Channels can be activated by ligand-binding (chemical), voltage change, or mechanical changes such as stretch.

Size: px
Start display at page:

Download "Channels can be activated by ligand-binding (chemical), voltage change, or mechanical changes such as stretch."

Transcription

1 1. Describe the basic structure of an ion channel. Name 3 ways a channel can be "activated," and describe what occurs upon activation. What are some ways a channel can decide what is allowed to pass through? Structure: Not much detail necessary. The basic structure is 2 or more (but usually 4 to 6) pore-forming subunits which may be identical or different, through which the ions pass, and 0 or more auxiliary subunits which affect functional properties such as binding capacity and gating properties. The inner part of the pore is hydrophilic, and the outer membrane-facing parts of the protein are hydrophobic. Channels can be activated by ligand-binding (chemical), voltage change, or mechanical changes such as stretch. Upon activation, there can be a conformational change, either in one part of the pore or a global change in the protein shape, which opens the pore, and/or there could be the elimination of a blocking element. This blocking element can be part of the channel protein itself, or an ion (such as magnesium in NMDA receptors). Channel selectivity can be based on charge, particle size, or based on a selectivity filter, a specialized part of the pore which makes it energetically favorable for some ions but not others to shed their waters of hydration, (the water molecules that naturally surround the ion in solution) and pass through the channel. 2. What are the forces that drive ions through channels? What determines the net flux of an ion? (4 th p , figure 7-3; 3 rd p.84-87, figure 6-6) Ions are driven though channels by the sum of their chemical (concentration) gradient and their electrical potential gradient. The concentration gradient is simply the difference in concentration of an ion inside and outside the cell. Sodium, for example, is chemically driven into the cell because it is much more concentrated in the extracellular fluid, while potassium is driven out of the cell because it is concentrated in the cell. The electrical gradient is determined by the charge of an ion and by the voltage difference across the cell membrane. Sodium and potassium are both positively charged, so they are driven into the cell because there is a buildup of negative charge on the internal surface of the membrane. (Important to note that the net charge in the cell and out are neutral and that the membrane potential is only a change in the distribution of charge up against the cell membrane). The net flux flow for a given ion (I) is determined by the net driving force, which is the sum mentioned above, times the permeability of the channel to that particular ion. Permeability is determined by the abundance of non-gated channels for the specific ion.

2 3. Explain the Nernst Potential. What are the Nernst potentials for K +, Na +, and Cl -? How are these ions' potentials calculated? How do the individual Nernst potentials determine the resting membrane potential? If the permeability to sodium was increased, how would this affect its Nernst potential? How about the resting potential of the cell?(4 th - p.128; 3 rd - p.84) Use the following concentrations: Inside the cell Outside the cell Na K Cl The Nernst potential is the membrane potential at which the electrical and chemical driving forces are equal for a specific ion. Note that at the Nernst potential, a dynamic equilibrium exists (this is actually a steady state balance), i.e., flow of the specific ion has not stopped, but net inward and outward movement are equal. The Nernst potentials for K +, Na +, and Cl - are calculated using the Nernst equation: For K+, E = RT x ln [K+]o Which can be simplified to: 58 log ([K+]o) ZF [K+]i Z ([K+]i) (K+ is a cation, so Z = +1; whereas Cl- is an anion, so Z = -1) For K +, E = 58 x log (20/400) = mv For Na +, E = 58 x log (440/50) = mv For Cl -, E = -58 x log (560/52) = mv The individual Nernst potentials determine the resting potential based on the relative permeabilities of the membrane to each ion. The resting potential will end up closest to the Nernst potential of the ion to which it is most permeable. Thus in our nerve cells, the resting potential ends up very close to the resting potential for potassium due to the high conductance (permeability) of this ion. The Goldman Equation is used to combine Nernst potentials and permeabilities and calculate the resting potential. Since ions are constantly leaking down their electrochemical gradient, the Na+/K+ ATPase-pump is necessary to maintain the concentrations of Na+ outside and K+ inside the cell, which are needed to maintain the resting membrane potential. Nernst potentials change only when the intracellular or extracellular concentrations are altered in selectively permeable membranes. They are not affected by permeability to the specific ion. Therefore a change in the permeability to sodium would not alter its Nernst potential, but would raise the resting potential closer to the Nernst potential of sodium.

3 4. Describe the activation of a voltage-gated sodium channel, including the resting, active and inactive (refractory) states. How can an elevated resting potential lead to a decreased action potential amplitude? Voltage-gated sodium channels have two gates, an activation gate (m-gate) and an inactivation gate (h-gate). At the resting potential, the activation gate is closed and the inactivation gate is open. Depolarization rapidly opens the m-gate and begins the slow closure of the h-gate. For a short time, the channel is open, until the h-gate fully closes. The membrane now repolarizes, closing the m-gate and slowly opening up the h-gate again. Voltage-gated sodium channels vary in their threshold of activation. If the resting potential is elevated above its normal number, some voltage-gated sodium channels will always be in the inactive state, having been activated by the current membrane potential. So if action potential is initiated at a higher than normal resting potential, its amplitude will be diminished because some sodium channels will be in the inactive state. 5. Describe the steps involved in initiation and resolution of an action potential. What types of ion channels are involved, and what role do they each play? An action potential is initiated by a depolarization of the cell membrane, which may be caused by the binding of a neurotransmitter to a ligand-gated sodium channel, for example, or by a sodium channel activated by stretch or some other chemical or mechanical stimulus. This initial depolarization is called a synaptic potential. If the initial depolarization is enough to reach threshold, an action potential is fired. About threshold: Every time a little sodium current comes through the membrane, raising its potential, two things happen which prevent the start of an action potential. First, there is an increase in the potassium driving force because of the change in membrane potential. Second, a few voltage-gated potassium channels open and bring the potential back down. Threshold is the point at which the rapidly-opening voltage-gated sodium channels cause inward sodium current to exceed outward potassium current. A large number of voltage-gated sodium channels will open, and the influx of sodium will open more voltage-gated sodium channels, and the membrane potential approaches the Nernst potential for sodium. The sodium channels gradually inactivate, decreasing the sodium conductance, and at the same time, voltage-gated potassium channels open, increasing the outflow of potassium and bringing the membrane potential back down toward the Nernst potential for potassium. There is a transient hyperpolarization, the undershoot, after the action potential. This occurs because some of the voltage-gated potassium channels which opened during the action potential have not yet closed when the membrane potential returns to its normal

4 resting value. The increased permeability to potassium compared to its normal permeability pushes the membrane potential closer to the Nernst potential for potassium. Remember, permeability affects the relative strength of an ion in pushing the membrane potential where it wants it to go. After the action potential, there is a refractory period which can be divided into two parts. In the absolute refractory period, most sodium channels are still inactivated so no stimulus can bring on an action potential. In the relative refractory period, some sodium channels are still inactive and there are still some open potassium channels, so a new action potential would require a very large stimulus. 6. The cell membrane is often compared to a capacitor. Explain what is meant by membrane capacitance. What determines capacitance? What effect does capacitance have on changes in membrane potential and on the propagation of an action potential? How have organisms evolved their capacitance to speed up their action potential propagation? (p142) A simple capacitor consists of 2 plates separated by a gap. In the case of the cell membrance, the plates are the intra- and extracellular surfaces of the membrane, and the membrane thickness itself is the gap. The membrane exhibits the behavior of a capacitor because the membrane potential rises and decays more slowly than sudden changes in current applied to it (with a simple resistor, the changes would be instantaneous). In effect, the membrane capacitance acts as a bucket with the voltage represented by how high the bucket is filled. If you have a big fat bucket (big capacitance), it takes longer to fill it to a certain height (achieve a certain voltage). If you have a very thin bucket (small capacitance) it reaches that height (voltage) more quickly. Mathematically, V=Q/C (if the capacitance is equal to 1, then a change in current results in an immediate and proportional change in voltage, i.e. a simple resistor. If the capacitance is greater than 1, as in the cell membrance, the voltage changes is slower and smaller.) Therefore, capacitance serves to slow down changes in membrane potential and, by extension, slow down the propagation of an action potential. Capacitance itself is determined by the equation C=A/d where A is the area of the plates and d is the size of the gap. Therefore cells with a bigger gap (a thicker membrane due to myelination) have a lower capacitance and propagate action potentials quicker. Saltatory conduction is a faster mode of action potential propagation in which action potentials are generated only at the nodes of Ranvier in a myelinated axon. 7. What is the length constant for action potential propagation? How do the components of the length constant affect propagation? How have cells' length constants evolved to have faster propagation? What is the mathematical relationship between axonal resistance, capacitance, and rate of passive current spread? (p ) The length constant describes how far a voltage change due to the injection of current will travel within an axon before it decays. So, big length constant = more propagation. (Lambda= square root of Rm/Ra) Rm = resistance of the membrane (how much current

5 can escape across the membrane - bad for propagation) and Ra = resistance on axon (how easily current can flow down the axon - good for propagation). So, the bigger the Rm and the smaller the Ra, the less current will escape from the axon across the membrane and the more will travel down it. Cells increase Rm by myelination and decrease Ra by increasing axon diameter. The rate of propagation of an action potential is inversely related to the sum of capacitance and axonal resistance (C*Ra). SO, to increase rate, you want to decrease C*Ra. Note: Increasing axon diameter also increases capacitance by increasing the membrane surface area, remember from above that C=A/d. However, the Ra decreases in proportion to the square of the increased diameter while C increases in direct proportion to the diameter, (resistance goes down faster than capacitance goes up) so the net effect is to decrease C*Ra. 8. Draw a circuit representing a neuron at rest. To what does each element correspond? (4 th - p. 135, figure 7-10; and p147) Referring to figure 7-10, Cm represents the membrane itself as a capacitor (see above for explanation). The resistors / battery combinations in parallel represent the ion channels and Nernst potentials for Cl, K, and Na. Note the current flowing across the Na and K channels: in a cell at rest, the K current would be much larger. The two current generators in the diagram represent the Na/K pump which is working to counteract the constant leak of current across the Na and K channels. Finally, this figure only represents a tiny patch of membrane. To describe an entire axon, multiple segments like this one should be linked up in parallel with resistors that represent the axonal resistance (Ra). 9. What is the difference between patch clamping and voltage clamping? What is each one used to study? Be sure to say TTX and TEA at least once each in your answer. (p , p162) The basic answer is that voltage clamping studies the electrical properties of the whole cell while patch clamping studies one channel. In both techniques, the cell (or channel in the case of patch clamping) is impaled with an electrode and it's voltage "clamped" at a desired level. The flow of current is then measured to determine what channels are opening and when. TTX is used in voltage clamping to block voltage gated Na channels so you can study the K current alone. TEA blocks the K so you can study the Na.

Physiology Unit 2. MEMBRANE POTENTIALS and SYNAPSES

Physiology Unit 2. MEMBRANE POTENTIALS and SYNAPSES Physiology Unit 2 MEMBRANE POTENTIALS and SYNAPSES Neuron Communication Neurons are stimulated by receptors on dendrites and cell bodies (soma) Ligand gated ion channels GPCR s Neurons stimulate cells

More information

Physiology Unit 2. MEMBRANE POTENTIALS and SYNAPSES

Physiology Unit 2. MEMBRANE POTENTIALS and SYNAPSES Physiology Unit 2 MEMBRANE POTENTIALS and SYNAPSES In Physiology Today Ohm s Law I = V/R Ohm s law: the current through a conductor between two points is directly proportional to the voltage across the

More information

Rahaf Nasser mohammad khatatbeh

Rahaf Nasser mohammad khatatbeh 7 7... Hiba Abu Hayyeh... Rahaf Nasser mohammad khatatbeh Mohammad khatatbeh Brief introduction about membrane potential The term membrane potential refers to a separation of opposite charges across the

More information

Action Potential (AP) NEUROEXCITABILITY II-III. Na + and K + Voltage-Gated Channels. Voltage-Gated Channels. Voltage-Gated Channels

Action Potential (AP) NEUROEXCITABILITY II-III. Na + and K + Voltage-Gated Channels. Voltage-Gated Channels. Voltage-Gated Channels NEUROEXCITABILITY IIIII Action Potential (AP) enables longdistance signaling woohoo! shows threshold activation allornone in amplitude conducted without decrement caused by increase in conductance PNS

More information

Overview Organization: Central Nervous System (CNS) Peripheral Nervous System (PNS) innervate Divisions: a. Afferent

Overview Organization: Central Nervous System (CNS) Peripheral Nervous System (PNS) innervate Divisions: a. Afferent Overview Organization: Central Nervous System (CNS) Brain and spinal cord receives and processes information. Peripheral Nervous System (PNS) Nerve cells that link CNS with organs throughout the body.

More information

Resting membrane potential,

Resting membrane potential, Resting membrane potential Inside of each cell is negative as compared with outer surface: negative resting membrane potential (between -30 and -90 mv) Examination with microelectrode (Filled with KCl

More information

LESSON 2.2 WORKBOOK How do our axons transmit electrical signals?

LESSON 2.2 WORKBOOK How do our axons transmit electrical signals? LESSON 2.2 WORKBOOK How do our axons transmit electrical signals? This lesson introduces you to the action potential, which is the process by which axons signal electrically. In this lesson you will learn

More information

Action Potential Propagation

Action Potential Propagation Action Potential Propagation 2 Action Potential is a transient alteration of transmembrane voltage (or membrane potential) across an excitable membrane generated by the activity of voltage-gated ion channels.

More information

Membrane Potentials, Action Potentials, and Synaptic Transmission. Membrane Potential

Membrane Potentials, Action Potentials, and Synaptic Transmission. Membrane Potential Cl Cl - - + K + K+ K + K Cl - 2/2/15 Membrane Potentials, Action Potentials, and Synaptic Transmission Core Curriculum II Spring 2015 Membrane Potential Example 1: K +, Cl - equally permeant no charge

More information

ACTION POTENTIAL. Dr. Ayisha Qureshi Professor MBBS, MPhil

ACTION POTENTIAL. Dr. Ayisha Qureshi Professor MBBS, MPhil ACTION POTENTIAL Dr. Ayisha Qureshi Professor MBBS, MPhil DEFINITIONS: Stimulus: A stimulus is an external force or event which when applied to an excitable tissue produces a characteristic response. Subthreshold

More information

Resting Distribution of Ions in Mammalian Neurons. Outside Inside (mm) E ion Permab. K Na Cl

Resting Distribution of Ions in Mammalian Neurons. Outside Inside (mm) E ion Permab. K Na Cl Resting Distribution of Ions in Mammalian Neurons Outside Inside (mm) E ion Permab. K + 5 100-81 1.0 150 15 +62 0.04 Cl - 100 10-62 0.045 V m = -60 mv V m approaches the Equilibrium Potential of the most

More information

Neural Conduction. biologyaspoetry.com

Neural Conduction. biologyaspoetry.com Neural Conduction biologyaspoetry.com Resting Membrane Potential -70mV A cell s membrane potential is the difference in the electrical potential ( charge) between the inside and outside of the cell. The

More information

COGNITIVE SCIENCE 107A

COGNITIVE SCIENCE 107A COGNITIVE SCIENCE 107A Electrophysiology: Electrotonic Properties 2 Jaime A. Pineda, Ph.D. The Model Neuron Lab Your PC/CSB115 http://cogsci.ucsd.edu/~pineda/cogs107a/index.html Labs - Electrophysiology

More information

Nervous Systems: Neuron Structure and Function

Nervous Systems: Neuron Structure and Function Nervous Systems: Neuron Structure and Function Integration An animal needs to function like a coherent organism, not like a loose collection of cells. Integration = refers to processes such as summation

More information

Structure and Measurement of the brain lecture notes

Structure and Measurement of the brain lecture notes Structure and Measurement of the brain lecture notes Marty Sereno 2009/2010!"#$%&'(&#)*%$#&+,'-&.)"/*"&.*)*-'(0&1223 Neurons and Models Lecture 1 Topics Membrane (Nernst) Potential Action potential/voltage-gated

More information

Neurons and Nervous Systems

Neurons and Nervous Systems 34 Neurons and Nervous Systems Concept 34.1 Nervous Systems Consist of Neurons and Glia Nervous systems have two categories of cells: Neurons, or nerve cells, are excitable they generate and transmit electrical

More information

PNS Chapter 7. Membrane Potential / Neural Signal Processing Spring 2017 Prof. Byron Yu

PNS Chapter 7. Membrane Potential / Neural Signal Processing Spring 2017 Prof. Byron Yu PNS Chapter 7 Membrane Potential 18-698 / 42-632 Neural Signal Processing Spring 2017 Prof. Byron Yu Roadmap Introduction to neuroscience Chapter 1 The brain and behavior Chapter 2 Nerve cells and behavior

More information

Ionic basis of the resting membrane potential. Foundations in Neuroscience I, Oct

Ionic basis of the resting membrane potential. Foundations in Neuroscience I, Oct Ionic basis of the resting membrane potential Foundations in Neuroscience I, Oct 3 2017 The next 4 lectures... - The resting membrane potential (today) - The action potential - The neural mechanisms behind

More information

Nerve Signal Conduction. Resting Potential Action Potential Conduction of Action Potentials

Nerve Signal Conduction. Resting Potential Action Potential Conduction of Action Potentials Nerve Signal Conduction Resting Potential Action Potential Conduction of Action Potentials Resting Potential Resting neurons are always prepared to send a nerve signal. Neuron possesses potential energy

More information

NEURONS, SENSE ORGANS, AND NERVOUS SYSTEMS CHAPTER 34

NEURONS, SENSE ORGANS, AND NERVOUS SYSTEMS CHAPTER 34 NEURONS, SENSE ORGANS, AND NERVOUS SYSTEMS CHAPTER 34 KEY CONCEPTS 34.1 Nervous Systems Are Composed of Neurons and Glial Cells 34.2 Neurons Generate Electric Signals by Controlling Ion Distributions 34.3

More information

BIOL Week 5. Nervous System II. The Membrane Potential. Question : Is the Equilibrium Potential a set number or can it change?

BIOL Week 5. Nervous System II. The Membrane Potential. Question : Is the Equilibrium Potential a set number or can it change? Collin County Community College BIOL 2401 Week 5 Nervous System II 1 The Membrane Potential Question : Is the Equilibrium Potential a set number or can it change? Let s look at the Nernst Equation again.

More information

9 Generation of Action Potential Hodgkin-Huxley Model

9 Generation of Action Potential Hodgkin-Huxley Model 9 Generation of Action Potential Hodgkin-Huxley Model (based on chapter 12, W.W. Lytton, Hodgkin-Huxley Model) 9.1 Passive and active membrane models In the previous lecture we have considered a passive

More information

Action Potentials & Nervous System. Bio 219 Napa Valley College Dr. Adam Ross

Action Potentials & Nervous System. Bio 219 Napa Valley College Dr. Adam Ross Action Potentials & Nervous System Bio 219 Napa Valley College Dr. Adam Ross Review: Membrane potentials exist due to unequal distribution of charge across the membrane Concentration gradients drive ion

More information

2401 : Anatomy/Physiology

2401 : Anatomy/Physiology Dr. Chris Doumen Week 6 2401 : Anatomy/Physiology Action Potentials NeuroPhysiology TextBook Readings Pages 400 through 408 Make use of the figures in your textbook ; a picture is worth a thousand words!

More information

! Depolarization continued. AP Biology. " The final phase of a local action

! Depolarization continued. AP Biology.  The final phase of a local action ! Resting State Resting potential is maintained mainly by non-gated K channels which allow K to diffuse out! Voltage-gated ion K and channels along axon are closed! Depolarization A stimulus causes channels

More information

MEMBRANE POTENTIALS AND ACTION POTENTIALS:

MEMBRANE POTENTIALS AND ACTION POTENTIALS: University of Jordan Faculty of Medicine Department of Physiology & Biochemistry Medical students, 2017/2018 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Review: Membrane physiology

More information

General Physics. Nerve Conduction. Newton s laws of Motion Work, Energy and Power. Fluids. Direct Current (DC)

General Physics. Nerve Conduction. Newton s laws of Motion Work, Energy and Power. Fluids. Direct Current (DC) Newton s laws of Motion Work, Energy and Power Fluids Direct Current (DC) Nerve Conduction Wave properties of light Ionizing Radiation General Physics Prepared by: Sujood Alazzam 2017/2018 CHAPTER OUTLINE

More information

2002NSC Human Physiology Semester Summary

2002NSC Human Physiology Semester Summary 2002NSC Human Physiology Semester Summary Griffith University, Nathan Campus Semester 1, 2014 Topics include: - Diffusion, Membranes & Action Potentials - Fundamentals of the Nervous System - Neuroanatomy

More information

Neurophysiology. Danil Hammoudi.MD

Neurophysiology. Danil Hammoudi.MD Neurophysiology Danil Hammoudi.MD ACTION POTENTIAL An action potential is a wave of electrical discharge that travels along the membrane of a cell. Action potentials are an essential feature of animal

More information

Equivalent Circuit Model of the Neuron

Equivalent Circuit Model of the Neuron Generator Potentials, Synaptic Potentials and Action Potentials All Can Be Described by the Equivalent Circuit Model of the Membrane Equivalent Circuit Model of the Neuron PNS, Fig 211 The Nerve (or Muscle)

More information

Electrical Signaling. Lecture Outline. Using Ions as Messengers. Potentials in Electrical Signaling

Electrical Signaling. Lecture Outline. Using Ions as Messengers. Potentials in Electrical Signaling Lecture Outline Electrical Signaling Using ions as messengers Potentials in electrical signaling Action Graded Other electrical signaling Gap junctions The neuron Using Ions as Messengers Important things

More information

Control and Integration. Nervous System Organization: Bilateral Symmetric Animals. Nervous System Organization: Radial Symmetric Animals

Control and Integration. Nervous System Organization: Bilateral Symmetric Animals. Nervous System Organization: Radial Symmetric Animals Control and Integration Neurophysiology Chapters 10-12 Nervous system composed of nervous tissue cells designed to conduct electrical impulses rapid communication to specific cells or groups of cells Endocrine

More information

Neurons. The Molecular Basis of their Electrical Excitability

Neurons. The Molecular Basis of their Electrical Excitability Neurons The Molecular Basis of their Electrical Excitability Viva La Complexity! Consider, The human brain contains >10 11 neurons! Each neuron makes 10 3 (average) synaptic contacts on up to 10 3 other

More information

Lecture 10 : Neuronal Dynamics. Eileen Nugent

Lecture 10 : Neuronal Dynamics. Eileen Nugent Lecture 10 : Neuronal Dynamics Eileen Nugent Origin of the Cells Resting Membrane Potential: Nernst Equation, Donnan Equilbrium Action Potentials in the Nervous System Equivalent Electrical Circuits and

More information

Lecture 2. Excitability and ionic transport

Lecture 2. Excitability and ionic transport Lecture 2 Excitability and ionic transport Selective membrane permeability: The lipid barrier of the cell membrane and cell membrane transport proteins Chemical compositions of extracellular and intracellular

More information

Particles with opposite charges (positives and negatives) attract each other, while particles with the same charge repel each other.

Particles with opposite charges (positives and negatives) attract each other, while particles with the same charge repel each other. III. NEUROPHYSIOLOGY A) REVIEW - 3 basic ideas that the student must remember from chemistry and physics: (i) CONCENTRATION measure of relative amounts of solutes in a solution. * Measured in units called

More information

Peripheral Nerve II. Amelyn Ramos Rafael, MD. Anatomical considerations

Peripheral Nerve II. Amelyn Ramos Rafael, MD. Anatomical considerations Peripheral Nerve II Amelyn Ramos Rafael, MD Anatomical considerations 1 Physiologic properties of the nerve Irritability of the nerve A stimulus applied on the nerve causes the production of a nerve impulse,

More information

Membrane Protein Channels

Membrane Protein Channels Membrane Protein Channels Potassium ions queuing up in the potassium channel Pumps: 1000 s -1 Channels: 1000000 s -1 Pumps & Channels The lipid bilayer of biological membranes is intrinsically impermeable

More information

Nervous System: Part II How A Neuron Works

Nervous System: Part II How A Neuron Works Nervous System: Part II How A Neuron Works Essential Knowledge Statement 3.E.2 Continued Animals have nervous systems that detect external and internal signals, transmit and integrate information, and

More information

Passive Membrane Properties

Passive Membrane Properties Passive Membrane Properties Communicating through a leaky garden hose... Topics I Introduction & Electrochemical Gradients Passive Membrane Properties Action Potentials Voltage-Gated Ion Channels Topics

More information

Chapter 48 Neurons, Synapses, and Signaling

Chapter 48 Neurons, Synapses, and Signaling Chapter 48 Neurons, Synapses, and Signaling Concept 48.1 Neuron organization and structure reflect function in information transfer Neurons are nerve cells that transfer information within the body Neurons

More information

Phys498BIO; Prof. Paul Selvin Hw #9 Assigned Wed. 4/18/12: Due 4/25/08

Phys498BIO; Prof. Paul Selvin Hw #9 Assigned Wed. 4/18/12: Due 4/25/08 1. Ionic Movements Across a Permeable Membrane: The Nernst Potential. In class we showed that if a non-permeable membrane separates a solution with high [KCl] from a solution with low [KCl], the net charge

More information

BIOELECTRIC PHENOMENA

BIOELECTRIC PHENOMENA Chapter 11 BIOELECTRIC PHENOMENA 11.3 NEURONS 11.3.1 Membrane Potentials Resting Potential by separation of charge due to the selective permeability of the membrane to ions From C v= Q, where v=60mv and

More information

BME 5742 Biosystems Modeling and Control

BME 5742 Biosystems Modeling and Control BME 5742 Biosystems Modeling and Control Hodgkin-Huxley Model for Nerve Cell Action Potential Part 1 Dr. Zvi Roth (FAU) 1 References Hoppensteadt-Peskin Ch. 3 for all the mathematics. Cooper s The Cell

More information

CELL BIOLOGY - CLUTCH CH. 9 - TRANSPORT ACROSS MEMBRANES.

CELL BIOLOGY - CLUTCH CH. 9 - TRANSPORT ACROSS MEMBRANES. !! www.clutchprep.com K + K + K + K + CELL BIOLOGY - CLUTCH CONCEPT: PRINCIPLES OF TRANSMEMBRANE TRANSPORT Membranes and Gradients Cells must be able to communicate across their membrane barriers to materials

More information

Introduction to electrophysiology. Dr. Tóth András

Introduction to electrophysiology. Dr. Tóth András Introduction to electrophysiology Dr. Tóth András Topics Transmembran transport Donnan equilibrium Resting potential Ion channels Local and action potentials Intra- and extracellular propagation of the

More information

SUMMARY OF THE EVENTS WHICH TRIGGER AN ELECTRICAL IMPUSLE IN NERVE CELLS (see figures on the following page)

SUMMARY OF THE EVENTS WHICH TRIGGER AN ELECTRICAL IMPUSLE IN NERVE CELLS (see figures on the following page) Anatomy and Physiology/AP Biology ACTION POTENTIAL SIMULATION BACKGROUND: The plasma membrane of cells is a selectively permeable barrier, which separates the internal contents of the cell from the surrounding

More information

Ch. 5. Membrane Potentials and Action Potentials

Ch. 5. Membrane Potentials and Action Potentials Ch. 5. Membrane Potentials and Action Potentials Basic Physics of Membrane Potentials Nerve and muscle cells: Excitable Capable of generating rapidly changing electrochemical impulses at their membranes

More information

9.01 Introduction to Neuroscience Fall 2007

9.01 Introduction to Neuroscience Fall 2007 MIT OpenCourseWare http://ocw.mit.edu 9.01 Introduction to Neuroscience Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 9.01 Recitation (R02)

More information

Neuron Func?on. Principles of Electricity. Defini?ons 2/6/15

Neuron Func?on. Principles of Electricity. Defini?ons 2/6/15 Neuron Func?on 11 Fundamentals of the Nervous System and Nervous Tissue: Part B Neurons are highly Respond to adequate s?mulus by genera?ng an ac?on poten?al (nerve impulse) Impulse is always the regardless

More information

Universality of sensory-response systems

Universality of sensory-response systems excite.org(anism): Electrical Signaling Universality of sensory-response systems Three step process: sensation-integration-response Bacterial chemotaxis Madigan et al. Fig. 8.24 Rick Stewart (CBMG) Human

More information

Introduction to electrophysiology 1. Dr. Tóth András

Introduction to electrophysiology 1. Dr. Tóth András Introduction to electrophysiology 1. Dr. Tóth András Topics Transmembran transport Donnan equilibrium Resting potential Ion channels Local and action potentials Intra- and extracellular propagation of

More information

Transmission of Nerve Impulses (see Fig , p. 403)

Transmission of Nerve Impulses (see Fig , p. 403) How a nerve impulse works Transmission of Nerve Impulses (see Fig. 12.13, p. 403) 1. At Rest (Polarization) outside of neuron is positively charged compared to inside (sodium ions outside, chloride and

More information

Cells have an unequal distribution of charge across their membrane: more postiive charges on the outside; more negative charges on the inside.

Cells have an unequal distribution of charge across their membrane: more postiive charges on the outside; more negative charges on the inside. Resting Membrane potential (V m ) or RMP Many cells have a membrane potential (Vm) that can be measured from an electrode in the cell with a voltmeter. neurons, muscle cells, heart cells, endocrine cells...

More information

Properties of the living organism. Interaction between living organism and the environment. Processing informations. Definitions

Properties of the living organism. Interaction between living organism and the environment. Processing informations. Definitions thermodynamics material energy Interaction between living organism and the environment Open system: free material and energy exchange. Processing informations information processing answer Properties of

More information

QUESTION? Communication between neurons depends on the cell membrane. Why is this so?? Consider the structure of the membrane.

QUESTION? Communication between neurons depends on the cell membrane. Why is this so?? Consider the structure of the membrane. QUESTION? Communication between neurons depends on the cell membrane Why is this so?? Consider the structure of the membrane. ECF ICF Possible ANSWERS?? Membrane Ion Channels and Receptors: neuron membranes

More information

Fundamentals of the Nervous System and Nervous Tissue

Fundamentals of the Nervous System and Nervous Tissue Chapter 11 Part B Fundamentals of the Nervous System and Nervous Tissue Annie Leibovitz/Contact Press Images PowerPoint Lecture Slides prepared by Karen Dunbar Kareiva Ivy Tech Community College 11.4 Membrane

More information

Νευροφυσιολογία και Αισθήσεις

Νευροφυσιολογία και Αισθήσεις Biomedical Imaging & Applied Optics University of Cyprus Νευροφυσιολογία και Αισθήσεις Διάλεξη 5 Μοντέλο Hodgkin-Huxley (Hodgkin-Huxley Model) Response to Current Injection 2 Hodgin & Huxley Sir Alan Lloyd

More information

Ch 8: Neurons: Cellular and Network Properties, Part 1

Ch 8: Neurons: Cellular and Network Properties, Part 1 Developed by John Gallagher, MS, DVM Ch 8: Neurons: Cellular and Network Properties, Part 1 Objectives: Describe the Cells of the NS Explain the creation and propagation of an electrical signal in a nerve

More information

Nervous Lecture Test Questions Set 2

Nervous Lecture Test Questions Set 2 Nervous Lecture Test Questions Set 2 1. The role of chloride in a resting membrane potential: a. creates resting potential b. indirectly causes repolarization c. stabilization of sodium d. it has none,

More information

Cellular Electrophysiology. Cardiac Electrophysiology

Cellular Electrophysiology. Cardiac Electrophysiology Part 1: Resting and Action Potentials Cardiac Electrophysiology Theory Simulation Experiment Scale The membrane: structure, channels and gates The cell: resting potential, whole cell currents, cardiac

More information

Supratim Ray

Supratim Ray Supratim Ray sray@cns.iisc.ernet.in Biophysics of Action Potentials Passive Properties neuron as an electrical circuit Passive Signaling cable theory Active properties generation of action potential Techniques

More information

7 Membrane Potential. The Resting Membrane Potential Results From the Separation of Charges Across the Cell Membrane. Back.

7 Membrane Potential. The Resting Membrane Potential Results From the Separation of Charges Across the Cell Membrane. Back. Back 7 Membrane Potential John Koester Steven A. Siegelbaum INFORMATION IS CARRIED WITHIN and between neurons by electrical and chemical signals. Transient electrical signals are particularly important

More information

Housekeeping, 26 January 2009

Housekeeping, 26 January 2009 5 th & 6 th Lectures Mon 26 & Wed 28 Jan 2009 Vertebrate Physiology ECOL 437 (MCB/VetSci 437) Univ. of Arizona, spring 2009 Neurons Chapter 11 Kevin Bonine & Kevin Oh 1. Finish Solutes + Water 2. Neurons

More information

Neurons. 5 th & 6 th Lectures Mon 26 & Wed 28 Jan Finish Solutes + Water. 2. Neurons. Chapter 11

Neurons. 5 th & 6 th Lectures Mon 26 & Wed 28 Jan Finish Solutes + Water. 2. Neurons. Chapter 11 5 th & 6 th Lectures Mon 26 & Wed 28 Jan 2009 Vertebrate Physiology ECOL 437 (MCB/VetSci 437) Univ. of Arizona, spring 2009 Neurons Chapter 11 Kevin Bonine & Kevin Oh 1. Finish Solutes + Water 2. Neurons

More information

Nervous System AP Biology

Nervous System AP Biology Nervous System 2007-2008 Why do animals need a nervous system? What characteristics do animals need in a nervous system? fast accurate reset quickly Remember Poor think bunny! about the bunny signal direction

More information

Membrane Potentials and Bioelectricity

Membrane Potentials and Bioelectricity Membrane Potentials and Bioelectricity Hugh Purdy Honors University Physics II November 29, 2010 Most, if not all, cells in the human body have a net electric charge to some degree on either side of their

More information

لجنة الطب البشري رؤية تنير دروب تميزكم

لجنة الطب البشري رؤية تنير دروب تميزكم 1) Hyperpolarization phase of the action potential: a. is due to the opening of voltage-gated Cl channels. b. is due to prolonged opening of voltage-gated K + channels. c. is due to closure of the Na +

More information

Neurons, Synapses, and Signaling

Neurons, Synapses, and Signaling Chapter 48 Neurons, Synapses, and Signaling PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions

More information

The Nervous System. Nerve Impulses. Resting Membrane Potential. Overview. Nerve Impulses. Resting Membrane Potential

The Nervous System. Nerve Impulses. Resting Membrane Potential. Overview. Nerve Impulses. Resting Membrane Potential The Nervous System Overview Nerve Impulses (completed12/03/04) (completed12/03/04) How do nerve impulses start? (completed 19/03/04) (completed 19/03/04) How Fast are Nerve Impulses? Nerve Impulses Nerve

More information

Biological membranes and bioelectric phenomena

Biological membranes and bioelectric phenomena Lectures on Medical Biophysics Dept. Biophysics, Medical faculty, Masaryk University in Brno Biological membranes and bioelectric phenomena A part of this lecture was prepared on the basis of a presentation

More information

Propagation& Integration: Passive electrical properties

Propagation& Integration: Passive electrical properties Fundamentals of Neuroscience (NSCS 730, Spring 2010) Instructor: Art Riegel; email: Riegel@musc.edu; Room EL 113; time: 9 11 am Office: 416C BSB (792.5444) Propagation& Integration: Passive electrical

More information

Resting Membrane Potential

Resting Membrane Potential Resting Membrane Potential Fig. 12.09a,b Recording of Resting and It is recorded by cathode ray oscilloscope action potentials -70 0 mv + it is negative in polarized (resting, the membrane can be excited)

More information

Naseem Demeri. Mohammad Alfarra. Mohammad Khatatbeh

Naseem Demeri. Mohammad Alfarra. Mohammad Khatatbeh 7 Naseem Demeri Mohammad Alfarra Mohammad Khatatbeh In the previous lectures, we have talked about how the difference in permeability for ions across the cell membrane can generate a potential. The potential

More information

Nervous System Organization

Nervous System Organization The Nervous System Chapter 44 Nervous System Organization All animals must be able to respond to environmental stimuli -Sensory receptors = Detect stimulus -Motor effectors = Respond to it -The nervous

More information

The Membrane Potential

The Membrane Potential The Membrane Potential Graphics are used with permission of: adam.com (http://www.adam.com/) Benjamin Cummings Publishing Co (http://www.aw.com/bc) ** It is suggested that you carefully label each ion

More information

Information processing. Divisions of nervous system. Neuron structure and function Synapse. Neurons, synapses, and signaling 11/3/2017

Information processing. Divisions of nervous system. Neuron structure and function Synapse. Neurons, synapses, and signaling 11/3/2017 Neurons, synapses, and signaling Chapter 48 Information processing Divisions of nervous system Central nervous system (CNS) Brain and a nerve cord Integration center Peripheral nervous system (PNS) Nerves

More information

NeuroPhysiology and Membrane Potentials. The Electrochemical Gradient

NeuroPhysiology and Membrane Potentials. The Electrochemical Gradient NeuroPhysiology and Membrane Potentials Communication by neurons is based on changes in the membrane s permeability to ions This depends on the presence of specific membrane ion channels and the presence

More information

Ch 7. The Nervous System 7.1 & 7.2

Ch 7. The Nervous System 7.1 & 7.2 Ch 7 The Nervous System 7.1 & 7.2 SLOs Describe the different types of neurons and supporting cells, and identify their functions. Identify the myelin sheath and describe how it is formed in the CNS and

More information

Quantitative Electrophysiology

Quantitative Electrophysiology ECE 795: Quantitative Electrophysiology Notes for Lecture #1 Tuesday, September 18, 2012 1. INTRODUCTION TO EXCITABLE CELLS Historical perspective: Bioelectricity first discovered by Luigi Galvani in 1780s

More information

Quantitative Electrophysiology

Quantitative Electrophysiology ECE 795: Quantitative Electrophysiology Notes for Lecture #1 Wednesday, September 13, 2006 1. INTRODUCTION TO EXCITABLE CELLS Historical perspective: Bioelectricity first discovered by Luigi Galvani in

More information

Lecture 04, 04 Sept 2003 Chapters 4 and 5. Vertebrate Physiology ECOL 437 University of Arizona Fall instr: Kevin Bonine t.a.

Lecture 04, 04 Sept 2003 Chapters 4 and 5. Vertebrate Physiology ECOL 437 University of Arizona Fall instr: Kevin Bonine t.a. Lecture 04, 04 Sept 2003 Chapters 4 and 5 Vertebrate Physiology ECOL 437 University of Arizona Fall 2003 instr: Kevin Bonine t.a.: Bret Pasch Vertebrate Physiology 437 1. Membranes (CH4) 2. Nervous System

More information

- the flow of electrical charge from one point to the other is current.

- the flow of electrical charge from one point to the other is current. Biology 325, Fall 2004 Resting membrane potential I. Introduction A. The body and electricity, basic principles - the body is electrically neutral (total), however there are areas where opposite charges

More information

Action Potentials and Synaptic Transmission Physics 171/271

Action Potentials and Synaptic Transmission Physics 171/271 Action Potentials and Synaptic Transmission Physics 171/271 Flavio Fröhlich (flavio@salk.edu) September 27, 2006 In this section, we consider two important aspects concerning the communication between

More information

Electrophysiology of the neuron

Electrophysiology of the neuron School of Mathematical Sciences G4TNS Theoretical Neuroscience Electrophysiology of the neuron Electrophysiology is the study of ionic currents and electrical activity in cells and tissues. The work of

More information

Chapter 9. Nerve Signals and Homeostasis

Chapter 9. Nerve Signals and Homeostasis Chapter 9 Nerve Signals and Homeostasis A neuron is a specialized nerve cell that is the functional unit of the nervous system. Neural signaling communication by neurons is the process by which an animal

More information

PROPERTY OF ELSEVIER SAMPLE CONTENT - NOT FINAL. The Nervous System and Muscle

PROPERTY OF ELSEVIER SAMPLE CONTENT - NOT FINAL. The Nervous System and Muscle The Nervous System and Muscle SECTION 2 2-1 Nernst Potential 2-2 Resting Membrane Potential 2-3 Axonal Action Potential 2-4 Neurons 2-5 Axonal Conduction 2-6 Morphology of Synapses 2-7 Chemical Synaptic

More information

Lojayn Salah. Zaid R Al Najdawi. Mohammad-Khatatbeh

Lojayn Salah. Zaid R Al Najdawi. Mohammad-Khatatbeh 7 Lojayn Salah Zaid R Al Najdawi Mohammad-Khatatbeh Salam everyone, I made my best to make this sheet clear enough to be easily understood let the party begin :P Quick Revision about the previous lectures:

More information

The Neuron - F. Fig. 45.3

The Neuron - F. Fig. 45.3 excite.org(anism): Electrical Signaling The Neuron - F. Fig. 45.3 Today s lecture we ll use clickers Review today 11:30-1:00 in 2242 HJ Patterson Electrical signals Dendrites: graded post-synaptic potentials

More information

Mathematical Foundations of Neuroscience - Lecture 3. Electrophysiology of neurons - continued

Mathematical Foundations of Neuroscience - Lecture 3. Electrophysiology of neurons - continued Mathematical Foundations of Neuroscience - Lecture 3. Electrophysiology of neurons - continued Filip Piękniewski Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toruń, Poland

More information

Voltage-clamp and Hodgkin-Huxley models

Voltage-clamp and Hodgkin-Huxley models Voltage-clamp and Hodgkin-Huxley models Read: Hille, Chapters 2-5 (best) Koch, Chapters 6, 8, 9 See also Clay, J. Neurophysiol. 80:903-913 (1998) (for a recent version of the HH squid axon model) Rothman

More information

Converting energy into nerve impulses, resting potentials and action potentials Sensory receptors

Converting energy into nerve impulses, resting potentials and action potentials Sensory receptors D 1.3 s Converting energy into nerve impulses, resting potentials and action potentials Sensory receptors A receptor converts an external or internal stimulus into an electrical signal. Sensory receptors

More information

BIOLOGY 11/10/2016. Neurons, Synapses, and Signaling. Concept 48.1: Neuron organization and structure reflect function in information transfer

BIOLOGY 11/10/2016. Neurons, Synapses, and Signaling. Concept 48.1: Neuron organization and structure reflect function in information transfer 48 Neurons, Synapses, and Signaling CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Concept 48.1: Neuron organization

More information

Transport of ions across plasma membranes

Transport of ions across plasma membranes Transport of ions across plasma membranes Plasma Membranes of Excitable tissues Ref: Guyton, 13 th ed: pp: 61-71. 12 th ed: pp: 57-69. 11th ed: p57-71, Electrical properties of plasma membranes Part A:

More information

Introduction to Neural Networks U. Minn. Psy 5038 Spring, 1999 Daniel Kersten. Lecture 2a. The Neuron - overview of structure. From Anderson (1995)

Introduction to Neural Networks U. Minn. Psy 5038 Spring, 1999 Daniel Kersten. Lecture 2a. The Neuron - overview of structure. From Anderson (1995) Introduction to Neural Networks U. Minn. Psy 5038 Spring, 1999 Daniel Kersten Lecture 2a The Neuron - overview of structure From Anderson (1995) 2 Lect_2a_Mathematica.nb Basic Structure Information flow:

More information

Biomedical Instrumentation

Biomedical Instrumentation ELEC ENG 4BD4: Biomedical Instrumentation Lecture 5 Bioelectricity 1. INTRODUCTION TO BIOELECTRICITY AND EXCITABLE CELLS Historical perspective: Bioelectricity first discovered by Luigi Galvani in 1780s

More information

Neural Modeling and Computational Neuroscience. Claudio Gallicchio

Neural Modeling and Computational Neuroscience. Claudio Gallicchio Neural Modeling and Computational Neuroscience Claudio Gallicchio 1 Neuroscience modeling 2 Introduction to basic aspects of brain computation Introduction to neurophysiology Neural modeling: Elements

More information

Membrane Physiology. Dr. Hiwa Shafiq Oct-18 1

Membrane Physiology. Dr. Hiwa Shafiq Oct-18 1 Membrane Physiology Dr. Hiwa Shafiq 22-10-2018 29-Oct-18 1 Chemical compositions of extracellular and intracellular fluids. 29-Oct-18 2 Transport through the cell membrane occurs by one of two basic processes:

More information

What are neurons for?

What are neurons for? 5 th & 6 th Lectures Mon 26 & Wed 28 Jan 2009 Vertebrate Physiology ECOL 437 (MCB/VetSci 437) Univ. of Arizona, spring 2009 Kevin Bonine & Kevin Oh 1. Finish Solutes Water 2. Neurons Neurons Chapter 11

More information

The Nervous System and the Sodium-Potassium Pump

The Nervous System and the Sodium-Potassium Pump The Nervous System and the Sodium-Potassium Pump 1. Define the following terms: Ion: A Student Activity on Membrane Potentials Cation: Anion: Concentration gradient: Simple diffusion: Sodium-Potassium

More information