RB3/6R03 Radioisotopes and Radiation Methodology 4-1 4.1. Basic principle of the scintillator Chapter 4 Scintillation Detectors Scintillator Light sensor Ionizing radiation Light (visible,

More information

PROBLEM OF X-RAY SYNCHROTRON BEAM COLLIMATION BY ZONE PLATE

PROBLEM OF X-RAY SYNCHROTRON BEAM COLLIMATION BY ZONE PLATE PROBLEM OF X-RAY SYNCHROTRON BEAM COLLIMATION BY ZONE PLATE A. Kuyumchyan* a, V. Kohn b, A. Snigirev c, I. Snigireva c, M. Grigorev a, S. Kouznetsov a Institute of Microelectronics Technology, RAS, 443,

More information

Advances in Compound Semiconductor Radiation Detectors. a review of recent progress

Advances in Compound Semiconductor Radiation Detectors. a review of recent progress Advances in Compound Semiconductor Radiation Detectors a review of recent progress P.J. Sellin Radiation Imaging Group Department of Physics University of Surrey CZT/CdTe Review of recent developments

More information

Detection of X-Rays. Solid state detectors Proportional counters Microcalorimeters Detector characteristics

Detection of X-Rays. Solid state detectors Proportional counters Microcalorimeters Detector characteristics Detection of X-Rays Solid state detectors Proportional counters Microcalorimeters Detector characteristics Solid State X-ray Detectors X-ray interacts in material to produce photoelectrons which are collected

More information

physics/ Sep 1997

physics/ Sep 1997 GLAS-PPE/97-6 28 August 1997 Department of Physics & Astronomy Experimental Particle Physics Group Kelvin Building, University of Glasgow, Glasgow, G12 8QQ, Scotland. Telephone: +44 - ()141 3398855 Fax:

More information

EEE4106Z Radiation Interactions & Detection

EEE4106Z Radiation Interactions & Detection EEE4106Z Radiation Interactions & Detection 2. Radiation Detection Dr. Steve Peterson 5.14 RW James Department of Physics University of Cape Town steve.peterson@uct.ac.za May 06, 2015 EEE4106Z :: Radiation

More information

A monolithic array of silicon drift detectors coupled to a single scintillator for γ-ray imaging with sub-millimeter position resolution

A monolithic array of silicon drift detectors coupled to a single scintillator for γ-ray imaging with sub-millimeter position resolution 1 A monolithic array of silicon drift detectors coupled to a single scintillator for γ-ray imaging with sub-millimeter position resolution C.Fiorini a*, A.Longoni a, F.Perotti b, C.Labanti c, E.Rossi c,

More information

Chem 481 Lecture Material 3/20/09

Chem 481 Lecture Material 3/20/09 Chem 481 Lecture Material 3/20/09 Radiation Detection and Measurement Semiconductor Detectors The electrons in a sample of silicon are each bound to specific silicon atoms (occupy the valence band). If

More information

3.1 Introduction to Semiconductors. Y. Baghzouz ECE Department UNLV

3.1 Introduction to Semiconductors. Y. Baghzouz ECE Department UNLV 3.1 Introduction to Semiconductors Y. Baghzouz ECE Department UNLV Introduction In this lecture, we will cover the basic aspects of semiconductor materials, and the physical mechanisms which are at the

More information

InAs avalanche photodiodes as X-ray detectors

InAs avalanche photodiodes as X-ray detectors Home Search Collections Journals About Contact us My IOPscience InAs avalanche photodiodes as X-ray detectors This content has been downloaded from IOPscience. Please scroll down to see the full text.

More information

GaN for use in harsh radiation environments

GaN for use in harsh radiation environments 4 th RD50 - Workshop on radiation hard semiconductor devices for very high luminosity colliders GaN for use in harsh radiation environments a (W Cunningham a, J Grant a, M Rahman a, E Gaubas b, J Vaitkus

More information

CVD Diamond History Introduction to DDL Properties of Diamond DDL Proprietary Contact Technology Detector Applications BDD Sensors

CVD Diamond History Introduction to DDL Properties of Diamond DDL Proprietary Contact Technology Detector Applications BDD Sensors Diamond Detectors CVD Diamond History Introduction to DDL Properties of Diamond DDL Proprietary Contact Technology Detector Applications BDD Sensors Kevin Oliver CEO Alex Brown Sales & Marketing 20 May,

More information

Nuclear Instruments and Methods in Physics Research A

Nuclear Instruments and Methods in Physics Research A Nuclear Instruments and Methods in Physics Research A 671 (2012) 1 5 Contents lists available at SciVerse ScienceDirect Nuclear Instruments and Methods in Physics Research A journal homepage: www.elsevier.com/locate/nima

More information

Radioactivity. Lecture 6 Detectors and Instrumentation

Radioactivity. Lecture 6 Detectors and Instrumentation Radioactivity Lecture 6 Detectors and Instrumentation The human organs Neither humans nor animals have an organ for detecting radiation from radioactive decay! We can not hear it, smell it, feel it or

More information

Summary of readout test of DSG prototype with IPA4 cold preamp. C. Cattadori, M. Bernabe-Heider, O. Chkvorets, K. Gusev, M.

Summary of readout test of DSG prototype with IPA4 cold preamp. C. Cattadori, M. Bernabe-Heider, O. Chkvorets, K. Gusev, M. Summary of readout test of DSG prototype with IPA4 cold preamp C. Cattadori, M. Bernabe-Heider, O. Chkvorets, K. Gusev, M. Schircenko Outline Summary of IPA4 circuit (see Nov06 Gerda meeting) The GERDA

More information

Advantages / Disadvantages of semiconductor detectors

Advantages / Disadvantages of semiconductor detectors Advantages / Disadvantages of semiconductor detectors Semiconductor detectors have a high density (compared to gas detector) large energy loss in a short distance diffusion effect is smaller than in gas

More information

Gamma-ray spectroscopy with the scintillator/photomultiplierand with the high purity Ge detector: Compton scattering, photoeffect, and pair production

Gamma-ray spectroscopy with the scintillator/photomultiplierand with the high purity Ge detector: Compton scattering, photoeffect, and pair production Experiment N2: Gamma-ray spectroscopy with the scintillator/photomultiplierand with the high purity Ge detector: Compton scattering, photoeffect, and pair production References: 1. Experiments in Nuclear

More information

Key words: avalanche photodiode, soft X-ray detector, scintillation γ-ray detector, imaging device PACS: 07.85;95.55.A;85.60.D

Key words: avalanche photodiode, soft X-ray detector, scintillation γ-ray detector, imaging device PACS: 07.85;95.55.A;85.60.D We have studied the performance of large area avalanche photodiodes (APDs) recently developed by Hamamatsu Photonics K.K, in high-resolution X-rays and γ- rays detections. We show that reach-through APD

More information

REFERENCE SOURCES FOR THE CALIBRATION OF THE AUTOCORRELATION SINGLE-CRYSTAL SCINTILLATION TIME SPECTROMETER

REFERENCE SOURCES FOR THE CALIBRATION OF THE AUTOCORRELATION SINGLE-CRYSTAL SCINTILLATION TIME SPECTROMETER REFERENCE SOURCES FOR THE CALIBRATION OF THE AUTOCORRELATION SINGLE-CRYSTAL SCINTILLATION TIME SPECTROMETER V.A. MOROZOV 1, N.V. MOROZOVA 1, T. BĂDICĂ 2, D. DELEANU 2,3, D. GHIŢĂ 2, S. PASCU 2,3 1 Joint

More information

Alpha-Energies of different sources with Multi Channel Analyzer

Alpha-Energies of different sources with Multi Channel Analyzer Physical Structure of Matter Radioactivity Alpha-Energies of different sources with Multi Channel Analyzer What you can learn about Decay series Radioactive equilibrium Isotopic properties Decay energy

More information

A dual scintillator - dual silicon photodiode detector module for intraoperative gamma\beta probe and portable anti-compton spectrometer

A dual scintillator - dual silicon photodiode detector module for intraoperative gamma\beta probe and portable anti-compton spectrometer University of Wollongong Research Online Faculty of Engineering - Papers (Archive) Faculty of Engineering and Information Sciences 2008 A dual scintillator - dual silicon photodiode detector module for

More information

3. Anaemia can be diagnosed by (a) 15 P 31 (b) 15 P 32 (c) 26 Fe 59 (d) 11 Na 24. (b) α particle (Alpha particle)

3. Anaemia can be diagnosed by (a) 15 P 31 (b) 15 P 32 (c) 26 Fe 59 (d) 11 Na 24. (b) α particle (Alpha particle) MARCH 2010 PHYSICS Time Allowed: 3 Hours Maximum Marks: 150 PART - I 30 x 1 = 30 Note: i) Answer all the questions. ii) Choose and write the correct answer. 1. Electron microscope works on the principle

More information

Gamma-ray spectroscopy with the scintillator/photomultiplierand with the high purity Ge detector: Compton scattering, photoeffect, and pair production

Gamma-ray spectroscopy with the scintillator/photomultiplierand with the high purity Ge detector: Compton scattering, photoeffect, and pair production Experiment N2: Gamma-ray spectroscopy with the scintillator/photomultiplierand with the high purity Ge detector: Compton scattering, photoeffect, and pair production References: 1. Experiments in Nuclear

More information

Alpha-Gamma discrimination by Pulse Shape in LaBr 3 :Ce and LaCl 3 :Ce

Alpha-Gamma discrimination by Pulse Shape in LaBr 3 :Ce and LaCl 3 :Ce Alpha-Gamma discrimination by Pulse Shape in LaBr 3 :Ce and LaCl 3 :Ce F.C.L. Crespi 1,2, F.Camera 1,2, N. Blasi 2, A.Bracco 1,2, S. Brambilla 2, B. Million 2, R. Nicolini 1,2, L.Pellegri 1, S. Riboldi

More information

Chemical Engineering 412

Chemical Engineering 412 Chemical Engineering 412 Introductory Nuclear Engineering Lecture 26 Radiation Detection & Measurement II Spiritual Thought 2 I would not hold the position in the Church I hold today had I not followed

More information

FUNDAMENTAL PARAMETER METHOD FOR THE LOW ENERGY REGION INCLUDING CASCADE EFFECT AND PHOTOELECTRON EXCITATION

FUNDAMENTAL PARAMETER METHOD FOR THE LOW ENERGY REGION INCLUDING CASCADE EFFECT AND PHOTOELECTRON EXCITATION Copyright (c)jcpds-international Centre for Diffraction Data 2002, Advances in X-ray Analysis, Volume 45. 511 FUNDAMENTAL PARAMETER METHOD FOR THE LOW ENERGY REGION INCLUDING CASCADE EFFECT AND PHOTOELECTRON

More information

Characteristics of the Large-Area Stacked Microstructured Semiconductor Neutron Detector

Characteristics of the Large-Area Stacked Microstructured Semiconductor Neutron Detector Invited Paper Characteristics of the Large-Area Stacked Microstructured Semiconductor Neutron Detector S.L. Bellinger *a, R.G. Fronk a, T.J. Sobering b, D.S. McGregor a a S.M.A.R.T. Laboratory, Department

More information

Colour Images from Compound Semiconductor Radiation Detectors Chapter 3. Alan Owens

Colour Images from Compound Semiconductor Radiation Detectors Chapter 3. Alan Owens Colour Images from Compound Semiconductor Radiation Detectors Chapter 3 Alan Owens Figure 3.2: Left: a diamond disk saw. Right: a wire saw used for cutting ingots into slices prior to detector preparation.

More information

The CUTE Facility. Ryan Underwood Queen s University, TRIUMF WNPPC 2019

The CUTE Facility. Ryan Underwood Queen s University, TRIUMF WNPPC 2019 The CUTE Facility Ryan Underwood Queen s University, TRIUMF WNPPC 2019 Dark Matter Strong evidence for a nonluminous, gravitationally interacting kind of matter; Dark Matter Interaction with normal matter

More information

Position Sensitive Germanium Detectors for the Advanced Compton Telescope

Position Sensitive Germanium Detectors for the Advanced Compton Telescope Position Sensitive Germanium Detectors for the Advanced Compton Telescope R.A. Kroeger 1, W.N. Johnson 1, J.D. Kurfess 1, B.F. Phlips, P.N. Luke 3, M. Momayezi 4, W.K. Warburton 4 1 Naval Research Laboratory,

More information

High-Resolution Gamma-Ray and Neutron Detectors For Nuclear Spectroscopy

High-Resolution Gamma-Ray and Neutron Detectors For Nuclear Spectroscopy High-Resolution Gamma-Ray and Neutron Detectors For Nuclear Spectroscopy Thomas Niedermayr, I. D. Hau, S. Terracol, T. Miyazaki, S. E. Labov and S. Friedrich Former colleagues: M. F. Cunningham, J. N.

More information

PRE-BOARD EXAMINATION STD : XII MARKS : 150

PRE-BOARD EXAMINATION STD : XII MARKS : 150 PRE-BOARD EXAMINATION STD : XII MARKS : 150 SUB : PHYSICS TIME : 3.00 Hrs I.Choose the correct answer: 30x1=30 1.Which of the following quantities not a scalar? a)electric flux b) electric potential c)

More information

Multilayer coating facility for the HEFT hard X-ray telescope

Multilayer coating facility for the HEFT hard X-ray telescope Multilayer coating facility for the HEFT hard X-ray telescope Carsten P. Jensen a, Finn E. Christensen a, Hubert Chen b, Erik B. W.Smitt a, Eric Ziegler c a Danish Space Research Institute (Denmark); b

More information

MARKING SCHEME SET 55/1/G Q. No. Expected Answer / Value Points Marks Total Marks

MARKING SCHEME SET 55/1/G Q. No. Expected Answer / Value Points Marks Total Marks MARKING SCHEME SET 55//G Q. No. Expected Answer / Value Points Marks Total Marks Set,Q Set2,Q5 Set,Q2 Set,Q2 Set2,Q4 Set,Q5 Set,Q Set2,Q2 Set,Q4 Set,Q4 Set2,Q Set,Q Set,Q5 Set2,Q Set,Q Set,Q6 Set2,Q7 Set,Q0

More information

LASER-COMPTON SCATTERING AS A POTENTIAL BRIGHT X-RAY SOURCE

LASER-COMPTON SCATTERING AS A POTENTIAL BRIGHT X-RAY SOURCE Copyright(C)JCPDS-International Centre for Diffraction Data 2003, Advances in X-ray Analysis, Vol.46 74 ISSN 1097-0002 LASER-COMPTON SCATTERING AS A POTENTIAL BRIGHT X-RAY SOURCE K. Chouffani 1, D. Wells

More information

Analysis of Background Events in Silicon Drift Detectors

Analysis of Background Events in Silicon Drift Detectors Analysis of Background Events in Silicon Drift Detectors T. Eggert a, P. Goldstrass a J. Kemmer a A. Pahlke b a Ketek GmbH, Gustav-Heinemann-Ring 125, D-81739 München, Germany b MPI Halbleiterlabor, Otto-Hahn-Ring

More information

Development of semiconductor imaging detectors for a Si/CdTe Compton camera

Development of semiconductor imaging detectors for a Si/CdTe Compton camera SLAC-PUB-12926 October 27 Development of semiconductor imaging detectors for a Si/CdTe Compton camera Shin Watanabe a,, Shin ichiro Takeda a,b, Shin-nosuke Ishikawa a,b, Hirokazu Odaka a,b, Masayoshi Ushio

More information

Absorbers for medical X-ray detectors with optimum spatial resolution: a simulation study

Absorbers for medical X-ray detectors with optimum spatial resolution: a simulation study Absorbers for medical X-ray detectors with optimum spatial resolution: a simulation study M. Hoheisel a, J. Giersch b, M. Mitschke b, and P. Bernhardt a a Siemens AG Medical Solutions, Forchheim, Germany

More information

Development of New MicroStrip Gas Chambers for X-ray Applications

Development of New MicroStrip Gas Chambers for X-ray Applications Joint International Workshop: Nuclear Technology and Society Needs for Next Generation Development of New MicroStrip Gas Chambers for X-ray Applications H.Niko and H.Takahashi Nuclear Engineering and Management,

More information

MT Electron microscopy Scanning electron microscopy and electron probe microanalysis

MT Electron microscopy Scanning electron microscopy and electron probe microanalysis MT-0.6026 Electron microscopy Scanning electron microscopy and electron probe microanalysis Eero Haimi Research Manager Outline 1. Introduction Basics of scanning electron microscopy (SEM) and electron

More information

X-Ray Radiation Channeling through Micro-Channel Plates: spectroscopy with a Synchrotron Radiation Beam

X-Ray Radiation Channeling through Micro-Channel Plates: spectroscopy with a Synchrotron Radiation Beam X-Ray Radiation Channeling through Micro-Channel Plates: spectroscopy with a Synchrotron Radiation Beam M.I. Mazuritskiy a, S.B. Dabagov b,c, A. Marcelli b, K. Dziedzic-Kocurek d and A.M. Lerer a a Southern

More information

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors Lecture 2 Introduction to semiconductors Structures and characteristics in semiconductors Semiconductor p-n junction Metal Oxide Silicon structure Semiconductor contact Literature Glen F. Knoll, Radiation

More information

V. 3. Development of an Accelerator Beam Loss Monitor Using an Optical Fiber

V. 3. Development of an Accelerator Beam Loss Monitor Using an Optical Fiber CYRIC Annual Report 2001 V. 3. Development of an Accelerator Beam Loss Monitor Using an Optical Fiber Kawata N. Baba M. Kato M.*, Miura T.**, and Yamadera A.***, Cyclotron and Radioisotope Center, Tohoku

More information

Pulse-shape shape analysis with a Broad-energy. Ge-detector. Marik Schönert. MPI für f r Kernphysik Heidelberg

Pulse-shape shape analysis with a Broad-energy. Ge-detector. Marik Schönert. MPI für f r Kernphysik Heidelberg Pulse-shape shape analysis with a Broad-energy Ge-detector Marik Barnabé é Heider Dušan Budjáš Oleg Chkvorets Stefan Schönert MPI für f r Kernphysik Heidelberg Outline 1. Motivation and goals 2. BEGe detector

More information

Theory of Electrical Characterization of Semiconductors

Theory of Electrical Characterization of Semiconductors Theory of Electrical Characterization of Semiconductors P. Stallinga Universidade do Algarve U.C.E.H. A.D.E.E.C. OptoElectronics SELOA Summer School May 2000, Bologna (It) Overview Devices: bulk Schottky

More information

Advances in the Micro-Hole & Strip Plate gaseous detector

Advances in the Micro-Hole & Strip Plate gaseous detector Nuclear Instruments and Methods in Physics Research A 504 (2003) 364 368 Advances in the Micro-Hole & Strip Plate gaseous detector J.M. Maia a,b,c, *, J.F.C.A. Veloso a, J.M.F. dos Santos a, A. Breskin

More information

Determination of the shielding power of different materials against gamma radiation

Determination of the shielding power of different materials against gamma radiation Determination of the shielding power of different materials against gamma radiation Chow Wing Yan, Yeung Chun Lap S.K.H Tsang Shiu Tim Secondary School Wong Ka Wing Baptist Lui Ming Choi Secondary School

More information

A study of the double-acceptor level of the silicon divacancy in a proton irradiated n-channel CCD.

A study of the double-acceptor level of the silicon divacancy in a proton irradiated n-channel CCD. A study of the double-acceptor level of the silicon divacancy in a proton irradiated n-channel CCD. D. Wood*, D. Hall, J.P.D Gow and A. Holland. Centre for Electronic Imaging, The Open University, Milton

More information

Final report on DOE project number DE-FG07-99ID High Pressure Xenon Gamma-Ray Spectrometers for Field Use

Final report on DOE project number DE-FG07-99ID High Pressure Xenon Gamma-Ray Spectrometers for Field Use Final report on DOE project number DE-FG07-99ID13772 High Pressure Xenon Gamma-Ray Spectrometers for Field Use Principle Investigator: Glenn K. Knoll Co-investigator: David K. Wehe, Zhong He, University

More information

CMS Note Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

CMS Note Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland Available on CMS information server CMS NOTE 199/11 The Compact Muon Solenoid Experiment CMS Note Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland 11 February 199 Temperature dependence of the

More information

n i exp E g 2kT lnn i E g 2kT

n i exp E g 2kT lnn i E g 2kT HOMEWORK #10 12.19 For intrinsic semiconductors, the intrinsic carrier concentration n i depends on temperature as follows: n i exp E g 2kT (28.35a) or taking natural logarithms, lnn i E g 2kT (12.35b)

More information

February 1, 2011 The University of Toledo, Department of Physics and Astronomy SSARE, PVIC

February 1, 2011 The University of Toledo, Department of Physics and Astronomy SSARE, PVIC FUNDAMENTAL PROPERTIES OF SOLAR CELLS February 1, 2011 The University of Toledo, Department of Physics and Astronomy SSARE, PVIC Principles and Varieties of Solar Energy (PHYS 4400) and Fundamentals of

More information

ELECTRONIC DEVICES AND CIRCUITS SUMMARY

ELECTRONIC DEVICES AND CIRCUITS SUMMARY ELECTRONIC DEVICES AND CIRCUITS SUMMARY Classification of Materials: Insulator: An insulator is a material that offers a very low level (or negligible) of conductivity when voltage is applied. Eg: Paper,

More information

UNIT I: Electronic Materials.

UNIT I: Electronic Materials. SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code: SEMICONDUCTOR PHYSICS (18HS0851) Course & Branch: B.Tech

More information

Introduction to XAFS. Grant Bunker Associate Professor, Physics Illinois Institute of Technology. Revised 4/11/97

Introduction to XAFS. Grant Bunker Associate Professor, Physics Illinois Institute of Technology. Revised 4/11/97 Introduction to XAFS Grant Bunker Associate Professor, Physics Illinois Institute of Technology Revised 4/11/97 2 tutorial.nb Outline Overview of Tutorial 1: Overview of XAFS 2: Basic Experimental design

More information