Electrochemically Exfoliated Graphene as Solution-Processable, Highly-Conductive Electrodes for Organic Electronics

Size: px
Start display at page:

Download "Electrochemically Exfoliated Graphene as Solution-Processable, Highly-Conductive Electrodes for Organic Electronics"

Transcription

1 Supporting Information Electrochemically Exfoliated Graphene as Solution-Processable, Highly-Conductive Electrodes for Organic Electronics Khaled Parvez, Rongjin Li, Sreenivasa Reddy Puniredd, Yenny Hernandez, Felix Hinkel, Suhao Wang, Xinliang Feng, *, Klaus Müllen * Max Planck Institute for Polymer Research, Ackermannweg 10, D Mainz, Germany School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Dongchuan Road 800, , Shanghai, P. R. China Experimental details: Electrochemical exfoliation process: Natural graphite flakes (Sigma Aldrich) were used as carbon source (working electrode) for electrochemical exfoliation. The graphite flakes were adhered on a conductive carbon tape to form a pellet and then immersed into the H 2 SO 4 solution (Sigma Aldrich; 95-97%). A Pt wire was used as a counter electrode. The electrochemical exfoliation of graphite was carried out by applying positive voltage (+10 V) on the working electrode. The EG was then collected with a polytetrafluoroethylene (PTFE) membrane filter (pore size 0.2 µm) and washed repeatedly with DI water by vacuum filtration. The resultant EG was dispersed in N,N'- dimethylformamide (DMF) by sonication at low power for 10 min. The dispersion was kept for 24 h for the precipitation of un-exfoliated graphite flakes and/or particles. The top part of the dispersion was used for further characterization and device fabrication. Electrical characterizations of EG: Thin EG films for field-effect transistors (FETs) and resistance measurements were prepared by Langmuir-Blodgett (LB) assembly. EG dispersions (0.25 mg/ml) in 1:3 DMF/chloroform mixture was carefully dropped on the S1

2 water surface using a glass syringe. Drop wise addition of 5 ml EG dispersion resulted in a faint black colored film on water surface. Afterwards, the film was compressed by LB trough barriers while the surface pressure was monitored by a tensiometer. The EG layer was collected by vertically dip-coating the silicon substrates with 300 nm SiO 2 layer. The samples were annealed at 200 C for 30 min to remove residual solvent. A 60 nm thick Au was evaporated on top of the EG films through a mask to formulate S/D electrodes. To fabricate FETs based on single EG sheet, 100 nm thick platinum (Pt) was deposited by focused ion-beam (FIB) to connect the isolated graphene sheet with Au electrodes. The sheet resistance (R s ) of the single EG sheet was measured by two point probe method on the same device using the Ohm s law (R s = RW/L, where R is the resistance at 0.5V; W and L are the graphene width and channel length, respectively). The field-effect mobility was extracted from the slope ( I d / V g ) of the linear regime of the transfer curves using the equation, µ = (L/WC i V d ) ( I d / V g ), where L and W are channel length and width and C i is the capacitance. 1 Organic field-effect transistors (OFETs) fabrication: Graphene based S/D electrodes were prepared by vacuum filtration of EG dispersion (~ 0.60 mg/ml in DMF) through a PTFE membrane and the subsequent transfer of the EG film on SiO 2 /Si substrate. The thickness of the EG film was adjusted by controlling the filtration volume. The substrate was then annealed at 200 C for 30 min to evaporate the solvent. A 60 nm thick aluminum (Al) layer was thermally evaporated on top of the dried EG film on SiO 2 /Si substrate through a patterned mask. The substrate was then exposed to an O 2 -plasma chamber (Plasma system 200) for 10 min with 200 sccm O 2 flow, 300 W radio frequency (RF) power. Finally, the patterned EG electrodes were obtained by wet etching Al in 10% S2

3 HNO 3 solution. For the fabrication of Au-based S/D electrodes, a 50 nm thick Au layer was thermally evaporated on the SiO 2 /Si substrates. The channel length of the fabricated EG electrodes was 50 µm (L/W = 1/18). The p-doped silicon (p-si) below 300 nm SiO 2 layer served as the gate (capacitance C i = 11 nf/cm 2 ). The patterned EG and/or Au electrodes were then treated with hexamethyldisilazane (HMDS). The organic semiconductor material 4H-cyclopenta[1,2-b; 5,4-b ]dithiophenebenzo[c][1,2,5]thiadiazole (CDT-BTZ-C16) (M n = 10,000 g/mol) was synthesized according to our previously published report. 2 Finally, CDT-BTZ-C16 (2 mg/ml in o- dicholorobenzene) was drop-casted on hexamethyldisilazane (HMDS) treated substrates and subsequently treated at 200 C for 1h in nitrogen atmosphere. Flexible OFETs based on EG S/D were prepared by patterning the electrodes on PTFE membrane. First, EG dispersion was filtered through the PTFE membrane and then dried at 150 C for 30 min. Instead of transferring onto the substrates, EG electrodes were patterned on PTFE membrane by the similar method described above (i.e. Al evaporation, plasma treatment, metal etching etc.). The patterned EG film (channel length, L = 50 µm) was then transferred to HMDS treated PET substrates by mechanical press. Top-gate, bottom contact FETs were thus constructed by spin coating CDT-BTZ-C16 (2 mg/ml in CHCl 3 ) on the substrate and subsequent annealed at 150 C for 30 min. Afterwards, a dielectric layer of ~560 nm thick PMMA (15,000 g/mol, 12 wt% in toluene) was deposited by spin-coating at 1000 rpm for 30s (C i = 5.06 nf/cm 2 ) and dried in a vacuum oven at 80 C for 4 h. Finally, 30 nm thick Au was evaporated on top of the PMMA layer and used as a gate electrode. S3

4 Hole mobilities (µ) of all OFETs were calculated in the saturation regime by the following equation: Where, C i is the capacitance per unit area of the gate dielectric and V T is the threshold voltage. Characterization: The dimensional size of EG sheets was investigated by tapping mode AFM (Dimension 3100CL) and HRTEM (Philips Tecnai F20). Raman spectra were recorded with a Bruker RFS 100/S spectrometer. The Chemical composition was analyzed by XPS with an Omicron Multiprobe spectrometer using Al Kα radiation. Kelvin probe force microscopy was carried out using a PPP-EFM (Nanosensors). The cantilevers with a nominal resonance frequency 70 khz and a Pt/Ir coated were used. The work function of the tip (ϕ tip = ± ev) was calibrated on freshly cleaved highly ordered pyrolytic graphite (HOPG). The sheet resistance of EG films was measured with a four-point probe system (Keithly 2700 Multimeter). All the FET measurements were carried out inside a dry nitrogen glovebox with a Keithly 4200 semiconductor parameter analyzer. S4

5 Figure S1: Photographs show large scale production of EG where, (left) graphite electrode used for elecrochemical process and (right) dispersed EG (0.70 mg/ml) after exfoliation. Figure S2: Photographs of graphite electrodes (a) before, (b) and (c) after electrochemcial process in pure H 2 SO 4 and CH 3 COOH : H 2 SO 4 (1:1) electrolytes, respectively. A bias voltage of + 10V was kept constant for 2h in each case. S5

6 Figure S3: AFM image of (a) EG sheets on SiO2 substrates prepared by LangmuirBlodgett (LB) assembly and, (b) bilayer EG. Inset of (b) is the height profile of EG sheet. Figure S4: TEM images of EG sheets. S6

7 Figure S5: XPS survey spectra of EG. Figure S6: Optical micropscopic images of the transferred EG film on PET substrates where, (a) and (b) are 15 nm; (c) and (d) are 25 nm thick films with different magnifications (50 and 100x), respectivcely. S7

8 Figure S7: Sheet resistance of nitric acid (65% HNO 3 ) treated EG films. Figure S8: SEM images of (a) transferred and (b) patterned EG film on SiO 2 /p-si substrates. S8

9 S9

10 Figure S10: (a) Transfer and (b) output curves of flexible OFETs with EG electrodes (L = 50 µm, W = 900 µm) at a source-drain bias V SD = -60 V. The field-effect mobility of the flexible OFET device was calculated to be cm 2 /Vs, with a current on/off ratio of 10 4 (Figure S6). The relatively low performance of the flexible device compared to the SiO 2 /Si based devices might be caused by the poor interface between organic semiconductor and PMMA dielectric layer. S10

11 References: 1. Su, C. Y.; Lu, A. Y.; Xu, Y.; Chen, F. R.; Khlobystov, A. N.; Li, L. J. High- Quality Thin Graphene Films from Fast Elecrochemical Exfoliation. ACS Nano 2011, 5, Zhang, M.; Tsao, H. N.; Pisula, W.; Yang, C.; Mishra, A. K.; Müllen, K. Field- Effect Transistors Based on a Benzothiadiazole-Cyclopentadithiophene Copolymer. J. Am. Chem. Soc. 2007, 129, S11

Exfoliation of Graphite into Graphene in Aqueous. Solutions of Inorganic Salts

Exfoliation of Graphite into Graphene in Aqueous. Solutions of Inorganic Salts Supporting Information Exfoliation of Graphite into Graphene in Aqueous Solutions of Inorganic Salts Khaled Parvez, Zhong-Shuai Wu, Rongjin Li, Xianjie Liu, Robert Graf, Xinliang Feng,,,,* Klaus Müllen,*

More information

Electronic Supplementary Information. Molecular Antenna Tailored Organic Thin-film Transistor for. Sensing Application

Electronic Supplementary Information. Molecular Antenna Tailored Organic Thin-film Transistor for. Sensing Application Electronic Supplementary Material (ESI) for Materials Horizons. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information Molecular Antenna Tailored Organic Thin-film Transistor

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supporting Information High-k Polymer/Graphene Oxide Dielectrics for Low-Voltage Flexible Nonvolatile

More information

One-step electrochemical synthesis of nitrogen and sulfur co-doped, high-quality graphene oxide

One-step electrochemical synthesis of nitrogen and sulfur co-doped, high-quality graphene oxide Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2016 Supplementary Information One-step electrochemical synthesis of nitrogen and sulfur co-doped, high-quality

More information

Supplementary Figure S1. AFM images of GraNRs grown with standard growth process. Each of these pictures show GraNRs prepared independently,

Supplementary Figure S1. AFM images of GraNRs grown with standard growth process. Each of these pictures show GraNRs prepared independently, Supplementary Figure S1. AFM images of GraNRs grown with standard growth process. Each of these pictures show GraNRs prepared independently, suggesting that the results is reproducible. Supplementary Figure

More information

Production of Graphite Chloride and Bromide Using Microwave Sparks

Production of Graphite Chloride and Bromide Using Microwave Sparks Supporting Information Production of Graphite Chloride and Bromide Using Microwave Sparks Jian Zheng, Hongtao Liu, Bin Wu, Chong-an Di, Yunlong Guo, Ti Wu, Gui Yu, Yunqi Liu, * and Daoben Zhu Key Laboratory

More information

Supplementary Material for. Zinc Oxide-Black Phosphorus Composites for Ultrasensitive Nitrogen

Supplementary Material for. Zinc Oxide-Black Phosphorus Composites for Ultrasensitive Nitrogen Electronic Supplementary Material (ESI) for Nanoscale Horizons. This journal is The Royal Society of Chemistry 2018 Supplementary Material for Zinc Oxide-Black Phosphorus Composites for Ultrasensitive

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supporting Information Controllable Atmospheric Pressure Growth of Mono-layer, Bi-layer and Tri-layer

More information

High Performance, Low Operating Voltage n-type Organic Field Effect Transistor Based on Inorganic-Organic Bilayer Dielectric System

High Performance, Low Operating Voltage n-type Organic Field Effect Transistor Based on Inorganic-Organic Bilayer Dielectric System Journal of Physics: Conference Series PAPER OPEN ACCESS High Performance, Low Operating Voltage n-type Organic Field Effect Transistor Based on Inorganic-Organic Bilayer Dielectric System To cite this

More information

SUPPORTING INFORMATION

SUPPORTING INFORMATION Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2014 SUPPORTING INFORMATION Materials Graphite powder (SP-1 graphite) was obtained from Bay carbon.

More information

Solution-processable graphene nanomeshes with controlled

Solution-processable graphene nanomeshes with controlled Supporting online materials for Solution-processable graphene nanomeshes with controlled pore structures Xiluan Wang, 1 Liying Jiao, 1 Kaixuan Sheng, 1 Chun Li, 1 Liming Dai 2, * & Gaoquan Shi 1, * 1 Department

More information

High-Performance Semiconducting Polythiophenes for Organic Thin Film. Transistors by Beng S. Ong,* Yiliang Wu, Ping Liu and Sandra Gardner

High-Performance Semiconducting Polythiophenes for Organic Thin Film. Transistors by Beng S. Ong,* Yiliang Wu, Ping Liu and Sandra Gardner Supplementary Materials for: High-Performance Semiconducting Polythiophenes for Organic Thin Film Transistors by Beng S. Ong,* Yiliang Wu, Ping Liu and Sandra Gardner 1. Materials and Instruments. All

More information

A. Optimizing the growth conditions of large-scale graphene films

A. Optimizing the growth conditions of large-scale graphene films 1 A. Optimizing the growth conditions of large-scale graphene films Figure S1. Optical microscope images of graphene films transferred on 300 nm SiO 2 /Si substrates. a, Images of the graphene films grown

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Facile Synthesis of High Quality Graphene Nanoribbons Liying Jiao, Xinran Wang, Georgi Diankov, Hailiang Wang & Hongjie Dai* Supplementary Information 1. Photograph of graphene

More information

Supporting Information for: Inkjet Printing of High Conductivity, Flexible Graphene Patterns

Supporting Information for: Inkjet Printing of High Conductivity, Flexible Graphene Patterns Supporting Information for: Inkjet Printing of High Conductivity, Flexible Graphene Patterns Ethan B. Secor, Pradyumna L. Prabhumirashi, Kanan Puntambekar, Michael L. Geier, and,,, * Mark C. Hersam Department

More information

Supporting Information for

Supporting Information for Supporting Information for Self-assembled Graphene Hydrogel via a One-Step Hydrothermal Process Yuxi Xu, Kaixuan Sheng, Chun Li, and Gaoquan Shi * Department of Chemistry, Tsinghua University, Beijing

More information

Characterization of partially reduced graphene oxide as room

Characterization of partially reduced graphene oxide as room Supporting Information Characterization of partially reduced graphene oxide as room temperature sensor for H 2 Le-Sheng Zhang a, Wei D. Wang b, Xian-Qing Liang c, Wang-Sheng Chu d, Wei-Guo Song a *, Wei

More information

Supporting Information

Supporting Information Supporting Information Oh et al. 10.1073/pnas.0811923106 SI Text Hysteresis of BPE-PTCDI MW-TFTs. Fig. S9 represents bidirectional transfer plots at V DS 100VinN 2 atmosphere for transistors constructed

More information

Controlled self-assembly of graphene oxide on a remote aluminum foil

Controlled self-assembly of graphene oxide on a remote aluminum foil Supplementary Information Controlled self-assembly of graphene oxide on a remote aluminum foil Kai Feng, Yewen Cao and Peiyi Wu* State key Laboratory of Molecular Engineering of Polymers, Department of

More information

High Quality Thin Graphene Films from Fast. Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan

High Quality Thin Graphene Films from Fast. Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan Supporting Materials High Quality Thin Graphene Films from Fast Electrochemical Exfoliation Ching-Yuan Su, Ang-Yu Lu #, Yanping Xu, Fu-Rong Chen #, Andrei N. Khlobystov $ and Lain-Jong Li * Research Center

More information

A Novel Approach to the Layer Number-Controlled and Grain Size- Controlled Growth of High Quality Graphene for Nanoelectronics

A Novel Approach to the Layer Number-Controlled and Grain Size- Controlled Growth of High Quality Graphene for Nanoelectronics Supporting Information A Novel Approach to the Layer Number-Controlled and Grain Size- Controlled Growth of High Quality Graphene for Nanoelectronics Tej B. Limbu 1,2, Jean C. Hernández 3, Frank Mendoza

More information

High Yield Synthesis of Aspect Ratio Controlled. Graphenic Materials from Anthracite Coal in

High Yield Synthesis of Aspect Ratio Controlled. Graphenic Materials from Anthracite Coal in Supporting Information High Yield Synthesis of Aspect Ratio Controlled Graphenic Materials from Anthracite Coal in Supercritical Fluids Suchithra Padmajan Sasikala 1, Lucile Henry 1, Gulen Yesilbag Tonga

More information

Soluble Precursor of Hexacene and its Application on Thin Film Transistor

Soluble Precursor of Hexacene and its Application on Thin Film Transistor Soluble Precursor of Hexacene and its Application on Thin Film Transistor Supplementary Information Motonori Watanabe, a Wei-Ting Su, b Kew-Yu Chen,* c Ching-Ting Chien, a Ting-Han Chao, a Yuan Jay Chang,

More information

4. CV curve of GQD on platinum electrode S9

4. CV curve of GQD on platinum electrode S9 Supporting Information Luminscent Graphene Quantum Dots (GQDs) for Organic Photovoltaic Devices Vinay Gupta*, Neeraj Chaudhary, Ritu Srivastava, Gauri Dutt Sharma, Ramil Bhardwaj, Suresh Chand National

More information

Facile Synthesis of Hybrid Graphene and Carbon Nanotube as. Metal-Free Electrocatalyst with Active Dual Interfaces for

Facile Synthesis of Hybrid Graphene and Carbon Nanotube as. Metal-Free Electrocatalyst with Active Dual Interfaces for Facile Synthesis of Hybrid Graphene and Carbon Nanotube as Metal-Free Electrocatalyst with Active Dual Interfaces for Efficient Oxygen Reduction Reaction Jang-Soo Lee, a Kiyoung Jo, b Taemin Lee, a Taeyeong

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2016 Supporting Information Single-crystalline Pd square nanoplates enclosed by {100}

More information

Enhanced photocurrent of ZnO nanorods array sensitized with graphene. quantum dots

Enhanced photocurrent of ZnO nanorods array sensitized with graphene. quantum dots Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2015 Enhanced photocurrent of ZnO nanorods array sensitized with graphene quantum dots Bingjun Yang,

More information

Supplementary Figure 1 Dark-field optical images of as prepared PMMA-assisted transferred CVD graphene films on silicon substrates (a) and the one

Supplementary Figure 1 Dark-field optical images of as prepared PMMA-assisted transferred CVD graphene films on silicon substrates (a) and the one Supplementary Figure 1 Dark-field optical images of as prepared PMMA-assisted transferred CVD graphene films on silicon substrates (a) and the one after PBASE monolayer growth (b). 1 Supplementary Figure

More information

Supporting Information. Direct n- to p-type Channel Conversion in Monolayer/Few-Layer WS 2 Field-Effect Transistors by Atomic Nitrogen Treatment

Supporting Information. Direct n- to p-type Channel Conversion in Monolayer/Few-Layer WS 2 Field-Effect Transistors by Atomic Nitrogen Treatment Supporting Information Direct n- to p-type Channel Conversion in Monolayer/Few-Layer WS 2 Field-Effect Transistors by Atomic Nitrogen Treatment Baoshan Tang 1,2,, Zhi Gen Yu 3,, Li Huang 4, Jianwei Chai

More information

Supporting Information

Supporting Information Supporting Information Enhanced Thermal Stability in Perovskite Solar Cells by Assembling 2D/3D Stacking Structures Yun Lin 1, Yang Bai 1, Yanjun Fang 1, Zhaolai Chen 1, Shuang Yang 1, Xiaopeng Zheng 1,

More information

Graphene oxide hydrogel at solid/liquid interface

Graphene oxide hydrogel at solid/liquid interface Electronic Supplementary Information Graphene oxide hydrogel at solid/liquid interface Jiao-Jing Shao, Si-Da Wu, Shao-Bo Zhang, Wei Lv, Fang-Yuan Su and Quan-Hong Yang * Key Laboratory for Green Chemical

More information

Supplementary Figure S1. AFM image and height profile of GO. (a) AFM image

Supplementary Figure S1. AFM image and height profile of GO. (a) AFM image Supplementary Figure S1. AFM image and height profile of GO. (a) AFM image and (b) height profile of GO obtained by spin-coating on silicon wafer, showing a typical thickness of ~1 nm. 1 Supplementary

More information

Supporting Information

Supporting Information Supporting Information Assembly and Densification of Nanowire Arrays via Shrinkage Jaehoon Bang, Jonghyun Choi, Fan Xia, Sun Sang Kwon, Ali Ashraf, Won Il Park, and SungWoo Nam*,, Department of Mechanical

More information

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2011 Supplementary Information for Selective adsorption toward toxic metal ions results in selective response: electrochemical studies on polypyrrole/reduced graphene oxide nanocomposite Experimental Section

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information Room-Temperature Film Formation of Metal Halide Perovskites

More information

Supporting Information for

Supporting Information for Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is The Royal Society of Chemistry 2014 Supporting Information for Application of thermal azide-alkyne cycloaddition

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/327/5966/662/dc Supporting Online Material for 00-GHz Transistors from Wafer-Scale Epitaxial Graphene Y.-M. Lin,* C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H.-Y.

More information

Hopping in CVD Grown Single-layer MoS 2

Hopping in CVD Grown Single-layer MoS 2 Supporting Information for Large Thermoelectricity via Variable Range Hopping in CVD Grown Single-layer MoS 2 Jing Wu 1,2,3, Hennrik Schmidt 1,2, Kiran Kumar Amara 4, Xiangfan Xu 5, Goki Eda 1,2,4, and

More information

REDUCED GRAPHITE OXIDE-INDIUM TIN OXIDE COMPOSITES FOR TRANSPARENT ELECTRODE USING SOLUTION PROCESS

REDUCED GRAPHITE OXIDE-INDIUM TIN OXIDE COMPOSITES FOR TRANSPARENT ELECTRODE USING SOLUTION PROCESS 18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS REDUCED GRAPHITE OXIDE-INDIUM TIN OXIDE COMPOSITES FOR TRANSPARENT ELECTRODE USING SOLUTION PROCESS K. S. Choi, Y. Park, K-.C. Kwon, J. Kim, C. K.

More information

Supporting Information

Supporting Information Supporting Information The Design of Hierarchical Ternary Hybrid for Fiber-Shaped Asymmetric Supercapacitor with High Volumetric Energy Density Xunliang Cheng, Jing Zhang, Jing Ren, Ning Liu, Peining Chen,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2015 Supporting Information 1. Synthesis of perovskite materials CH 3 NH 3 I

More information

Supporting Information. Fast Synthesis of High-Performance Graphene by Rapid Thermal Chemical Vapor Deposition

Supporting Information. Fast Synthesis of High-Performance Graphene by Rapid Thermal Chemical Vapor Deposition 1 Supporting Information Fast Synthesis of High-Performance Graphene by Rapid Thermal Chemical Vapor Deposition Jaechul Ryu, 1,2, Youngsoo Kim, 4, Dongkwan Won, 1 Nayoung Kim, 1 Jin Sung Park, 1 Eun-Kyu

More information

Supporting Information

Supporting Information Supporting Information General strategy for self-assembly of highly oriented nanocrystalline semiconducting polymers with high mobility Chan Luo 1,2 *, Aung Ko Ko Kyaw 1, Louis A. Perez 3, Shrayesh Patel

More information

Gold Nanoparticles Floating Gate MISFET for Non-Volatile Memory Applications

Gold Nanoparticles Floating Gate MISFET for Non-Volatile Memory Applications Gold Nanoparticles Floating Gate MISFET for Non-Volatile Memory Applications D. Tsoukalas, S. Kolliopoulou, P. Dimitrakis, P. Normand Institute of Microelectronics, NCSR Demokritos, Athens, Greece S. Paul,

More information

Surfactant-free exfoliation of graphite in aqueous solutions

Surfactant-free exfoliation of graphite in aqueous solutions Surfactant-free exfoliation of graphite in aqueous solutions Karen B. Ricardo, Anne Sendecki, and Haitao Liu * Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, U.S.A 1. Materials

More information

Supporting Information. Temperature dependence on charge transport behavior of threedimensional

Supporting Information. Temperature dependence on charge transport behavior of threedimensional Supporting Information Temperature dependence on charge transport behavior of threedimensional superlattice crystals A. Sreekumaran Nair and K. Kimura* University of Hyogo, Graduate School of Material

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information Selective Diels-Alder cycloaddition on semiconducting single-walled carbon nanotubes for potential separation application Jiao-Tong Sun, Lu-Yang Zhao, Chun-Yan Hong,

More information

Supporting Information. Effects of Environmental Water Absorption by. Film Transistor Performance and Mobility

Supporting Information. Effects of Environmental Water Absorption by. Film Transistor Performance and Mobility Supporting Information Effects of Environmental Water Absorption by Solution-Deposited Al 2 O 3 Gate Dielectrics on Thin Film Transistor Performance and Mobility Trey B. Daunis, James M. H. Tran, and Julia

More information

Supporting Information

Supporting Information Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2015. Supporting Information for Adv. Energy Mater., DOI: 10.1002/aenm.201500060 Interconnected Nanorods Nanoflakes Li 2 Co 2 (MoO 4

More information

Nickel Phosphide-embedded Graphene as Counter Electrode for. Dye-sensitized Solar Cells **

Nickel Phosphide-embedded Graphene as Counter Electrode for. Dye-sensitized Solar Cells ** Nickel Phosphide-embedded Graphene as Counter Electrode for Dye-sensitized Solar Cells ** Y. Y. Dou, G. R. Li, J. Song, and X. P. Gao =.78 D 1359 G 163 a =.87 D 138 G 159 b =1.3 D 1351 G 1597 c 1 15 1

More information

Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped

Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped gold substrate. (a) Spin coating of hydrogen silsesquioxane (HSQ) resist onto the silicon substrate with a thickness

More information

Supplementary Figure 1: Micromechanical cleavage of graphene on oxygen plasma treated Si/SiO2. Supplementary Figure 2: Comparison of hbn yield.

Supplementary Figure 1: Micromechanical cleavage of graphene on oxygen plasma treated Si/SiO2. Supplementary Figure 2: Comparison of hbn yield. 1 2 3 4 Supplementary Figure 1: Micromechanical cleavage of graphene on oxygen plasma treated Si/SiO 2. Optical microscopy images of three examples of large single layer graphene flakes cleaved on a single

More information

Ting Lei, a Jin-Hu Dou, b Zhi-Jun Ma, b Chen-Jiang, Liu,* b Jie-Yu Wang,* a and Jian Pei* a

Ting Lei, a Jin-Hu Dou, b Zhi-Jun Ma, b Chen-Jiang, Liu,* b Jie-Yu Wang,* a and Jian Pei* a Supporting Information for Chlorination as a Useful Method to Modulate Conjugated Polymers: Balanced and Ambient-Stable High-Performance Ambipolar Field-Effect Transistors and Inverters Based on Chlorinated

More information

Facile synthesis of silicon nanoparticles inserted in graphene sheets as improved anode materials for lithium-ion batteries

Facile synthesis of silicon nanoparticles inserted in graphene sheets as improved anode materials for lithium-ion batteries Electronic Supplementary Information for Facile synthesis of silicon nanoparticles inserted in graphene sheets as improved anode materials for lithium-ion batteries Xiaosi Zhou, Ya-Xia Yin, Li-Jun Wan

More information

Dumpling-Like Nanocomplex of Foldable Janus Polymer Sheet and Sphere

Dumpling-Like Nanocomplex of Foldable Janus Polymer Sheet and Sphere Dumpling-Like Nanocomplex of Foldable Janus Polymer Sheet and Sphere Lei Gao, Ke Zhang, and Yongming Chen* Supporting Information Experimental Section Materials The triblock terpolymer, P2VP 310 -b-ptepm

More information

Supporting Information. For. Organic Semiconducting Materials from Sulfur-Hetero. Benzo[k]fluoranthene Derivatives: Synthesis, Photophysical

Supporting Information. For. Organic Semiconducting Materials from Sulfur-Hetero. Benzo[k]fluoranthene Derivatives: Synthesis, Photophysical upporting Information For Organic emiconducting Materials from ulfur-hetero Benzo[k]fluoranthene Derivatives: ynthesis, Photophysical Properties and Thin Film Transistor Fabrication Qifan Yan, Yan Zhou,

More information

The sacrificial role of graphene oxide in stabilising Fenton-like catalyst GO Fe 3 O 4

The sacrificial role of graphene oxide in stabilising Fenton-like catalyst GO Fe 3 O 4 Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 The sacrificial role of graphene oxide in stabilising Fenton-like catalyst GO Fe 3 O 4 Nor Aida

More information

Electronic Supplementary Information. Enhanced Photocatalytic/photoelectrocatalytic Activities

Electronic Supplementary Information. Enhanced Photocatalytic/photoelectrocatalytic Activities Electronic Supplementary Material (ESI) for CrystEngComm. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information Electrospun BiVO 4 Nanobelts with Tailored Structures

More information

Mechanically Strong and Highly Conductive Graphene Aerogels and Its Use as. Electrodes for Electrochemical Power Sources

Mechanically Strong and Highly Conductive Graphene Aerogels and Its Use as. Electrodes for Electrochemical Power Sources Supporting Information for Mechanically Strong and Highly Conductive Graphene Aerogels and Its Use as Electrodes for Electrochemical Power Sources Xuetong Zhang, Zhuyin Sui, Bin Xu, Shufang Yue, Yunjun

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is The Royal Society of Chemistry 2014 Supporting Information π-conjugation-interrupted Hyperbranched Polymer

More information

All-Inorganic Perovskite Solar Cells

All-Inorganic Perovskite Solar Cells Supporting Information for: All-Inorganic Perovskite Solar Cells Jia Liang, Caixing Wang, Yanrong Wang, Zhaoran Xu, Zhipeng Lu, Yue Ma, Hongfei Zhu, Yi Hu, Chengcan Xiao, Xu Yi, Guoyin Zhu, Hongling Lv,

More information

A Carbon-Based Photocatalyst Efficiently Converted CO 2 to CH 4

A Carbon-Based Photocatalyst Efficiently Converted CO 2 to CH 4 Supporting information A Carbon-Based Photocatalyst Efficiently Converted CO 2 to CH 4 and C 2 H 2 In Visible Light Tongshun Wu, a Luyi Zou, b Dongxue Han, *a Fenghua Li, a Qixian Zhang a and Li Niu a

More information

Wafer-Scale Single-Domain-Like Graphene by. Defect-Selective Atomic Layer Deposition of

Wafer-Scale Single-Domain-Like Graphene by. Defect-Selective Atomic Layer Deposition of Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2015 Wafer-Scale Single-Domain-Like Graphene by Defect-Selective Atomic Layer Deposition of Hexagonal

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supporting Information Experimental section Synthesis of Ni-Co Prussian

More information

Cut-and-Paste Organic FET Customized ICs for Application to Artificial Skin

Cut-and-Paste Organic FET Customized ICs for Application to Artificial Skin Cut-and-Paste Organic FET Customized ICs for Application to Artificial Skin Takao Someya 1, Hiroshi Kawaguchi 2, Takayasu Sakurai 3 1 School of Engineering, University of Tokyo, Tokyo, JAPAN 2 Institute

More information

Intrinsic Electronic Transport Properties of High. Information

Intrinsic Electronic Transport Properties of High. Information Intrinsic Electronic Transport Properties of High Quality and MoS 2 : Supporting Information Britton W. H. Baugher, Hugh O. H. Churchill, Yafang Yang, and Pablo Jarillo-Herrero Department of Physics, Massachusetts

More information

Supporting Information. High Wettable and Metallic NiFe-Phosphate/Phosphide Catalyst Synthesized by

Supporting Information. High Wettable and Metallic NiFe-Phosphate/Phosphide Catalyst Synthesized by Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supporting Information High Wettable and Metallic NiFe-Phosphate/Phosphide

More information

Supporting Information. Room temperature aqueous Sb 2 S 3 synthesis for inorganic-organic sensitized solar cells with efficiencies of up to 5.

Supporting Information. Room temperature aqueous Sb 2 S 3 synthesis for inorganic-organic sensitized solar cells with efficiencies of up to 5. Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Supporting Information Room temperature aqueous Sb 2 S 3 synthesis for inorganic-organic sensitized

More information

Supporting Information. for. Towards High Performance n-type Thermoelectric Materials by. Rational Modification of BDPPV Backbones

Supporting Information. for. Towards High Performance n-type Thermoelectric Materials by. Rational Modification of BDPPV Backbones Supporting Information for Towards High Performance n-type Thermoelectric Materials by Rational Modification of BDPPV Backbones Ke Shi, Fengjiao Zhang, Chong-An Di,*, Tian-Wei Yan, Ye Zou, Xu Zhou, Daoben

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information MoS 2 nanosheet/mo 2 C-embedded N-doped

More information

Shanghai Institute of Ceramics, Chinese Academy of Sciences, Dingxi, 1295, Changning,

Shanghai Institute of Ceramics, Chinese Academy of Sciences, Dingxi, 1295, Changning, Supporting Information for Achieving High Current Density of Perovskite Solar Cells by Modulating the Dominated Facets of Room Temperature DC Magnetron Sputtered TiO 2 Electron Extraction Layer Aibin Huang,

More information

Supporting information

Supporting information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2015 Supporting information The Assembly of Vanadium (IV)-Substituted Keggin-type

More information

Carbon nanotube coated snowman-like particles and their electro-responsive characteristics. Ke Zhang, Ying Dan Liu and Hyoung Jin Choi

Carbon nanotube coated snowman-like particles and their electro-responsive characteristics. Ke Zhang, Ying Dan Liu and Hyoung Jin Choi Supporting Information: Carbon nanotube coated snowman-like particles and their electro-responsive characteristics Ke Zhang, Ying Dan Liu and Hyoung Jin Choi Experimental Section 1.1 Materials The MWNT

More information

maximal photofluorescence decay time of 6 hours (purchased from Shenzhen HuiDuoSheng

maximal photofluorescence decay time of 6 hours (purchased from Shenzhen HuiDuoSheng Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2017 Experimental section Preparation of m-tio 2 /LPP photoanodes. TiO 2 colloid was synthesized according

More information

Stretchable Graphene Transistors with Printed Dielectrics and Gate Electrodes

Stretchable Graphene Transistors with Printed Dielectrics and Gate Electrodes Stretchable Graphene Transistors with Printed Dielectrics and Gate Electrodes Seoung-Ki Lee, Beom Joon Kim, Houk Jang, Sung Cheol Yoon, Changjin Lee, Byung Hee Hong, John A. Rogers, Jeong Ho Cho, Jong-Hyun

More information

Supporting information

Supporting information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supporting information Synthesis, Characterization and Photoelectrochemical properties of HAP Gang

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information Dual N-type Doped Reduced Graphene Oxide Field Effect Transistors Controlled by Semiconductor Nanocrystals Luyang Wang, Jie Lian, Peng Cui, Yang Xu, Sohyeon Seo, Junghyun

More information

Enhancing the Performance of Organic Thin-Film Transistor using a Buffer Layer

Enhancing the Performance of Organic Thin-Film Transistor using a Buffer Layer Proceedings of the 9th International Conference on Properties and Applications of Dielectric Materials July 19-23, 29, Harbin, China L-7 Enhancing the Performance of Organic Thin-Film Transistor using

More information

High-Performance Photocoupler Based on Perovskite Light Emitting Diode and Photodetector

High-Performance Photocoupler Based on Perovskite Light Emitting Diode and Photodetector Supporting information for High-Performance Photocoupler Based on Perovskite Light Emitting Diode and Photodetector Zhi-Xiang Zhang, Ji-Song Yao, Lin Liang, Xiao-Wei Tong, Yi Lin, Feng-Xia Liang, *, Hong-Bin

More information

Perovskite solar cells on metal substrate with high efficiency

Perovskite solar cells on metal substrate with high efficiency Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2015 Electronic Supporting Information (ESI) for Perovskite solar cells on metal

More information

Supporting Information

Supporting Information Supporting Information Real-Time Monitoring of Insulin Using a Graphene Field-Effect Transistor Aptameric Nanosensor Zhuang Hao, a,b Yibo Zhu, a Xuejun Wang, a Pavana G. Rotti, c,d Christopher DiMarco,

More information

Supporting Information s for

Supporting Information s for Supporting Information s for # Self-assembling of DNA-templated Au Nanoparticles into Nanowires and their enhanced SERS and Catalytic Applications Subrata Kundu* and M. Jayachandran Electrochemical Materials

More information

High-Performance Silicon Battery Anodes Enabled by

High-Performance Silicon Battery Anodes Enabled by Supporting Information for: High-Performance Silicon Battery Anodes Enabled by Engineering Graphene Assemblies Min Zhou,, Xianglong Li, *, Bin Wang, Yunbo Zhang, Jing Ning, Zhichang Xiao, Xinghao Zhang,

More information

Supporting Information

Supporting Information Supporting Information Monolithically Integrated Flexible Black Phosphorus Complementary Inverter Circuits Yuanda Liu, and Kah-Wee Ang* Department of Electrical and Computer Engineering National University

More information

Carbon Quantum Dots/NiFe Layered Double Hydroxide. Composite as High Efficient Electrocatalyst for Water

Carbon Quantum Dots/NiFe Layered Double Hydroxide. Composite as High Efficient Electrocatalyst for Water Supplementary Information Carbon Quantum Dots/NiFe Layered Double Hydroxide Composite as High Efficient Electrocatalyst for Water Oxidation Di Tang, Juan Liu, Xuanyu Wu, Ruihua Liu, Xiao Han, Yuzhi Han,

More information

Improving Efficiency and Reproducibility of Perovskite Solar Cells through Aggregation Control in Polyelectrolytes Hole Transport Layer

Improving Efficiency and Reproducibility of Perovskite Solar Cells through Aggregation Control in Polyelectrolytes Hole Transport Layer Supporting Information Improving Efficiency and Reproducibility of Perovskite Solar Cells through Aggregation Control in Polyelectrolytes Hole Transport Layer Xiaodong Li, a Ying-Chiao Wang, a Liping Zhu,

More information

Two-Dimensional (C 4 H 9 NH 3 ) 2 PbBr 4 Perovskite Crystals for. High-Performance Photodetector. Supporting Information for

Two-Dimensional (C 4 H 9 NH 3 ) 2 PbBr 4 Perovskite Crystals for. High-Performance Photodetector. Supporting Information for Supporting Information for Two-Dimensional (C 4 H 9 NH 3 ) 2 PbBr 4 Perovskite Crystals for High-Performance Photodetector Zhenjun Tan,,ǁ, Yue Wu,ǁ, Hao Hong, Jianbo Yin, Jincan Zhang,, Li Lin, Mingzhan

More information

GRAPHENE EFFECT ON EFFICIENCY OF TiO 2 -BASED DYE SENSITIZED SOLAR CELLS (DSSC)

GRAPHENE EFFECT ON EFFICIENCY OF TiO 2 -BASED DYE SENSITIZED SOLAR CELLS (DSSC) Communications in Physics, Vol. 26, No. 1 (2016), pp. 43-49 DOI:10.15625/0868-3166/26/1/7961 GRAPHENE EFFECT ON EFFICIENCY OF TiO 2 -BASED DYE SENSITIZED SOLAR CELLS (DSSC) NGUYEN THAI HA, PHAM DUY LONG,

More information

Supplementary Materials for

Supplementary Materials for www.sciencemag.org/content/351/6271/361/suppl/dc1 Supplementary Materials for Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts Donghui Guo,

More information

Inkjet Printed Highly Transparent and Flexible Graphene Micro- Supercapacitors

Inkjet Printed Highly Transparent and Flexible Graphene Micro- Supercapacitors Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2017 Inkjet Printed Highly Transparent and Flexible Graphene Micro- Supercapacitors Szymon Sollami

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2016 Supporting Information Graphene transfer method 1 : Monolayer graphene was pre-deposited on both

More information

Multidimensional Thin Film Hybrid Electrodes. Hydrogen Evolution Reaction

Multidimensional Thin Film Hybrid Electrodes. Hydrogen Evolution Reaction Multidimensional Thin Film Hybrid Electrodes with MoS2 Multilayer for Electrocatalytic Hydrogen Evolution Reaction Eungjin Ahn 1 and Byeong-Su Kim 1,2 * 1 Department of Energy Engineering and 2 Department

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is The Royal Society of Chemistry 2018 Supporting Information Direct Integration of Polycrystalline Graphene on

More information

Supporting Information

Supporting Information Supporting Information Low-Temperature Solution Processed Tin Oxide as an Alternative Electron Transporting Layer for Efficient Perovskite Solar Cells Weijun Ke, Guojia Fang,* Qin Liu, Liangbin Xiong,

More information

Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Wenzhou, (P. R. China).

Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Wenzhou, (P. R. China). Electronic Supplementary Material (ESI) for Nanoscale Synergistically enhanced activity of graphene quantum dot/multi-walled carbon nanotube composites as metal-free catalysts for oxygen reduction reaction

More information

Supplementary Information for

Supplementary Information for Supplementary Information for Highly Stable, Dual-Gated MoS 2 Transistors Encapsulated by Hexagonal Boron Nitride with Gate-Controllable Contact Resistance and Threshold Voltage Gwan-Hyoung Lee, Xu Cui,

More information

Achieving Stable and Efficient Water Oxidation by Incorporating NiFe. Layered Double Hydroxide Nanoparticles into Aligned Carbon.

Achieving Stable and Efficient Water Oxidation by Incorporating NiFe. Layered Double Hydroxide Nanoparticles into Aligned Carbon. Electronic Supplementary Material (ESI) for Nanoscale Horizons. This journal is The Royal Society of Chemistry 2015 Achieving Stable and Efficient Water Oxidation by Incorporating NiFe Layered Double Hydroxide

More information

Beads-On-String-Shaped Poly(azomethine) Applicable for Solution Processing of Bilayer. Devices using a Same Solvent

Beads-On-String-Shaped Poly(azomethine) Applicable for Solution Processing of Bilayer. Devices using a Same Solvent Supporting information Beads-n-String-Shaped Poly(azomethine) Applicable for Solution Processing of Bilayer Devices using a Same Solvent Shunichi Fujii, Saori Minami, Kenji Urayama, Yu Suenaga, Hiroyoshi

More information

Supporting Information for

Supporting Information for Supporting Information for Single Electron Transistor with Single Aromatic Ring Molecule Covalently Connected to Graphene Nanogaps Qizhi Xu 1, Giovanni Scuri 2, Carly Mathewson 1, Philip Kim*,3, Colin

More information

Supplementary Figure 1 shows overall fabrication process and detailed illustrations are given

Supplementary Figure 1 shows overall fabrication process and detailed illustrations are given Supplementary Figure 1. Pressure sensor fabrication schematics. Supplementary Figure 1 shows overall fabrication process and detailed illustrations are given in Methods section. (a) Firstly, the sacrificial

More information