International Journal of Pharma and Bio Sciences

Size: px
Start display at page:

Download "International Journal of Pharma and Bio Sciences"

Transcription

1 International Journal of Pharma and Bio Sciences RESEARCH ARTICLE BIOINFORMATICS MOLECULAR SCREENING OF CITRATE AND STRUCTURALLY SIMILAR COMPOUNDS FOR PREVENTION OF LUNG TISSUE DESTRUCTION HEENA SHAH, PUSHPARANI MUDALIYAR AND CHANDRASHEKHAR KULKARNI MITCON Biopharma and Biotechnology Centre, Agriculture College Campus, Shivajinagar, Pune M.S. (India) HEENA SHAH MITCON Biopharma and Biotechnology Centre, Agriculture College Campus, Shivajinagar, Pune M.S. (India) ABSTRACT The major function of α1-antitrypsin is to protect the lung against the enzyme neutrophil elastase, which breaks down the connective tissue fibre elastin. However the aggregation of antitrypsin into polymers is one of the causes of neonatal hepatitis, cirrhosis, and emphysema. One possible therapeutic strategy involves inhibiting the conformational changes involved in antitrypsin aggregation by using citrate ion, which has been shown to maintain the protein in an active conformation. In our study we identified compounds structurally similar to citrate and carried out docking of citrate ligand as well as the structurally similar ligands with alpha 1 antitrypsin. From the docking and the dynamics results we conclude that citrate and structurally similar compounds to that of citrate were potent inhibitors which can thus prevent aggregation and allow stable A1AT to work at its optimum concentration. B - 306

2 KEYWORDS alpha-1-antitrypsin, stabilising, citrate, docking, structurally similar. INTRODUCTION Alpha 1-Antitrypsin or α1-antitrypsin (A1AT) is a protease inhibitor belonging to the serpin superfamily. Serpins are a group of proteins with similar structures that are able to inhibit proteases 1. Alpha 1-antitrypsin protects the lungs from damage caused by protease enzymes, such as elastase and trypsin, that can be released as a result of an inflammatory response to tobacco smoke 2. Alpha-1-antitrypsin is mainly produced in the liver but its main function is to protect the lung against proteolytic damage from neutrophil elastase. Despite its name, alpha-1 antitrypsin reacts with neutrophil elastase much more readily than with trypsin and represents a major defence against the elastolytic burden in the lower airways posed by neutrophil elastase, which is produced by neutrophils in the lower respiratory tract 2. Serpins have been likened to mousetraps complete with bait, a loaded high-energy but unstable state, and a swinging arm. In the case of alpha-1 antitrypsin, the bait is a methionine amino acid side-chain in this active centre of the serpin. Docking of the neutrophil elastase on that residue cleaves the reactive centre, releases alpha-1 antitrypsin from its metastable high energy state, and allows the cleaved reactive loop to snap back, with the protease in tow, to the other pole of the molecule. Because that arm remains fairly short, it distorts and inactivates the elastase molecule by squeezing it on the other end of the alpha-1 antitrypsin molecule. While this process is mutually suicidal and ensures the destruction of both molecules, there is normally an excess of alpha-1 antitrypsin in the lung, thereby providing an adequate protective screen against the elastolytic burden of neutrophil elastase. Some forms of A1AT have a tendency to polymerise, being retained in the endoplasmic reticulum 3. This aggregation of antitrypsin into polymers is one of the causes of neonatal hepatitis, cirrhosis, and emphysema. These aggregates characterized as an ordered polymeric structure, accumulate in the endoplasmic reticulum (ER) and lead to cell damage or death, which, in turn, lead to liver damage. Emphysema is a downstream result of AAT accumulation in the ER as less AAT is secreted into circulation, thus reducing the overall inhibitory capabilities of the plasma. Target proteinases of AAT, such as elastase, then operate unhindered leading to destruction of the connective tissue within the lungs and subsequently to emphysema. AAT aggregation involves a number of steps 4-6. An approach to prevent polymerisation of the protein is to use chemical chaperones to stabilize intermediates on the folding pathway. One possible therapeutic strategy, on the same lines, involves inhibiting the conformational changes involved in antitrypsin aggregation by using citrate ion. A single citrate molecule binds in a pocket between the A and B beta-sheets, a region known to be important in maintaining antitrypsin stability. Citrate binds to both the native and intermediate conformations of AAT, and in doing so can prevent unfolding and aggregation 7. We have identified compounds structurally similar to citrate which can bind in the active pocket of A1AT to prevent aggregation. Docking of citrate ligand as well as compounds structurally similar to citrate with alpha 1 antitrypsin was carried to confirm the action of newly identified ligands. B - 307

3 METHODS AND MATERIALS Identification and analysis of active site of the alpha-1-antitrypsine protein target The three dimensional structure of alpha 1 antitrypsin was identified from the Protein Data Bank (PDB). For finding out the active site of the Alpha-1-Antitrypsin protein (PDB ID: 3CWM) we used PDBsum. The human Alpha- 1-Antitrypsin receptor 3CWM was bound to the ligand citrate and their interactions were studied with the help up the PDBsum ligplot. The active site residues in this case were found to be the following: 1. ARG196 [Chain A] 2. MET226 [Chain A] 3. LYS243 [Chain A] 4. ARG281 [Chain A] Retrieval of ligands and similar structure Compounds structurally similar to stabilising agent sodium citrate were obtained via Tanimoto Similarity search predefining a threshold value of 0.7. The similar compounds obtained were docked with A1AT using ArgusLab. Docking of the ligand with the alpha-1- antitrypsin receptor Docking is a method which predicts the preferred orientation of one molecule to a second when bound to each other to form a stable complex. Knowledge of the preferred orientation in turn may be used to predict the strength of association or binding affinity between two molecules using for example scoring functions 8. Furthermore, the relative orientation of the two interacting partners may affect the type of signal produced. Therefore docking is useful for predicting both the strength and type of signal produced. Docking is frequently used to predict the binding orientation of small molecule drug candidates to their protein targets in order to predict the affinity and activity of the small molecule. Hence docking plays an important role in the rational design of drugs 9. RESULTS Table.1 The list of compounds obtained using Tanimoto Similarity search Tanimoto Similarity Score Name CAS Number Citric Acid Structure Score: Isocitric Acid Score: B - 308

4 Score: ISSN Vol 3/Issue 1/Jan Mar 2012 Alpha-Methylisocitric Acid 3-Isopropylmalic Acid Score: ,3-Dihydroxy-Valerianic Acid Score: Hydroxy-3-Methyl-Glutaric Acid Score: Tricarballylic Acid Score: (R)-Mevalonate Score: B - 309

5 2,4-Dihydroxy-3,3-Dimethyl-Butyrate Score: Malate Ion Score: D-tartaric acid Score: These compounds on docking with alpha 1 antitrypsin using ArgusLab tm gave the following values: Table.2 Binding energy of citrate and structurally similar compounds Name of Compound Binding energy in kcal/mol Citrate Malate Tartaric Acid B - 310

6 Figure.1 Citrate bound to active site of A1AT Figure.2 Malate bound to active site of A1AT. B - 311

7 Figure 3 Tartaric acid bound to A1AT active site. The other molecules viz. Isocitric Acid, Alpha- Methylisocitric Acid, 3-Isopropylmalic Acid, 2,3-Dihydroxy-Valerianic Acid, 3-Hydroxy-3- Methyl-Glutaric Acid, Tricarballylic Acid, Mevalonate and 2,4-Dihydroxy-3, 3-Dimethyl- Butyrate, did not generate any accepted poses. DISCUSSION From the results obtained, the observation made was that although compounds like isocitric acid, alpha-methylisocitric acid, 3- isopropylmalic acid, being very closely structurally and functionally similar to citrate, did not show any effective binding at the active site of A1AT, thus indicating an inefficiency in use as an alternative to citrate. However, positive results were obtained in case of malate and tartaric acid, which are far related to citrate. CONCLUSION From the observations made, the binding to the active site of A1AT is not dependent on the functional group similarity with citrate molecule, but is rather dependent on structural similarity with similar binding energy to that of citrate. From the binding energy studies it could be proposed that malate and tartaric acid can be used as better and more efficient alternative for citrate in enhancing stability of A1AT and thus preventing lung tissue destruction. The effectiveness of malate and tartaric acid to stabilize A1AT can be further investigated in vitro. B - 312

8 REFERENCES ISSN Vol 3/Issue 1/Jan Mar ) Gettins PG, Serpin structure, mechanism, and function, Chem Rev 102 (12): , (2002). 2) DeMeo DL, Silverman EK, α1- Antitrypsin deficiency 2: Genetic aspects of α1-antitrypsin deficiency: phenotypes and genetic modifiers of emphysema risk, Thorax 59 (3): , (2004). 3) Alkins SA, O'Malley P, Should healthcare systems pay for replacement therapy in patients with alpha(1)- antitrypsin deficiency? A critical review and cost-effectiveness analysis, Chest 117 (3): , (2000). 4) James, E.L. and Bottomley, S.P., The mechanism of a1-antitrypsin polymerization probed by fluorescence spectroscopy, Arch. Biochem. Biophys., 356: , (1998). 5) Dafforn, T.R., Mahadeva, R., Elliott, P.R., Sivasothy, P., and Lomas, D.A., A kinetic mechanism for the polymerization of a1-antitrypsin, J. Biol. Chem. 274: , (1999). 6) Devlin, G.L., Chow, M.K., Howlett, G.J., and Bottomley, S.P., Acid Denaturation of a1-antitrypsin: Characterization of a novel mechanism of serpin polymerization. J. Mol. Biol. 324: , (2002). 7) Pearce MC, Morton CJ, Feil SC, Hansen G, Adams JJ, Parker MW, Bottomley SP., Preventing serpin aggregation: the molecular mechanism of citrate action upon antitrypsin unfolding. Protein Sci., Dec;17(12): , (2008). 8) Lengauer T, Rarey M., Computational methods for biomolecular docking. Curr. Opin. Struct. Biol. 6 (3): 402 6, (1996). 9) Kitchen DB, Decornez H, Furr JR, Bajorath J., Docking and scoring in virtual screening for drug discovery: methods and applications. Nature reviews. Drug discovery 3(11): , (2004). B - 313

Retrieving hits through in silico screening and expert assessment M. N. Drwal a,b and R. Griffith a

Retrieving hits through in silico screening and expert assessment M. N. Drwal a,b and R. Griffith a Retrieving hits through in silico screening and expert assessment M.. Drwal a,b and R. Griffith a a: School of Medical Sciences/Pharmacology, USW, Sydney, Australia b: Charité Berlin, Germany Abstract:

More information

Dr. Sander B. Nabuurs. Computational Drug Discovery group Center for Molecular and Biomolecular Informatics Radboud University Medical Centre

Dr. Sander B. Nabuurs. Computational Drug Discovery group Center for Molecular and Biomolecular Informatics Radboud University Medical Centre Dr. Sander B. Nabuurs Computational Drug Discovery group Center for Molecular and Biomolecular Informatics Radboud University Medical Centre The road to new drugs. How to find new hits? High Throughput

More information

Problem Set 5 Question 1

Problem Set 5 Question 1 2.32 Problem Set 5 Question As discussed in class, drug discovery often involves screening large libraries of small molecules to identify those that have favorable interactions with a certain druggable

More information

Receptor Based Drug Design (1)

Receptor Based Drug Design (1) Induced Fit Model For more than 100 years, the behaviour of enzymes had been explained by the "lock-and-key" mechanism developed by pioneering German chemist Emil Fischer. Fischer thought that the chemicals

More information

ENZYME KINETICS. Medical Biochemistry, Lecture 24

ENZYME KINETICS. Medical Biochemistry, Lecture 24 ENZYME KINETICS Medical Biochemistry, Lecture 24 Lecture 24, Outline Michaelis-Menten kinetics Interpretations and uses of the Michaelis- Menten equation Enzyme inhibitors: types and kinetics Enzyme Kinetics

More information

In silico pharmacology for drug discovery

In silico pharmacology for drug discovery In silico pharmacology for drug discovery In silico drug design In silico methods can contribute to drug targets identification through application of bionformatics tools. Currently, the application of

More information

Protein-Ligand Docking Evaluations

Protein-Ligand Docking Evaluations Introduction Protein-Ligand Docking Evaluations Protein-ligand docking: Given a protein and a ligand, determine the pose(s) and conformation(s) minimizing the total energy of the protein-ligand complex

More information

4 Examples of enzymes

4 Examples of enzymes Catalysis 1 4 Examples of enzymes Adding water to a substrate: Serine proteases. Carbonic anhydrase. Restrictions Endonuclease. Transfer of a Phosphoryl group from ATP to a nucleotide. Nucleoside monophosphate

More information

Computational chemical biology to address non-traditional drug targets. John Karanicolas

Computational chemical biology to address non-traditional drug targets. John Karanicolas Computational chemical biology to address non-traditional drug targets John Karanicolas Our computational toolbox Structure-based approaches Ligand-based approaches Detailed MD simulations 2D fingerprints

More information

Development of Pharmacophore Model for Indeno[1,2-b]indoles as Human Protein Kinase CK2 Inhibitors and Database Mining

Development of Pharmacophore Model for Indeno[1,2-b]indoles as Human Protein Kinase CK2 Inhibitors and Database Mining Development of Pharmacophore Model for Indeno[1,2-b]indoles as Human Protein Kinase CK2 Inhibitors and Database Mining Samer Haidar 1, Zouhair Bouaziz 2, Christelle Marminon 2, Tiomo Laitinen 3, Anti Poso

More information

Enhancing Specificity in the Janus Kinases: A Study on the Thienopyridine. JAK2 Selective Mechanism Combined Molecular Dynamics Simulation

Enhancing Specificity in the Janus Kinases: A Study on the Thienopyridine. JAK2 Selective Mechanism Combined Molecular Dynamics Simulation Electronic Supplementary Material (ESI) for Molecular BioSystems. This journal is The Royal Society of Chemistry 2015 Supporting Information Enhancing Specificity in the Janus Kinases: A Study on the Thienopyridine

More information

It is generally believed that the catalytic reactions occur in at least two steps.

It is generally believed that the catalytic reactions occur in at least two steps. Lecture 16 MECHANISM OF ENZYME ACTION A chemical reaction such as A ----> P takes place because a certain fraction of the substrate possesses enough energy to attain an activated condition called the transition

More information

Computational Biology 1

Computational Biology 1 Computational Biology 1 Protein Function & nzyme inetics Guna Rajagopal, Bioinformatics Institute, guna@bii.a-star.edu.sg References : Molecular Biology of the Cell, 4 th d. Alberts et. al. Pg. 129 190

More information

Chemogenomic: Approaches to Rational Drug Design. Jonas Skjødt Møller

Chemogenomic: Approaches to Rational Drug Design. Jonas Skjødt Møller Chemogenomic: Approaches to Rational Drug Design Jonas Skjødt Møller Chemogenomic Chemistry Biology Chemical biology Medical chemistry Chemical genetics Chemoinformatics Bioinformatics Chemoproteomics

More information

Supplementary Methods

Supplementary Methods Supplementary Methods MMPBSA Free energy calculation Molecular Mechanics/Poisson Boltzmann Surface Area (MM/PBSA) has been widely used to calculate binding free energy for protein-ligand systems (1-7).

More information

Virtual Screening: How Are We Doing?

Virtual Screening: How Are We Doing? Virtual Screening: How Are We Doing? Mark E. Snow, James Dunbar, Lakshmi Narasimhan, Jack A. Bikker, Dan Ortwine, Christopher Whitehead, Yiannis Kaznessis, Dave Moreland, Christine Humblet Pfizer Global

More information

Protein Folding Prof. Eugene Shakhnovich

Protein Folding Prof. Eugene Shakhnovich Protein Folding Eugene Shakhnovich Department of Chemistry and Chemical Biology Harvard University 1 Proteins are folded on various scales As of now we know hundreds of thousands of sequences (Swissprot)

More information

Identifying Interaction Hot Spots with SuperStar

Identifying Interaction Hot Spots with SuperStar Identifying Interaction Hot Spots with SuperStar Version 1.0 November 2017 Table of Contents Identifying Interaction Hot Spots with SuperStar... 2 Case Study... 3 Introduction... 3 Generate SuperStar Maps

More information

Molecular Modeling Study of Some Anthelmintic 2-phenyl Benzimidazole-1- Acetamides as β-tubulin Inhibitor

Molecular Modeling Study of Some Anthelmintic 2-phenyl Benzimidazole-1- Acetamides as β-tubulin Inhibitor Sawant et al : Molecular Modeling Study of Some Anthelmintic 2-phenyl Benzimidazole-1-Acetamides as -tubulin Inhibitor 1269 International Journal of Drug Design and Discovery Volume 5 Issue 1 January March

More information

Supporting Information

Supporting Information S-1 Supporting Information Flaviviral protease inhibitors identied by fragment-based library docking into a structure generated by molecular dynamics Dariusz Ekonomiuk a, Xun-Cheng Su b, Kiyoshi Ozawa

More information

Chapter 5 Ground Rules of Metabolism Sections 1-5

Chapter 5 Ground Rules of Metabolism Sections 1-5 Chapter 5 Ground Rules of Metabolism Sections 1-5 5.1 A Toast to Alcohol Dehydrogenase In the liver, the enzyme alcohol dehydrogenase breaks down toxic ethanol to acetaldehyde, an organic molecule even

More information

Microcalorimetry for the Life Sciences

Microcalorimetry for the Life Sciences Microcalorimetry for the Life Sciences Why Microcalorimetry? Microcalorimetry is universal detector Heat is generated or absorbed in every chemical process In-solution No molecular weight limitations Label-free

More information

NMR study of complexes between low molecular mass inhibitors and the West Nile virus NS2B-NS3 protease

NMR study of complexes between low molecular mass inhibitors and the West Nile virus NS2B-NS3 protease University of Wollongong Research Online Faculty of Science - Papers (Archive) Faculty of Science, Medicine and Health 2009 NMR study of complexes between low molecular mass inhibitors and the West Nile

More information

Protein Folding In Vitro*

Protein Folding In Vitro* Protein Folding In Vitro* Biochemistry 412 February 29, 2008 [*Note: includes computational (in silico) studies] Fersht & Daggett (2002) Cell 108, 573. Some folding-related facts about proteins: Many small,

More information

CHEMISTRY (CHE) CHE 104 General Descriptive Chemistry II 3

CHEMISTRY (CHE) CHE 104 General Descriptive Chemistry II 3 Chemistry (CHE) 1 CHEMISTRY (CHE) CHE 101 Introductory Chemistry 3 Survey of fundamentals of measurement, molecular structure, reactivity, and organic chemistry; applications to textiles, environmental,

More information

COMBINATORIAL CHEMISTRY: CURRENT APPROACH

COMBINATORIAL CHEMISTRY: CURRENT APPROACH COMBINATORIAL CHEMISTRY: CURRENT APPROACH Dwivedi A. 1, Sitoke A. 2, Joshi V. 3, Akhtar A.K. 4* and Chaturvedi M. 1, NRI Institute of Pharmaceutical Sciences, Bhopal, M.P.-India 2, SRM College of Pharmacy,

More information

MM-GBSA for Calculating Binding Affinity A rank-ordering study for the lead optimization of Fxa and COX-2 inhibitors

MM-GBSA for Calculating Binding Affinity A rank-ordering study for the lead optimization of Fxa and COX-2 inhibitors MM-GBSA for Calculating Binding Affinity A rank-ordering study for the lead optimization of Fxa and COX-2 inhibitors Thomas Steinbrecher Senior Application Scientist Typical Docking Workflow Databases

More information

Francisco Melo, Damien Devos, Eric Depiereux and Ernest Feytmans

Francisco Melo, Damien Devos, Eric Depiereux and Ernest Feytmans From: ISMB-97 Proceedings. Copyright 1997, AAAI (www.aaai.org). All rights reserved. ANOLEA: A www Server to Assess Protein Structures Francisco Melo, Damien Devos, Eric Depiereux and Ernest Feytmans Facultés

More information

[Urea] (M) k (s -1 )

[Urea] (M) k (s -1 ) BMB178 Fall 2018 Problem Set 1 Due: 10/26/2018, noon Office hour: 10/25/2018, SFL GSR218 7 9 pm Problem 1. Transition state theory (20 points): Consider a unimolecular reaction where a substrate S is converted

More information

Kd = koff/kon = [R][L]/[RL]

Kd = koff/kon = [R][L]/[RL] Taller de docking y cribado virtual: Uso de herramientas computacionales en el diseño de fármacos Docking program GLIDE El programa de docking GLIDE Sonsoles Martín-Santamaría Shrödinger is a scientific

More information

BUDE. A General Purpose Molecular Docking Program Using OpenCL. Richard B Sessions

BUDE. A General Purpose Molecular Docking Program Using OpenCL. Richard B Sessions BUDE A General Purpose Molecular Docking Program Using OpenCL Richard B Sessions 1 The molecular docking problem receptor ligand Proteins typically O(1000) atoms Ligands typically O(100) atoms predicted

More information

Mechanistic insight into inhibition of two-component system signaling

Mechanistic insight into inhibition of two-component system signaling Supporting Information Mechanistic insight into inhibition of two-component system signaling Samson Francis, a Kaelyn E. Wilke, a Douglas E. Brown a and Erin E. Carlson a,b* a Department of Chemistry,

More information

Fluorine in Peptide and Protein Engineering

Fluorine in Peptide and Protein Engineering Fluorine in Peptide and Protein Engineering Rita Fernandes Porto, February 11 th 2016 Supervisor: Prof. Dr. Beate Koksch 1 Fluorine a unique element for molecule design The most abundant halogen in earth

More information

Biochemistry. Lecture 8 Enzyme Kinetics

Biochemistry. Lecture 8 Enzyme Kinetics Biochemistry Lecture 8 Enzyme Kinetics Why Enzymes? igher reaction rates Greater reaction specificity Milder reaction conditions Capacity for regulation C - - C N 2 - C N 2 - C - C Chorismate mutase -

More information

Binding Response: A Descriptor for Selecting Ligand Binding Site on Protein Surfaces

Binding Response: A Descriptor for Selecting Ligand Binding Site on Protein Surfaces J. Chem. Inf. Model. 2007, 47, 2303-2315 2303 Binding Response: A Descriptor for Selecting Ligand Binding Site on Protein Surfaces Shijun Zhong and Alexander D. MacKerell, Jr.* Computer-Aided Drug Design

More information

Outline. The ensemble folding kinetics of protein G from an all-atom Monte Carlo simulation. Unfolded Folded. What is protein folding?

Outline. The ensemble folding kinetics of protein G from an all-atom Monte Carlo simulation. Unfolded Folded. What is protein folding? The ensemble folding kinetics of protein G from an all-atom Monte Carlo simulation By Jun Shimada and Eugine Shaknovich Bill Hawse Dr. Bahar Elisa Sandvik and Mehrdad Safavian Outline Background on protein

More information

György M. Keserű H2020 FRAGNET Network Hungarian Academy of Sciences

György M. Keserű H2020 FRAGNET Network Hungarian Academy of Sciences Fragment based lead discovery - introduction György M. Keserű H2020 FRAGET etwork Hungarian Academy of Sciences www.fragnet.eu Hit discovery from screening Druglike library Fragment library Large molecules

More information

Volume 12(2)

Volume 12(2) Open access www.bioinformation.net Volume 12(2) Hypothesis Insights from molecular modeling, docking and simulation of imidazole nucleus containing chalcones with EGFR kinase domain for improved binding

More information

Cross Discipline Analysis made possible with Data Pipelining. J.R. Tozer SciTegic

Cross Discipline Analysis made possible with Data Pipelining. J.R. Tozer SciTegic Cross Discipline Analysis made possible with Data Pipelining J.R. Tozer SciTegic System Genesis Pipelining tool created to automate data processing in cheminformatics Modular system built with generic

More information

Chemical properties that affect binding of enzyme-inhibiting drugs to enzymes

Chemical properties that affect binding of enzyme-inhibiting drugs to enzymes Chemical properties that affect binding of enzyme-inhibiting drugs to enzymes Introduction The production of new drugs requires time for development and testing, and can result in large prohibitive costs

More information

12/6/12. Dr. Sanjeeva Srivastava IIT Bombay. Primary Structure. Secondary Structure. Tertiary Structure. Quaternary Structure.

12/6/12. Dr. Sanjeeva Srivastava IIT Bombay. Primary Structure. Secondary Structure. Tertiary Structure. Quaternary Structure. Dr. anjeeva rivastava Primary tructure econdary tructure Tertiary tructure Quaternary tructure Amino acid residues α Helix Polypeptide chain Assembled subunits 2 1 Amino acid sequence determines 3-D structure

More information

Enzyme Catalysis & Biotechnology

Enzyme Catalysis & Biotechnology L28-1 Enzyme Catalysis & Biotechnology Bovine Pancreatic RNase A Biochemistry, Life, and all that L28-2 A brief word about biochemistry traditionally, chemical engineers used organic and inorganic chemistry

More information

Introduction. OntoChem

Introduction. OntoChem Introduction ntochem Providing drug discovery knowledge & small molecules... Supporting the task of medicinal chemistry Allows selecting best possible small molecule starting point From target to leads

More information

Bioengineering & Bioinformatics Summer Institute, Dept. Computational Biology, University of Pittsburgh, PGH, PA

Bioengineering & Bioinformatics Summer Institute, Dept. Computational Biology, University of Pittsburgh, PGH, PA Pharmacophore Model Development for the Identification of Novel Acetylcholinesterase Inhibitors Edwin Kamau Dept Chem & Biochem Kennesa State Uni ersit Kennesa GA 30144 Dept. Chem. & Biochem. Kennesaw

More information

Topology based deep learning for biomolecular data

Topology based deep learning for biomolecular data Topology based deep learning for biomolecular data Guowei Wei Departments of Mathematics Michigan State University http://www.math.msu.edu/~wei American Institute of Mathematics July 23-28, 2017 Grant

More information

Introduction and. Properties of Enzymes

Introduction and. Properties of Enzymes Unit-III Enzymes Contents 1. Introduction and Properties of enzymes 2. Nomenclature and Classification 3. Mechanism of enzyme-catalyzed reactions 4. Kinetics of enzyme-catalyzed reactions 5. Inhibition

More information

Geometrical Concept-reduction in conformational space.and his Φ-ψ Map. G. N. Ramachandran

Geometrical Concept-reduction in conformational space.and his Φ-ψ Map. G. N. Ramachandran Geometrical Concept-reduction in conformational space.and his Φ-ψ Map G. N. Ramachandran Communication paths in trna-synthetase: Insights from protein structure networks and MD simulations Saraswathi Vishveshwara

More information

Virtual affinity fingerprints in drug discovery: The Drug Profile Matching method

Virtual affinity fingerprints in drug discovery: The Drug Profile Matching method Ágnes Peragovics Virtual affinity fingerprints in drug discovery: The Drug Profile Matching method PhD Theses Supervisor: András Málnási-Csizmadia DSc. Associate Professor Structural Biochemistry Doctoral

More information

[Urea] (M) k (s -1 )

[Urea] (M) k (s -1 ) BMB178 Fall 2018 Problem Set 1 Due: 10/26/2018, noon Office hour: 10/25/2018, SFL GSR218 7 9 pm Problem 1. Transition state theory (20 points): Consider a unimolecular reaction where a substrate S is converted

More information

THE TANGO ALGORITHM: SECONDARY STRUCTURE PROPENSITIES, STATISTICAL MECHANICS APPROXIMATION

THE TANGO ALGORITHM: SECONDARY STRUCTURE PROPENSITIES, STATISTICAL MECHANICS APPROXIMATION THE TANGO ALGORITHM: SECONDARY STRUCTURE PROPENSITIES, STATISTICAL MECHANICS APPROXIMATION AND CALIBRATION Calculation of turn and beta intrinsic propensities. A statistical analysis of a protein structure

More information

Keywords: anti-coagulants, factor Xa, QSAR, Thrombosis. Introduction

Keywords: anti-coagulants, factor Xa, QSAR, Thrombosis. Introduction PostDoc Journal Vol. 2, No. 3, March 2014 Journal of Postdoctoral Research www.postdocjournal.com QSAR Study of Thiophene-Anthranilamides Based Factor Xa Direct Inhibitors Preetpal S. Sidhu Department

More information

Molecular Interactions F14NMI. Lecture 4: worked answers to practice questions

Molecular Interactions F14NMI. Lecture 4: worked answers to practice questions Molecular Interactions F14NMI Lecture 4: worked answers to practice questions http://comp.chem.nottingham.ac.uk/teaching/f14nmi jonathan.hirst@nottingham.ac.uk (1) (a) Describe the Monte Carlo algorithm

More information

Keywords: dimer dissociation, Streptomyces subtilisin inhibitor, rate constant

Keywords: dimer dissociation, Streptomyces subtilisin inhibitor, rate constant J. Biol. Macromol. 8(2), 38-47 (2008) Article Kinetic study on the dissociation of a dimeric protein, Streptomyces Subtilisin Inhibitor Keiko Momma 1,2, Ben ichiro Tonomura, and Keitaro Hiromi Department

More information

pharmaceutical industry- drug discovery

pharmaceutical industry- drug discovery ombinatorial hemistry: molecular diversity "Synthesis and pplications of Small Molecule Libraries." Thompson, L..; llman, J.. hem. ev.,, -00. "esign, Synthesis, and valuation of Small-Molecule Libraries.

More information

Protein Folding & Stability. Lecture 11: Margaret A. Daugherty. Fall How do we go from an unfolded polypeptide chain to a

Protein Folding & Stability. Lecture 11: Margaret A. Daugherty. Fall How do we go from an unfolded polypeptide chain to a Lecture 11: Protein Folding & Stability Margaret A. Daugherty Fall 2004 How do we go from an unfolded polypeptide chain to a compact folded protein? (Folding of thioredoxin, F. Richards) Structure - Function

More information

Supplementary Figure 1 Preparation of PDA nanoparticles derived from self-assembly of PCDA. (a)

Supplementary Figure 1 Preparation of PDA nanoparticles derived from self-assembly of PCDA. (a) Supplementary Figure 1 Preparation of PDA nanoparticles derived from self-assembly of PCDA. (a) Computer simulation on the self-assembly of PCDAs. Two kinds of totally different initial conformations were

More information

Detection of Protein Binding Sites II

Detection of Protein Binding Sites II Detection of Protein Binding Sites II Goal: Given a protein structure, predict where a ligand might bind Thomas Funkhouser Princeton University CS597A, Fall 2007 1hld Geometric, chemical, evolutionary

More information

Central Dogma. modifications genome transcriptome proteome

Central Dogma. modifications genome transcriptome proteome entral Dogma DA ma protein post-translational modifications genome transcriptome proteome 83 ierarchy of Protein Structure 20 Amino Acids There are 20 n possible sequences for a protein of n residues!

More information

Structural and mechanistic insight into the substrate. binding from the conformational dynamics in apo. and substrate-bound DapE enzyme

Structural and mechanistic insight into the substrate. binding from the conformational dynamics in apo. and substrate-bound DapE enzyme Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 215 Structural and mechanistic insight into the substrate binding from the conformational

More information

Molecular dynamics simulations of anti-aggregation effect of ibuprofen. Wenling E. Chang, Takako Takeda, E. Prabhu Raman, and Dmitri Klimov

Molecular dynamics simulations of anti-aggregation effect of ibuprofen. Wenling E. Chang, Takako Takeda, E. Prabhu Raman, and Dmitri Klimov Biophysical Journal, Volume 98 Supporting Material Molecular dynamics simulations of anti-aggregation effect of ibuprofen Wenling E. Chang, Takako Takeda, E. Prabhu Raman, and Dmitri Klimov Supplemental

More information

Metabolism and enzymes

Metabolism and enzymes Metabolism and enzymes 4-11-16 What is a chemical reaction? A chemical reaction is a process that forms or breaks the chemical bonds that hold atoms together Chemical reactions convert one set of chemical

More information

Clemens Stilling Characterisation, Analytical Sciences for Biologicals, UCB Pharma S.A. Alun, living with Parkinson s disease

Clemens Stilling Characterisation, Analytical Sciences for Biologicals, UCB Pharma S.A. Alun, living with Parkinson s disease Clemens Stilling Characterisation, Analytical Sciences for Biologicals, UCB Pharma S.A. Alun, living with Parkinson s disease Outline Short intro Aggregate characterisation during candidate selection and

More information

Principles of Drug Design

Principles of Drug Design Advanced Medicinal Chemistry II Principles of Drug Design Tentative Course Outline Instructors: Longqin Hu and John Kerrigan Direct questions and enquiries to the Course Coordinator: Longqin Hu I. Introduction

More information

Chemical properties that affect binding of enzyme-inhibiting drugs to enzymes

Chemical properties that affect binding of enzyme-inhibiting drugs to enzymes Introduction Chemical properties that affect binding of enzyme-inhibiting drugs to enzymes The production of new drugs requires time for development and testing, and can result in large prohibitive costs

More information

interactions and reaction mechansims in peroxidases and aldo-keto reductases Carme Rovira ICREA / Parc Científic de Barcelona Barcelona

interactions and reaction mechansims in peroxidases and aldo-keto reductases Carme Rovira ICREA / Parc Científic de Barcelona Barcelona Molecular modeling of enzyme-substrate interactions and reaction mechansims in peroxidases and aldo-keto reductases Carme Rovira ICREA / Parc Científic de Barcelona Barcelona What we do Molecular (atomistic)

More information

Structural Bioinformatics (C3210) Molecular Docking

Structural Bioinformatics (C3210) Molecular Docking Structural Bioinformatics (C3210) Molecular Docking Molecular Recognition, Molecular Docking Molecular recognition is the ability of biomolecules to recognize other biomolecules and selectively interact

More information

Automatic Epitope Recognition in Proteins Oriented to the System for Macromolecular Interaction Assessment MIAX

Automatic Epitope Recognition in Proteins Oriented to the System for Macromolecular Interaction Assessment MIAX Genome Informatics 12: 113 122 (2001) 113 Automatic Epitope Recognition in Proteins Oriented to the System for Macromolecular Interaction Assessment MIAX Atsushi Yoshimori Carlos A. Del Carpio yosimori@translell.eco.tut.ac.jp

More information

CHEM-UA 652: Thermodynamics and Kinetics

CHEM-UA 652: Thermodynamics and Kinetics 1 CHEM-UA 652: Thermodynamics and Kinetics Notes for Lecture 11 I. PHYSICAL AND CHEMICAL RELEVANCE OF FREE ENERGY In this section, we will consider some examples showing the significance of free energies.

More information

Computational Molecular Biology (

Computational Molecular Biology ( Computational Molecular Biology (http://cmgm cmgm.stanford.edu/biochem218/) Biochemistry 218/Medical Information Sciences 231 Douglas L. Brutlag, Lee Kozar Jimmy Huang, Josh Silverman Lecture Syllabus

More information

Minireview: Molecular Structure and Dynamics of Drug Targets

Minireview: Molecular Structure and Dynamics of Drug Targets Prague Medical Report / Vol. 109 (2008) No. 2 3, p. 107 112 107) Minireview: Molecular Structure and Dynamics of Drug Targets Dahl S. G., Sylte I. Department of Pharmacology, Institute of Medical Biology,

More information

Peptide-derived Inhibitors of Protein-Protein Interactions

Peptide-derived Inhibitors of Protein-Protein Interactions Peptide-derived Inhibitors of Protein-Protein Interactions Sven Hennig Department of Chemistry and Pharmaceutical Sciences Vrije Universiteit Amsterdam 1 Biomolecular recognitions Classification via interaction

More information

tconcoord-gui: Visually Supported Conformational Sampling of Bioactive Molecules

tconcoord-gui: Visually Supported Conformational Sampling of Bioactive Molecules Software News and Updates tconcoord-gui: Visually Supported Conformational Sampling of Bioactive Molecules DANIEL SEELIGER, BERT L. DE GROOT Computational Biomolecular Dynamics Group, Max-Planck-Institute

More information

Dental Biochemistry Exam The total number of unique tripeptides that can be produced using all of the common 20 amino acids is

Dental Biochemistry Exam The total number of unique tripeptides that can be produced using all of the common 20 amino acids is Exam Questions for Dental Biochemistry Monday August 27, 2007 E.J. Miller 1. The compound shown below is CH 3 -CH 2 OH A. acetoacetate B. acetic acid C. acetaldehyde D. produced by reduction of acetaldehyde

More information

Presentation Microcalorimetry for Life Science Research

Presentation Microcalorimetry for Life Science Research Presentation Microcalorimetry for Life Science Research MicroCalorimetry The Universal Detector Heat is either generated or absorbed in every chemical process Capable of thermal measurements over a wide

More information

Isothermal Titration Calorimetry in Drug Discovery. Geoff Holdgate Structure & Biophysics, Discovery Sciences, AstraZeneca October 2017

Isothermal Titration Calorimetry in Drug Discovery. Geoff Holdgate Structure & Biophysics, Discovery Sciences, AstraZeneca October 2017 Isothermal Titration Calorimetry in Drug Discovery Geoff Holdgate Structure & Biophysics, Discovery Sciences, AstraZeneca October 217 Introduction Introduction to ITC Strengths / weaknesses & what is required

More information

Delivery. Delivery Processes. Delivery Processes: Distribution. Ultimate Toxicant

Delivery. Delivery Processes. Delivery Processes: Distribution. Ultimate Toxicant Delivery Ultimate Toxicant The chemical species that reacts with the endogenous target. Toxicity depends on the concentration (dose) of the ultimate toxicant at the target site Delivery Processes Absorption

More information

Thermodynamics. Entropy and its Applications. Lecture 11. NC State University

Thermodynamics. Entropy and its Applications. Lecture 11. NC State University Thermodynamics Entropy and its Applications Lecture 11 NC State University System and surroundings Up to this point we have considered the system, but we have not concerned ourselves with the relationship

More information

Homology modeling. Dinesh Gupta ICGEB, New Delhi 1/27/2010 5:59 PM

Homology modeling. Dinesh Gupta ICGEB, New Delhi 1/27/2010 5:59 PM Homology modeling Dinesh Gupta ICGEB, New Delhi Protein structure prediction Methods: Homology (comparative) modelling Threading Ab-initio Protein Homology modeling Homology modeling is an extrapolation

More information

Next Generation Computational Chemistry Tools to Predict Toxicity of CWAs

Next Generation Computational Chemistry Tools to Predict Toxicity of CWAs Next Generation Computational Chemistry Tools to Predict Toxicity of CWAs William (Bill) Welsh welshwj@umdnj.edu Prospective Funding by DTRA/JSTO-CBD CBIS Conference 1 A State-wide, Regional and National

More information

2054, Chap. 8, page 1

2054, Chap. 8, page 1 2054, Chap. 8, page 1 I. Metabolism: Energetics, Enzymes, and Regulation (Chapter 8) A. Energetics and work 1. overview a. energy = ability to do work (1) chemical, transport, mechanical (2) ultimate source

More information

L I F E S C I E N C E S

L I F E S C I E N C E S 1a L I F E S C I E N C E S 5 -UUA AUA UUC GAA AGC UGC AUC GAA AAC UGU GAA UCA-3 5 -TTA ATA TTC GAA AGC TGC ATC GAA AAC TGT GAA TCA-3 3 -AAT TAT AAG CTT TCG ACG TAG CTT TTG ACA CTT AGT-5 NOVEMBER 7, 2006

More information

Structural biology and drug design: An overview

Structural biology and drug design: An overview Structural biology and drug design: An overview livier Taboureau Assitant professor Chemoinformatics group-cbs-dtu otab@cbs.dtu.dk Drug discovery Drug and drug design A drug is a key molecule involved

More information

QSAR Study of Quinazoline Derivatives as Inhibitor of Epidermal Growth Factor Receptor-Tyrosine Kinase (EGFR-TK)

QSAR Study of Quinazoline Derivatives as Inhibitor of Epidermal Growth Factor Receptor-Tyrosine Kinase (EGFR-TK) 3rd International Conference on Computation for cience and Technology (ICCT-3) QAR tudy of Quinazoline Derivatives as Inhibitor of Epidermal Growth Factor Receptor-Tyrosine Kinase (EGFR-TK) La de Aman1*,

More information

Pharmacological Chaperone Therapy. Brandon Wilcock March 27, 2008

Pharmacological Chaperone Therapy. Brandon Wilcock March 27, 2008 Pharmacological Chaperone Therapy Brandon Wilcock March 27, 2008 Protein Folding and Structure E Wolynes, P.; Luthey-Schulten, Z.; nuchic, J. Chemistry & Biology 1996, 3, 425-432. http://parasol.tamu.edu/foldingserver/images/landscape.gif

More information

Isothermal experiments characterize time-dependent aggregation and unfolding

Isothermal experiments characterize time-dependent aggregation and unfolding 1 Energy Isothermal experiments characterize time-dependent aggregation and unfolding Technical ote Introduction Kinetic measurements have, for decades, given protein scientists insight into the mechanisms

More information

Affinity labels for studying enzyme active sites. Irreversible Enzyme Inhibition. Inhibition of serine protease with DFP

Affinity labels for studying enzyme active sites. Irreversible Enzyme Inhibition. Inhibition of serine protease with DFP Irreversible Enzyme Inhibition Irreversible inhibitors form stable covalent bonds with the enzyme (e.g. alkylation or acylation of an active site side chain) There are many naturally-occurring and synthetic

More information

Chapter 6- An Introduction to Metabolism*

Chapter 6- An Introduction to Metabolism* Chapter 6- An Introduction to Metabolism* *Lecture notes are to be used as a study guide only and do not represent the comprehensive information you will need to know for the exams. The Energy of Life

More information

Targeted Covalent Inhibitors: A Risk-Benefit Perspective

Targeted Covalent Inhibitors: A Risk-Benefit Perspective Targeted Covalent Inhibitors: A Risk-Benefit Perspective 2014 AAPS Annual Meeting and Exposition San Diego, CA, November 4, 2014 Thomas A. Baillie School of Pharmacy University of Washington Seattle, WA

More information

Structure Investigation of Fam20C, a Golgi Casein Kinase

Structure Investigation of Fam20C, a Golgi Casein Kinase Structure Investigation of Fam20C, a Golgi Casein Kinase Sharon Grubner National Taiwan University, Dr. Jung-Hsin Lin University of California San Diego, Dr. Rommie Amaro Abstract This research project

More information

The Riboswitch is functionally separated into the ligand binding APTAMER and the decision-making EXPRESSION PLATFORM

The Riboswitch is functionally separated into the ligand binding APTAMER and the decision-making EXPRESSION PLATFORM The Riboswitch is functionally separated into the ligand binding APTAMER and the decision-making EXPRESSION PLATFORM Purine riboswitch TPP riboswitch SAM riboswitch glms ribozyme In-line probing is used

More information

Exam I Answer Key: Summer 2006, Semester C

Exam I Answer Key: Summer 2006, Semester C 1. Which of the following tripeptides would migrate most rapidly towards the negative electrode if electrophoresis is carried out at ph 3.0? a. gly-gly-gly b. glu-glu-asp c. lys-glu-lys d. val-asn-lys

More information

Docking with Water in the Binding Site using GOLD

Docking with Water in the Binding Site using GOLD Docking with Water in the Binding Site using GOLD Version 2.0 November 2017 GOLD v5.6 Table of Contents Docking with Water in the Binding Site... 2 Case Study... 3 Introduction... 3 Provided Input Files...

More information

DOCKING TUTORIAL. A. The docking Workflow

DOCKING TUTORIAL. A. The docking Workflow 2 nd Strasbourg Summer School on Chemoinformatics VVF Obernai, France, 20-24 June 2010 E. Kellenberger DOCKING TUTORIAL A. The docking Workflow 1. Ligand preparation It consists in the standardization

More information

Lecture 11: Protein Folding & Stability

Lecture 11: Protein Folding & Stability Structure - Function Protein Folding: What we know Lecture 11: Protein Folding & Stability 1). Amino acid sequence dictates structure. 2). The native structure represents the lowest energy state for a

More information

Protein Folding & Stability. Lecture 11: Margaret A. Daugherty. Fall Protein Folding: What we know. Protein Folding

Protein Folding & Stability. Lecture 11: Margaret A. Daugherty. Fall Protein Folding: What we know. Protein Folding Lecture 11: Protein Folding & Stability Margaret A. Daugherty Fall 2003 Structure - Function Protein Folding: What we know 1). Amino acid sequence dictates structure. 2). The native structure represents

More information

S H/T 0 ph = log([h + ]) E = mc 2 S = klnw G = H T S ph = pk a + log([a ]/[HA]) K a = [H + ][A ]/[HA] G = RTlnK eq e iπ + 1 = 0

S H/T 0 ph = log([h + ]) E = mc 2 S = klnw G = H T S ph = pk a + log([a ]/[HA]) K a = [H + ][A ]/[HA] G = RTlnK eq e iπ + 1 = 0 Biochemistry 463, Summer II Your Name: University of Maryland, College Park Your SID #: Biochemistry and Physiology Prof. Jason Kahn Exam I (100 points total) July 27, 2007 You have 80 minutes for this

More information

Design and Molecular Docking Studies of Some 1,3,4-Oxadiazole Derivatives

Design and Molecular Docking Studies of Some 1,3,4-Oxadiazole Derivatives Research Article Design and Molecular Docking Studies of Some 1,3,4-Oxadiazole Derivatives Dinesh Rishipathak *1, Prabhakar Shirodkar 2 1 Department of Pharmaceutical Chemistry, MET s Institute of Pharmacy,

More information

Lecture 15: Enzymes & Kinetics. Mechanisms ROLE OF THE TRANSITION STATE. H-O-H + Cl - H-O δ- H Cl δ- HO - + H-Cl. Margaret A. Daugherty.

Lecture 15: Enzymes & Kinetics. Mechanisms ROLE OF THE TRANSITION STATE. H-O-H + Cl - H-O δ- H Cl δ- HO - + H-Cl. Margaret A. Daugherty. Lecture 15: Enzymes & Kinetics Mechanisms Margaret A. Daugherty Fall 2004 ROLE OF THE TRANSITION STATE Consider the reaction: H-O-H + Cl - H-O δ- H Cl δ- HO - + H-Cl Reactants Transition state Products

More information

Protein Dynamics. The space-filling structures of myoglobin and hemoglobin show that there are no pathways for O 2 to reach the heme iron.

Protein Dynamics. The space-filling structures of myoglobin and hemoglobin show that there are no pathways for O 2 to reach the heme iron. Protein Dynamics The space-filling structures of myoglobin and hemoglobin show that there are no pathways for O 2 to reach the heme iron. Below is myoglobin hydrated with 350 water molecules. Only a small

More information

Problems from Previous Class

Problems from Previous Class 1 Problems from Previous lass 1. What is K m? What are the units of K m? 2. What is V max? What are the units of V max? 3. Write down the Michaelis-Menten equation. 4. What order of reaction is the reaction

More information