A Model for Integrin Binding in Cells

Size: px
Start display at page:

Download "A Model for Integrin Binding in Cells"

Transcription

1 A Model for Integrin Binding in Cells By: Kara Huyett Advisor: Doctor Stolarska 31 st of August, 2015 Cell movement, and cell crawling in particular, has implications in various biological phenomena. For example, cells from primary cancer tumors have the ability to crawl into the blood stream and flow into different parts of the body and begin growing as a secondary tumor. For example, a cancer tumor in the liver could crawl a very short distance in order to catch a ride in the bloodstream. It could then travel up into the brain where it could begin to grow in the brain tissue. Another important aspect of cell movement is wound healing. If there was a way to control the ligands for cell attachments to bind to, the rate at which cells moved to a site of injury could be increased. The project I have been working on with my advisor, Doctor Stolarska, deals with cell crawling and spreading. Our goal was to make a model that portrayed how integrins, the primary protein used in the attachments to the substrate, are involved in cell movement. Succeeding this, we wanted to show that by manipulating integrin and ligands, the substrate-bound chemical to which a cell attaches, the movement of a cell could be controlled. Our model is very important in portraying cell movement and the manipulation of ligands and integrins in order to control the movement and fate of cells. As a result of our project, one day people may be able to stop the metastasis of cancer cells and contain or even control cancer cells.

2 Cells crawl by extending their leading edge which is pushed out by the polymerization of actin filaments. These actin filaments grow at a faster rate on their positive end which causes them to push out the edge of a cell. (If the cell is moving the actin filaments will push out the leading edge, but if the cell is spreading, every edge of the cell will be pushed outwards.) After the leading edge is pushed out, the lamella, the front-most edge of the cell, will bind to the substrate. After the lamella is attached, the rear of the cell is contracted by a myosin and actin interaction. Myosin is a globular protein that walks along the actin filaments and causes the filaments to be pulled forward which causes the rear end of the cell to be pulled back inwards towards the middle of the cell. Image 1: This image is of a cell crawling. It shows the extension of the leading edge. This edge is pushed out by the polymerization of actin filaments. It then attaches to the substrate and

3 contracts it s lagging edge. The contraction is caused by an interaction between myosin and actin filaments. Focal adhesions are the physical binding site of the cell and the substrate. These adhesions are made up of myosin, actin filaments, integrins and various motor proteins. These adhesions are important, for they are what allow the cell to bind to the substrate and move forward. These adhesions act much like friction does with people and animals. These are the interactions that allow for the cell to have contact with its surroundings and move forward (or spread). Corning Glass Company is interested in our model because it portrays the relationship between a cell and the substrate it is binding to. Corning is working with stem cells. They want to be able to place a stem cell onto a substrate of certain stiffness and know exactly what that cell will become. In experimental work, Engler et al (2006) placed stem cells on various substrates of different stiffness. What they found was very extraordinary. The stem cells placed in a substrate of stiffness 1KPa, which is approximately the stiffness of brain tissue, grew into nerve cells, cells put into substrate of stiffness 11KPa, the stiffness of muscles, grew into muscle cells and the cells put in a substrate of 34KPa, the stiffness of bones, grew into bone cells. In order to better understand how cells interact mechanically with their environment, Doctor Stolarska created a model and computation tool for simulations of a cell spreading over the substrate to which it is attached. This model includes a mathematical representation of spreading and contraction due to actin polymerization and actin-myosin interactions.

4 Doctor Stolarska wanted me to make a model that showed how integrins attached and detached from the substrate in which they are located on. Once these models are combined, we can show how and where a cell interacts with a substrate. Thus, as the cell grows, the focal adhesions can grow and new binding sites can be created. We can then apply the model to various situations to find out how substrate stiffness affects cell shape and how we can control where cells bind to and how they move. Overview of my one dimensional project: To start my model, I created a one dimensional version that showed the binding and unbinding of integrins within the cell. In this model, there was the cell and the substrate. Imbedded in the substrate were two ligands patches. These ligand patches were the sites where the integrins within the cell could bind to. In the Matlab code I programmed all of this in, the ligand patches were represented by a matrix, L, and within the matrix there were ones and zeros. The ones represented the region where a ligand patch was present and zeros represented the absence of a ligand patch. Where there were ones, integrins could bind and where there were zeros integrins could not bind.

5 (Image 2) Image 2: My one dimensional model. It shows the cell (green), the substrate (blue) and the ligand patches (red). The ligand patches are the areas where the ligands can bind to. Overview of my two dimensional model: The two dimensional model looks much like the one dimensional model. There is the cell and the ligand patches to where integrins will bind. Image 3: My two dimensional model. It shows the cell (blue) and the ligands (green).

6 Model Equations: The binding and unbinding of integrins is modeled by a system of reaction-diffusion equations: These equations describe how unbound integrins, Cu, bind to the ligands, L, and create bound integrins, Cb. Db is the diffusion coefficient for bound integrins, and Du is the diffusion coefficient for the bound integrins. These are the coefficients that tell us how quickly the bound and unbound integrins are moving from higher to lower concentrations within the cell. The coefficients kf and kb are the rates at which integrins are binding and unbinding within the cell, respectively. When the two equations above are added together, the reaction terms cancel and only the diffusion component remains. Because we are using no flux boundaries (where nothing can leave the cell), we know that the total number of integrins in the cell must always remain fixed.

7 In order to solve this equation for Cu and Cb we used the finite element method. The finite element method was used because it allowed us to take our system of partial differentiable equations and turn them into a system of algebraic equations. Furthermore, the finite element method allowed us to solve the system of partial differential equations on a domain of irregular shape. The solution to partial differential equations is a function of space a time. Graphically, this solution can be represented as a continuous surface. When the cell domain is meshed into nodes and elements, we can find an approximate solution to the system of partial differential equations by solving for the concentrations of the bound and unbound integrins at a finite number of nodes. This is represented in image 4. Image 4: This image shows how we found the concentrations of the bound and unbound elements at the nodes. We created these nodes by putting a mesh over the circular surface. Each element has three nodes. To use the finite element method we must first put the governing equations into weak form. To do this, we multiplied each side by a test function. This arbitrary function allowed us to manipulate both sides of the equation. The weak form is given by:

8 Since we were able to do this, we could work with the first derivatives and thus work with linear interpolation functions instead of quadratic interpolation functions. After putting the equations into weak form, we meshed the surface and created many elements(approximately 60) and nodes(approximately 180). Image 5 shows the mesh we created over the cell. Each element is represented by a triangle and the nodes are the vertexes. Image 5: This is the mesh we created over the circular shape. The nodes and elements can be observed. The circles in the middle of the larger circle represent the ligand patches. After creating the mesh, we made a local matrix, which was a descrete representation of the integrands in weak form, for each element. After creating these local matrices, we assembled them into one large global matrix. This global matrix combined the contributions of all of the

9 elements into one system of equations. Using this global matrix we solved for the concentration of the unbound integrins and bound integrins at each nodepoint. The discrete weak form for each element is given by the two equations below. Note that ξ and η, are coordinates of a reference triangle to which each triangular element in the mesh is mapped. The individual matrices in the discrete weak form above are given by:

10 Interpolation Functions: Above are the three interpolation functions that were used in each element. They are all linear, and they allowed us to approximate the concentration of bound and unbound integrins between the nodes. Derivative of the Interpolation Functions with respect to x or y:

11 The discrete weak form can then be represented by a matrix called Alocal. This matrix is then assembled into a much larger matrix, Aglobal. Aglobal was the matrix A in the linear algebraic equation Ac=f that represents the system of algebraic equations that we solved for Cu and Cb. We solved for Aglobal at each node point by solving for Alocal at each node point and then assembling all the local matrices into one global matrix. One dimensional results: We ran this program in Matlab. The initial concentration of the bound integrins was zero and the initial concentration of the unbound integrins was one. As we ran this program, over the areas where the ligands were there was a dramatic increase in the concentration of bound integrins and a dramatic decrease in the concentration of the unbound integrins. This is exactly what we predicted would happen.

12 Image 6: One dimensional results. As you can see, there is an increase in bound integrins over the ligand patches and a decrease of unbound integrins over the same ligand patches. Ligand patches exist where 4 < x < 8 and 12 < x < 16. Ligand patches were placed from 4 < x < 8 and 12< x < 16. As can be observed from the graph, over the regions where a ligand patch existed, the concentration of bound integrins increased and the concentration of unbound integrins decreased. Also, as time passed, the difference between the new time step and the previous time step decreased. This shows that if the program ran for an infinite amount of time, it would eventually reach a steady state, the equilibrium. Two dimensional results: The two dimensional results behaved similarly to the one dimensional results. At the regions where the ligand patches existed, which can be seen from the mesh in image number 5, the number of bound integrins increased as time increased, and the number of unbound integrins decreased.

13 Image 7: Two dimensional results. Each circle is a cell and in the middle of the cell you can see the ligand patches where the integrins bind to. As you can see, the concentration of bound integrins goes up in the ligand regions as times passes as the concentration of the unbound integrins goes down. If this program was run for longer, eventually the system would hit steady state and the concentration of the bound and unbound integrins at the ligands would no longer change. Future Work: In upcoming research, Doctor Stolarska and I would like to incorporate our models in order to create a global model that allows us to simulate a cell spreading and binding to a substrate. With my model, we will be able to manipulate where the ligands are located and thus where the cell will bind to. This will allow us to determine the shape of the cell and what are the stresses in the cell and the substrate. Ultimately, this will help us understand the interaction of a cell with a substrate. This will have implications in stopping cancer. We could also cause cells

14 to crawl faster which could be beneficial in wound healing. Being able to manipulate cell crawling could be revolutionary in the future. One day, we would love to use our model in reallife scenarios to control tumors and other dangerous cells..

15 Works Cited Engler, Adam J., Shamik Sen, H. Lee Sweeney, and Dennis E. Discher. "Matrix Elasticity Directs Stem Cell Lineage Specification." Cell (2006): Web. Théry, Manuel, Anne Pépin, Emilie Dressaire, Yong Chen, and Michel Bornens. "Cell Distribution of Stress Fibres in Response to the Geometry of the Adhesive Environment." Cell Motility and the Cytoskeleton Cell Motil. Cytoskeleton 63.6 (2006): Web. Ananthakrishnan R, Ehrlicher A. The Forces Behind Cell Movement. International Journal of Biological Sciences. 2007: 3(5): Web.

Chapter 16. Cellular Movement: Motility and Contractility. Lectures by Kathleen Fitzpatrick Simon Fraser University Pearson Education, Inc.

Chapter 16. Cellular Movement: Motility and Contractility. Lectures by Kathleen Fitzpatrick Simon Fraser University Pearson Education, Inc. Chapter 16 Cellular Movement: Motility and Contractility Lectures by Kathleen Fitzpatrick Simon Fraser University Two eukaryotic motility systems 1. Interactions between motor proteins and microtubules

More information

Muscle regulation and Actin Topics: Tropomyosin and Troponin, Actin Assembly, Actin-dependent Movement

Muscle regulation and Actin Topics: Tropomyosin and Troponin, Actin Assembly, Actin-dependent Movement 1 Muscle regulation and Actin Topics: Tropomyosin and Troponin, Actin Assembly, Actin-dependent Movement In the last lecture, we saw that a repeating alternation between chemical (ATP hydrolysis) and vectorial

More information

PHYSIOLOGY CHAPTER 9 MUSCLE TISSUE Fall 2016

PHYSIOLOGY CHAPTER 9 MUSCLE TISSUE Fall 2016 PHYSIOLOGY CHAPTER 9 MUSCLE TISSUE Fall 2016 2 Chapter 9 Muscles and Muscle Tissue Overview of Muscle Tissue types of muscle: are all prefixes for muscle Contractility all muscles cells can Smooth & skeletal

More information

According to the diagram, which of the following is NOT true?

According to the diagram, which of the following is NOT true? Instructions: Review Chapter 44 on muscular-skeletal systems and locomotion, and then complete the following Blackboard activity. This activity will introduce topics that will be covered in the next few

More information

Supplementary Figures:

Supplementary Figures: Supplementary Figures: Supplementary Figure 1: Simulations with t(r) 1. (a) Snapshots of a quasi- 2D actomyosin droplet crawling along the treadmilling direction (to the right in the picture). There is

More information

MOLECULAR, CELLULAR, & TISSUE BIOMECHANICS

MOLECULAR, CELLULAR, & TISSUE BIOMECHANICS MOLECULAR, CELLULAR, & TISSUE BIOMECHANICS Spring 2015 Problem Set #6 - Cytoskeleton mechanics Distributed: Wednesday, April 15, 2015 Due: Thursday, April 23, 2015 Problem 1: Transmigration A critical

More information

the axons of the nerve meet with the muscle cell.

the axons of the nerve meet with the muscle cell. Steps to Contraction 1. A nerve impulse travels to the neuromuscular junction on a muscle cell. The neuromuscular junction is the point where the axons of the nerve meet with the muscle cell. 2. Ach is

More information

Chemical Reac+ons and Enzymes. Lesson Overview. Lesson Overview. 2.4 Chemical Reactions and Enzymes

Chemical Reac+ons and Enzymes. Lesson Overview. Lesson Overview. 2.4 Chemical Reactions and Enzymes Lesson Overview Chemical Reac+ons and Enzymes Lesson Overview 2.4 Chemical Reactions and Enzymes THINK ABOUT IT Living things are made up of chemical compounds, but chemistry isn t just what life is made

More information

Lecture 17: Cell Mechanics

Lecture 17: Cell Mechanics Lecture 17: Cell Mechanics We will focus on how the cell functions as a mechanical unit, with all of the membrane and cytoskeletal components acting as an integrated whole to accomplish a mechanical function.

More information

Lecture 4: viscoelasticity and cell mechanics

Lecture 4: viscoelasticity and cell mechanics Teaser movie: flexible robots! R. Shepherd, Whitesides group, Harvard 1 Lecture 4: viscoelasticity and cell mechanics S-RSI Physics Lectures: Soft Condensed Matter Physics Jacinta C. Conrad University

More information

Neurite formation & neuronal polarization

Neurite formation & neuronal polarization Neurite formation & neuronal polarization Paul Letourneau letou001@umn.edu Chapter 16; The Cytoskeleton; Molecular Biology of the Cell, Alberts et al. 1 An immature neuron in cell culture first sprouts

More information

Neurite formation & neuronal polarization. The cytoskeletal components of neurons have characteristic distributions and associations

Neurite formation & neuronal polarization. The cytoskeletal components of neurons have characteristic distributions and associations Mechanisms of neuronal migration & Neurite formation & neuronal polarization Paul Letourneau letou001@umn.edu Chapter 16; The Cytoskeleton; Molecular Biology of the Cell, Alberts et al. 1 The cytoskeletal

More information

Structure of Biological Materials

Structure of Biological Materials ELEC ENG 3BA3: Structure of Biological Materials Notes for Lecture #7 Monday, September 24, 2012 3.2 Muscle biomechanics Organization: skeletal muscle is made up of muscle fibers each fiber is a single

More information

A Bio-chemo-mechanical Model for Cell Contractility, Adhesion, Signaling, and Stress-Fiber Remodeling

A Bio-chemo-mechanical Model for Cell Contractility, Adhesion, Signaling, and Stress-Fiber Remodeling A Bio-chemo-mechanical Model for Cell Contractility, Adhesion, Signaling, and Stress-Fiber Remodeling Robert M. McMeeking and Vikram S. Deshpande Abstract A bio-chemo-mechanical model is described that

More information

Flexing Protein muscles: How to Pull with a "Burning Rope"

Flexing Protein muscles: How to Pull with a Burning Rope Flexing Protein muscles: How to Pull with a "Burning Rope" J. P. Keener 215 Joint International Conference on via Guangzhou University and Huaihua University Huaihua 8/15 p.1/28 Eukaryotic Chromosomal

More information

Mechanical Simulations of cell motility

Mechanical Simulations of cell motility Mechanical Simulations of cell motility What are the overarching questions? How is the shape and motility of the cell regulated? How do cells polarize, change shape, and initiate motility? How do they

More information

Archdiocese of Washington Catholic Schools Academic Standards Science 5 th Grade

Archdiocese of Washington Catholic Schools Academic Standards Science 5 th Grade 5 th Grade Standard 1 - The Nature of and Technology Students work collaboratively to carry out investigations. They observe and make accurate measurements, increase their use of tools and instruments,

More information

Muscle tissue. Types. Functions. Cardiac, Smooth, and Skeletal

Muscle tissue. Types. Functions. Cardiac, Smooth, and Skeletal Types Cardiac, Smooth, and Skeletal Functions movements posture and body position Support soft tissues Guard openings body temperature nutrient reserves Muscle tissue Special Characteristics of Muscle

More information

Mechanics of Motor Proteins and the Cytoskeleton Jonathon Howard Chapter 10 Force generation 2 nd part. Andrea and Yinyun April 4 th,2012

Mechanics of Motor Proteins and the Cytoskeleton Jonathon Howard Chapter 10 Force generation 2 nd part. Andrea and Yinyun April 4 th,2012 Mechanics of Motor Proteins and the Cytoskeleton Jonathon Howard Chapter 10 Force generation 2 nd part Andrea and Yinyun April 4 th,2012 I. Equilibrium Force Reminder: http://www.youtube.com/watch?v=yt59kx_z6xm

More information

November 16, Henok Tadesse, Electrical Engineer, B.Sc. Ethiopia. or

November 16, Henok Tadesse, Electrical Engineer, B.Sc. Ethiopia.   or The outward acceleration of galaxies may be a result of a non uniform and non linear distribution of matter in the universe Non local gravity directed upwards due to higher density outwards! Non elliptical

More information

NIH Public Access Author Manuscript Curr Biol. Author manuscript; available in PMC 2010 June 21.

NIH Public Access Author Manuscript Curr Biol. Author manuscript; available in PMC 2010 June 21. NIH Public Access Author Manuscript Published in final edited form as: Curr Biol. 2009 September 15; 19(17): R745 R748. doi:10.1016/j.cub.2009.06.034. The mechanical cell Shang-You Tee 1, Andreas Bausch

More information

1 Forces. 2 Energy & Work. GS 104, Exam II Review

1 Forces. 2 Energy & Work. GS 104, Exam II Review 1 Forces 1. What is a force? 2. Is weight a force? 3. Define weight and mass. 4. In European countries, they measure their weight in kg and in the United States we measure our weight in pounds (lbs). Who

More information

3 Using Newton s Laws

3 Using Newton s Laws 3 Using Newton s Laws What You ll Learn how Newton's first law explains what happens in a car crash how Newton's second law explains the effects of air resistance 4(A), 4(C), 4(D), 4(E) Before You Read

More information

BIOLOGICAL FRAMEWORKS FOR ENGINEERS Exam #2 [Due 12/9/11] by

BIOLOGICAL FRAMEWORKS FOR ENGINEERS Exam #2 [Due 12/9/11] by BIOLOGICAL FRAMEWORKS FOR ENGINEERS Eam #2 [Due 12/9/11] by email Work on this on your own; do not discuss it with other members of the class. You can use any web or library resources to help, and you

More information

Forces and Newton s Laws

Forces and Newton s Laws chapter 3 Forces and Newton s Laws section 3 Using Newton s Laws Before You Read Imagine riding on a sled, or in a wagon, or perhaps a school bus that stops quickly or suddenly. What happens to your body

More information

LIFE SCIENCE - Cells and Systems GLO 2

LIFE SCIENCE - Cells and Systems GLO 2 GLO 2 This Test is an Evaluation of General Learning Outcome 2 Part A - The Microscope The Microscope... Questions 1 8 Part B - The Role of Cells Within Living Organisms Role of Cells (basic units)...

More information

SELF-DIFFUSIOPHORESIS AND BIOLOGICAL MOTILITY. Department of Physics & Astronomy University of Pennsylvania

SELF-DIFFUSIOPHORESIS AND BIOLOGICAL MOTILITY. Department of Physics & Astronomy University of Pennsylvania SELF-DIFFUSIOPHORESIS AND BIOLOGICAL MOTILITY Department of Physics & Astronomy University of Pennsylvania Informal Seminar, University of Oxford, 8th June 2011 ACTIN BASED PROPULSION Listeria monocytogenes

More information

Supplemental table S7.

Supplemental table S7. Supplemental table S7. GO terms significantly enriched in significantly up-regulated genes of the microarray. K: number of genes from the input cluster in the given category. F: number of total genes in

More information

thebiotutor.com A2 Biology Unit 5 Responses, Nervous System & Muscles

thebiotutor.com A2 Biology Unit 5 Responses, Nervous System & Muscles thebiotutor.com A2 Biology Unit 5 Responses, Nervous System & Muscles 1 Response Mechanism tropism Definition A growth movement of part of plant in response to a directional stimulus examples Positive:

More information

Lecture 18. Newton s Laws

Lecture 18. Newton s Laws Agenda: l Review for exam Lecture 18 l Assignment: For Monday, Read chapter 14 Physics 207: Lecture 18, Pg 1 Newton s Laws Three blocks are connected on the table as shown. The table has a coefficient

More information

The ability to determine protein structure has made great advances in recent years

The ability to determine protein structure has made great advances in recent years Weighted-Ensemble Brownian Dynamics Simulation Amanda McCoy, Harvard University Daniel M. Zuckerman, Ph.D., University of Pittsburgh, Department of Computational Biology I. Introduction The ability to

More information

1. The plasma membrane of eukaryotic cells is supported by a. actin filaments. b. microtubules. c. lamins. d. intermediate filaments.

1. The plasma membrane of eukaryotic cells is supported by a. actin filaments. b. microtubules. c. lamins. d. intermediate filaments. ANALYSIS AND MODELING OF CELL MECHANICS Homework #2 (due 1/30/13) This homework involves comprehension of key biomechanical concepts of the cytoskeleton, cell-matrix adhesions, and cellcell adhesions.

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C7: BIOLOGICAL PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C7: BIOLOGICAL PHYSICS 2757 SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C7: BIOLOGICAL PHYSICS TRINITY TERM 2011 Monday, 27 June, 9.30 am 12.30 pm Answer

More information

SUBJECT: PHYSICAL SCIENCES GRADE: 10 CHAPTER / MODULE: MECHANICS UNIT / LESSON TOPIC: - Equations of Motion - Graphs of Motion

SUBJECT: PHYSICAL SCIENCES GRADE: 10 CHAPTER / MODULE: MECHANICS UNIT / LESSON TOPIC: - Equations of Motion - Graphs of Motion SUBJECT: PHYSICAL SCIENCES GRADE: 10 CHAPTER / MODULE: MECHANICS UNIT / LESSON TOPIC: - Equations of Motion - Graphs of Motion By the end of this unit, you should be able to: describe motion along a straight

More information

Raymond A. Serway Chris Vuille. Chapter Thirteen. Vibrations and Waves

Raymond A. Serway Chris Vuille. Chapter Thirteen. Vibrations and Waves Raymond A. Serway Chris Vuille Chapter Thirteen Vibrations and Waves Periodic Motion and Waves Periodic motion is one of the most important kinds of physical behavior Will include a closer look at Hooke

More information

BE/APh161 Physical Biology of the Cell. Rob Phillips Applied Physics and Bioengineering California Institute of Technology

BE/APh161 Physical Biology of the Cell. Rob Phillips Applied Physics and Bioengineering California Institute of Technology BE/APh161 Physical Biology of the Cell Rob Phillips Applied Physics and Bioengineering California Institute of Technology Cells Decide: Where to Go The Hunters of the Immune Response (Berman et al.) There

More information

LAB 2: INTRODUCTION TO MOTION

LAB 2: INTRODUCTION TO MOTION Lab 2 - Introduction to Motion 3 Name Date Partners LAB 2: INTRODUCTION TO MOTION Slow and steady wins the race. Aesop s fable: The Hare and the Tortoise Objectives To explore how various motions are represented

More information

Elasticity of biological gels

Elasticity of biological gels Seminar II Elasticity of biological gels Author: Gašper Gregorič Mentor: assoc. prof. Primož Ziherl Ljubljana, February 2014 Abstract In the seminar we discuss the elastic behavior of biological gels,

More information

Channels can be activated by ligand-binding (chemical), voltage change, or mechanical changes such as stretch.

Channels can be activated by ligand-binding (chemical), voltage change, or mechanical changes such as stretch. 1. Describe the basic structure of an ion channel. Name 3 ways a channel can be "activated," and describe what occurs upon activation. What are some ways a channel can decide what is allowed to pass through?

More information

Polymerization and force generation

Polymerization and force generation Polymerization and force generation by Eric Cytrynbaum April 8, 2008 Equilibrium polymer in a box An equilibrium polymer is a polymer has no source of extraneous energy available to it. This does not mean

More information

Computational Fluid Dynamics Prof. Dr. Suman Chakraborty Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Computational Fluid Dynamics Prof. Dr. Suman Chakraborty Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Computational Fluid Dynamics Prof. Dr. Suman Chakraborty Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture No. #12 Fundamentals of Discretization: Finite Volume Method

More information

KEY NNHS Introductory Physics: MCAS Review Packet #1 Introductory Physics, High School Learning Standards for a Full First-Year Course

KEY NNHS Introductory Physics: MCAS Review Packet #1 Introductory Physics, High School Learning Standards for a Full First-Year Course Introductory Physics, High School Learning Standards for a Full First-Year Course I. C ONTENT S TANDARDS Central Concept: Newton s laws of motion and gravitation describe and predict the motion of 1.1

More information

Introduction to Cells

Introduction to Cells Life Science Introduction to Cells All life forms on our planet are made up of cells. In ALL organisms, cells have the same basic structure. The scientist Robert Hooke was the first to see cells under

More information

Amneh Auben. Abdulrahman Jabr. Diala Abu-Hassan

Amneh Auben. Abdulrahman Jabr. Diala Abu-Hassan 21 Amneh Auben Abdulrahman Jabr Diala Abu-Hassan Matrix polysaccharides Extracellular matrix (ECM): It s a collection of components that fills the spaces outside the cell or between the cells. ---------

More information

cycle & cell the division

cycle & cell the division the cycle & celldivision the cell cycle Most cells in an organism go through a cycle of growth, development, and division called the cell cycle. The cell cycle makes it possible for organisms to grow and

More information

LAB 2 - ONE DIMENSIONAL MOTION

LAB 2 - ONE DIMENSIONAL MOTION Name Date Partners L02-1 LAB 2 - ONE DIMENSIONAL MOTION OBJECTIVES Slow and steady wins the race. Aesop s fable: The Hare and the Tortoise To learn how to use a motion detector and gain more familiarity

More information

UNIT 6 THE MUSCULAR SYSTEM

UNIT 6 THE MUSCULAR SYSTEM UNIT 6 THE MUSCULAR SYSTEM I. Functions of Muscular System A. Produces Movement Internal vs. External «locomotion & manipulation «circulate blood & maintain blood pressure «move fluids, food, baby B. Maintaining

More information

Chapter 3. Formulation of FEM for Two-Dimensional Problems

Chapter 3. Formulation of FEM for Two-Dimensional Problems Chapter Formulation of FEM for Two-Dimensional Problems.1 Two-Dimensional FEM Formulation Many details of 1D and 2D formulations are the same. To demonstrate how a 2D formulation works we ll use the following

More information

1. Two forces are applied to a wooden box as shown below. Which statement best describes the effect these forces have on the box?

1. Two forces are applied to a wooden box as shown below. Which statement best describes the effect these forces have on the box? 1. Two forces are applied to a wooden box as shown below. Which statement best describes the effect these forces have on the box? A. The box does not move. B. The box moves to the right. C. The box moves

More information

Physics Semester 2 Final Exam Review Answers

Physics Semester 2 Final Exam Review Answers Physics Semester 2 Final Exam Review Answers A student attaches a string to a 3 kg block resting on a frictionless surface, and then pulls steadily (with a constant force) on the block as shown below.

More information

Acto-myosin: from muscles to single molecules. Justin Molloy MRC National Institute for Medical Research LONDON

Acto-myosin: from muscles to single molecules. Justin Molloy MRC National Institute for Medical Research LONDON Acto-myosin: from muscles to single molecules. Justin Molloy MRC National Institute for Medical Research LONDON Energy in Biological systems: 1 Photon = 400 pn.nm 1 ATP = 100 pn.nm 1 Ion moving across

More information

Get acquainted with the computer program, The Quadratic Transformer. When you're satisfied that you understand how it works, try the tasks below.

Get acquainted with the computer program, The Quadratic Transformer. When you're satisfied that you understand how it works, try the tasks below. Weaving a Parabola Web with the Quadratic Transformer In this activity, you explore how the graph of a quadratic function and its symbolic expression relate to each other. You start with a set of four

More information

The circular SiZer, inferred persistence of shape parameters and application to stem cell stress fibre structures

The circular SiZer, inferred persistence of shape parameters and application to stem cell stress fibre structures The circular SiZer, inferred persistence of shape parameters and application to stem cell stress fibre structures Stephan Huckemann 1, Kwang-Rae Kim, Axel Munk 1, Florian Rehfeldt 2, Max Sommerfeld 1,

More information

Transport of single molecules along the periodic parallel lattices with coupling

Transport of single molecules along the periodic parallel lattices with coupling THE JOURNAL OF CHEMICAL PHYSICS 124 204901 2006 Transport of single molecules along the periodic parallel lattices with coupling Evgeny B. Stukalin The James Franck Institute The University of Chicago

More information

How DLS Works: Interference of Light

How DLS Works: Interference of Light Static light scattering vs. Dynamic light scattering Static light scattering measures time-average intensities (mean square fluctuations) molecular weight radius of gyration second virial coefficient Dynamic

More information

CIE Biology A-level Topic 15: Control and coordination

CIE Biology A-level Topic 15: Control and coordination CIE Biology A-level Topic 15: Control and coordination Notes Neuron structure The nerve cells called neurones play an important role in coordinating communication within the nervous system. The structure

More information

Mitosis, development, regeneration and cell differentiation

Mitosis, development, regeneration and cell differentiation Mitosis, development, regeneration and cell differentiation Mitosis is a type of cell division by binary fission (splitting in two) which occurs in certain eukaryotic cells. Mitosis generates new body

More information

LAB 3 - VELOCITY AND ACCELERATION

LAB 3 - VELOCITY AND ACCELERATION Name Date Partners L03-1 LAB 3 - VELOCITY AND ACCELERATION OBJECTIVES A cheetah can accelerate from 0 to 50 miles per hour in 6.4 seconds. Encyclopedia of the Animal World A Jaguar can accelerate from

More information

Bioelectricity Prof. Mainak Das Department of Biological Sciences, and Bioengineering Indian Institute of Technology, Kanpur.

Bioelectricity Prof. Mainak Das Department of Biological Sciences, and Bioengineering Indian Institute of Technology, Kanpur. Bioelectricity Prof. Mainak Das Department of Biological Sciences, and Bioengineering Indian Institute of Technology, Kanpur Lecture 17 Welcome back to the bioelectricity lecture, series. So, in the last

More information

AP Biology. Biology is the only subject in which multiplication is the same thing as division. The Cell Cycle: Cell Growth, Cell Division

AP Biology. Biology is the only subject in which multiplication is the same thing as division. The Cell Cycle: Cell Growth, Cell Division QuickTime and and a TIFF TIFF (Uncompressed) decompressor are are needed needed to to see see this this picture. picture. Biology is the only subject in which multiplication is the same thing as division

More information

Atomic Motion and Interactions

Atomic Motion and Interactions Atomic Motion and Interactions 1. Handout: Unit Notes 2. Have You Seen an Atom Lately? 1. Lab: Oil Spreading on Water 2. Demo: Computer animation of spreading oil 3. Lab: Mixing Alcohol and Water 4. Demo:

More information

NEURONS, SENSE ORGANS, AND NERVOUS SYSTEMS CHAPTER 34

NEURONS, SENSE ORGANS, AND NERVOUS SYSTEMS CHAPTER 34 NEURONS, SENSE ORGANS, AND NERVOUS SYSTEMS CHAPTER 34 KEY CONCEPTS 34.1 Nervous Systems Are Composed of Neurons and Glial Cells 34.2 Neurons Generate Electric Signals by Controlling Ion Distributions 34.3

More information

4.4 Tensegrity model for the cytoskeleton

4.4 Tensegrity model for the cytoskeleton 4.4 Tensegrity model for the cytoskeleton Why is the cell membrane model of the previous section not sufficient to charcterize cells like fibroblasts? What is the fundamental difference between a red blood

More information

friction friction a-b slow fast increases during sliding

friction friction a-b slow fast increases during sliding µ increases during sliding faster sliding --> stronger fault --> slows sliding leads to stable slip: no earthquakes can start velocity-strengthening friction slow fast µ velocity-strengthening friction

More information

Introduction to Cells

Introduction to Cells Life Science Introduction to Cells All life forms on our planet are made up of cells. In ALL organisms, cells have the same basic structure. The scientist Robert Hooke was the first to see cells under

More information

Theory of Everything by Illusion 2.0

Theory of Everything by Illusion 2.0 Theory of Everything by Illusion 2.0 Kimmo Rouvari September 25, 2015 Abstract Theory of Everything is The Holy Grail in physics. Physicists and like all over the world have searched the theory for a very

More information

Use separation of variables to solve the following differential equations with given initial conditions. y 1 1 y ). y(y 1) = 1

Use separation of variables to solve the following differential equations with given initial conditions. y 1 1 y ). y(y 1) = 1 Chapter 11 Differential Equations 11.1 Use separation of variables to solve the following differential equations with given initial conditions. (a) = 2ty, y(0) = 10 (b) = y(1 y), y(0) = 0.5, (Hint: 1 y(y

More information

From coronal mass ejections to mouse keratinocytes

From coronal mass ejections to mouse keratinocytes From coronal mass ejections to mouse keratinocytes By Robin Thompson Supervised by Dr Ruth Baker and Christian Yates, Centre for Mathematical Biology (University of Oxford) Where it all began... Find a

More information

Unit B: Cells and Systems

Unit B: Cells and Systems Unit B: Cells and Systems Topic 4: Fluid Movement in Cells The Cell Membrane A cell membrane allows some to enter or leave the cell, while stopping other substances. It is a selectively membrane. (A permeable

More information

Understanding Cell Motion and Electrotaxis with Computational Methods

Understanding Cell Motion and Electrotaxis with Computational Methods Understanding Cell Motion and Electrotaxis with Computational Methods Blake Cook 15th of February, 2018 Outline 1 Biological context 2 Image analysis 3 Modelling membrane dynamics 4 Discussion Outline

More information

SUPPLEMENTARY MATERIALS. Rigidity Sensing : A Single Cell Acts as a Muscle

SUPPLEMENTARY MATERIALS. Rigidity Sensing : A Single Cell Acts as a Muscle SUPPLEMENTARY MATERIALS Rigidity Sensing : A Single Cell Acts as a Muscle Mitrossilis D., Fouchard J., Guiroy A., Desprat N., Rodriguez N., Fabry B., Asnacios A. Laboratoire Matière et Systèmes Complexes

More information

I. Specialization. II. Autonomous signals

I. Specialization. II. Autonomous signals Multicellularity Up to this point in the class we have been discussing individual cells, or, at most, populations of individual cells. But some interesting life forms (for example, humans) consist not

More information

4 Conservation of Energy

4 Conservation of Energy CHAPTER 13 4 Conservation of Energy SECTION Work and Energy KEY IDEAS As you read this section, keep these questions in mind: How can energy change from one form to another? What is the law of conservation

More information

A. The Cell: The Basic Unit of Life. B. Prokaryotic Cells. D. Organelles that Process Information. E. Organelles that Process Energy

A. The Cell: The Basic Unit of Life. B. Prokaryotic Cells. D. Organelles that Process Information. E. Organelles that Process Energy The Organization of Cells A. The Cell: The Basic Unit of Life Lecture Series 4 The Organization of Cells B. Prokaryotic Cells C. Eukaryotic Cells D. Organelles that Process Information E. Organelles that

More information

The Extraordinary Properties of Water

The Extraordinary Properties of Water The Extraordinary Properties of Water Chemical Elements and Water Elements Substances that cannot be broken down into different components by chemical means Atoms The smallest particle of an element, Protons

More information

Newton s Third Law. Lecture 9. Chapter 7. Physics I. Course website:

Newton s Third Law. Lecture 9. Chapter 7. Physics I. Course website: Lecture 9 Physics I Chapter 7 Newton s Third Law Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Today we are going to discuss: Chapter 7: Some leftover (Ch.6) Interacting Objects:

More information

SNAP Centre Workshop. Solving Systems of Equations

SNAP Centre Workshop. Solving Systems of Equations SNAP Centre Workshop Solving Systems of Equations 35 Introduction When presented with an equation containing one variable, finding a solution is usually done using basic algebraic manipulation. Example

More information

BENJAMIN R. PLUMRIDGE DEPARTMENT OF MATHEMATICS WEST CHESTER UNIVERSITY DEVELOPMENT OF A MODEL OF DORSAL CLOSURE

BENJAMIN R. PLUMRIDGE DEPARTMENT OF MATHEMATICS WEST CHESTER UNIVERSITY DEVELOPMENT OF A MODEL OF DORSAL CLOSURE BENJAMIN R. PLUMRIDGE DEPARTMENT OF MATHEMATICS WEST CHESTER UNIVERSITY DEVELOPMENT OF A MODEL OF DORSAL CLOSURE OUTLINE What is dorsal closure? Research goals Model development Simulation results and

More information

Quiz 1: Cells and Cell Structures

Quiz 1: Cells and Cell Structures Quiz 1: Cells and Cell Structures 1. Identify the structures in the diagram. (3 marks) 2. List the 3 cell structures not found in animal cells but are found in plants cells. (1 mark) 3. Where is DNA found

More information

2010 F=ma Solutions. that is

2010 F=ma Solutions. that is 2010 F=ma Solutions 1. The slope of a position vs time graph gives the velocity of the object So you can see that the position from B to D gives the steepest slope, so the speed is the greatest in that

More information

Introductory Physics, High School Learning Standards for a Full First-Year Course

Introductory Physics, High School Learning Standards for a Full First-Year Course Introductory Physics, High School Learning Standards for a Full First-Year Course I. C ONTENT S TANDARDS Central Concept: Newton s laws of motion and gravitation describe and predict the motion of 1.1

More information

Physiology Unit 2. MEMBRANE POTENTIALS and SYNAPSES

Physiology Unit 2. MEMBRANE POTENTIALS and SYNAPSES Physiology Unit 2 MEMBRANE POTENTIALS and SYNAPSES Neuron Communication Neurons are stimulated by receptors on dendrites and cell bodies (soma) Ligand gated ion channels GPCR s Neurons stimulate cells

More information

Physics 201 Lecture 16

Physics 201 Lecture 16 Physics 01 Lecture 16 Agenda: l Review for exam Lecture 16 Newton s Laws Three blocks are connected on the table as shown. The table has a coefficient of kinetic friction of 0.350, the masses are m 1 =

More information

MTH 2032 Semester II

MTH 2032 Semester II MTH 232 Semester II 2-2 Linear Algebra Reference Notes Dr. Tony Yee Department of Mathematics and Information Technology The Hong Kong Institute of Education December 28, 2 ii Contents Table of Contents

More information

Day 1 Let's Explore! *Recording Chart on Next Slide

Day 1 Let's Explore! *Recording Chart on Next Slide Day 1 Let's Explore! *Recording Chart on Next Slide *Copy in Science notebook. Which Hits First Objects Hypothesis Results BB vs G BB vs W BB vs PP BB vs T G vs W G vs PP G vs T W vs PP W vs T PP vs T

More information

Specialized Cells, Tissues, Organs and Organ Systems. Chap 2, p. 67 Chap 9, p. 295 Chap 14, p

Specialized Cells, Tissues, Organs and Organ Systems. Chap 2, p. 67 Chap 9, p. 295 Chap 14, p Specialized Cells, Tissues, Organs and Organ Systems Chap 2, p. 67 Chap 9, p. 295 Chap 14, p. 468-471 2. I. Cell (Review) basic unit of structure and function in a living thing. They carry out the processes

More information

Wheel and Axle. Author: Joseph Harrison. Research Ans Aerospace Engineering 1 Expert, Monash University

Wheel and Axle. Author: Joseph Harrison. Research Ans Aerospace Engineering 1 Expert, Monash University Wheel and Axle Author: Joseph Harrison British Middle-East Center for studies & Research info@bmcsr.com http:// bmcsr.com Research Ans Aerospace Engineering 1 Expert, Monash University Introduction A solid

More information

Linear Second-Order Differential Equations LINEAR SECOND-ORDER DIFFERENTIAL EQUATIONS

Linear Second-Order Differential Equations LINEAR SECOND-ORDER DIFFERENTIAL EQUATIONS 11.11 LINEAR SECOND-ORDER DIFFERENTIAL EQUATIONS A Spring with Friction: Damped Oscillations The differential equation, which we used to describe the motion of a spring, disregards friction. But there

More information

Impedance. Reactance. Capacitors

Impedance. Reactance. Capacitors Impedance Ohm's law describes the relationship between current and voltage in circuits that are in equilibrium- that is, when the current and voltage are not changing. When we have a situation where the

More information

Chapter 9: Systems of Equations and Inequalities

Chapter 9: Systems of Equations and Inequalities Chapter 9: Systems of Equations and Inequalities 9. Systems of Equations Solve the system of equations below. By this we mean, find pair(s) of numbers (x, y) (if possible) that satisfy both equations.

More information

Dangerous tsunami threat off U.S. West Coast

Dangerous tsunami threat off U.S. West Coast Earthquakes Ch. 12 Dangerous tsunami threat off U.S. West Coast Earthquakes What is an Earthquake? It s the shaking and trembling of the Earth s crust due to plate movement. The plates move, rocks along

More information

1. The growth of a cancerous tumor can be modeled by the Gompertz Law: dn. = an ln ( )

1. The growth of a cancerous tumor can be modeled by the Gompertz Law: dn. = an ln ( ) 1. The growth of a cancerous tumor can be modeled by the Gompertz Law: ( ) dn b = an ln, (1) dt N where N measures the size of the tumor. (a) Interpret the parameters a and b (both non-negative) biologically.

More information

Pulling forces in Cell Division

Pulling forces in Cell Division Pulling forces in Cell Division Frank Jülicher Max Planck Institute for the Physics of Complex Systems Dresden, Germany Max Planck Institute for the Physics of Complex Systems A. Zumdieck A. J.-Dalmaroni

More information

End-of-Chapter Exercises

End-of-Chapter Exercises End-of-Chapter Exercises For all these exercises, assume that all strings are massless and all pulleys are both massless and frictionless. We will improve our model and learn how to account for the mass

More information

Introductory Physics, High School Learning Standards for a Full First-Year Course

Introductory Physics, High School Learning Standards for a Full First-Year Course Introductory Physics, High School Learning Standards for a Full First-Year Course I. C O N T E N T S T A N D A R D S Central Concept: Newton s laws of motion and gravitation describe and predict the motion

More information

Forces. Unit 2. Why are forces important? In this Unit, you will learn: Key words. Previously PHYSICS 219

Forces. Unit 2. Why are forces important? In this Unit, you will learn: Key words. Previously PHYSICS 219 Previously Remember From Page 218 Forces are pushes and pulls that can move or squash objects. An object s speed is the distance it travels every second; if its speed increases, it is accelerating. Unit

More information

Biophysics Biological soft matter

Biophysics Biological soft matter Biophysics Biological soft matter!"#$%&'(&)%*+,-.& /"#$%("%*+,-.0."122,13$(%4(5+& Biophysics lectures outline Biological soft matter 1. Biopolymers 2. Molecular motors 3. The cytoskeleton Biophysics 1.

More information

Study Resources For Algebra I. Unit 2A Graphs of Quadratic Functions

Study Resources For Algebra I. Unit 2A Graphs of Quadratic Functions Study Resources For Algebra I Unit 2A Graphs of Quadratic Functions This unit examines the graphical behavior of quadratic functions. Information compiled and written by Ellen Mangels, Cockeysville Middle

More information

THE CELL CYCLE & MITOSIS. Asexual Reproduction: Production of genetically identical offspring from a single parent.

THE CELL CYCLE & MITOSIS. Asexual Reproduction: Production of genetically identical offspring from a single parent. THE CELL CYCLE & MITOSIS Asexual Reproduction: Production of genetically identical offspring from a single parent. Sexual Reproduction: The fusion of two separate parent cells that produce offspring with

More information

Skeletal 2 - joints. Puzzle 1 bones

Skeletal 2 - joints. Puzzle 1 bones Puzzle 1 bones Listed below are the names of some of the bones that make up your skeletal system. But the names have been encrypted using a secret code. Can you decipher this code to find out what they

More information