Ion Channels. 6 th December, Touqeer Ahmed PhD Atta-ur-Rahman School of Applied Biosciences National University of Sciences and Technology

Size: px
Start display at page:

Download "Ion Channels. 6 th December, Touqeer Ahmed PhD Atta-ur-Rahman School of Applied Biosciences National University of Sciences and Technology"

Transcription

1 Ion Channels 6 th December, 2016 Touqeer Ahmed PhD Atta-ur-Rahman School of Applied Biosciences National University of Sciences and Technology

2 Introduction The ion channels of nerve cells are optimally tuned for rapid information processing particularly in the brain Malfunctioning of ion channels in nerve and skeletal muscle can cause a wide variety of neurological diseases Diseases due to ion channel malfunction are not limited to the brain. Cystic fibrosis and certain types of cardiac arrhythmia, for example, are also caused by ion channel malfunction. Ion channels are often the site of action of drugs, poisons, or toxins. Thus ion channels have crucial roles in both the physiology and the pathophysiology of the nervous system.

3 Important Role of Ion Channels in the Nervous System Ion channels have three important properties: 1. They conduct ions 2. They recognize and select specific ions 3. They open and close in response to specific electrical, mechanical, or chemical signals.

4 Molecular Mechanism of Selectivity The ionic permeability and selectivity properties of the membrane are determined by the interactions of ions with water, the membrane lipid bilayer, and ion channels

5 Characteristics of the current in a single ion channel. A. The channel opens and closes in an all-or-none fashion, resulting in brief current pulses through the membrane. If the electrical potential (V m ) across the membrane is varied, the current through the channel (i) changes proportionally. B. A plot of the current through the channel versus the potential difference across the membrane reveals that the current is linearly related to the voltage; in other words, the channel behaves as an electrical resistor that follows Ohm's law (i = V/R or i = γ V). (Data courtesy of Olaf Anderson and Lyndon Providence.) C. Proposed structure of the gramicidin A channel. A functional channel is formed by end-to-end dimerization of two gramicidin peptides. (From Sawyer et al )

6 V-I Relationship of the Ion Channels In many ion channels the relation between current flow through the open channel and membrane voltage is linear but some channels don t show linear response. Rectifying channels is said to rectify, in the sense that it tends to conduct ions more readily in one direction (here positive current) than in the other.

7 Opening and Closing of Ion Channels Three physical models for the opening and closing of ion channels. A: localized conformational change occurs in one region of the channel. B: Generalized structural change occurs along the length of the channel. C: Blocking particle swings into and out of the channel mouth.

8 Stimulus Dependent Opening of Channels Several types of stimuli control the opening and closing of ion channels.

9 Three mechanisms by which voltage-gated channels become closed and nonactivatable Channels can enter into the refractory periods by different mechanisms Voltage gated channels Voltage-gated channels can enter a refractory state after activation. This process is termed inactivation. Ligand-gated channels can enter the refractory state when their exposure to the ligand is prolonged. This process, called desensitization

10 Effect of Exogenous Ligands Binding of the exogenous ligands can affect opening and closing of channels Weak and reversible, as in the blockade of the nicotinic ACh-gated channel in skeletal muscle by curare, a South American arrow poison. It can be strong and irreversible, as in the blockade of the same channel by the snake venom α-bungarotoxin. Binding of the drug valium to a regulatory site on GABA-gated Cl - channels prolongs the opening of the channels in response to GABA. Such type of indirect effect works not only on ligand-gating, but also on gating controlled by voltage or stretch.

11 Ion Channels are Composed of Several Subunits Ion channels can be constructed as heterooligomers, homooligomers or may be formed from a single polypeptide chain organized into repeating motifs, where each motif functions as the equivalent of one subunit (right). In addition to one or more poreforming α subunits, which comprise a central core, some channels contain auxiliary subunits (β or δ), which modulate the inherent gating characteristics of the central core.

12 Different Families of Ion Channels Based on Subunit. A. Certain ligand-gated channels, including the nicotinic acetylcholine (ACh) receptor-channel, have five subunits, and each subunit consists of four transmembrane regions (M1-M4). Each cylinder represents a single transmembrane α- helix. A three-dimensional model of the channel is shown on the right. B. The gap-junction channel, found at electrical synapses, is formed from a pair of hemichannels. Each hemichannel is made of six subunits, each with four transmembrane regions. A three-dimensional model of the two apposite hemichannels is illustrated on the right. C. The voltage-gated Na + channel is formed from a single (α) polypeptide chain that contains four homologous domains or repeats (motifs I-IV), each with six α-helical membrane-spanning regions (S1 to S6) and one P region thought to line the pore. The figure at the right shows a hypothetical model of the channel.

Overview of ion channel proteins. What do ion channels do? Three important points:

Overview of ion channel proteins. What do ion channels do? Three important points: Overview of ion channel proteins Protein Structure Membrane proteins & channels Specific channels Several hundred distinct types Organization Evolution We need to consider 1. Structure 2. Functions 3.

More information

Nervous Systems: Neuron Structure and Function

Nervous Systems: Neuron Structure and Function Nervous Systems: Neuron Structure and Function Integration An animal needs to function like a coherent organism, not like a loose collection of cells. Integration = refers to processes such as summation

More information

Membranes 2: Transportation

Membranes 2: Transportation Membranes 2: Transportation Steven E. Massey, Ph.D. Associate Professor Bioinformatics Department of Biology University of Puerto Rico Río Piedras Office & Lab: NCN#343B Tel: 787-764-0000 ext. 7798 E-mail:

More information

Nerve Signal Conduction. Resting Potential Action Potential Conduction of Action Potentials

Nerve Signal Conduction. Resting Potential Action Potential Conduction of Action Potentials Nerve Signal Conduction Resting Potential Action Potential Conduction of Action Potentials Resting Potential Resting neurons are always prepared to send a nerve signal. Neuron possesses potential energy

More information

Identification number: TÁMOP /1/A

Identification number: TÁMOP /1/A Manifestation of Novel Social Challenges of the European Union in the Teaching Material of Medical Biotechnology Master s Programmes at the University of Pécs and at the University of Debrecen Identification

More information

Neurons and Nervous Systems

Neurons and Nervous Systems 34 Neurons and Nervous Systems Concept 34.1 Nervous Systems Consist of Neurons and Glia Nervous systems have two categories of cells: Neurons, or nerve cells, are excitable they generate and transmit electrical

More information

Overview Organization: Central Nervous System (CNS) Peripheral Nervous System (PNS) innervate Divisions: a. Afferent

Overview Organization: Central Nervous System (CNS) Peripheral Nervous System (PNS) innervate Divisions: a. Afferent Overview Organization: Central Nervous System (CNS) Brain and spinal cord receives and processes information. Peripheral Nervous System (PNS) Nerve cells that link CNS with organs throughout the body.

More information

MEMBRANE POTENTIALS AND ACTION POTENTIALS:

MEMBRANE POTENTIALS AND ACTION POTENTIALS: University of Jordan Faculty of Medicine Department of Physiology & Biochemistry Medical students, 2017/2018 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Review: Membrane physiology

More information

Physiology Unit 2. MEMBRANE POTENTIALS and SYNAPSES

Physiology Unit 2. MEMBRANE POTENTIALS and SYNAPSES Physiology Unit 2 MEMBRANE POTENTIALS and SYNAPSES In Physiology Today Ohm s Law I = V/R Ohm s law: the current through a conductor between two points is directly proportional to the voltage across the

More information

Membrane Potentials, Action Potentials, and Synaptic Transmission. Membrane Potential

Membrane Potentials, Action Potentials, and Synaptic Transmission. Membrane Potential Cl Cl - - + K + K+ K + K Cl - 2/2/15 Membrane Potentials, Action Potentials, and Synaptic Transmission Core Curriculum II Spring 2015 Membrane Potential Example 1: K +, Cl - equally permeant no charge

More information

Physiology Unit 2. MEMBRANE POTENTIALS and SYNAPSES

Physiology Unit 2. MEMBRANE POTENTIALS and SYNAPSES Physiology Unit 2 MEMBRANE POTENTIALS and SYNAPSES Neuron Communication Neurons are stimulated by receptors on dendrites and cell bodies (soma) Ligand gated ion channels GPCR s Neurons stimulate cells

More information

Neurophysiology. Danil Hammoudi.MD

Neurophysiology. Danil Hammoudi.MD Neurophysiology Danil Hammoudi.MD ACTION POTENTIAL An action potential is a wave of electrical discharge that travels along the membrane of a cell. Action potentials are an essential feature of animal

More information

Membrane Protein Channels

Membrane Protein Channels Membrane Protein Channels Potassium ions queuing up in the potassium channel Pumps: 1000 s -1 Channels: 1000000 s -1 Pumps & Channels The lipid bilayer of biological membranes is intrinsically impermeable

More information

Biology September 2015 Exam One FORM G KEY

Biology September 2015 Exam One FORM G KEY Biology 251 17 September 2015 Exam One FORM G KEY PRINT YOUR NAME AND ID NUMBER in the space that is provided on the answer sheet, and then blacken the letter boxes below the corresponding letters of your

More information

Biology September 2015 Exam One FORM W KEY

Biology September 2015 Exam One FORM W KEY Biology 251 17 September 2015 Exam One FORM W KEY PRINT YOUR NAME AND ID NUMBER in the space that is provided on the answer sheet, and then blacken the letter boxes below the corresponding letters of your

More information

V m = the Value of the Na Battery Plus the Voltage Drop Across g Na. I Na is Isolated By Blocking I K. and g K

V m = the Value of the Na Battery Plus the Voltage Drop Across g Na. I Na is Isolated By Blocking I K. and g K VoltageGated Ion Channels and the Action Potential VoltageGated Ion Channels and the Action Potential jdk3 Principles of Neural Science, chaps 8&9 The Action Potential Generation Conduction VoltageGated

More information

Nervous System AP Biology

Nervous System AP Biology Nervous System 2007-2008 Why do animals need a nervous system? What characteristics do animals need in a nervous system? fast accurate reset quickly Remember Poor think bunny! about the bunny signal direction

More information

Lecture 2. Excitability and ionic transport

Lecture 2. Excitability and ionic transport Lecture 2 Excitability and ionic transport Selective membrane permeability: The lipid barrier of the cell membrane and cell membrane transport proteins Chemical compositions of extracellular and intracellular

More information

Information processing. Divisions of nervous system. Neuron structure and function Synapse. Neurons, synapses, and signaling 11/3/2017

Information processing. Divisions of nervous system. Neuron structure and function Synapse. Neurons, synapses, and signaling 11/3/2017 Neurons, synapses, and signaling Chapter 48 Information processing Divisions of nervous system Central nervous system (CNS) Brain and a nerve cord Integration center Peripheral nervous system (PNS) Nerves

More information

Chapter 48 Neurons, Synapses, and Signaling

Chapter 48 Neurons, Synapses, and Signaling Chapter 48 Neurons, Synapses, and Signaling Concept 48.1 Neuron organization and structure reflect function in information transfer Neurons are nerve cells that transfer information within the body Neurons

More information

Building a Homology Model of the Transmembrane Domain of the Human Glycine α-1 Receptor

Building a Homology Model of the Transmembrane Domain of the Human Glycine α-1 Receptor Building a Homology Model of the Transmembrane Domain of the Human Glycine α-1 Receptor Presented by Stephanie Lee Research Mentor: Dr. Rob Coalson Glycine Alpha 1 Receptor (GlyRa1) Member of the superfamily

More information

Introduction to electrophysiology. Dr. Tóth András

Introduction to electrophysiology. Dr. Tóth András Introduction to electrophysiology Dr. Tóth András Topics Transmembran transport Donnan equilibrium Resting potential Ion channels Local and action potentials Intra- and extracellular propagation of the

More information

Chapter 9. Nerve Signals and Homeostasis

Chapter 9. Nerve Signals and Homeostasis Chapter 9 Nerve Signals and Homeostasis A neuron is a specialized nerve cell that is the functional unit of the nervous system. Neural signaling communication by neurons is the process by which an animal

More information

Neurons, Synapses, and Signaling

Neurons, Synapses, and Signaling LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 48 Neurons, Synapses, and Signaling

More information

Nervous System Organization

Nervous System Organization The Nervous System Nervous System Organization Receptors respond to stimuli Sensory receptors detect the stimulus Motor effectors respond to stimulus Nervous system divisions Central nervous system Command

More information

Module Membrane Biogenesis and Transport Lecture 15 Ion Channels Dale Sanders

Module Membrane Biogenesis and Transport Lecture 15 Ion Channels Dale Sanders Module 0220502 Membrane Biogenesis and Transport Lecture 15 Ion Channels Dale Sanders 9 March 2009 Aims: By the end of the lecture you should understand The principles behind the patch clamp technique;

More information

Ion Channel Structure and Function (part 1)

Ion Channel Structure and Function (part 1) Ion Channel Structure and Function (part 1) The most important properties of an ion channel Intrinsic properties of the channel (Selectivity and Mode of Gating) + Location Physiological Function Types

More information

The Nervous System. Nerve Impulses. Resting Membrane Potential. Overview. Nerve Impulses. Resting Membrane Potential

The Nervous System. Nerve Impulses. Resting Membrane Potential. Overview. Nerve Impulses. Resting Membrane Potential The Nervous System Overview Nerve Impulses (completed12/03/04) (completed12/03/04) How do nerve impulses start? (completed 19/03/04) (completed 19/03/04) How Fast are Nerve Impulses? Nerve Impulses Nerve

More information

Lecture 04, 04 Sept 2003 Chapters 4 and 5. Vertebrate Physiology ECOL 437 University of Arizona Fall instr: Kevin Bonine t.a.

Lecture 04, 04 Sept 2003 Chapters 4 and 5. Vertebrate Physiology ECOL 437 University of Arizona Fall instr: Kevin Bonine t.a. Lecture 04, 04 Sept 2003 Chapters 4 and 5 Vertebrate Physiology ECOL 437 University of Arizona Fall 2003 instr: Kevin Bonine t.a.: Bret Pasch Vertebrate Physiology 437 1. Membranes (CH4) 2. Nervous System

More information

Introduction to electrophysiology 1. Dr. Tóth András

Introduction to electrophysiology 1. Dr. Tóth András Introduction to electrophysiology 1. Dr. Tóth András Topics Transmembran transport Donnan equilibrium Resting potential Ion channels Local and action potentials Intra- and extracellular propagation of

More information

Quantitative Electrophysiology

Quantitative Electrophysiology ECE 795: Quantitative Electrophysiology Notes for Lecture #1 Tuesday, September 18, 2012 1. INTRODUCTION TO EXCITABLE CELLS Historical perspective: Bioelectricity first discovered by Luigi Galvani in 1780s

More information

Vertebrate Physiology 437 EXAM I 26 September 2002 NAME

Vertebrate Physiology 437 EXAM I 26 September 2002 NAME 437 EXAM1.DOC Vertebrate Physiology 437 EXAM I 26 September 2002 NAME 0. When you gaze at the stars, why do you have to look slightly away from the really faint ones in order to be able to see them? (1

More information

BIOLOGY 11/10/2016. Neurons, Synapses, and Signaling. Concept 48.1: Neuron organization and structure reflect function in information transfer

BIOLOGY 11/10/2016. Neurons, Synapses, and Signaling. Concept 48.1: Neuron organization and structure reflect function in information transfer 48 Neurons, Synapses, and Signaling CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Concept 48.1: Neuron organization

More information

Naseem Demeri. Mohammad Alfarra. Mohammad Khatatbeh

Naseem Demeri. Mohammad Alfarra. Mohammad Khatatbeh 7 Naseem Demeri Mohammad Alfarra Mohammad Khatatbeh In the previous lectures, we have talked about how the difference in permeability for ions across the cell membrane can generate a potential. The potential

More information

Nervous Tissue. Neurons Neural communication Nervous Systems

Nervous Tissue. Neurons Neural communication Nervous Systems Nervous Tissue Neurons Neural communication Nervous Systems What is the function of nervous tissue? Maintain homeostasis & respond to stimuli Sense & transmit information rapidly, to specific cells and

More information

Quantitative Electrophysiology

Quantitative Electrophysiology ECE 795: Quantitative Electrophysiology Notes for Lecture #1 Wednesday, September 13, 2006 1. INTRODUCTION TO EXCITABLE CELLS Historical perspective: Bioelectricity first discovered by Luigi Galvani in

More information

MEMBRANE STRUCTURE. Lecture 9. Biology Department Concordia University. Dr. S. Azam BIOL 266/

MEMBRANE STRUCTURE. Lecture 9. Biology Department Concordia University. Dr. S. Azam BIOL 266/ MEMBRANE STRUCTURE Lecture 9 BIOL 266/4 2014-15 Dr. S. Azam Biology Department Concordia University RED BLOOD CELL MEMBRANE PROTEINS The Dynamic Nature of the Plasma Membrane SEM of human erythrocytes

More information

Neurons, Synapses, and Signaling

Neurons, Synapses, and Signaling Chapter 48 Neurons, Synapses, and Signaling PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions

More information

R7.3 Receptor Kinetics

R7.3 Receptor Kinetics Chapter 7 9/30/04 R7.3 Receptor Kinetics Professional Reference Shelf Just as enzymes are fundamental to life, so is the living cell s ability to receive and process signals from beyond the cell membrane.

More information

Membrane transport 1. Summary

Membrane transport 1. Summary Membrane transport 1. Summary A. Simple diffusion 1) Diffusion by electrochemical gradient no energy required 2) No channel or carrier (or transporter protein) is needed B. Passive transport (= Facilitated

More information

Neurons, Synapses, and Signaling

Neurons, Synapses, and Signaling Chapter 48 Neurons, Synapses, and Signaling PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions

More information

Neurophysiology. Review from 12b. Topics in neurophysiology 7/08/12. Lecture 11b BIOL241

Neurophysiology. Review from 12b. Topics in neurophysiology 7/08/12. Lecture 11b BIOL241 Neurophysiology Lecture 11b BIOL241 Review from 12b. CNS brain and spinal cord PNS nerves SNS (somatic) ANS (autonomic) Sympathetic NS Parasympathetic NS Afferent vs efferent (SAME) Cells of the nervous

More information

PHYSIOLOGY CHAPTER 9 MUSCLE TISSUE Fall 2016

PHYSIOLOGY CHAPTER 9 MUSCLE TISSUE Fall 2016 PHYSIOLOGY CHAPTER 9 MUSCLE TISSUE Fall 2016 2 Chapter 9 Muscles and Muscle Tissue Overview of Muscle Tissue types of muscle: are all prefixes for muscle Contractility all muscles cells can Smooth & skeletal

More information

Organization of the nervous system. Tortora & Grabowski Principles of Anatomy & Physiology; Page 388, Figure 12.2

Organization of the nervous system. Tortora & Grabowski Principles of Anatomy & Physiology; Page 388, Figure 12.2 Nervous system Organization of the nervous system Tortora & Grabowski Principles of Anatomy & Physiology; Page 388, Figure 12.2 Autonomic and somatic efferent pathways Reflex arc - a neural pathway that

More information

Neurons, Synapses, and Signaling

Neurons, Synapses, and Signaling Chapter 48 Neurons, Synapses, and Signaling PowerPoint Lectures for Biology, Eighth Edition Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp and Janette Lewis Copyright

More information

NEURONS Excitable cells Therefore, have a RMP Synapse = chemical communication site between neurons, from pre-synaptic release to postsynaptic

NEURONS Excitable cells Therefore, have a RMP Synapse = chemical communication site between neurons, from pre-synaptic release to postsynaptic NEUROPHYSIOLOGY NOTES L1 WHAT IS NEUROPHYSIOLOGY? NEURONS Excitable cells Therefore, have a RMP Synapse = chemical communication site between neurons, from pre-synaptic release to postsynaptic receptor

More information

CELL BIOLOGY - CLUTCH CH. 9 - TRANSPORT ACROSS MEMBRANES.

CELL BIOLOGY - CLUTCH CH. 9 - TRANSPORT ACROSS MEMBRANES. !! www.clutchprep.com K + K + K + K + CELL BIOLOGY - CLUTCH CONCEPT: PRINCIPLES OF TRANSMEMBRANE TRANSPORT Membranes and Gradients Cells must be able to communicate across their membrane barriers to materials

More information

BIOLOGY. Neurons, Synapses, and Signaling CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

BIOLOGY. Neurons, Synapses, and Signaling CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 48 Neurons, Synapses, and Signaling Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Lines of Communication The

More information

Universality of sensory-response systems

Universality of sensory-response systems excite.org(anism): Electrical Signaling Universality of sensory-response systems Three step process: sensation-integration-response Bacterial chemotaxis Madigan et al. Fig. 8.24 Rick Stewart (CBMG) Human

More information

Biosciences in the 21st century

Biosciences in the 21st century Biosciences in the 21st century Lecture 1: Neurons, Synapses, and Signaling Dr. Michael Burger Outline: 1. Why neuroscience? 2. The neuron 3. Action potentials 4. Synapses 5. Organization of the nervous

More information

Neurons, Synapses, and Signaling

Neurons, Synapses, and Signaling CAMPBELL BIOLOGY IN FOCUS URRY CAIN WASSERMAN MINORSKY REECE 37 Neurons, Synapses, and Signaling Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge, Simon Fraser University SECOND EDITION

More information

BIOL Week 5. Nervous System II. The Membrane Potential. Question : Is the Equilibrium Potential a set number or can it change?

BIOL Week 5. Nervous System II. The Membrane Potential. Question : Is the Equilibrium Potential a set number or can it change? Collin County Community College BIOL 2401 Week 5 Nervous System II 1 The Membrane Potential Question : Is the Equilibrium Potential a set number or can it change? Let s look at the Nernst Equation again.

More information

37 Neurons, Synapses, and Signaling

37 Neurons, Synapses, and Signaling CAMPBELL BIOLOGY IN FOCUS Urry Cain Wasserman Minorsky Jackson Reece 37 Neurons, Synapses, and Signaling Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge Overview: Lines of Communication

More information

BIOLOGY. 1. Overview of Neurons 11/3/2014. Neurons, Synapses, and Signaling. Communication in Neurons

BIOLOGY. 1. Overview of Neurons 11/3/2014. Neurons, Synapses, and Signaling. Communication in Neurons CAMPBELL BIOLOGY TENTH EDITION 48 Reece Urry Cain Wasserman Minorsky Jackson Neurons, Synapses, and Signaling Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick 1. Overview of Neurons Communication

More information

BME 5742 Biosystems Modeling and Control

BME 5742 Biosystems Modeling and Control BME 5742 Biosystems Modeling and Control Hodgkin-Huxley Model for Nerve Cell Action Potential Part 1 Dr. Zvi Roth (FAU) 1 References Hoppensteadt-Peskin Ch. 3 for all the mathematics. Cooper s The Cell

More information

Side View with Rings of Charge

Side View with Rings of Charge 1 Ion Channel Biophysics Describe the main biophysical characteristics of at least one type of ionic channel. How does its biophysical properties contribute to its physiological function. What is thought

More information

Equivalent Circuit of the Membrane Connected to the Voltage Clamp. I mon. For Large Depolarizations, Both I Na and I K Are Activated

Equivalent Circuit of the Membrane Connected to the Voltage Clamp. I mon. For Large Depolarizations, Both I Na and I K Are Activated VoltageGated Ion Channels and the Action Potential jdk3 Principles of Neural Science, chaps 8&9 VoltageGated Ion Channels and the Action Potential The Action Potential Generation Conduction VoltageGated

More information

According to the diagram, which of the following is NOT true?

According to the diagram, which of the following is NOT true? Instructions: Review Chapter 44 on muscular-skeletal systems and locomotion, and then complete the following Blackboard activity. This activity will introduce topics that will be covered in the next few

More information

UNIT I INTRODUCTION TO ARTIFICIAL NEURAL NETWORK IT 0469 NEURAL NETWORKS

UNIT I INTRODUCTION TO ARTIFICIAL NEURAL NETWORK IT 0469 NEURAL NETWORKS UNIT I INTRODUCTION TO ARTIFICIAL NEURAL NETWORK IT 0469 NEURAL NETWORKS Elementary Neuro Physiology Neuron: A neuron nerve cell is an electricallyexcitable cell that processes and transmits information

More information

OT Exam 1, August 9, 2002 Page 1 of 8. Occupational Therapy Physiology, Summer Examination 1. August 9, 2002

OT Exam 1, August 9, 2002 Page 1 of 8. Occupational Therapy Physiology, Summer Examination 1. August 9, 2002 Page 1 of 8 Occupational Therapy Physiology, Summer 2002 Examination 1 August 9, 2002 Dr. Heckman's section is questions 1-6 and each question is worth 5 points for a total of 30 points. Dr. Driska's section

More information

Nervous Tissue. Neurons Electrochemical Gradient Propagation & Transduction Neurotransmitters Temporal & Spatial Summation

Nervous Tissue. Neurons Electrochemical Gradient Propagation & Transduction Neurotransmitters Temporal & Spatial Summation Nervous Tissue Neurons Electrochemical Gradient Propagation & Transduction Neurotransmitters Temporal & Spatial Summation What is the function of nervous tissue? Maintain homeostasis & respond to stimuli

More information

Neurophysiology. + = Na + - = Cl - Proteins HOW? HOW?

Neurophysiology. + = Na + - = Cl - Proteins HOW? HOW? All animal cells have electric potential differences (voltages) across plasma s only electrically excitable cells can respond with APs Luigi Galvani (1791) Animal electricity Electrical fluid passed through

More information

Fundamentals of the Nervous System and Nervous Tissue

Fundamentals of the Nervous System and Nervous Tissue Chapter 11 Part B Fundamentals of the Nervous System and Nervous Tissue Annie Leibovitz/Contact Press Images PowerPoint Lecture Slides prepared by Karen Dunbar Kareiva Ivy Tech Community College 11.4 Membrane

More information

Neurons: Cellular and Network Properties HUMAN PHYSIOLOGY POWERPOINT

Neurons: Cellular and Network Properties HUMAN PHYSIOLOGY POWERPOINT POWERPOINT LECTURE SLIDE PRESENTATION by LYNN CIALDELLA, MA, MBA, The University of Texas at Austin Additional text by J Padilla exclusively for physiology at ECC UNIT 2 8 Neurons: PART A Cellular and

More information

Control and Integration. Nervous System Organization: Bilateral Symmetric Animals. Nervous System Organization: Radial Symmetric Animals

Control and Integration. Nervous System Organization: Bilateral Symmetric Animals. Nervous System Organization: Radial Symmetric Animals Control and Integration Neurophysiology Chapters 10-12 Nervous system composed of nervous tissue cells designed to conduct electrical impulses rapid communication to specific cells or groups of cells Endocrine

More information

Lecture goals: Learning Objectives

Lecture goals: Learning Objectives Title: Membrane Potential in Excitable Cells 1 Subtitle: Voltage-Gated Ion Channels and the basis of the Action Potential Diomedes E. Logothetis, Ph.D. Lecture goals: This first of two lectures will use

More information

Introduction to cardiac electrophysiology 2. Dr. Tóth András 2018

Introduction to cardiac electrophysiology 2. Dr. Tóth András 2018 Introduction to cardiac electrophysiology 2. Dr. Tóth András 2018 Topics Ion channels Local and action potentials Intra- and extracellular propagation of the stimulus 4 Ion channels 4.1 Basic features

More information

Patrick: An Introduction to Medicinal Chemistry 5e Chapter 04

Patrick: An Introduction to Medicinal Chemistry 5e Chapter 04 01) Which of the following statements is not true about receptors? a. Most receptors are proteins situated inside the cell. b. Receptors contain a hollow or cleft on their surface which is known as a binding

More information

Introduction and the Hodgkin-Huxley Model

Introduction and the Hodgkin-Huxley Model 1 Introduction and the Hodgkin-Huxley Model Richard Bertram Department of Mathematics and Programs in Neuroscience and Molecular Biophysics Florida State University Tallahassee, Florida 32306 Reference:

More information

NOTES: CH 48 Neurons, Synapses, and Signaling

NOTES: CH 48 Neurons, Synapses, and Signaling NOTES: CH 48 Neurons, Synapses, and Signaling A nervous system has three overlapping functions: 1) SENSORY INPUT: signals from sensory receptors to integration centers 2) INTEGRATION: information from

More information

Transport of ions across plasma membranes

Transport of ions across plasma membranes Transport of ions across plasma membranes Plasma Membranes of Excitable tissues Ref: Guyton, 13 th ed: pp: 61-71. 12 th ed: pp: 57-69. 11th ed: p57-71, Electrical properties of plasma membranes Part A:

More information

Nervous System Organization

Nervous System Organization The Nervous System Chapter 44 Nervous System Organization All animals must be able to respond to environmental stimuli -Sensory receptors = Detect stimulus -Motor effectors = Respond to it -The nervous

More information

Channels can be activated by ligand-binding (chemical), voltage change, or mechanical changes such as stretch.

Channels can be activated by ligand-binding (chemical), voltage change, or mechanical changes such as stretch. 1. Describe the basic structure of an ion channel. Name 3 ways a channel can be "activated," and describe what occurs upon activation. What are some ways a channel can decide what is allowed to pass through?

More information

Muscle tissue. Types. Functions. Cardiac, Smooth, and Skeletal

Muscle tissue. Types. Functions. Cardiac, Smooth, and Skeletal Types Cardiac, Smooth, and Skeletal Functions movements posture and body position Support soft tissues Guard openings body temperature nutrient reserves Muscle tissue Special Characteristics of Muscle

More information

Peripheral Nerve II. Amelyn Ramos Rafael, MD. Anatomical considerations

Peripheral Nerve II. Amelyn Ramos Rafael, MD. Anatomical considerations Peripheral Nerve II Amelyn Ramos Rafael, MD Anatomical considerations 1 Physiologic properties of the nerve Irritability of the nerve A stimulus applied on the nerve causes the production of a nerve impulse,

More information

Cardiac cell-cell Communication Part 1 Alonso P. Moreno D.Sc. CVRTI, Cardiology

Cardiac cell-cell Communication Part 1 Alonso P. Moreno D.Sc. CVRTI, Cardiology Bioengineering 6003 Cellular Electrophysiology and Biophysics Cardiac cell-cell Communication Part 1 Alonso P. Moreno D.Sc. CVRTI, Cardiology moreno@cvrti.utah.edu November 2010 poster Physiological Relevance

More information

Ch 33. The nervous system

Ch 33. The nervous system Ch 33 The nervous system AP bio schedule Tuesday Wed Thursday Friday Plant test Animal behavior lab Nervous system 25 Review Day (bring computer) 27 Review Day (bring computer) 28 Practice AP bio test

More information

Dr. Ketki Assistant Professor Department of Biochemistry Heritage IMS, Varanasi

Dr. Ketki Assistant Professor Department of Biochemistry Heritage IMS, Varanasi TRANSPORT MECHANISMS Dr. Ketki Assistant Professor Department of Biochemistry Heritage IMS, Varanasi Membrane selectivity allows adjustments of cell composition and function If plasma membrane is relatively

More information

Molecular Biology of the Cell

Molecular Biology of the Cell Alberts Johnson Lewis Morgan Raff Roberts Walter Molecular Biology of the Cell Sixth Edition Chapter 11 Membrane Transport of Small Molecules and the Electrical Properties of Membranes Copyright Garland

More information

Neurophysiology Notes

Neurophysiology Notes Neurophysiology Notes Lecture 1: The brain consists of oligodendrocytes (myelinating cell), axon initial segments, soma (cell body), myelin sheath, microglia (macrophage derived- immune cells of the brain-repair

More information

Neuroscience 201A Exam Key, October 7, 2014

Neuroscience 201A Exam Key, October 7, 2014 Neuroscience 201A Exam Key, October 7, 2014 Question #1 7.5 pts Consider a spherical neuron with a diameter of 20 µm and a resting potential of -70 mv. If the net negativity on the inside of the cell (all

More information

NEURONS, SENSE ORGANS, AND NERVOUS SYSTEMS CHAPTER 34

NEURONS, SENSE ORGANS, AND NERVOUS SYSTEMS CHAPTER 34 NEURONS, SENSE ORGANS, AND NERVOUS SYSTEMS CHAPTER 34 KEY CONCEPTS 34.1 Nervous Systems Are Composed of Neurons and Glial Cells 34.2 Neurons Generate Electric Signals by Controlling Ion Distributions 34.3

More information

Action potentials. Conductances channels

Action potentials. Conductances channels Action potentials Conductances channels Cole and Curtis AC Wheatstone bridge resistance decreased during action potential R1 & R2 divide one path, Rv (variable) and Ru divide the other Galvanometer between

More information

The nerve impulse. INTRODUCTION

The nerve impulse. INTRODUCTION The nerve impulse. INTRODUCTION Axons are responsible for the transmission of information between different points of the nervous system and their function is analogous to the wires that connect different

More information

Potassium channel gating and structure!

Potassium channel gating and structure! Reading: Potassium channel gating and structure Hille (3rd ed.) chapts 10, 13, 17 Doyle et al. The Structure of the Potassium Channel: Molecular Basis of K1 Conduction and Selectivity. Science 280:70-77

More information

Chapter 2: Neurons and Glia

Chapter 2: Neurons and Glia Chapter 2: Neurons and Glia The Prototypical Neuron The Soma Cytosol: watery fluid inside the cell Organelles: membrane-enclosed structures within the soma Cytoplasm: contents within a cell membrane, e.g.,

More information

1. Neurons & Action Potentials

1. Neurons & Action Potentials Lecture 6, 30 Jan 2008 Vertebrate Physiology ECOL 437 (MCB/VetSci 437) Univ. of Arizona, spring 2008 Kevin Bonine & Kevin Oh 1. Intro Nervous System Fxn (slides 32-60 from Mon 28 Jan; Ch10) 2. Neurons

More information

Introduction Principles of Signaling and Organization p. 3 Signaling in Simple Neuronal Circuits p. 4 Organization of the Retina p.

Introduction Principles of Signaling and Organization p. 3 Signaling in Simple Neuronal Circuits p. 4 Organization of the Retina p. Introduction Principles of Signaling and Organization p. 3 Signaling in Simple Neuronal Circuits p. 4 Organization of the Retina p. 5 Signaling in Nerve Cells p. 9 Cellular and Molecular Biology of Neurons

More information

Muscle regulation and Actin Topics: Tropomyosin and Troponin, Actin Assembly, Actin-dependent Movement

Muscle regulation and Actin Topics: Tropomyosin and Troponin, Actin Assembly, Actin-dependent Movement 1 Muscle regulation and Actin Topics: Tropomyosin and Troponin, Actin Assembly, Actin-dependent Movement In the last lecture, we saw that a repeating alternation between chemical (ATP hydrolysis) and vectorial

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION www.nature.com/nature 1 Figure S1 Sequence alignment. a Structure based alignment of the plgic of E. chrysanthemi (ELIC), the acetylcholine binding protein from the snail Lymnea stagnalis (AchBP, PDB code

More information

Intercellular Communication. Department of Physiology School of Medicine University of Sumatera Utara

Intercellular Communication. Department of Physiology School of Medicine University of Sumatera Utara Intercellular Communication Department of Physiology School of Medicine University of Sumatera Utara Intercellular Communication and Signal Transduction The ability of cells to communicate with each other

More information

6.3.4 Action potential

6.3.4 Action potential I ion C m C m dφ dt Figure 6.8: Electrical circuit model of the cell membrane. Normally, cells are net negative inside the cell which results in a non-zero resting membrane potential. The membrane potential

More information

Lecture 10 : Neuronal Dynamics. Eileen Nugent

Lecture 10 : Neuronal Dynamics. Eileen Nugent Lecture 10 : Neuronal Dynamics Eileen Nugent Origin of the Cells Resting Membrane Potential: Nernst Equation, Donnan Equilbrium Action Potentials in the Nervous System Equivalent Electrical Circuits and

More information

Raghuram et al PNAS 100:9620

Raghuram et al PNAS 100:9620 ION CHANNL MACROMOLCULAR COMPLXS A V I R W c g I S L S R d L L LLL I VA S f L LS HP a b D G C S1 S2 S3 S4 S5 I e V N S6 COOH NH 2 PDZ domains; recognition of short peptides with a COOH terminal hydrophobic

More information

Lecture 13, 05 October 2004 Chapter 10, Muscle. Vertebrate Physiology ECOL 437 University of Arizona Fall instr: Kevin Bonine t.a.

Lecture 13, 05 October 2004 Chapter 10, Muscle. Vertebrate Physiology ECOL 437 University of Arizona Fall instr: Kevin Bonine t.a. Lecture 13, 05 October 2004 Chapter 10, Muscle Vertebrate Physiology ECOL 437 University of Arizona Fall 2004 instr: Kevin Bonine t.a.: Nate Swenson Vertebrate Physiology 437 18 1. Muscle A. Sarcomere

More information

Biomedical Instrumentation

Biomedical Instrumentation ELEC ENG 4BD4: Biomedical Instrumentation Lecture 5 Bioelectricity 1. INTRODUCTION TO BIOELECTRICITY AND EXCITABLE CELLS Historical perspective: Bioelectricity first discovered by Luigi Galvani in 1780s

More information

Electrical Signaling. Lecture Outline. Using Ions as Messengers. Potentials in Electrical Signaling

Electrical Signaling. Lecture Outline. Using Ions as Messengers. Potentials in Electrical Signaling Lecture Outline Electrical Signaling Using ions as messengers Potentials in electrical signaling Action Graded Other electrical signaling Gap junctions The neuron Using Ions as Messengers Important things

More information

Purpose: Perception, Movement, Learning, Memory, Thinking, Communication Functions:

Purpose: Perception, Movement, Learning, Memory, Thinking, Communication Functions: Nervous System Purpose: Perception, Movement, Learning, Memory, Thinking, Communication Functions: Sensory Input: Obtaining stimulation from the environment (light, heat, pressure, vibration, chemical,

More information

The Potassium Ion Channel: Rahmat Muhammad

The Potassium Ion Channel: Rahmat Muhammad The Potassium Ion Channel: 1952-1998 1998 Rahmat Muhammad Ions: Cell volume regulation Electrical impulse formation (e.g. sodium, potassium) Lipid membrane: the dielectric barrier Pro: compartmentalization

More information

Phys498BIO; Prof. Paul Selvin Hw #9 Assigned Wed. 4/18/12: Due 4/25/08

Phys498BIO; Prof. Paul Selvin Hw #9 Assigned Wed. 4/18/12: Due 4/25/08 1. Ionic Movements Across a Permeable Membrane: The Nernst Potential. In class we showed that if a non-permeable membrane separates a solution with high [KCl] from a solution with low [KCl], the net charge

More information