Proceedings of the Meetings Comptes Redus de les Réunions

Size: px
Start display at page:

Download "Proceedings of the Meetings Comptes Redus de les Réunions"

Transcription

1 IOBC / WPRS Working Group Integrated Protection in Field Vegetable Crops OILB / SROP Groupe de Travail «Lutte Intégrée en Culture de Légumes» Proceedings of the Meetings Comptes Redus de les Réunions at / à Gödöllö (Hungary) and Krakow (Poland) Edited by Stefan Vidal IOBC wprs Bulletin Bulletin OILB srop Vol. 26 (3), 2003

2 The content of the contributions is in the responsibility of the authors The IOBC/WPRS Bulletin is published by the International Organization for Biological and Integrated Control of Noxious Animals and Plants, West Palearctic Regional Section (IOBC/WPRS) Le Bulletin OILB/SROP est publié par l Organisation Internationale de Lutte Biologique et Intégrée contre les Animaux et les Plantes Nuisibles, section Regionale Ouest Paléarctique (OILB/SROP) Copyright: IOBC/WPRS 2003 The Publication Commission of the IOBC/WPRS: Horst Bathon Federal Biological Research Center for Agriculture and Forestry (BBA) Institute for Biological Control Heinrichstr. 243 D Darmstadt (Germany) Tel , Fax h.bathon.@bba.de Luc Tirry University of Gent Laboratory of Agrozoology Department of Crop Protection Coupure Links 653 B-9000 Gent (Belgium) Tel , Fax luc.tirry@ rug.ac.be Address General Secretariat: INRA Centre de Recherches de Dijon Laboratoire de recherches sur la Flore Pathogène dans le Sol 17, Rue Sully, BV DIJON CEDEX France ISBN Web:

3 Integrated Control in Field Vegetable Crops IOBC wprs Bulletin 26 (3) 2003 pp Effects of flowering field margins on flight activity of the diamondback moth (Plutella xylostella L.) and its parasitoids Diadegma spp., and observations on distance from field edge, and vertical position of traps T. Bukovinszky 1, M.J. Brewer 2, K. Winkler 1, H. Trefas 1,3, L.E.M. Vet 1,4 & J.C. van Lenteren 1 1 Wageningen University and Research Centre, Laboratory of Entomology, Wageningen 6700 EH, The Netherlands. 2 University of Wyoming, Renewable Resources-Entomology 3 Szent István University, Department of Crop Protection, Gödöllõ, Hungary 4 Netherlands Institute of Ecology, Centre for Terrestrial Ecology, Heteren, The Netherlands Abstract: We studied the effects of flowering field margins on flight activity of the diamondback moth (Plutella xylostella L.) and its parasitoids Diadegma spp. in Brussels sprout fields (Brassica oleracea cv gemmifera var. Icarus), twice during the summer of We also compared the effect of vertical position of traps on insect counts, to investigate movement of insects within the field margin and field. Diamondback moth adults were attracted to flowering field margins. There was an increase in moth counts with increasing distance from the field edge. Flowers adjacent to the field influenced this pattern in the second observation period; as overall density of the moths inside the field was higher when flowering margins were present. Traps at higher position within the margin (level of flowers), caught more moths, than traps at lower position, whereas within-field field catches were higher in traps placed lower (canopy of plants) than in traps just above the canopy. However, this tendency changed to the opposite in the second observation period. Spatial patterns in catches of Diadegma spp. were in general similar to those of the diamondback moth. Although there was an increase in counts with increasing distance from the field edge, parasitoid counts over distance were not significantly influenced by the flowering field margin. Within the fields, traps at a lower position caught consistently more individuals then traps at a higher position. This finding suggests that this species is indeed a specialist in cruciferous habitats and its flight activity within the crop is restricted to the plant canopy. Results show that flowering field margins may act as trap crops by attracting populations of specialist herbivores, a reason to this might have been the high abundance of Sinapis alba in the margin. Field margins also increased pest densities in adjacent fields. Vertical position of traps affects efficiency of catches, and may influence the reliability of detection and estimation of herbivore and parasitoid populations. Keywords: Plutella xylostella, Diadegma spp., Sinapis alba, flowering field margin, habitat manipulation Introduction Diamondback moth Plutella xylostella (L.) is the most important insect pest of cruciferous crops throughout the world (Talekar and Shelton, 1993). The costs of chemical control and the increasing resistance against pesticides urges the development of alternative control methods against this pest (Charleston and Kfir, 2001). Diadegma semiclausum (Hellén) and 307

4 308 Diadegma fenestrale (Holmgren) (Hymenoptera: Ichneumonidae) are two of its few parasitoids and can be major mortality factors of the diamondback moth (Waage, 1983). However, their efficiency is often low in newly planted cruciferous habitats, because their host is often better able to establish itself (Talekar and Shelton, 1993). The goal of habitat management is to create a suitable infrastructure within the agricultural landscape by selectively providing resources for beneficial natural enemies to enhance natural control of pests (conservation biological control). A way to provide pollen/nectar sources for parasitoids, is to establish flowering field margins. Such margins may accumulate natural enemies of pests and increase their efficiency as control agents in adjacent fields. However, when herbivores can make use of them, field margins may also increase pest problems (Landis et al., 2000), raising interest in composing field margins selectively for pest control (Baggen et al., 1999). As cyclic colonisation of annual agroecosystems by herbivores and their parasitoids is a scale dependent process, the spatial dynamics of pests and beneficials in and around fields is an important issue in the establishment of flowering field margins (Bowie et al. 1999). Our aim was to study the effects of flowering field margins on spatial distribution of the diamondback moth and its parasitoids Diadegma spp. in Brussels sprout fields (Brassica oleracea cv gemmifera var. Icarus). We compared the effect of vertical position of traps on insect counts, to investigate where insect movement took place in the field margin and within the field. Materials and methods Experimental design Experiments were carried out on four Brussels sprout (Brassica oleracea var gemmifera cv. Maximus) plots (50mx80m) in the vicinity of Wageningen (The Netherlands) during the summer of The experimental site was located in a woodland area dominated by oak. Plots were isolated by a path of mown grass (mixture of Lolium spp. and Poa spp.) of at least 10m at each side. Flowering field margins (4mx50m) were established on the southwestern side of two of the plots in the direction of prevailing wind. Flowering field margins were composed of 27 plant species known to be used by insects as pollen and nectar source (Frei and Manhart, 1992, Table 1.). The time of flowering and percentage of cover by each plant species were monitored once a week in 10 randomly chosen square meters per flowering margin. Control plots were surrounded by mown grass on all sides. Sampling insect populations To monitor flight activity of the diamondback moth and its parasitoids Diadegma spp., we coated clear plastic circular traps (h=21cm, d=9cm) with transparent adhesive (Tanglefoot ), affixed them to a cane and placed them within the field margin and adjacent field. Traps were set to the height of the canopy of Brussels sprout plants (15cm above ground) and just above the canopy (50cm above ground) at four different distances from the field edge. The first trap line was placed within the field edge (0.75m from the border of the field), a second at 0.75m, a third at 6m, and a fourth line at 15m into the B. sprout field. Each trap line contained 3 traps of both vertical positions. We set the traps out in the field twice; in the periods of 5 th of July - 13 th of July (week 27-28) and 19 th of July 26 th of July (week 29-30). Traps were collected at the end of each sampling period, and were taken to the laboratory for identification of the specimens.

5 309 Data analysis Before the analysis, insect counts were value 1 transformed. A general linear model for analysis of variances was built to detect sources of significant variation between groups (SPSS 8.0). Each sampling period was analysed separately. Results and discussion During the observation period 5 to 11 plant species flowered in the field margins (Table 1), the dominant species were white mustard (Sinapis alba) and buckwheat (Fagopyrum esculentum). Table 1. The period of flowering and the percentage of cover of plant species recorded within the field margin during the summer season. X- indicates flowering Plant species % Week cover Anthemis tinctoria 1 Arthemis arvensis 1 Borago officinalis 1 Capsella bursa-pastoris 1 X X X X Centaurea cyanus 2-5 Chenopodium album 5 Erodium cicutarium 1 X X X X Fagopyrum esculentum 10 X X X X Galeopsis sp. 1 X X X Galinsoga parviflora 1 Matricaria chamomilla 1 Matricaria inodora 1 Matricaria matricarioides 1 Medicago lupulina 1 Papaver rhoeas 1 Plantago lanceolata 1 X Plantago major 1 X X Polygonum persicaria 2-5 Sinapis alba 30 X X X X Solanum nigrum 1 X Sonchus arvensis 1 Spergula arvensis 1 X Stellaria media 1 X Trifolium incarnatum 2 Trifolium pratense 2 Veronica arvensis 1 X X X Viola arvensis 1 X X X X Diamondback moth adults were attracted to the flowering field margins (Table 2). Host plant allelochemicals are known to influence host location by the diamondback moth. The

6 310 olfactory attraction of the diamondback moth to volatiles from the white mustard (Brassica hirta) has been demonstrated earlier (Palaniswamy and Gillot, 1986). Table 2. Statistics (General Linear Model) on the effects of type of field margin, trap position, distance from edge of field and trap line on numbers of diamondback moth (Plutella xylostella L.) adults in the first (a) and second (b) sampling periods. Nonsignificant interactions are omitted from the model. a) Source of variation Type III SS df MS F P Field edge Position < Distance Trap Line Field edge x Distance Position x Distance Error b) Source of variation Type III SS df MS F P Field edge Position Distance < Trap Line Field edge x Position Error It is known to be attracted to, and sustain feeding and reproduction on Sinapis alba (Talekar and Shelton 1993). Although the flowering field margin might have acted as a trap crop in the field, it also increased overall density of the moths inside the field. Although catches inside the fields were not different between the treatments in the first sampling period (P=0.814; Fig.1.), the number of moths in fields with flowering margin was higher than in the control plots in the second sampling period (P=0.001; Fig. 2.). Trap line did not influence abundance of the diamondback moth, whereas distance of traps from the field edge had a significant spatial effect (Table 2a.b.) in both sampling periods. More moths were caught with increasing distance from the edge both in the treatment and the control plots (Fig. 1.). Distribution of moths over distance were different in the plots with flowering margin then in the ones without, as interaction term between the type of field margin and distance was significant (Table 2a., Fig. 1.), although this tendency was not present in the second sampling period. Within the flowering margins traps at higher position (at the level of flowers, Fig. 1a., 2a.), caught more moths, than traps at lower position (Fig 1b., 2b.), which may be explained both by oviposition preference within a plant and foraging for nectar sources. The accessibility of nectar from flowers of buckwheat as food source for diamondback moth adults has been demonstrated (Winkler in prep.). Within the field lower traps caught more moths in the first week than upper ones, but this tendency changed to the opposite in the second observation period (Table 2b.).

7 311 Fig. 1. Mean (± SE) number of diamondback moth caught in traps placed high (above) and low (below.) in Brussels sprout fields, at different distances from the border. Grey bars are fields with flowering margin, white bars are fields without flowers in the first sampling period. Most of the Diadegma spp. specimens caught belonged to D. semiclausum; the other, less abundant species found was D. fenestrale. Spatial patterns in catches of Diadegma spp. were similar to those of the diamondback moth (Fig.3a.b.). Within-field catches of Diadegma spp. were not different between the treatments in the first sampling period (P=0.307), but catches inside the fields with flowering margin were higher in the second sampling period (P<0.001). There was an increase in counts with increasing distance from the field edge (Table 3.). Trap line did not influence parasitoid distribution, but vertical position of traps did (Table 3.). Inside flowering margins traps at higher position (Fig. 3a.) caught more wasps, than traps at lower position (Fig 3b.). Specialist parasitoids may use infochemicals from the plant level to find their host (Vet and Dicke, 1992). Diadegma insulare prefers to search on wild cruciferous plant species over cultivated ones (Fox and Eisenbach, 1992). It is possible that Diadegma spp. were also attracted to field edges due to the presence of Sinapis alba, although this assumption needs further study. Since the nectar of buckwheat and Sinapis alba is accessible for D. semiclausum, these plant species may also provide food for these parasitoids (Winkler in prep.). Further studies are required to explain similarities in the distribution pattern of Diadegma spp. to that of its host and to see how far field margins exert their effects in adjacent crop fields.

8 312 Fig. 2. Mean (± SE) number of diamondback moth caught in traps placed high (above) and low (below) in Brussels sprout fields, at different distances from the border. Grey bars are fields with flowering margin, white bars are fields without flowers in the second sampling period. Table 3. Statistics (General Linear Model) on the effects of type of field margin, trap position, distance from edge of field and trap line on numbers of Diadegma spp. in the first (above) and second (below) sampling periods. Non-significant interactions are omitted from the model. Source of variation Type III SS df MS F P Field edge Position < Distance Trap Line Position x Distance Error Source of variation Type III SS df MS F P Field edge < Position < Distance < Trap Line Field edge x Position Position x Distance < Error

9 313 Fig. 3. Mean (± SE) number of Diadegma spp. caught in traps placed high (above) and low (below) in Brussels sprout fields, at different distances from the border. Grey bars are fields with flowering margin, white bars are fields without flowers in the first sampling period. Inside the field, traps at a lower position (level of canopy) caught consistently more individuals (Table 3, Fig. 3). Within-field distribution of catches of wasps suggest that this species is indeed a specialist in cruciferous habitats and its flight activity within the crop is restricted to the plant canopy. These results show that flowering field margins may act as trap crop by attracting pest populations. However, trap crops may increase pest problems in adjacent fields when not accompanied by appropriate management practices (Hokkanen, 1991). Therefore the floral composition of field margins is an important factor to establish pest suppressive habitats, and management practices should be adjusted accordingly. Differences in the vertical position of traps have a great impact on efficiency of catches, and may influence reliability of detection and estimation of herbivore and parasitoid populations. Acknowledgements This project is financed by the Netherlands Organisation for Scientific Research (NWO- ALW, project number: ). The help of Yde Jongema in the identification of insect material is acknowledged. The authors thank the experimental farm of Wageningen University and Research Centre (UNIFARM) for the maintenance of the experimental fields.

10 314 References Baggen, L.R., Gurr, G.M. and Meats, A Flowers in tri-trophic systems: mechanisms allowing selective exploitation by insect natural enemies for conservation biological control. Entomol. Exp. Appl. 91: Bowie, M.H., Gurr, G.M., Hossain, Z., Baggen, L.R. and Frampton, C.M Effects of distance from field edge on aphidophagous insects in a wheat crop and observations on trap design and placement. Int. J. Pest Manage. 45: Charleston, D.S. and Kfir, R The possibility of using Indian mustard, Brassica juncea, as a trap crop for the diamondback moth, Plutella xylostella, in South Africa. Crop Prot. 19: Fox L.R. and Eisenbach J Contrary choices: possible exploitation of enemy-free space by herbivorous insects in cultivated vs. wild crucifers. Oecologia. 89: Frei, G. and Manhart, C Nützlinge und Schädlinge an künstlich angelegten Ackerkrautstreifen in Getreidefeldern. Verlag Paul Haupt, Bern: 140 pp. Hokkanen, H.M.T Trap cropping in pest management. Annu. Rev. Entomol. 36: Landis, D.A., Wratten, S.D. and Gurr, G.M Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu. Rev. Entomol. 45: Palaniswamy, P. and Gillot, C Attraction of diamondback moths, Plutella xylostella (L.) (Lepidoptera: Plutellidae), by volatile compounds of canola, white mustard, and faba bean. Can. Entomol. 118: Talekar, N.S. and Shelton, A.M Biology, ecology, and management of the Diamondback moth. Annu. Rev. Entomol. 38: Vet, L.E.M. and Dicke, M Ecology of infochemical use by natural enemies in a tritrophic context. Annu. Rev. Entomol. 37: Waage, J. K Aggregation in field parasitoid populations: foraging time allocation by a population of Diadegma (Hymenoptera: Ichneumonidae). Ecol. Entomol. 8:

Proceedings of the Meetings Comptes Redus de les Réunions

Proceedings of the Meetings Comptes Redus de les Réunions IOBC / WPRS Working Group Integrated Protection in Field Vegetable Crops OILB / SROP Groupe de Travail «Lutte Intégrée en Culture de Légumes» Proceedings of the Meetings Comptes Redus de les Réunions at

More information

Modelling the effect of field margins on parasitoid-host interactions

Modelling the effect of field margins on parasitoid-host interactions Modelling the effect of field margins on parasitoid-host interactions Tom Brand 24 04-2014 Modelling the effect of field margins on parasitoid-host interactions Thesis report Student: Tom Brand WUR student

More information

Interspecific competition between Diadegma semiclausum and Oomyzus sokolowskii, parasitoids of diamondback moth, Plutella xylostella

Interspecific competition between Diadegma semiclausum and Oomyzus sokolowskii, parasitoids of diamondback moth, Plutella xylostella Interspecific competition between Diadegma semiclausum and Oomyzus sokolowskii, parasitoids of diamondback moth, Plutella xylostella Zu-hua Shi, Qin-bao Li, Xin Li and Shu-sheng Liu Institute of Applied

More information

NECTAR AVAILABILITY AND PARASITOID SUGAR FEEDING J.C.

NECTAR AVAILABILITY AND PARASITOID SUGAR FEEDING J.C. 22 Lee and Heimpel NECTAR AVAILABILITY AND PARASITOID SUGAR FEEDING J.C. Lee and G.E. Heimpel Department of Entomology, University of Minnesota, Saint Paul, Minnesota, U.S.A. INTRODUCTION Habitat diversification

More information

EFFECTS OF FLOWERS ON PARASITOID LONGEVITY AND FECUNDITY

EFFECTS OF FLOWERS ON PARASITOID LONGEVITY AND FECUNDITY Arable Entomology and Pathology 239 EFFECTS OF FLOWERS ON PARASITOID LONGEVITY AND FECUNDITY S.D. WRATTEN 1, B.I. LAVANDERO 1, J. TYLIANAKIS 1, D. VATTALA 1, T. ÇILGI 2 and R. SEDCOLE 3 1 National Centre

More information

Weed resistance in European cereal production: Status, causes and perspectives Per Kudsk Aarhus University Denmark

Weed resistance in European cereal production: Status, causes and perspectives Per Kudsk Aarhus University Denmark Weed resistance in European cereal production: Status, causes and perspectives Aarhus University Denmark Content of presentation Overview of wheat and maize production in Europe Status on herbicide resistance

More information

Predatory bugs show higher abundance close to flower strips in pear orchards

Predatory bugs show higher abundance close to flower strips in pear orchards Predatory bugs show higher abundance close to flower strips in pear orchards Karin Winkler 1,2, Herman Helsen 2 & Bishnu Hari Devkota 2,3 1Netherlands Institute for Ecological Research (NIOO-KNAW), Heteren,

More information

What is insect forecasting, and why do it

What is insect forecasting, and why do it Insect Forecasting Programs: Objectives, and How to Properly Interpret the Data John Gavloski, Extension Entomologist, Manitoba Agriculture, Food and Rural Initiatives Carman, MB R0G 0J0 Email: jgavloski@gov.mb.ca

More information

Managing stink bugs through cultural practices

Managing stink bugs through cultural practices Managing stink bugs through cultural practices Rachael Long, Farm Advisor, UC Cooperative Extension Yolo, Solano, Sacramento Counties, http://ceyolo.ucanr.edu Common stink bugs: Southern green (Africa

More information

Habitat Enhancements to Support Bees: Agriculture to Urban Research. Neal Williams Department of Entomology

Habitat Enhancements to Support Bees: Agriculture to Urban Research. Neal Williams Department of Entomology Habitat Enhancements to Support Bees: Agriculture to Urban Research Neal Williams Department of Entomology nmwilliam@ucdavis.edu Overview Bees and pollination service for agriculture Threats to native

More information

Seasonal Variation in a Hymenopterous Parasitoid, Holcotetrastichus rhosaces

Seasonal Variation in a Hymenopterous Parasitoid, Holcotetrastichus rhosaces Advances in Entomology, 2014, 2, 176-179 Published Online October 2014 in SciRes. http://www.scirp.org/journal/ae http://dx.doi.org/10.4236/ae.2014.24026 Seasonal Variation in a Hymenopterous Parasitoid,

More information

Lecture 8 Insect ecology and balance of life

Lecture 8 Insect ecology and balance of life Lecture 8 Insect ecology and balance of life Ecology: The term ecology is derived from the Greek term oikos meaning house combined with logy meaning the science of or the study of. Thus literally ecology

More information

Patch Time Allocation by the Parasitoid Diadegma semiclausum (Hymenoptera: Ichneumonidae). III. Effects of Kairomone Sources and Previous Parasitism

Patch Time Allocation by the Parasitoid Diadegma semiclausum (Hymenoptera: Ichneumonidae). III. Effects of Kairomone Sources and Previous Parasitism Journal of Insect Behavior, Vol. 17, No. 6, November 2004 ( C 2004) Patch Time Allocation by the Parasitoid Diadegma semiclausum (Hymenoptera: Ichneumonidae). III. Effects of Kairomone Sources and Previous

More information

Patch Time Allocation by the Parasitoid Diadegma semiclausum (Hymenoptera: Ichneumonidae). II. Effects of Host Density and Distribution

Patch Time Allocation by the Parasitoid Diadegma semiclausum (Hymenoptera: Ichneumonidae). II. Effects of Host Density and Distribution Journal of Insect Behavior, Vol. 18, No. 2, March 2005 ( C 2005) DOI: 10.1007/s10905-005-0473-z Patch Time Allocation by the Parasitoid Diadegma semiclausum (Hymenoptera: Ichneumonidae). II. Effects of

More information

1 million known insect species

1 million known insect species Multitrophic plant-insect-microbe interactions Marcel Dicke Laboratory of Entomology, Wageningen University, The Netherlands @DickeMarcel Picture Nina Fatouros Picture Marcel Dicke Picture Tibor Bukovinszky

More information

Pollen beetle - Meligethes aeneus Fabr.

Pollen beetle - Meligethes aeneus Fabr. Pollen beetle - Meligethes aeneus Fabr. The small beetle is 1,5-2,7 mm long. Its colour is metallic dark green, blue or green. The legs are dark green, with exception of the first pair, which is reddish

More information

Risk Assessment Models for Nontarget and Biodiversity Impacts of GMOs

Risk Assessment Models for Nontarget and Biodiversity Impacts of GMOs Risk Assessment Models for Nontarget and Biodiversity Impacts of GMOs There are many ways to conduct an ecological risk assessment Alternative ERA models Ecotoxicology model Total biodiversity model Functional

More information

Influence of phytophagous behaviour on prey consumption by Macrolophus pygmaeus

Influence of phytophagous behaviour on prey consumption by Macrolophus pygmaeus Integrated Control in Protected Crops, Mediterranean Climate IOBC-WPRS Bulletin Vol. 80, 2012 pp. 91-95 Influence of phytophagous behaviour on prey consumption by Macrolophus pygmaeus D. Maselou 1, D.

More information

FUNCTIONAL DIVERSITY AND MOWING REGIME OF FLOWER STRIPS AS TOOLS TO SUPPORT POLLINATORS AND TO SUPPRESS WEEDS

FUNCTIONAL DIVERSITY AND MOWING REGIME OF FLOWER STRIPS AS TOOLS TO SUPPORT POLLINATORS AND TO SUPPRESS WEEDS FUNCTIONAL DIVERSITY AND MOWING REGIME OF FLOWER STRIPS AS TOOLS TO SUPPORT POLLINATORS AND TO SUPPRESS WEEDS Roel Uyttenbroeck 04 September 2017 Promotor: Arnaud Monty Co-promotor: Frédéric Francis Public

More information

Hibernation and Migration of Diamondback Moth in Northern Japan

Hibernation and Migration of Diamondback Moth in Northern Japan Hibernation and Migration of Diamondback Moth in Northern Japan Ken-ichiro Honda Tohoku National Agricultural Experiment Station, Morioka, lwate 020-0 1, Japan Abstract It was assumed that one of the most

More information

Arthropod Containment in Plant Research. Jian J Duan & Jay Bancroft USDA ARS Beneficial Insects Research Unit Newark, Delaware

Arthropod Containment in Plant Research. Jian J Duan & Jay Bancroft USDA ARS Beneficial Insects Research Unit Newark, Delaware Arthropod Containment in Plant Research Jian J Duan & Jay Bancroft USDA ARS Beneficial Insects Research Unit Newark, Delaware What we do at USDA ARS BIIRU - To develop biological control programs against

More information

Flower Species as a Supplemental Source of Pollen for Honey Bees (Apis mellifera) in Late Summer Cropping Systems

Flower Species as a Supplemental Source of Pollen for Honey Bees (Apis mellifera) in Late Summer Cropping Systems Flower Species as a Supplemental Source of Pollen for Honey Bees (Apis mellifera) in Late Summer Cropping Systems Rhonda Simmons, Ramesh Sagili, and Bruce Martens Abstract Honey bee forager preference

More information

Impact of some technological indicators on weeding and yield in sunflower

Impact of some technological indicators on weeding and yield in sunflower Volume 16(3), 63-67, 2012 JOURNAL of Horticulture, Forestry and Biotechnology www.journal-hfb.usab-tm.ro Impact of some technological indicators on weeding and yield in sunflower Cârciu Gh. 1 *, Lăzureanu

More information

Investigating Use of Biocontrol Agents to Control Spotted Knapweed

Investigating Use of Biocontrol Agents to Control Spotted Knapweed Investigating Use of Biocontrol Agents to Control Spotted Knapweed Target Grade Level: 5 th Created and Adapted by: Rachel Loehman UNIVERSITY OF MONTANA GK-12 PROGRAM 1 Investigating Use of Biocontrol

More information

Effects of adult feeding on longevity and fecundity of Ctenopseustis obliquana (Lepidoptera: Tortricidae)

Effects of adult feeding on longevity and fecundity of Ctenopseustis obliquana (Lepidoptera: Tortricidae) New Stevens Zealand et al. Feeding Journal of by Crop adult and leafrollers Horticultural Science, 2002, Vol. 30: 229 234 0014 0671/02/3004 0229 $7.00 The Royal Society of New Zealand 2002 229 Effects

More information

ACCURACY OF MODELS FOR PREDICTING PHENOLOGY OF BLACKHEADED FIREWORM AND IMPLICATIONS FOR IMPROVED PEST MANAGEMENT

ACCURACY OF MODELS FOR PREDICTING PHENOLOGY OF BLACKHEADED FIREWORM AND IMPLICATIONS FOR IMPROVED PEST MANAGEMENT ACCURACY OF MODELS FOR PREDICTING PHENOLOGY OF BLACKHEADED FIREWORM AND IMPLICATIONS FOR IMPROVED PEST MANAGEMENT Stephen D. Cockfield and Daniel L. Mahr Department of Entomology University of Wisconsin-Madison

More information

The predation of Orius similis to Frankliniella occidentalis and Aphis craccivora

The predation of Orius similis to Frankliniella occidentalis and Aphis craccivora 2011 48 3 573 578 * ** 550025 Orius similis 3 ~ 5 HollingⅡ 3 ~ 5 2 5 5 2 E P E = 0. 412P - 1. 623 E = 0. 416P - 1. 639 5 2 5 2 The predation of Orius similis to Frankliniella occidentalis and ZHI Jun-Rui

More information

PERFORMANCE OF NATURAL ENEMIES REARED ON ARTIFICIAL DIETS J.E. Carpenter 1 and S. Bloem 2 1

PERFORMANCE OF NATURAL ENEMIES REARED ON ARTIFICIAL DIETS J.E. Carpenter 1 and S. Bloem 2 1 Performance of natural enemies reared on artificial diets 143 PERFORMANCE OF NATURAL ENEMIES REARED ON ARTIFICIAL DIETS J.E. Carpenter 1 and S. Bloem 2 1 U.S. Department of Agriculture, Agricultural Research

More information

Historical Michigan Landscapes

Historical Michigan Landscapes Michigan Native Plants to Provide Resources for Beneficial Insects Anna Fiedler, Doug Landis Julianna Tuell, Rufus Isaacs Dept. of Entomology, Michigan State University Historical Michigan Landscapes Provide

More information

Attractiveness of flowering plants for natural enemies

Attractiveness of flowering plants for natural enemies Hort. Sci. (Prague) Vol. 39, 2012, No. 2: 89 96 Attractiveness of flowering plants for natural enemies T. Kopta 1, R. Pokluda 1, V. Psota 2 1 Department of Vegetable Science and Floriculture, Faculty of

More information

How much flower-rich habitat is enough for wild pollinators? Answering a key policy question with incomplete knowledge

How much flower-rich habitat is enough for wild pollinators? Answering a key policy question with incomplete knowledge jbnature.com How much flower-rich habitat is enough for wild pollinators? Answering a key policy question with incomplete knowledge Lynn Dicks, University of East Anglia Co-authors: Mathilde Baude, Stuart

More information

International Journal of Science, Environment and Technology, Vol. 5, No 2, 2016,

International Journal of Science, Environment and Technology, Vol. 5, No 2, 2016, International Journal of Science, Environment and Technology, Vol. 5, No 2, 2016, 395 400 ISSN 2278-3687 (O) 2277-663X (P) EVALUATION OF SOME PLANT DERIVATIVES FOR MANAGEMENT OF CABBAGE BUTTERFLY (PIERIS

More information

Foundations for Conservation Biological Control

Foundations for Conservation Biological Control Distribution, Abundance and Diversity of Fungal Entomopathogens: Foundations for Conservation Biological Control Nicolai V. Meyling nvm[a]life.ku.dk Slide 1 Conservation Biological Control (CBC) - definitions

More information

Studies on the interactions among Phaseolous vulgaris. Tetranychus urticae Koch Amblyseius fallacis Garman

Studies on the interactions among Phaseolous vulgaris. Tetranychus urticae Koch Amblyseius fallacis Garman 2011 48 4 1002 1010 * 12 1** 1. 550025 2. 561000 Y - Amblyseius fallacis Garman - Tetranychus urticae Koch 3 3 2 4 - α - Studies on the interactions among Phaseolous vulgaris Tetranychus urticae and Amblyseius

More information

Mun. Ent. Zool. Vol. 6, No. 1, January 2011

Mun. Ent. Zool. Vol. 6, No. 1, January 2011 176 PARASITISM OF PIERIS BRASSICAE (L.) (LEP.: PIERIDAE) ON CABBAGE FARMS IN COMPARISON WITH WILD HOSTS AND STUDY ON USE OF PTEROMALUS PUPARUM (L.) (HYM. PTEROMALIDAE), AS A BIOLOGICAL CONTROL AGENT VERSUS

More information

Community Involvement in Research Monitoring Pollinator Populations using Public Participation in Scientific Research

Community Involvement in Research Monitoring Pollinator Populations using Public Participation in Scientific Research Overview Community Involvement in Research Monitoring Pollinator Populations using Public Participation in Scientific Research Public Participation in Scientific Research (PPSR) is a concept adopted by

More information

BIOAG'L SCI + PEST MGMT- BSPM (BSPM)

BIOAG'L SCI + PEST MGMT- BSPM (BSPM) Bioag'l Sci + Pest Mgmt-BSPM (BSPM) 1 BIOAG'L SCI + PEST MGMT- BSPM (BSPM) Courses BSPM 102 Insects, Science, and Society (GT-SC2) Credits: 3 (3-0-0) How insects develop, behave, and affect human activity.

More information

MAHMUDA BEGUM,* GEOFF M. GURR,* STEVE D. WRATTEN, PETER R. HEDBERG* and HELEN I. NICOL*

MAHMUDA BEGUM,* GEOFF M. GURR,* STEVE D. WRATTEN, PETER R. HEDBERG* and HELEN I. NICOL* Ecology 2006 43, Using selective food plants to maximize biological control Blackwell Publishing Ltd of vineyard pests MAHMUDA BEGUM,* GEOFF M. GURR,* STEVE D. WRATTEN, PETER R. HEDBERG* and HELEN I. NICOL*

More information

Key Words: conservation biology, insectary plants, cover crops, nectar, pollen, syrphids, biological control

Key Words: conservation biology, insectary plants, cover crops, nectar, pollen, syrphids, biological control Title: Conservation Biology of Syrphids, Predators of Woolly Apple Aphid in Central Washington Principal Investigators/Cooperators: Elizabeth H. Beers, WSU Tree Fruit Research & Extension Center; William

More information

Monitoring and control possibilities of leaf miners (Agromyzidae) in winter wheat in Poland

Monitoring and control possibilities of leaf miners (Agromyzidae) in winter wheat in Poland Available online at www.sciencedirect.com ScienceDirect Agriculture and Agricultural Science Procedia 7 ( 2015 ) 229 235 Farm Machinery and Processes Management in Sustainable Agriculture, 7th International

More information

Insect and other pests in high tunnel vegetables. Gerald Brust IPM Vegetable Specialist

Insect and other pests in high tunnel vegetables. Gerald Brust IPM Vegetable Specialist Insect and other pests in high tunnel vegetables Gerald Brust IPM Vegetable Specialist Over the years high tunnel (HT) production of vegetables have enabled growers to extend their vegetable production

More information

2016 Soybean Vein Necrosis Disease Survey

2016 Soybean Vein Necrosis Disease Survey 216 Soybean Vein Necrosis Disease Survey Nathan Kleczewski Ph.D. Extension Plant Pathologist Bill Cissel Extension IPM Agent University of Delaware Cooperative Extension Soybean Vein Necrosis Disease (SVND)

More information

Interactions among Land, Water, and Vegetation in Shoreline Arthropod Communities

Interactions among Land, Water, and Vegetation in Shoreline Arthropod Communities AMERICAN JOURNAL OF UNDERGRADUATE RESEARCH VOL., NO.. () Interactions among Land, Water, and Vegetation in Shoreline Arthropod Communities Randall D. Willoughby and Wendy B. Anderson Department of Biology

More information

Dr. Oscar E. Liburd. Professor of Fruit & Vegetable Entomology

Dr. Oscar E. Liburd. Professor of Fruit & Vegetable Entomology Dr. Oscar E. Liburd Professor of Fruit & Vegetable Entomology http://entnemdept.ufl.edu/liburd/fruitnvegipm/teaching.htm Lecture 2: Biological Control Biological control is defined as any activity of one

More information

APIMONDIA 2009 Montpellier,September

APIMONDIA 2009 Montpellier,September APIMONDIA 2009 Montpellier,September 15-20 2009 Melliferous and polliniferous resources in an urban area : Saint-Denis (surburban( area of Paris). Yves Loublier*, Monique Morlot**, Agnès Rortais*, Patricia

More information

Whitney Cranshaw Colorado State University

Whitney Cranshaw Colorado State University Natural and Biological Controls of Shade Tree Insect Pests Whitney Cranshaw Colorado State University Natural Controls Natural Enemies Abiotic (Weather) Controls Topographic Limitations Temperature Extremes

More information

Protecting Pollinators in Home Lawns and Landscapes

Protecting Pollinators in Home Lawns and Landscapes POL-1 PROTECTING POLLINATORS Bumble bee on a thistle flower. Protecting Pollinators in Home Lawns and Landscapes Doug Richmond and Cliff Sadof Purdue Entomology Extension Specialists Why Are Pollinators

More information

Rice is one of the most important food

Rice is one of the most important food Relative Composition of Egg Parasitoids of Rice Yellow Stem Borer, Scirpophaga incertulas (Walker) N. Rama Gopala Varma*, R. Jagadeeshwar and Chitra Shanker Rice Section, Acharya N.G. Ranga Agricultural

More information

FLOWERS AND POLLINATION. This activity introduces the relationship between flower structures and pollination.

FLOWERS AND POLLINATION. This activity introduces the relationship between flower structures and pollination. FLOWERS AND POLLINATION This activity introduces the relationship between flower structures and pollination. Objectives for Exam #1 1. Identify flower structures and match those structures to specific

More information

Abstract. Introduction

Abstract. Introduction ROLE OF INSECTS IN THE DEVELOPMENT OF ERGOT IN KENTUCKY BLUEGRASS GROWN FOR SEED IN THE PACIFIC NORTHWEST, 1997 Marvin Butler, Steven Alderman, Jennifer Mucha, and William Johnston Abstract The relationship

More information

An assessment of Vicia faba and Trifolium pratense as forage crops for Bombus hortorum

An assessment of Vicia faba and Trifolium pratense as forage crops for Bombus hortorum An assessment of Vicia faba and Trifolium pratense as forage crops for Bombus hortorum B. BROWN* AND R. R. SCOTT Department of Entomology, P.O. Box 84, Lincoln University, New Zealand R. P. MACFARLANE

More information

Influence in time and space of non-crop elements with associated functional traits on biocontrol, within the Montepaldi Long-Term Experiment, Tuscany

Influence in time and space of non-crop elements with associated functional traits on biocontrol, within the Montepaldi Long-Term Experiment, Tuscany Influence in time and space of non-crop elements with associated functional traits on biocontrol, within the Montepaldi Long-Term Experiment, Tuscany Gaifami Tommaso, Pacini Gaio Cesare Summary Highly

More information

The flight of the Cameraria ohridella population in the city of Timisoara, Romania

The flight of the Cameraria ohridella population in the city of Timisoara, Romania The flight of the Cameraria ohridella population in the city of Timisoara, Romania Fora C.G. 1*, Lauer K.F. 2, Fora Alina 1, Damianov Snejana 3, Moatăr Mihaela 1 1 Faculty of Horticulture and Forestry

More information

BIOS 3010: Ecology Lecture 11: Processes: Herbivory. 2. Basic feeding guilds of herbivores: 3. Effects of herbivores on plants:

BIOS 3010: Ecology Lecture 11: Processes: Herbivory. 2. Basic feeding guilds of herbivores: 3. Effects of herbivores on plants: BIOS 3010: Ecology Lecture 11: Processes: Herbivory Lecture summary: Feeding guilds. Effects of herbivores on plants: Distribution and abundance. Compensation. Recruitment. Fecundity. Plant defense. Diversity.

More information

Lincoln University Digital Thesis

Lincoln University Digital Thesis Lincoln University Digital Thesis Copyright Statement The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with

More information

University of Kentucky Department of Entomology Insects in the Classroom: Lesson Plan No. 105

University of Kentucky Department of Entomology Insects in the Classroom: Lesson Plan No. 105 University of Kentucky Department of Entomology Insects in the Classroom: Lesson Plan No. 105 BENEFICIAL BUG SCAVENGER HUNT Prepared by Blake Newton, Extension Specialist Developed from an activity designed

More information

Agapanthus Gall Midge update (Hayley Jones, Andrew Salisbury, Ian Waghorn & Gerard Clover) all images RHS

Agapanthus Gall Midge update (Hayley Jones, Andrew Salisbury, Ian Waghorn & Gerard Clover) all images RHS Agapanthus Gall Midge update 20.10.2015 (Hayley Jones, Andrew Salisbury, Ian Waghorn & Gerard Clover) all images RHS Background The agapanthus gall midge is an undescribed pest affecting Agapanthus that

More information

Dynamic and Succession of Ecosystems

Dynamic and Succession of Ecosystems Dynamic and Succession of Ecosystems Kristin Heinz, Anja Nitzsche 10.05.06 Basics of Ecosystem Analysis Structure Ecosystem dynamics Basics Rhythms Fundamental model Ecosystem succession Basics Energy

More information

6 2 Insects and plants

6 2 Insects and plants 6 2 Insects and plants Insect DIY 1. Find plant habitat 2. Find plant 3. Accept plant 4. Eat survive, reproduce Plant characteristics Shape structure Mechanical defenses trichomes Chemical defenses sap,

More information

DEPARTMENT OF ANIMAL AND PLANT SCIENCES Autumn Semester ANIMAL POPULATION & COMMUNITY ECOLOGY

DEPARTMENT OF ANIMAL AND PLANT SCIENCES Autumn Semester ANIMAL POPULATION & COMMUNITY ECOLOGY APS208 DEPARTMENT OF ANIMAL AND PLANT SCIENCES Autumn Semester 2006-2007 ANIMAL POPULATION & COMMUNITY ECOLOGY Your answers should include named examples, and diagrams where appropriate. Answer TWO questions.

More information

1.1 The Body of Seed Plants Seed Plants those

1.1 The Body of Seed Plants Seed Plants those 1.1 The Body of Seed Plants Seed Plants those plants that make seeds. come in all shapes and sizes. have the same structures, which do the same job in all plants. Structures: Flowers each flower usually

More information

Noncrop flowering plants restore top-down herbivore control in agricultural fields

Noncrop flowering plants restore top-down herbivore control in agricultural fields Noncrop flowering plants restore top-down herbivore control in agricultural fields Oliver Balmer 1,2,3, Lukas Pfiffner 1, Johannes Schied 4, Martin Willareth 1,5, Andrea Leimgruber 1,5, Henryk Luka 1,5

More information

SUMMER NECTAR AND FLORAL SOURCES

SUMMER NECTAR AND FLORAL SOURCES Apiculture Factsheet Ministry of Agriculture http://www.al.gov.bc.ca/apiculture Factsheet #905 SUMMER NECTAR AND FLORAL SOURCES In some parts of British Columbia, a dearth period occurs following initial

More information

Landscape Context Influences Bumble Bee Communities in Oak Woodland Habitats 1

Landscape Context Influences Bumble Bee Communities in Oak Woodland Habitats 1 Landscape Context Influences Bumble Bee Communities in Oak Woodland Habitats 1 Gretchen LeBuhn 2 and Cynthia Fenter 3 Abstract Oak woodlands in Northern California are becoming increasingly fragmented

More information

Understanding How Parasitoids Balance Food and Host Needs: Importance to Biological Control

Understanding How Parasitoids Balance Food and Host Needs: Importance to Biological Control BIOLOGICAL CONTROL 11, 175 183 (1998) ARTICLE NO. BC970588 Understanding How Parasitoids Balance Food and Host Needs: Importance to Biological Control W. J. Lewis,* J. Oscar Stapel,* Anne Marie Cortesero,*

More information

Oilseed rape pollen dispersal by insect pollinators in agricultural landscape

Oilseed rape pollen dispersal by insect pollinators in agricultural landscape Oilseed rape pollen dispersal by insect pollinators in agricultural landscape R. Chifflet, B. Vaissière, A. Ricroch, E. Klein, C. Lavigne, J. Lecomte Good afternoon, my name is Rémy Chifflet and I am a

More information

CHEMICALS IN HOST PARASITOID AND PREY PREDATOR RELATIONS

CHEMICALS IN HOST PARASITOID AND PREY PREDATOR RELATIONS CHEMICALS IN HOST PARASITOID AND PREY PREDATOR RELATIONS Lozano C. Estacion Experimental del Zaidin, Consejo Superior de Investigaciones Científicas, Granada, Spain Keywords: semiochemicals, pesticides,

More information

Global biodiversity: how many species of arthropods are there? George Weiblen Plant Biology

Global biodiversity: how many species of arthropods are there? George Weiblen Plant Biology Global biodiversity: how many species of arthropods are there? George Weiblen Plant Biology the biodiversity crisis complete sequencing of the human genome illustrates our tremendous capacity to catalogue

More information

Distance Learning course Plant pathology and entomology Covered topics

Distance Learning course Plant pathology and entomology Covered topics Distance Learning course Plant pathology and entomology Covered topics The distance learning course Plant pathology and entomology consist of four online modules that treat with the main groups of plant

More information

Where in the world does your food come from?

Where in the world does your food come from? Pollinators come in all species, sizes, shapes and shades Where in the world does your food come from? Do you eat fruits? vegetables? nuts? seeds? grains? Where do you get them? Usually Mom or Dad go to

More information

The Response Specificity of Trichogramma Egg Parasitoids towards Infochemicals during Host Location

The Response Specificity of Trichogramma Egg Parasitoids towards Infochemicals during Host Location Journal of Insect Behavior, Vol. 20, No. 1, January 2007 ( C 2006) DOI: 10.1007/s10905-006-9062-z The Response Specificity of Trichogramma Egg Parasitoids towards Infochemicals during Host Location Nina

More information

Question #01. Feedback on Each Answer Choice. Solution. Ecology Problem Drill 20: Mutualism and Coevolution

Question #01. Feedback on Each Answer Choice. Solution. Ecology Problem Drill 20: Mutualism and Coevolution Ecology Problem Drill 20: Mutualism and Coevolution Question No. 1 of 10 Question 1. The concept of mutualism focuses on which of the following: Question #01 (A) Interaction between two competing species

More information

Study the abundance of insect pollinators/visitors in rapeseed-mustard (Brassica juncea L.)

Study the abundance of insect pollinators/visitors in rapeseed-mustard (Brassica juncea L.) 2018; 6(2): 2563-2567 E-ISSN: 2320-7078 P-ISSN: 2349-6800 JEZS 2018; 6(2): 2563-2567 2018 JEZS Received: 12-01-2018 Accepted: 15-02-2018 SK Giri Umesh Chandra Gajendra Singh MP Gautam Ramesh Jaiswal Correspondence

More information

EXPLORING THE RELATIONSHIP AMONG PREDATOR DIVERSITY, INTRAGUILD PREDATION, AND EFFECTIVE BIOLOGICAL CONTROL

EXPLORING THE RELATIONSHIP AMONG PREDATOR DIVERSITY, INTRAGUILD PREDATION, AND EFFECTIVE BIOLOGICAL CONTROL Snyder and Straub EXPLORING THE RELATIONSHIP AMONG PREDATOR DIVERSITY, INTRAGUILD PREDATION, AND EFFECTIVE BIOLOGICAL CONTROL William SNYDER and Cory STRAUB Department of Entomology, Washington State University

More information

Slovene Plant Gene Bank (SPGB) and Genetic Resources Programme

Slovene Plant Gene Bank (SPGB) and Genetic Resources Programme Slovene Plant Gene Bank (SPGB) and Genetic Resources Programme Second Meeting of the ECPGR Working Group on Leafy Vegetables 8 9 October, Ljubljana, Slovenia Vladimir MEGLIČ, Jelka ŠUŠTAR VOZLIČ Slovene

More information

Levels of Organization in Ecosystems. Ecologists organize ecosystems into three major levels. These levels are: population, community, and ecosystem.

Levels of Organization in Ecosystems. Ecologists organize ecosystems into three major levels. These levels are: population, community, and ecosystem. Levels of Organization in Ecosystems Ecologists organize ecosystems into three major levels. These levels are: population, community, and ecosystem. Population A population is a group of individuals of

More information

Pollinator Habitat and Safety FOR GOLF COURSE LANDSCAPES

Pollinator Habitat and Safety FOR GOLF COURSE LANDSCAPES Pollinator Habitat and Safety FOR GOLF COURSE LANDSCAPES Jay McCurdy, PhD Assistant Professor, Turfgrass Extension Specialist Mississippi State University @MSTurfgrass What s the Buzz about Pollinators?

More information

14 th North America Agroforestry Conference Ames, IA June 1 th, Gary Bentrup Research Landscape Planner USDA National Agroforestry Center

14 th North America Agroforestry Conference Ames, IA June 1 th, Gary Bentrup Research Landscape Planner USDA National Agroforestry Center 14 th North America Agroforestry Conference Ames, IA June 1 th, 2015 Gary Bentrup Research Landscape Planner USDA National Agroforestry Center The Buzz about Pollinators? 30% of food production relies

More information

Trophic and community ecology

Trophic and community ecology Trophic and community ecology Top carnivore Trophic levels Carnivore Herbivore Plant Trophic ecology Trophic related to feeding Autotrophs: synthesize their food Heterotrophs: eat other organisms Trophic

More information

Keywords: open rearing system, eggplant, mathematical model

Keywords: open rearing system, eggplant, mathematical model Evaluating the banker plant system for biologically controlling the cotton aphid, Aphis gossypii, with larvae of the gall midge, Aphidoletes aphidomyza, with a mathematical model Lia Hemerik 1 & Eizi Yano

More information

BIOS 5970: Plant-Herbivore Interactions Dr. Stephen Malcolm, Department of Biological Sciences

BIOS 5970: Plant-Herbivore Interactions Dr. Stephen Malcolm, Department of Biological Sciences BIOS 5970: Plant-Herbivore Interactions Dr. Stephen Malcolm, Department of Biological Sciences D. POPULATION & COMMUNITY DYNAMICS Week 13. Herbivory, predation & parasitism: Lecture summary: Predation:

More information

TH E LITTLE TH INGS THAT RUN TH E

TH E LITTLE TH INGS THAT RUN TH E TH E LITTLE TH INGS THAT RUN TH E Edward O Wilson, Naturist 1987 The little things that run the world is a compilation that has emerged from a study of arthropod diversity in agro-forest landscapes of

More information

Gibbs: The Investigation of Competition

Gibbs: The Investigation of Competition ESSAI Volume 5 Article 21 1-1-2007 The Investigation of Competition Between Eurosta Solidaginis (Fitch) and Rhopalomyia Solidaginis (Loew), Two Gall makers of Solidago Altissima (Asteraceae) Jessica Gibbs

More information

Minute Pirate Bug: A Beneficial Generalist Insect Predator

Minute Pirate Bug: A Beneficial Generalist Insect Predator Minute Pirate Bug: A Beneficial Generalist Insect Predator Veronica Johnson* and Cerruti R 2 Hooks $ University of Maryland Dept. of Entomology * Graduate student and $ Associate professor and Extension

More information

L. fabarum L. fabarum.

L. fabarum L. fabarum. (201-210) 1391 1 43 Aphis fabae Lysiphlebus fabarum 3 3 2 *1 1 2 (90/12/2 : 90/6/5 : ).. - - Lysiphlebus fabarum (Marshall) -.. ( 15 ). -. -... - -... L. fabarum L. fabarum. : E-mail:arasekh@ut.ac.ir 09126603166

More information

رفيده أحمد عىض بسيىنى

رفيده أحمد عىض بسيىنى قسم جامعة دمنهىر كلية الزراعة وقاية النبات الخضر آفات بعض على دراسات المستخذمة لبعض المركبات وتقييم في مكافحتها رسالة مقدمة من رفيده أحمد عىض بسيىنى بكالوريوس العلوم الزراعية )قسن الحشرات اإلقتصادية( كلية

More information

Do plants have internet? Interplant communication via common mycorrhizal networks. Jennifer Slater

Do plants have internet? Interplant communication via common mycorrhizal networks. Jennifer Slater Do plants have internet? Interplant communication via common mycorrhizal networks Jennifer Slater Supervisors: David Johnson (UoA) Lucy Gilbert (JHI) Alison Karley (JHI) Rationale Food Security 9-21% of

More information

Reproduction and development of Eretmocerus eremicus (Hymenoptera: Aphelinidae) on Trialeurodes vaporariorum (Homoptera: Aleyrodidae)

Reproduction and development of Eretmocerus eremicus (Hymenoptera: Aphelinidae) on Trialeurodes vaporariorum (Homoptera: Aleyrodidae) Reproduction and development of Eretmocerus eremicus (Hymenoptera: Aphelinidae) on Trialeurodes vaporariorum (Homoptera: Aleyrodidae) Roxina Soler & Joop C. van Lenteren Laboratory of Entomology, Wageningen

More information

Bringing In The Other Good Guys

Bringing In The Other Good Guys Bringing In The Other Good Guys Cheryl Frank Sullivan & Margaret Skinner Univ. of Vermont Entomology Research Laboratory Tri-State Greenhouse IPM Workshops January 4-6, 2017 Predators vs Parasitoids Predators:

More information

Dr. Anandamay Barik. Assistant Professor. Department of Zoology

Dr. Anandamay Barik. Assistant Professor. Department of Zoology Dr. Anandamay Barik Assistant Professor Department of Zoology The University of Burdwan a) Brief personal introduction (including passport size photograph, if available): I started my research at the Dept.

More information

Biocontrol of Rangeland Weeds TRA Pest Management Workshop, Feb 20, 11:15 am. Outline. Pest Management Workshop 2013 Bean, Rangeland Pest Control

Biocontrol of Rangeland Weeds TRA Pest Management Workshop, Feb 20, 11:15 am. Outline. Pest Management Workshop 2013 Bean, Rangeland Pest Control Biocontrol of Rangeland Weeds TRA Pest Management Workshop, Feb 20, 11:15 am Dan Bean Colorado Department of Agriculture Palisade Insectary dan.bean@state.co.us Who are we? Palisade Insectary Began in

More information

Community Structure. Community An assemblage of all the populations interacting in an area

Community Structure. Community An assemblage of all the populations interacting in an area Community Structure Community An assemblage of all the populations interacting in an area Community Ecology The ecological community is the set of plant and animal species that occupy an area Questions

More information

U.S. Fish & Wildlife Service. Attracting Pollinators to Your Garden

U.S. Fish & Wildlife Service. Attracting Pollinators to Your Garden U.S. Fish & Wildlife Service Attracting Pollinators to Your Garden Why are Pollinators Important? Pollinators are nearly as important as sunlight, soil and water to the reproductive success of over 75%

More information

Critical success factors for revegetation of heavily polluted sites.

Critical success factors for revegetation of heavily polluted sites. Critical success factors for revegetation of heavily polluted sites. A cost-benefit analysis tool. Jan Japenga, Paul Römkens, Luc Bonten Soil Science Centre ALTERRA Green World Research, Wageningen University

More information

Weed Suppression by Buckwheat

Weed Suppression by Buckwheat 98 Weed Suppression by Buckwheat Current Advances in Buckwheat Research (1995) : 693-697 Tohru Tominaga and Takako Uezu Faculty of Agriculture, Shinshu University, Ina, Nagano, Japan Abstract To clarify

More information

LAyOUT OF ExPERIMENTAL SITES

LAyOUT OF ExPERIMENTAL SITES PROTOCOL TO DETECT AND ASSESS POLLINATION DEFICITS IN CROPS: A HANDBOOK FOR ITS USE Section 5 Layout of experimental sites Once the pollination treatment has been selected and the study fields have been

More information

COMBINATION OF MULTIVARIATE METHODS AND GRAPHICAL DATABASE MANAGEMENT IN SERVICE OF ECOLOGICAL MONITORING

COMBINATION OF MULTIVARIATE METHODS AND GRAPHICAL DATABASE MANAGEMENT IN SERVICE OF ECOLOGICAL MONITORING COMBINATION OF MULTIVARIATE METHODS AND GRAPHICAL DATABASE MANAGEMENT IN SERVICE OF ECOLOGICAL MONITORING M. GAÁL Department of Mathematics and Informatics of the Szent István University, Budapest, Hungary

More information

CHAPTER 22 MODELLING PLANT CANOPIES FOR BIOCONTROL AND BIODIVERSITY

CHAPTER 22 MODELLING PLANT CANOPIES FOR BIOCONTROL AND BIODIVERSITY CHAPTER 22 MODELLING PLANT CANOPIES FOR BIOCONTROL AND BIODIVERSITY Insect movement, networks and lacunarity D.J. SKIRVIN Warwick HRI, University of Warwick, Warwick, UK Abstract. Canopy structure has

More information

Exposure of pollinating insects to neonicotinoids by guttation on straw cereals after seed-treated sugar beet (November 2017)

Exposure of pollinating insects to neonicotinoids by guttation on straw cereals after seed-treated sugar beet (November 2017) Exposure of pollinating insects to neonicotinoids by guttation on straw cereals after seed-treated sugar beet (November 2017) SUMMARY At the early stage of their growth, sugar beets are protected from

More information

Pest control services provided by beneficial insects in agricultural landscapes of Manitoba

Pest control services provided by beneficial insects in agricultural landscapes of Manitoba Pest control services provided by beneficial insects in agricultural landscapes of Manitoba Alejandro C. Costamagna and K.G.L. Ishan Samaranayake Department of Entomology, University of Manitoba Ecosystem

More information