Supplementary Materials for

Size: px
Start display at page:

Download "Supplementary Materials for"

Transcription

1 advances.sciencemag.org/cgi/content/full/3/9/e /dc1 Supplementary Materials for Ultratransparent and stretchable graphene electrodes Nan Liu, Alex Chortos, Ting Lei, Lihua Jin, Taeho Roy Kim, Won-Gyu Bae, Chenxin Zhu, Sihong Wang, Raphael Pfattner, Xiyuan Chen, Robert Sinclair, Zhenan Bao The PDF file includes: Published 8 September 2017, Sci. Adv. 3, e (2017) DOI: /sciadv Experimental section Additional supporting information fig. S1. Optical microscopy images of monolayer MGG on SiO2/Si substrates at different magnifications. fig. S2. SEM images of mono-, bi-, and trilayer MGGs on the SiO2/Si wafers. fig. S3. SEM images of graphene film covered with spray-coated CNTs. fig. S4. Comparison of two-probe sheet resistances and nm of mono-, bi- and trilayer plain graphene (black squares), MGG (red circles), and CNTs (blue triangle). fig. S5. Sheet resistances of mono-, bi-, and trilayer MGGs. fig. S6. Optical transmittances of MGGs and multilayer plain graphene. fig. S7. Normalized resistance change of mono- and bilayer MGGs (black) and G (red) under ~1000 cyclic strain loading up to 40 and 90% parallel strain, respectively. fig. S8. Calculation of relative areal capacitance change as a function of strain. fig. S9. Optical microscopy image of trilayer MGG on SEBS elastomer. fig. S10. SEM image of trilayer MGG on SEBS elastomer after strain, showing a long scroll cross over several cracks. fig. S11. AFM images of various graphene structures on SEBS elastomer after 100% strain. fig. S12. AFM image of trilayer MGG on very thin SEBS elastomer at 20% strain, showing that a scroll crossed over a crack. fig. S13. Optical microscopy observation and simulation of graphenes on SEBS under strain.

2 fig. S14. Contact resistances of monolayer G/CNTs and Au/CNTs at different gate voltages. table S1. Mobilities of bilayer MGG single-walled carbon nanotube transistors at different channel lengths before and after strain. table S2. Summary of recent work on all-carbon transistors. References (54 58) Other Supplementary Material for this manuscript includes the following: (available at advances.sciencemag.org/cgi/content/full/3/9/e /dc1) movie S1 (.mp4 format). Demonstration of stretchable LED control units by allcarbon transistors.

3 Experimental section Preparation of Plain Graphene CVD graphene was grown on Cu foils (Alfa Aesar, %) under a constant pressure of 0.5 mtorr with 50 sccm CH4 and 20 sccm H2 as precursors at 1000 C. Both sides of Cu foil were covered by monolayer graphene. To transport the sample, we clamped graphene/cu foil in between weighing paper and then glass slides. To maintain the flatness of graphene/cu foil at every step is critical in achieving clean transfer. A thin layer of PMMA (Microchem, A4, 2000 rpm) was spin-coated on one side of Cu foil, and O2 plasma (Micro, 200sccm air, 100 mtorr, 30 seconds) was used to etch the graphene on other side of Cu foil. Subsequently, the whole film was soaked in 0.1 mol/l ammonium persulfate ((NH4)2S2O8) solution for about 2 hours to etch away the Cu foil. The as-obtained PMMA/Graphene film was washed in DI-water several times, and laid onto target substrates. Right after the film was dried on the substrate, it was sequentially soaked in acetone, 1:1 acetone:ipa, and IPA for 30 seconds each to remove PMMA. To stack the following layers with repeated graphene transfer, the adhesion between the initial layer of graphene film and substrates is enhanced by either heating the sample at 100 C for 15 min or keeping it in vacuum overnight. This is to avoid the detachment of underlying graphene film from the substrates during PMMA removal. For a clean transfer, we normally chose to dry PMMA film in vacuum at room temperature, and afterwards soak the final graphene stacks in acetone for several days to remove PMMA residues as much as possible.

4 Preparation of G-CNTs-G Plain monolayer graphene was first transferred from Cu foil onto SiO2/Si wafers using aforementioned method. CNTs produced using the arc discharge method (P2-SWNT from Carbon Solutions) were dispersed in n-methyl 2-pyrrolidone using a probe sonicator (Cole Parmer Ultrasonicator 750 W) at 30% power for 30 minutes. The initial concentration of the mixture was 200 μg/ml. The resulting dispersion was centrifuged at 8000 rpm for 30 minutes, and the top 80% of the solution was aspirated for use in spraycoating. The CNT solution was spraycoated onto previous graphene covered SiO2/Si wafer at 200 C using a commercial airbrush (Master Airbrush, Model SB844- SET). The outlet of the airbrush kept a distance of approximately 15 cm with the surface of G/SiO2/Si substrate at a pressure of 35 psi. The density of CNTs is determined by the spraycoating time. The whole sample of CNTs/G was next left in a vacuum oven about 1 day to enhance its adhesion to substrates. A following graphene layer was transferred to form the sandwich composite of G-CNTs-G. Preparation of Semiconducting SWNTs Semiconducting SWNT solution was prepared using a modified procedure from our published work (53). 5 mg of poly[(9,9- di-n-dodecyl-2,7-fluorendiyl-dimethine)-(1,4- phenylene-dinitrilomethine)] (PF-PD) and 15 mg of raw SWNTs (RN-020, from Raymor Industries Inc.) were mixed in 25 ml of toluene and ultrasonicated for 30 min at an amplitude level of 50% while externally cooled with a dry ice bath. The solution was then centrifuged at 8000 rpm for 5 min and rpm ( g) for 25 min at 16 C. 80 % of the supernatants (20 ml) was collected and directly used for device fabrication. The

5 SWNT networks were fabricated by drop-casting the polymer sorted SWNT solution on SiO 2 wafer and then rinsed with toluene containing a small amount (1 % v/v) of trifluoroacetic acid to remove polymer residues. Toluene rinsing was used to degrade and remove the polymer residues. Morphology characterizations (optical microscopy and scanning electron microscopy) To characterize the morphology of multilayer graphene/graphene scrolls (MGG), we utilized OM, SEM and AFM. To observe the scroll distribution, we transferred MGG on Si substrates with 300-nm thermally-grown SiO2 on top. In optical microscope, the scrolls, showing as purple, are uniformly distributed over the graphene background (fig. S1). SEM was performed with an FEI Magellan 400 XHR scanning electron microscope operated at 1 kv, with a working distance of 3 mm. The surface of MGG is full of rolled up graphene scrolls and with stacked layer number increases, the scrolls became denser (fig. S2). fig. S1. Optical microscopy images of monolayer MGG on SiO2/Si substrates at different magnifications. Darker lines are graphene scrolls and lighter background is covered by monolayer graphene.

6 fig. S2. SEM images of mono-, bi-, and trilayer MGGs on the SiO2/Si wafers. In zoom-in images, representative scrolls and wrinkles are labeled to highlight their differences. Rolled-up graphene scrolls were replaced by spray-coated CNTs (fig. S3). Figure S3a is an overview image, with fig. S3b and c specifically zoomed into fully CNTs and partially CNTs covered regions.

7 fig. S3. SEM images of graphene film covered with spray-coated CNTs. (a) shows large-area CNTs/G film and (b,c) focus on all-cnts and partially CNTs- covered graphene regions. The red dash line in (c) marked the border of CNTs only and CNTs/G areas. Electrical and optical properties of MGG To compare resistances of MGG and plain graphene at strain, we first patterned them into strips (~ 300 μm wide and ~ 2000 μm long) by photolithography and O2 plasma on a Si substrate with 300-nm thermally-grown SiO2 on top and then deposited an array of Au electrodes by shadow mask and metallization method. The device array was next detached from the SiO2/Si substrate by etching SiO2 layer in BOE solution (HF:H2O 1:6) and transferred onto target elastomer substrate. To achieve a good contact during stretching test, additional macroscale liquid metal (EGaIn) was carefully connected from Au electrodes using toothpick. The entire sample was stretched in a manual apparatus and their 2-probe resistance changes were in-situ tested at strain perpendicular to the flow direction on a probe station with a semiconductor analyzer (Keithley 4200-SCS). We then measured the width and length of each strip and calculated their sheet resistances using the following formula

8 R s = R w l where R s is the 2-probe sheet resistance in the unit of Ω/sq. w and l are the measured width and length of the strip. Resistances and 550 nm of mono-, bi- and tri-layer plain graphene, MGG and CNTs-only were listed in fig. S4. Trilayer MGG has the best conductance with transparency of almost 90%. fig. S4. Comparison of two-probe sheet resistances and nm of mono-, bi- and trilayer plain graphene (black squares), MGG (red circles), and CNTs (blue triangle). 4-probe sheet resistances were also measured on mono-, bi-, and tri-layer MGG samples. We randomly tested about 10 positions over the sample area of ~ 1 cm x 1 cm. The average sheet resistances of mono-, bi- and tri-layer MGGs are 185, 375, and 637 Ω/sq with coefficient of variations (CV = standard deviations/mean) of 7.2, 5.1 and 1.8%

9 respectively (fig. S5). The small CVs indicate the scrolls are uniformly distributed over the sample, enabling highly consistent stretchable electrodes. fig. S5. Sheet resistances of mono-, bi-, and trilayer MGGs. Figure S6 compares their optical transmittances of MGGs and multilayer plain graphene. fig. S6. Optical transmittances of MGGs and multilayer plain graphene. We also compared resistances of MGG and plain graphene at strain, which is parallel to the current flow (fig. 2C), and performed cycling tests (fig. S7). Graphenes (~ 5 mm wide and ~ 1 cm long) were transferred onto SEBS elastomer substrates, contact with liquid

10 metal (EGaIn) directly, and connected to a home-made stretching machine with automatic strain loading. For the samples with scrolls, graphene structures show less resistance change. fig. S7. Normalized resistance change of mono- and bilayer MGGs (black) and G (red) under ~1000 cyclic strain loading up to 40 and 90% parallel strain, respectively. Capacitance measurement gated by MGG under strain To fabricate stretchable capacitors with MGG as back gates, we first transferred MGG structures onto SEBS elastomer substrates and then covered them with SEBS dielectric layers (2-μm in thickness). The thin dielectric film was transferred from a very smooth hydrophobic OTS modified SiO2/Si surface by spin-coating a SEBS toluene (80 mg/ml) solution at 1000 rpm for 1 min. This OTS surface helped obtain uniform and pin-hole free thin film polymer dielectric. For top metal plate, to avoid metal penetration and easily determine the capacitor area, we deposited 5 nm Al/40 nm Au patterned by shadow mask followed by additional liquid metal as feasible contacts during strain test. An LCR

11 meter (Agilent) measured its capacitance gated by graphene in the frequency of 20 Hz. According to the following formula (57) C = ε r ε 0 A d (Equation 1) Where capacitance (C) is dependent on the area (A) and separation (d) of two electrodes. While stretching, relative areal capacitance is C = ε 1 A rε 0 d 0 (1 νε) (Equation 2) Where ε is strain and ν is poisson ratio. It will increase due to the decreased thickness of dielectric layer. Figure S8 calculates the ideal relative areal capacitance change as a function of strain. Because the area of the measured capacitor is much smaller than the stretched substrate, the real strain on the capacitor is less than the strain we applied on the whole substrate. Therefore, the actual slope of the capacitance change should be flatter than that in fig. S8.

12 fig. S8. Calculation of relative areal capacitance change as a function of strain. Morphological understanding of graphene after strain. We observed the surface of MGGs on elastomer using a variety of methods. As shown in fig. S9, the scroll on MGG is extremely difficult to be visualized under optical microscope on elastomer substrate due to the lack of color contrast. fig. S9. Optical microscopy image of trilayer MGG on SEBS elastomer. The top white rectangular region is bare SEBS substrate and the bottom red region is covered by trilayer MGG.

13 SEM detects secondary electrons emitted by atoms excited by electron beam. Under SEM, conductors are easier to conduct electrons showing as dark while nonconductors and the sharp edges tend to accumulate electrons showing as bright. Figure S10 is an SEM image of trilayer MGG on elastomer substrate after strain. Overall, trilayer MGG after strain is still conductive, showing as dark. The conductive scroll is dark as well with bright edges. Cracks perpendicular to the strain are bright. It is clearly observed that this scroll crossed over several cracks in the graphene, bridging the domains. However, samples on nonconductive polymer tend to charge and cause scanning faults and image artifacts, making it difficult to make conclusive observations. fig. S10. SEM image of trilayer MGG on SEBS elastomer after strain, showing a long scroll cross over several cracks. The scroll is arrowed as well as a typical crack. AFM reflects the morphology by touching the surface with a mechanical probe. Figure S11A-D are the AFM images of mono-, bi-, tri-layer MGGs after the underlying SEBS (~1 mm) are stretched up to 100%. Zoom-in image of fig. S11C shows a scroll crossed over a crack (fig. S12). In contrast, no scroll was observed on fig. S11E and its corresponding zoom-in image fig. S11F. Similarly, CNTs also bridged the cracks in graphene. Since it is not easy to distinguish CNTs on a rough surface in topography

14 image (fig. S11G), we observed them in the phase image. One bridging CNT was marked in fig. S11H. The existence of such 1D conductive structures must contribute to the electrical conductivity in particular when they are under strain. fig. S11. AFM images of various graphene structures on SEBS elastomer after 100% strain. Mono-, bi- and tri-layer G/G scrolls (A-C) bilayer G (E), G-CNT3-G (G) and the zoom-in images (D, F, H) corresponding to the marked regions. Representative cracks and scrolls are labeled. To observe the relative movement of scroll vs. underlying graphene, we specifically zoomed into a scroll-covered region at 20% strain (fig. S12). While the graphene cracks during stretching in order to accommodate strain, the scrolls are very likely not to crack at the same location, continuing to contribute a percolating pathway.

15 fig. S12. AFM image of trilayer MGG on very thin SEBS elastomer at 20% strain, showing that a scroll crossed over a crack. Simulation of graphene on SEBS under 20% strain Graphene has a much higher modulus than that of the SEBS substrate. Although the effective thickness of the graphene electrodes is much lower than that of the substrate, the stiffness of the graphene times its thickness is comparable to that of the substrate, resulting in a moderate rigid-island effect. We simulated the deformation of the graphene and substrate under a plane strain condition, when an external strain of 20% is applied on the SEBS substrate. Geometry of simulation is shown in fig. 4I and strain of simulation is up to 20%. This is because when strain is too large, crack will generate. The graphene electrodes are modeled by beam elements with an effective thickness 1nm, and the graphene is modeled as a linear elastic material with Young s modulus 0.9 TPa and Poisson s ratio 0.15 (43, 44). The SEBS substrate is modeled as an incompressible neo- Hookean material with Young s modulus around 6.23 MPa, and therefore shear modulus around 2.08 MPa. The simulation result shows that at an external strain of 20%, the average strain in the graphene electrode, defined as the elongation of the graphene divided by its original length, is 6.6% (fig. 4J). This indicates that the strain applied on

16 graphene electrode patterns is significantly confined, forming graphene stiff islands on top of SEBS (54 56). Optical microscope observation of graphene on SEBS under strain To verify the above simulation result, we made graphene patterns with 200 µm features and then stretched and looked at them at optical microscope (fig. S13a, b). At a designated strain, graphene elongation is always smaller than SEBS. Figure S14c summarized the length changes of graphene region and SEBS region at different strains. This observation agrees very well with the simulation result (fig. S13d), confirming graphene rigid island effect on SEBS that strain on graphene patterns is confined. fig. S13. Optical microscopy observation and simulation of graphenes on SEBS under strain. Optical microscope images of patterned graphene strips on SEBS at 0% (a) and 30% (b) strain. The darker strips labeled in red are graphene regions, while the lighter ones labeled in green are SEBS regions. (c,d) Experimentally observed (c) and simulated (d) strains applied on graphene and SEBS regions vs. overall strains on the whole substrate.

17 Additional supporting information Calculation of contact resistance Transfer-line method (TLM) was used to calculate the contact resistance. In the linear regime, the total resistance (R total ) of the channel should be (58) R total = R channel + R sd = L WμC i (V GS V Th ) + R sd (Equation 4) Where R channel and R sd are the channel resistance and contact resistance, μ is the linear mobility, L and W are the channel length and width, C is the gate capacitance. At different (V GS V Th ), if we plot R total W as a function of channel length L, the intercept to the y-axis gives R sd W. We fabricated CNTs transistors with monolayer graphene and evaporated Au film as top contacts on 300 nm-sio2/si substrates and compared their contact resistances (fig. S14). Monolayer graphene shows much better contact with CNTs than using Au as contacts.

18 fig. S14. Contact resistances of monolayer G/CNTs and Au/CNTs at different gate voltages. Mobility calculation of stretchable transistors The drain current in the saturation regime is given by I D = W 2L Cμ(V GS V T ) 2 (Equation 5) Where L and W are the channel length and width respectively, C is the gate capacitance, μ is the field-effect mobility, and V T is the threshold voltage. The square root of the saturation current could be plotted as a function of the gate voltage. The slope of the plotted straight-line gives mobility μ while its extrapolation to the V GS axis corresponds to the threshold voltage V T. C was measured aforementioned using a planar capacitor model, assuming a constant capacitance of 1 nf/cm 2 at strain up to 120%. Table S1 summarized mobilities and threshold voltages of bilayer MGG-SWNTs transistors at different channel lengths before and after strain.

19 table S1. Mobilities of bilayer MGG single-walled carbon nanotube transistors at different channel lengths before and after strain. Channel length (μm) On/off V th (V) Saturated mobility (cm 2 /vs) Before Strain After 105% Strain e e e e e e table S2. Summary of recent work on all-carbon transistors. Publication Minggagng Xia et al, Appl. Phys. Lett. 105:143504, Feng Xu et al, Nano Lett, 14:682, Le Cai et al, ACS Nano, 10:11459, Alex Chortos et al, Adv. Mater, 28:4441, Jiajie Liang et al, Nat Commun, 6:7647, Atsuko Sekiguchi et al, Nano Lett, Mobility; on/off Elastic Transmittance Time Response ratio stretchability 23; % Low Fast 10; % (elastic) Low Slow (ion gel) 4; % (elastic) Low Fast; nonpolar dielectric 0.2; % (elastic) <60% Slow (ionic effects) 32.5; % (elastic) ~90% Slow (ionic effects) N/A; % (elastic) <60% Slow (ion gel) 15:5716, This work 6; % (elastic) >90% Fast; nonpolar dielectric

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supporting Information Controllable Atmospheric Pressure Growth of Mono-layer, Bi-layer and Tri-layer

More information

Figure 1: Graphene release, transfer and stacking processes. The graphene stacking began with CVD

Figure 1: Graphene release, transfer and stacking processes. The graphene stacking began with CVD Supplementary figure 1 Graphene Growth and Transfer Graphene PMMA FeCl 3 DI water Copper foil CVD growth Back side etch PMMA coating Copper etch in 0.25M FeCl 3 DI water rinse 1 st transfer DI water 1:10

More information

Stretchable Graphene Transistors with Printed Dielectrics and Gate Electrodes

Stretchable Graphene Transistors with Printed Dielectrics and Gate Electrodes Stretchable Graphene Transistors with Printed Dielectrics and Gate Electrodes Seoung-Ki Lee, Beom Joon Kim, Houk Jang, Sung Cheol Yoon, Changjin Lee, Byung Hee Hong, John A. Rogers, Jeong Ho Cho, Jong-Hyun

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Facile Synthesis of High Quality Graphene Nanoribbons Liying Jiao, Xinran Wang, Georgi Diankov, Hailiang Wang & Hongjie Dai* Supplementary Information 1. Photograph of graphene

More information

Supplementary Figure 1 shows overall fabrication process and detailed illustrations are given

Supplementary Figure 1 shows overall fabrication process and detailed illustrations are given Supplementary Figure 1. Pressure sensor fabrication schematics. Supplementary Figure 1 shows overall fabrication process and detailed illustrations are given in Methods section. (a) Firstly, the sacrificial

More information

High-Performance Semiconducting Polythiophenes for Organic Thin Film. Transistors by Beng S. Ong,* Yiliang Wu, Ping Liu and Sandra Gardner

High-Performance Semiconducting Polythiophenes for Organic Thin Film. Transistors by Beng S. Ong,* Yiliang Wu, Ping Liu and Sandra Gardner Supplementary Materials for: High-Performance Semiconducting Polythiophenes for Organic Thin Film Transistors by Beng S. Ong,* Yiliang Wu, Ping Liu and Sandra Gardner 1. Materials and Instruments. All

More information

Supplementary Figure 1 Dark-field optical images of as prepared PMMA-assisted transferred CVD graphene films on silicon substrates (a) and the one

Supplementary Figure 1 Dark-field optical images of as prepared PMMA-assisted transferred CVD graphene films on silicon substrates (a) and the one Supplementary Figure 1 Dark-field optical images of as prepared PMMA-assisted transferred CVD graphene films on silicon substrates (a) and the one after PBASE monolayer growth (b). 1 Supplementary Figure

More information

Supplementary Figure S1. AFM images of GraNRs grown with standard growth process. Each of these pictures show GraNRs prepared independently,

Supplementary Figure S1. AFM images of GraNRs grown with standard growth process. Each of these pictures show GraNRs prepared independently, Supplementary Figure S1. AFM images of GraNRs grown with standard growth process. Each of these pictures show GraNRs prepared independently, suggesting that the results is reproducible. Supplementary Figure

More information

A. Optimizing the growth conditions of large-scale graphene films

A. Optimizing the growth conditions of large-scale graphene films 1 A. Optimizing the growth conditions of large-scale graphene films Figure S1. Optical microscope images of graphene films transferred on 300 nm SiO 2 /Si substrates. a, Images of the graphene films grown

More information

A Novel Approach to the Layer Number-Controlled and Grain Size- Controlled Growth of High Quality Graphene for Nanoelectronics

A Novel Approach to the Layer Number-Controlled and Grain Size- Controlled Growth of High Quality Graphene for Nanoelectronics Supporting Information A Novel Approach to the Layer Number-Controlled and Grain Size- Controlled Growth of High Quality Graphene for Nanoelectronics Tej B. Limbu 1,2, Jean C. Hernández 3, Frank Mendoza

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supporting Information High-k Polymer/Graphene Oxide Dielectrics for Low-Voltage Flexible Nonvolatile

More information

Hopping in CVD Grown Single-layer MoS 2

Hopping in CVD Grown Single-layer MoS 2 Supporting Information for Large Thermoelectricity via Variable Range Hopping in CVD Grown Single-layer MoS 2 Jing Wu 1,2,3, Hennrik Schmidt 1,2, Kiran Kumar Amara 4, Xiangfan Xu 5, Goki Eda 1,2,4, and

More information

Supporting Information

Supporting Information Supporting Information Assembly and Densification of Nanowire Arrays via Shrinkage Jaehoon Bang, Jonghyun Choi, Fan Xia, Sun Sang Kwon, Ali Ashraf, Won Il Park, and SungWoo Nam*,, Department of Mechanical

More information

Low Voltage Field Emission SEM (LV FE-SEM): A Promising Imaging Approach for Graphene Samples

Low Voltage Field Emission SEM (LV FE-SEM): A Promising Imaging Approach for Graphene Samples Low Voltage Field Emission SEM (LV FE-SEM): A Promising Imaging Approach for Graphene Samples Jining Xie Agilent Technologies May 23 rd, 2012 www.agilent.com/find/nano Outline 1. Introduction 2. Agilent

More information

2011 GCEP Report. Project title: Self-sorting of Carbon Nanotubes for High Performance Large Area Transparent Electrodes for Solar Cells

2011 GCEP Report. Project title: Self-sorting of Carbon Nanotubes for High Performance Large Area Transparent Electrodes for Solar Cells 2011 GCEP Report Project title: Self-sorting of Carbon Nanotubes for High Performance Large Area Transparent Electrodes for Solar Cells Investigators Zhenan Bao, Associate Professor, Chemical Engineering

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/3/9/e1701222/dc1 Supplementary Materials for Moisture-triggered physically transient electronics Yang Gao, Ying Zhang, Xu Wang, Kyoseung Sim, Jingshen Liu, Ji Chen,

More information

Supplementary Information. High-Performance, Transparent and Stretchable Electrodes using. Graphene-Metal Nanowire Hybrid Structures

Supplementary Information. High-Performance, Transparent and Stretchable Electrodes using. Graphene-Metal Nanowire Hybrid Structures Supplementary Information High-Performance, Transparent and Stretchable Electrodes using Graphene-Metal Nanowire Hybrid Structures Mi-Sun Lee, Kyongsoo Lee, So-Yun Kim, Heejoo Lee, Jihun Park, Kwang-Hyuk

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2016 Supporting Information Graphene transfer method 1 : Monolayer graphene was pre-deposited on both

More information

Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped

Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped gold substrate. (a) Spin coating of hydrogen silsesquioxane (HSQ) resist onto the silicon substrate with a thickness

More information

Supplementary Figure 1 Experimental setup for crystal growth. Schematic drawing of the experimental setup for C 8 -BTBT crystal growth.

Supplementary Figure 1 Experimental setup for crystal growth. Schematic drawing of the experimental setup for C 8 -BTBT crystal growth. Supplementary Figure 1 Experimental setup for crystal growth. Schematic drawing of the experimental setup for C 8 -BTBT crystal growth. Supplementary Figure 2 AFM study of the C 8 -BTBT crystal growth

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Direct Visualization of Large-Area Graphene Domains and Boundaries by Optical Birefringency Dae Woo Kim 1,*, Yun Ho Kim 1,2,*, Hyeon Su Jeong 1, Hee-Tae Jung 1 * These authors contributed equally to this

More information

Supplementary Information. Rapid Stencil Mask Fabrication Enabled One-Step. Polymer-Free Graphene Patterning and Direct

Supplementary Information. Rapid Stencil Mask Fabrication Enabled One-Step. Polymer-Free Graphene Patterning and Direct Supplementary Information Rapid Stencil Mask Fabrication Enabled One-Step Polymer-Free Graphene Patterning and Direct Transfer for Flexible Graphene Devices Keong Yong 1,, Ali Ashraf 1,, Pilgyu Kang 1,

More information

percolating nanotube networks

percolating nanotube networks Supporting Information for: A highly elastic, capacitive strain gauge based on percolating nanotube networks 0.2 0.18 0.16 0.14 Force (kgf) 0.12 0.1 0.08 0.06 0.04 0.02 Raw Data Mooney-Rivlin (R 2 =0.996)

More information

Wafer Scale Homogeneous Bilayer Graphene Films by. Chemical Vapor Deposition

Wafer Scale Homogeneous Bilayer Graphene Films by. Chemical Vapor Deposition Supporting Information for Wafer Scale Homogeneous Bilayer Graphene Films by Chemical Vapor Deposition Seunghyun Lee, Kyunghoon Lee, Zhaohui Zhong Department of Electrical Engineering and Computer Science,

More information

Supplementary materials for: Large scale arrays of single layer graphene resonators

Supplementary materials for: Large scale arrays of single layer graphene resonators Supplementary materials for: Large scale arrays of single layer graphene resonators Arend M. van der Zande* 1, Robert A. Barton 2, Jonathan S. Alden 2, Carlos S. Ruiz-Vargas 2, William S. Whitney 1, Phi

More information

crystals were phase-pure as determined by x-ray diffraction. Atomically thin MoS 2 flakes were

crystals were phase-pure as determined by x-ray diffraction. Atomically thin MoS 2 flakes were Nano Letters (214) Supplementary Information for High Mobility WSe 2 p- and n-type Field Effect Transistors Contacted by Highly Doped Graphene for Low-Resistance Contacts Hsun-Jen Chuang, Xuebin Tan, Nirmal

More information

Electrochemically Exfoliated Graphene as Solution-Processable, Highly-Conductive Electrodes for Organic Electronics

Electrochemically Exfoliated Graphene as Solution-Processable, Highly-Conductive Electrodes for Organic Electronics Supporting Information Electrochemically Exfoliated Graphene as Solution-Processable, Highly-Conductive Electrodes for Organic Electronics Khaled Parvez, Rongjin Li, Sreenivasa Reddy Puniredd, Yenny Hernandez,

More information

Supplementary information

Supplementary information Supplementary information Highly Conductive Graphene/Ag Hybrid Fibers for Flexible Fiber-Type Transistors Sang Su Yoon, 1 Kang Eun Lee, 1 Hwa-Jin Cha, 1 Dong Gi Seong, 1 Moon-Kwang Um, 1 Joon Hyung Byun,

More information

High Performance, Low Operating Voltage n-type Organic Field Effect Transistor Based on Inorganic-Organic Bilayer Dielectric System

High Performance, Low Operating Voltage n-type Organic Field Effect Transistor Based on Inorganic-Organic Bilayer Dielectric System Journal of Physics: Conference Series PAPER OPEN ACCESS High Performance, Low Operating Voltage n-type Organic Field Effect Transistor Based on Inorganic-Organic Bilayer Dielectric System To cite this

More information

Two-Dimensional (C 4 H 9 NH 3 ) 2 PbBr 4 Perovskite Crystals for. High-Performance Photodetector. Supporting Information for

Two-Dimensional (C 4 H 9 NH 3 ) 2 PbBr 4 Perovskite Crystals for. High-Performance Photodetector. Supporting Information for Supporting Information for Two-Dimensional (C 4 H 9 NH 3 ) 2 PbBr 4 Perovskite Crystals for High-Performance Photodetector Zhenjun Tan,,ǁ, Yue Wu,ǁ, Hao Hong, Jianbo Yin, Jincan Zhang,, Li Lin, Mingzhan

More information

Supporting Information

Supporting Information Supporting Information Oh et al. 10.1073/pnas.0811923106 SI Text Hysteresis of BPE-PTCDI MW-TFTs. Fig. S9 represents bidirectional transfer plots at V DS 100VinN 2 atmosphere for transistors constructed

More information

Direct Measurement of Adhesion Energy of Monolayer Graphene As-Grown. on Copper and Its Application to Renewable Transfer Process

Direct Measurement of Adhesion Energy of Monolayer Graphene As-Grown. on Copper and Its Application to Renewable Transfer Process SUPPORTING INFORMATION Direct Measurement of Adhesion Energy of Monolayer Graphene As-Grown on Copper and Its Application to Renewable Transfer Process Taeshik Yoon 1, Woo Cheol Shin 2, Taek Yong Kim 2,

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/327/5966/662/dc Supporting Online Material for 00-GHz Transistors from Wafer-Scale Epitaxial Graphene Y.-M. Lin,* C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H.-Y.

More information

Supplementary Figure S1. AFM image and height profile of GO. (a) AFM image

Supplementary Figure S1. AFM image and height profile of GO. (a) AFM image Supplementary Figure S1. AFM image and height profile of GO. (a) AFM image and (b) height profile of GO obtained by spin-coating on silicon wafer, showing a typical thickness of ~1 nm. 1 Supplementary

More information

Supporting Information. Effects of Environmental Water Absorption by. Film Transistor Performance and Mobility

Supporting Information. Effects of Environmental Water Absorption by. Film Transistor Performance and Mobility Supporting Information Effects of Environmental Water Absorption by Solution-Deposited Al 2 O 3 Gate Dielectrics on Thin Film Transistor Performance and Mobility Trey B. Daunis, James M. H. Tran, and Julia

More information

Supporting Information. Fast Synthesis of High-Performance Graphene by Rapid Thermal Chemical Vapor Deposition

Supporting Information. Fast Synthesis of High-Performance Graphene by Rapid Thermal Chemical Vapor Deposition 1 Supporting Information Fast Synthesis of High-Performance Graphene by Rapid Thermal Chemical Vapor Deposition Jaechul Ryu, 1,2, Youngsoo Kim, 4, Dongkwan Won, 1 Nayoung Kim, 1 Jin Sung Park, 1 Eun-Kyu

More information

Supporting information. Uniform Graphene Quantum Dots Patterned from Selfassembled

Supporting information. Uniform Graphene Quantum Dots Patterned from Selfassembled Supporting information Uniform Graphene Quantum Dots Patterned from Selfassembled Silica Nanodots Jinsup Lee,,, Kyungho Kim,, Woon Ik Park, Bo-Hyun Kim,, Jong Hyun Park, Tae-Heon Kim, Sungyool Bong, Chul-Hong

More information

Supplementary Figure S1. AFM characterizations and topographical defects of h- BN films on silica substrates. (a) (c) show the AFM height

Supplementary Figure S1. AFM characterizations and topographical defects of h- BN films on silica substrates. (a) (c) show the AFM height Supplementary Figure S1. AFM characterizations and topographical defects of h- BN films on silica substrates. (a) (c) show the AFM height topographies of h-bn film in a size of ~1.5µm 1.5µm, 30µm 30µm

More information

Supplementary Information

Supplementary Information Supplementary Information Chemical and Bandgap Engineering in Monolayer Hexagonal Boron Nitride Kun Ba 1,, Wei Jiang 1,,Jingxin Cheng 2, Jingxian Bao 1, Ningning Xuan 1,Yangye Sun 1, Bing Liu 1, Aozhen

More information

Wafer-Scale Single-Domain-Like Graphene by. Defect-Selective Atomic Layer Deposition of

Wafer-Scale Single-Domain-Like Graphene by. Defect-Selective Atomic Layer Deposition of Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2015 Wafer-Scale Single-Domain-Like Graphene by Defect-Selective Atomic Layer Deposition of Hexagonal

More information

Omnidirectionally Stretchable and Transparent Graphene Electrodes

Omnidirectionally Stretchable and Transparent Graphene Electrodes Supporting Information for: Omnidirectionally Stretchable and Transparent Graphene Electrodes Jin Yong Hong,, Wook Kim, Dukhyun Choi, Jing Kong,*, and Ho Seok Park*, School of Chemical Engineering, Sungkyunkwan

More information

Electronic Supplementary Information. Molecular Antenna Tailored Organic Thin-film Transistor for. Sensing Application

Electronic Supplementary Information. Molecular Antenna Tailored Organic Thin-film Transistor for. Sensing Application Electronic Supplementary Material (ESI) for Materials Horizons. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information Molecular Antenna Tailored Organic Thin-film Transistor

More information

Supplementary material for High responsivity mid-infrared graphene detectors with antenna-enhanced photo-carrier generation and collection

Supplementary material for High responsivity mid-infrared graphene detectors with antenna-enhanced photo-carrier generation and collection Supplementary material for High responsivity mid-infrared graphene detectors with antenna-enhanced photo-carrier generation and collection Yu Yao 1, Raji Shankar 1, Patrick Rauter 1, Yi Song 2, Jing Kong

More information

Dielectric constant measurement of P3HT, polystyrene, and polyethylene

Dielectric constant measurement of P3HT, polystyrene, and polyethylene Dielectric constant measurement of P3HT, polystyrene, and polyethylene Supervisor: prof. dr. J.C. Hummelen Daily supervisor: Jenny Douvogianni Name: Si Chen (s2660482) 1. Introduction Dielectric constant

More information

Scaling up Chemical Vapor Deposition Graphene to 300 mm Si substrates

Scaling up Chemical Vapor Deposition Graphene to 300 mm Si substrates Scaling up Chemical Vapor Deposition Graphene to 300 mm Si substrates Co- Authors Aixtron Alex Jouvray Simon Buttress Gavin Dodge Ken Teo The work shown here has received partial funding from the European

More information

Enhancing the Performance of Organic Thin-Film Transistor using a Buffer Layer

Enhancing the Performance of Organic Thin-Film Transistor using a Buffer Layer Proceedings of the 9th International Conference on Properties and Applications of Dielectric Materials July 19-23, 29, Harbin, China L-7 Enhancing the Performance of Organic Thin-Film Transistor using

More information

Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition

Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition SUPPLEMENTARY INFORMATION Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition S1. Characterization of the graphene foam (GF) and GF/PDMS composites

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:.38/nature09979 I. Graphene material growth and transistor fabrication Top-gated graphene RF transistors were fabricated based on chemical vapor deposition (CVD) grown graphene on copper (Cu). Cu foil

More information

Extrinsic Origin of Persistent Photoconductivity in

Extrinsic Origin of Persistent Photoconductivity in Supporting Information Extrinsic Origin of Persistent Photoconductivity in Monolayer MoS2 Field Effect Transistors Yueh-Chun Wu 1, Cheng-Hua Liu 1,2, Shao-Yu Chen 1, Fu-Yu Shih 1,2, Po-Hsun Ho 3, Chun-Wei

More information

Continuous, Highly Flexible and Transparent. Graphene Films by Chemical Vapor Deposition for. Organic Photovoltaics

Continuous, Highly Flexible and Transparent. Graphene Films by Chemical Vapor Deposition for. Organic Photovoltaics Supporting Information for Continuous, Highly Flexible and Transparent Graphene Films by Chemical Vapor Deposition for Organic Photovoltaics Lewis Gomez De Arco 1,2, Yi Zhang 1,2, Cody W. Schlenker 2,

More information

Supplementary Information for. Origin of New Broad Raman D and G Peaks in Annealed Graphene

Supplementary Information for. Origin of New Broad Raman D and G Peaks in Annealed Graphene Supplementary Information for Origin of New Broad Raman D and G Peaks in Annealed Graphene Jinpyo Hong, Min Kyu Park, Eun Jung Lee, DaeEung Lee, Dong Seok Hwang and Sunmin Ryu* Department of Applied Chemistry,

More information

Supporting Information

Supporting Information Fully-Printed Stretchable Thin-Film Transistors and Integrated Logic Circuits Le Cai 1, Suoming Zhang 1, Jinshui Miao 1, Zhibin Yu 2, Chuan Wang 1, * 1 Department of Electrical and Computer Engineering,

More information

Perovskite solar cells on metal substrate with high efficiency

Perovskite solar cells on metal substrate with high efficiency Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2015 Electronic Supporting Information (ESI) for Perovskite solar cells on metal

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Controlled Ripple Texturing of Suspended Graphene and Ultrathin Graphite Membranes Wenzhong Bao, Feng Miao, Zhen Chen, Hang Zhang, Wanyoung Jang, Chris Dames, Chun Ning Lau *

More information

Supplementary Information for

Supplementary Information for Supplementary Information for Highly Stable, Dual-Gated MoS 2 Transistors Encapsulated by Hexagonal Boron Nitride with Gate-Controllable Contact Resistance and Threshold Voltage Gwan-Hyoung Lee, Xu Cui,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Lateral heterojunctions within monolayer MoSe 2 -WSe 2 semiconductors Chunming Huang 1,#,*, Sanfeng Wu 1,#,*, Ana M. Sanchez 2,#,*, Jonathan J. P. Peters 2, Richard Beanland 2, Jason S. Ross 3, Pasqual

More information

Three-dimensional Multi-recognition Flexible Wearable

Three-dimensional Multi-recognition Flexible Wearable Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2016 This journal is The Royal Society of Chemistry 2016 Supporting Information Three-dimensional Multi-recognition

More information

Supplementary Figures Supplementary Figure 1

Supplementary Figures Supplementary Figure 1 Supplementary Figures Supplementary Figure 1 Optical images of graphene grains on Cu after Cu oxidation treatment at 200 for 1m 30s. Each sample was synthesized with different H 2 annealing time for (a)

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2015 Supporting Information 1. Synthesis of perovskite materials CH 3 NH 3 I

More information

Supporting Information Available:

Supporting Information Available: Supporting Information Available: Photoresponsive and Gas Sensing Field-Effect Transistors based on Multilayer WS 2 Nanoflakes Nengjie Huo 1, Shengxue Yang 1, Zhongming Wei 2, Shu-Shen Li 1, Jian-Bai Xia

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1 Molecular structures of functional materials involved in our SGOTFT devices. Supplementary Figure 2 Capacitance measurements of a SGOTFT device. (a) Capacitance

More information

Wafer-scale fabrication of graphene

Wafer-scale fabrication of graphene Wafer-scale fabrication of graphene Sten Vollebregt, MSc Delft University of Technology, Delft Institute of Mircosystems and Nanotechnology Delft University of Technology Challenge the future Delft University

More information

Supporting information. Gate-optimized thermoelectric power factor in ultrathin WSe2 single crystals

Supporting information. Gate-optimized thermoelectric power factor in ultrathin WSe2 single crystals Supporting information Gate-optimized thermoelectric power factor in ultrathin WSe2 single crystals Masaro Yoshida 1, Takahiko Iizuka 1, Yu Saito 1, Masaru Onga 1, Ryuji Suzuki 1, Yijin Zhang 1, Yoshihiro

More information

Carbon Nanotube Thin-Films & Nanoparticle Assembly

Carbon Nanotube Thin-Films & Nanoparticle Assembly Nanodevices using Nanomaterials : Carbon Nanotube Thin-Films & Nanoparticle Assembly Seung-Beck Lee Division of Electronics and Computer Engineering & Department of Nanotechnology, Hanyang University,

More information

Printing nanotube-based p-type thin film transistors with high current density

Printing nanotube-based p-type thin film transistors with high current density Printing nanotube-based p-type thin film transistors with high current density Single-wall carbon nanotubes (SWCNT), with their outstanding mechanical and electrical properties, offer a solution to coat

More information

A Transparent Perovskite Light Emitting Touch-

A Transparent Perovskite Light Emitting Touch- Supporting Information for A Transparent Perovskite Light Emitting Touch- Responsive Device Shu-Yu Chou, Rujun Ma, Yunfei Li,, Fangchao Zhao, Kwing Tong, Zhibin Yu, and Qibing Pei*, Department of Materials

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Flexible, high-performance carbon nanotube integrated circuits Dong-ming Sun, Marina Y. Timmermans, Ying Tian, Albert G. Nasibulin, Esko I. Kauppinen, Shigeru Kishimoto, Takashi

More information

Supporting Infromation

Supporting Infromation Supporting Infromation Transparent and Flexible Self-Charging Power Film and Its Application in Sliding-Unlock System in Touchpad Technology Jianjun Luo 1,#, Wei Tang 1,#, Feng Ru Fan 1, Chaofeng Liu 1,

More information

SUPPORTING INFORMATION: Titanium Contacts to Graphene: Process-Induced Variability in Electronic and Thermal Transport

SUPPORTING INFORMATION: Titanium Contacts to Graphene: Process-Induced Variability in Electronic and Thermal Transport SUPPORTING INFORMATION: Titanium Contacts to Graphene: Process-Induced Variability in Electronic and Thermal Transport Keren M. Freedy 1, Ashutosh Giri 2, Brian M. Foley 2, Matthew R. Barone 1, Patrick

More information

SUPPLEMENTARY NOTES Supplementary Note 1: Fabrication of Scanning Thermal Microscopy Probes

SUPPLEMENTARY NOTES Supplementary Note 1: Fabrication of Scanning Thermal Microscopy Probes SUPPLEMENTARY NOTES Supplementary Note 1: Fabrication of Scanning Thermal Microscopy Probes Fabrication of the scanning thermal microscopy (SThM) probes is summarized in Supplementary Fig. 1 and proceeds

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is The Royal Society of Chemistry 2018 Supporting Information Direct Integration of Polycrystalline Graphene on

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information A coaxial triboelectric nanogenerator

More information

Characterization of electric charge carrier transport in organic semiconductors by time-of-flight technique

Characterization of electric charge carrier transport in organic semiconductors by time-of-flight technique Characterization of electric charge carrier transport in organic semiconductors by time-of-flight technique Raveendra Babu Penumala Mentor: Prof. dr. Gvido Bratina Laboratory of Organic Matter Physics

More information

Cut-and-Paste Organic FET Customized ICs for Application to Artificial Skin

Cut-and-Paste Organic FET Customized ICs for Application to Artificial Skin Cut-and-Paste Organic FET Customized ICs for Application to Artificial Skin Takao Someya 1, Hiroshi Kawaguchi 2, Takayasu Sakurai 3 1 School of Engineering, University of Tokyo, Tokyo, JAPAN 2 Institute

More information

Supporting Information

Supporting Information Supporting Information Real-Time Monitoring of Insulin Using a Graphene Field-Effect Transistor Aptameric Nanosensor Zhuang Hao, a,b Yibo Zhu, a Xuejun Wang, a Pavana G. Rotti, c,d Christopher DiMarco,

More information

Supplementary Information

Supplementary Information Supplementary Information Plasma-assisted reduction of graphene oxide at low temperature and atmospheric pressure for flexible conductor applications Seung Whan Lee 1, Cecilia Mattevi 2, Manish Chhowalla

More information

Nanotechnology Fabrication Methods.

Nanotechnology Fabrication Methods. Nanotechnology Fabrication Methods. 10 / 05 / 2016 1 Summary: 1.Introduction to Nanotechnology:...3 2.Nanotechnology Fabrication Methods:...5 2.1.Top-down Methods:...7 2.2.Bottom-up Methods:...16 3.Conclusions:...19

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/1/10/e1500751/dc1 Supplementary Materials for Uniform metal nanostructures with long-range order via three-step hierarchical self-assembly The PDF file includes:

More information

Large Scale Direct Synthesis of Graphene on Sapphire and Transfer-free Device Fabrication

Large Scale Direct Synthesis of Graphene on Sapphire and Transfer-free Device Fabrication Supplementary Information Large Scale Direct Synthesis of Graphene on Sapphire and Transfer-free Device Fabrication Hyun Jae Song a, Minhyeok Son a, Chibeom Park a, Hyunseob Lim a, Mark P. Levendorf b,

More information

Large scale growth and characterization of atomic hexagonal boron. nitride layers

Large scale growth and characterization of atomic hexagonal boron. nitride layers Supporting on-line material Large scale growth and characterization of atomic hexagonal boron nitride layers Li Song, Lijie Ci, Hao Lu, Pavel B. Sorokin, Chuanhong Jin, Jie Ni, Alexander G. Kvashnin, Dmitry

More information

Supporting information

Supporting information Supporting information Influence of electrolyte composition on liquid-gated carbon-nanotube and graphene transistors By: Iddo Heller, Sohail Chatoor, Jaan Männik, Marcel A. G. Zevenbergen, Cees Dekker,

More information

Supplementary Figure 1: Micromechanical cleavage of graphene on oxygen plasma treated Si/SiO2. Supplementary Figure 2: Comparison of hbn yield.

Supplementary Figure 1: Micromechanical cleavage of graphene on oxygen plasma treated Si/SiO2. Supplementary Figure 2: Comparison of hbn yield. 1 2 3 4 Supplementary Figure 1: Micromechanical cleavage of graphene on oxygen plasma treated Si/SiO 2. Optical microscopy images of three examples of large single layer graphene flakes cleaved on a single

More information

Supporting Information. Temperature dependence on charge transport behavior of threedimensional

Supporting Information. Temperature dependence on charge transport behavior of threedimensional Supporting Information Temperature dependence on charge transport behavior of threedimensional superlattice crystals A. Sreekumaran Nair and K. Kimura* University of Hyogo, Graduate School of Material

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Materials Horizons. This journal is The Royal Society of Chemistry 2017 Supporting Information Organic Liquid-Crystal Devices Based on Ionic Conductors Can Hui

More information

Supporting Information

Supporting Information Supporting Information Enhanced Thermal Stability in Perovskite Solar Cells by Assembling 2D/3D Stacking Structures Yun Lin 1, Yang Bai 1, Yanjun Fang 1, Zhaolai Chen 1, Shuang Yang 1, Xiaopeng Zheng 1,

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/2/9/e1601240/dc1 Supplementary Materials for Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs Gerald J. Brady, Austin

More information

Production of Graphite Chloride and Bromide Using Microwave Sparks

Production of Graphite Chloride and Bromide Using Microwave Sparks Supporting Information Production of Graphite Chloride and Bromide Using Microwave Sparks Jian Zheng, Hongtao Liu, Bin Wu, Chong-an Di, Yunlong Guo, Ti Wu, Gui Yu, Yunqi Liu, * and Daoben Zhu Key Laboratory

More information

Stretchable, Transparent Graphene Interconnects for Arrays of. Microscale Inorganic Light Emitting Diodes on Rubber

Stretchable, Transparent Graphene Interconnects for Arrays of. Microscale Inorganic Light Emitting Diodes on Rubber Stretchable, Transparent Graphene Interconnects for Arrays of Microscale Inorganic Light Emitting Diodes on Rubber Substrates Rak-Hwan Kim 1,, Myung-Ho Bae 2,, Dae Gon Kim 1, Huanyu Cheng 3, Bong Hoon

More information

SUPPLEMENTARY INFORMATION. Observation of tunable electrical bandgap in large-area twisted bilayer graphene synthesized by chemical vapor deposition

SUPPLEMENTARY INFORMATION. Observation of tunable electrical bandgap in large-area twisted bilayer graphene synthesized by chemical vapor deposition SUPPLEMENTARY INFORMATION Observation of tunable electrical bandgap in large-area twisted bilayer graphene synthesized by chemical vapor deposition Jing-Bo Liu 1 *, Ping-Jian Li 1 *, Yuan-Fu Chen 1, Ze-Gao

More information

Graphene The Search For Two Dimensions. Christopher Scott Friedline Arizona State University

Graphene The Search For Two Dimensions. Christopher Scott Friedline Arizona State University Graphene The Search For Two Dimensions Christopher Scott Friedline Arizona State University What Is Graphene? Single atomic layer of graphite arranged in a honeycomb crystal lattice Consists of sp 2 -bonded

More information

Supporting Information

Supporting Information Supporting Information General strategy for self-assembly of highly oriented nanocrystalline semiconducting polymers with high mobility Chan Luo 1,2 *, Aung Ko Ko Kyaw 1, Louis A. Perez 3, Shrayesh Patel

More information

Title of file for HTML: Supplementary Information Description: Supplementary Figures and Supplementary References

Title of file for HTML: Supplementary Information Description: Supplementary Figures and Supplementary References Title of file for HTML: Supplementary Information Description: Supplementary Figures and Supplementary References Supplementary Figure 1. SEM images of perovskite single-crystal patterned thin film with

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figure 1 Raman spectroscopy of CVD graphene on SiO 2 /Si substrate. Integrated Raman intensity maps of D, G, 2D peaks, scanned across the same graphene area. Scale

More information

Woo Jin Hyun, Ethan B. Secor, Mark C. Hersam, C. Daniel Frisbie,* and Lorraine F. Francis*

Woo Jin Hyun, Ethan B. Secor, Mark C. Hersam, C. Daniel Frisbie,* and Lorraine F. Francis* Woo Jin Hyun, Ethan B. Secor, Mark C. Hersam, C. Daniel Frisbie,* and Lorraine F. Francis* Dr. W. J. Hyun, Prof. C. D. Frisbie, Prof. L. F. Francis Department of Chemical Engineering and Materials Science

More information

Supporting Information. Direct Growth of Graphene Films on 3D Grating. Structural Quartz Substrates for High-performance. Pressure-Sensitive Sensor

Supporting Information. Direct Growth of Graphene Films on 3D Grating. Structural Quartz Substrates for High-performance. Pressure-Sensitive Sensor Supporting Information Direct Growth of Graphene Films on 3D Grating Structural Quartz Substrates for High-performance Pressure-Sensitive Sensor Xuefen Song, a,b Tai Sun b Jun Yang, b Leyong Yu, b Dacheng

More information

Large Single Crystals of Graphene on Melted. Copper using Chemical Vapour Deposition.

Large Single Crystals of Graphene on Melted. Copper using Chemical Vapour Deposition. Supporting information for Large Single Crystals of Graphene on Melted Copper using Chemical Vapour Deposition. Yimin A. Wu 1, Ye Fan 1, Susannah Speller 1, Graham L. Creeth 2, Jerzy T. Sadowski 3, Kuang

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION High-density integration of carbon nanotubes by chemical self-assembly Hongsik Park, Ali Afzali, Shu-Jen Han, George S. Tulevski, Aaron D. Franklin, Jerry Tersoff, James B. Hannon and Wilfried Haensch

More information

Shanghai Institute of Ceramics, Chinese Academy of Sciences, Dingxi, 1295, Changning,

Shanghai Institute of Ceramics, Chinese Academy of Sciences, Dingxi, 1295, Changning, Supporting Information for Achieving High Current Density of Perovskite Solar Cells by Modulating the Dominated Facets of Room Temperature DC Magnetron Sputtered TiO 2 Electron Extraction Layer Aibin Huang,

More information

Supporting Information

Supporting Information Supporting Information Oxygen Reduction on Graphene-Carbon Nanotube Composites Doped Sequentially with Nitrogen and Sulfur Drew C. Higgins, Md Ariful Hoque, Fathy Hassan, Ja-Yeon Choi, Baejung Kim, Zhongwei

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 215 Supporting Information Enhanced Photovoltaic Performances of Graphene/Si Solar Cells by Insertion

More information