Mechanics of Motor Proteins and the Cytoskeleton Jonathon Howard Chapter 10 Force generation 2 nd part. Andrea and Yinyun April 4 th,2012

Size: px
Start display at page:

Download "Mechanics of Motor Proteins and the Cytoskeleton Jonathon Howard Chapter 10 Force generation 2 nd part. Andrea and Yinyun April 4 th,2012"

Transcription

1 Mechanics of Motor Proteins and the Cytoskeleton Jonathon Howard Chapter 10 Force generation 2 nd part Andrea and Yinyun April 4 th,2012

2 I. Equilibrium Force Reminder: Dissociation constant Critical constant

3 I. Equilibrium Force Reminder: Mechanical Energy : Actin: Microtubule: Dissociation constant: K(F) (Fig 10.3)A compressive force opposing the polymerization of a polymer

4 I. Equilibrium Force Chemical-force equation Equilibrium force chemical potential ( concentration gradient ) is balanced by mechanic potential. interpretation: reversal force. Increasing the force through F_eq will change the direction of polymerization from net growth to net shrinkage.

5 I. Equilibrium Force Prediction of equilibrium force: For actin ~7pN For microtubule~30pn Whether the cytoskeletal filaments are strong enough to exert forces while polymerizing? (for Actin filaments) Answer: L= several microns (for microtubule, 500 time more rigid than actin filaments) both actin filaments and microtubules are rigid enough to support the polymerization forces that are observed in cells.

6 II. Brownian Ratchet model Peskin et al,1993 Figure 10.4, The Brownian ratchet mechanism for force generation by polymerization. The particle is free to diffuse horizontally as shown. It is assumed that additional constraints (not shown) prevent vertical diffusion. Idea: a growing polymer pushing against an opposing force, the particle being pushed undergoes thermal motions sufficiently large to unblock the adjacent filament end and permit subunit

7 II. Brownian Ratchet model Reaction-diffusion equation(1) Comments: (a) steady state requires monomer concentration be constant; (b) assume there is a fixed (large) number of nucleation sites and that growth occurs equally well on all sites.

8 II. Brownian Ratchet model What do we care: elongation rate: Interpretation: (shrinkage rate) is not affected by the applied force, (growth rate) is weighted by the probability that the gap is larger than To find the, we need an expression of, how? Reaction-limited case & Diffusion limited case.

9 II. Brownian Ratchet model (1)Reaction Reaction-limited Polymerization Assume diffusion coefficient D is very large: Growth rate:

10 Example of reaction-limited polymerization Example 10.1 Actin polymerization is fast enough and powerful enough to drive the movement of listeria. Claim: Fastest velocity 1um/s, corresponds to 360 monomer/s. True? using rates from (table 11.1) 15% is free to polymerize (30uM), gives v=1 um/s

11 Example 10.3 Actin polymerization is fast enough in vitro to account for the speed of the acrosomal reaction in sea cucumber sperm. requires In reality, the actin concentration in the acrosomal cup is actually ~3mM Sufficiently high to account for the elongation rate.

12 II. Brownian Ratchet model diffusion-limited polymerization What do you mean by diffusion-limited? Diffusion is slow and the monomer addition rate is very fast => As soon as a gap opens up, a monomer will drop in. if Then Koff is negligible => Growth rate = flux (the rate at which a gap opens up

13 Diffusion-limited Polymerization The rate of gap creation is simply the time it takes the particle to diffuse a distance against the force: this is the mean passage problem of chapter 4(eqn. 4.17). Reminder: How long does it take a molecule to Diffuse through a given distance? We Call this time the first passage time. How long does it take for a molecule To diffuse over an energy barrier at x=x0 When the force is constant, U=-F X.

14 Diffusion-limited Polymerization The rate of gap creation is simply the time it takes the particle to diffuse a distance delta against the force: this is the mean passage problem of chapter 4(eqn. 4.17). (10.4) How long does it take a molecule to Diffuse through a given distance? We Call this time the first passage time. How long does it take for a molecule To diffuse over an energy barrier at x=x0 When the force is constant, U=-F X. Fig 10.5 Dependence of polymerization The diffusion-limited rate is the Reciprocal of the first-passage time.

15 Diffusion-limited Polymerization The rate of gap creation is simply the time it takes the particle to diffuse a distance delta against the force: this is the mean passage problem of chapter 4(eqn. 4.17). (10.4) Drag force for actin: 3pN (equilibrium F:7~8pN) Drag force for microtubule: 13pN(equilibrium F:30pN Fig 10.5 Dependence of polymerization Drag force is independent of viscosity! Because drag force corresponds to the maximum Force inherent to the polymerization Mechanism.

16 Examples of diffusion-limited polymerization Example 10.2 The diffusion limited speed of listeria Measured speed v in water: 0.1~1 um/s, which suggests that listeria s mot may not be diffusion limited. However, if v(cytoplasm) is 1/100 or 1/1000 than that in water, then Speed is reduced by a corresponding factor, 0.36~3.6 um/s, reasonable. Different speeds in different cell types. 3-fold difference could arise from differences in [A_1] if reaction-limited, or to difference in viscosity if diffusion-limited.

17 Other kinetic models Initial state (n-mer) Figure 10.6 Two possible transition rates for polymerization reaction. Kramer-like mechanism (Brownian ratchet model) Eyring-like mechanism (induced fit pathway) Attractive feature of Brownian ratchet model: explicit However: Bacterial motility: purely diffusive mechanism seems less likely.

18 summary Polymerization and depolymerization can generate forces when the monomer concentration differs from the critical concentration. Polymerization is fast enough to account for the polymerization-driven processes, such as the movement of listeria with the cytoplasm and the amoeboid movement of crawling cells.

19 Thanks!

20 II. Brownian Ratchet model Reaction-diffusion equation (2) Question: How to solve it and what do we want? Answer: Elongation rate. Gap flux is zero at the boundaries (There is no sinks and sources).

21 II. Brownian Ratchet model diffusion-limited polymerization Then Koff is negaligible => Growth rate = flux (the rate at which a gap opens up

22 Equations needed.

monomer polymer polymeric network cell

monomer polymer polymeric network cell 3.1 Motivation 3.2 Polymerization The structural stability of the cell is provided by the cytoskeleton. Assembling and disassembling dynamically, the cytoskeleton enables cell movement through a highly

More information

Polymerization/depolymerization motors

Polymerization/depolymerization motors Polymerization/depolymerization motors Movement formation Kuo Lab, J.H.U. http://www.nature.com/nature/journal/v407/n6807/extref/40 71026a0_S3.mov http://www.bme.jhu.edu/~skuo/movies/macrophchase.mov http://www.bme.jhu.edu/~skuo/movies/gc_filo.mov

More information

BME Engineering Molecular Cell Biology. Basics of the Diffusion Theory. The Cytoskeleton (I)

BME Engineering Molecular Cell Biology. Basics of the Diffusion Theory. The Cytoskeleton (I) BME 42-620 Engineering Molecular Cell Biology Lecture 07: Basics of the Diffusion Theory The Cytoskeleton (I) BME42-620 Lecture 07, September 20, 2011 1 Outline Diffusion: microscopic theory Diffusion:

More information

Polymerization of Cytoskeletal Filaments. Rami Amro Instructor: Dr.Alexander Neiman

Polymerization of Cytoskeletal Filaments. Rami Amro Instructor: Dr.Alexander Neiman Polymerization of Cytoskeletal Filaments Rami Amro Instructor: Dr.Alexander Neiman properties Actin filaments range in length: ~35 nm in Cortex of erythrocytes and other cells 10-100 nm in the stereocilia

More information

Introduction to Polymerization Kinetics

Introduction to Polymerization Kinetics Introduction to Polymerization Kinetics Perspecties The cytoskeletal biopolymers are largely semi-rigid rods on typical size scale of cells. We here examine their assembly kinetics in free polymerization

More information

Polymerization and force generation

Polymerization and force generation Polymerization and force generation by Eric Cytrynbaum April 8, 2008 Equilibrium polymer in a box An equilibrium polymer is a polymer has no source of extraneous energy available to it. This does not mean

More information

Lecture 7 : Molecular Motors. Dr Eileen Nugent

Lecture 7 : Molecular Motors. Dr Eileen Nugent Lecture 7 : Molecular Motors Dr Eileen Nugent Molecular Motors Energy Sources: Protonmotive Force, ATP Single Molecule Biophysical Techniques : Optical Tweezers, Atomic Force Microscopy, Single Molecule

More information

Neurite formation & neuronal polarization

Neurite formation & neuronal polarization Neurite formation & neuronal polarization Paul Letourneau letou001@umn.edu Chapter 16; The Cytoskeleton; Molecular Biology of the Cell, Alberts et al. 1 An immature neuron in cell culture first sprouts

More information

BME Engineering Molecular Cell Biology. Review: Basics of the Diffusion Theory. The Cytoskeleton (I)

BME Engineering Molecular Cell Biology. Review: Basics of the Diffusion Theory. The Cytoskeleton (I) BME 42-620 Engineering Molecular Cell Biology Lecture 08: Review: Basics of the Diffusion Theory The Cytoskeleton (I) BME42-620 Lecture 08, September 22, 2011 1 Outline Background: FRAP & SPT Review: microscopic

More information

For slowly varying probabilities, the continuum form of these equations is. = (r + d)p T (x) (u + l)p D (x) ar x p T(x, t) + a2 r

For slowly varying probabilities, the continuum form of these equations is. = (r + d)p T (x) (u + l)p D (x) ar x p T(x, t) + a2 r 3.2 Molecular Motors A variety of cellular processes requiring mechanical work, such as movement, transport and packaging material, are performed with the aid of protein motors. These molecules consume

More information

Neurite formation & neuronal polarization. The cytoskeletal components of neurons have characteristic distributions and associations

Neurite formation & neuronal polarization. The cytoskeletal components of neurons have characteristic distributions and associations Mechanisms of neuronal migration & Neurite formation & neuronal polarization Paul Letourneau letou001@umn.edu Chapter 16; The Cytoskeleton; Molecular Biology of the Cell, Alberts et al. 1 The cytoskeletal

More information

On the stall force for growing microtubules

On the stall force for growing microtubules Eur Biophys J (2000) 29: 2±6 Ó Springer-Verlag 2000 ARTICLE G. Sander van Doorn á Catalin Tanase á Bela M. Mulder Marileen Dogterom On the stall force for growing microtubules Received: 27 September 1999

More information

Transport of single molecules along the periodic parallel lattices with coupling

Transport of single molecules along the periodic parallel lattices with coupling THE JOURNAL OF CHEMICAL PHYSICS 124 204901 2006 Transport of single molecules along the periodic parallel lattices with coupling Evgeny B. Stukalin The James Franck Institute The University of Chicago

More information

Biophysik der Moleküle!

Biophysik der Moleküle! Biophysik der Moleküle!!"#$%&'()*+,-$./0()'$12$34!4! Molecular Motors:! - linear motors" 6. Dec. 2010! Muscle Motors and Cargo Transporting Motors! There are striking structural similarities but functional

More information

Chapter 16. Cellular Movement: Motility and Contractility. Lectures by Kathleen Fitzpatrick Simon Fraser University Pearson Education, Inc.

Chapter 16. Cellular Movement: Motility and Contractility. Lectures by Kathleen Fitzpatrick Simon Fraser University Pearson Education, Inc. Chapter 16 Cellular Movement: Motility and Contractility Lectures by Kathleen Fitzpatrick Simon Fraser University Two eukaryotic motility systems 1. Interactions between motor proteins and microtubules

More information

Two Tails of Motility in Cells. Andrea J. Liu Department of Physics & Astronomy University of Pennsylvania

Two Tails of Motility in Cells. Andrea J. Liu Department of Physics & Astronomy University of Pennsylvania Two Tails of Motility in Cells Andrea J. Liu Department of Physics & Astronomy University of Pennsylvania Kun-Chun Lee Edward Banigan Gareth Alexander Zemer Gitai Ned Wingreen Biophysics, UC Davis Physics,

More information

1. The plasma membrane of eukaryotic cells is supported by a. actin filaments. b. microtubules. c. lamins. d. intermediate filaments.

1. The plasma membrane of eukaryotic cells is supported by a. actin filaments. b. microtubules. c. lamins. d. intermediate filaments. ANALYSIS AND MODELING OF CELL MECHANICS Homework #2 (due 1/30/13) This homework involves comprehension of key biomechanical concepts of the cytoskeleton, cell-matrix adhesions, and cellcell adhesions.

More information

Anatoly B. Kolomeisky. Department of Chemistry CAN WE UNDERSTAND THE COMPLEX DYNAMICS OF MOTOR PROTEINS USING SIMPLE STOCHASTIC MODELS?

Anatoly B. Kolomeisky. Department of Chemistry CAN WE UNDERSTAND THE COMPLEX DYNAMICS OF MOTOR PROTEINS USING SIMPLE STOCHASTIC MODELS? Anatoly B. Kolomeisky Department of Chemistry CAN WE UNDERSTAND THE COMPLEX DYNAMICS OF MOTOR PROTEINS USING SIMPLE STOCHASTIC MODELS? Motor Proteins Enzymes that convert the chemical energy into mechanical

More information

Does lamellipod slip under cantilever? AFM measurements show that height of lamellipod~ nm

Does lamellipod slip under cantilever? AFM measurements show that height of lamellipod~ nm SMR 1746-7 WORKSHOP ON DRIVEN STATES IN SOFT AND BIOLOGICAL MATTER 18-28 April 2006 New Methods to Study Cell Migration Part II Kenneth JACOBSON University of North Carolina at Chapel Hill, School of Medicine,

More information

Quantitative Analysis of Forces in Cells

Quantitative Analysis of Forces in Cells Quantitative Analysis of Forces in Cells Anders Carlsson Washington University in St Louis Basic properties of forces in cells Measurement methods and magnitudes of particular types of forces: Polymerization

More information

Effects of Nonequilibrium Processes on Actin Polymerization and Force Generation

Effects of Nonequilibrium Processes on Actin Polymerization and Force Generation Effects of Nonequilibrium Processes on Actin Polymerization and Force Generation Anders Carlsson Washington University in St Louis Biological cells constantly utilize the influx of energy mediated by ATP

More information

Chapter 10. Solids and Fluids

Chapter 10. Solids and Fluids Chapter 10 Solids and Fluids Surface Tension Net force on molecule A is zero Pulled equally in all directions Net force on B is not zero No molecules above to act on it Pulled toward the center of the

More information

Neurite initiation. Neurite formation begins with a bud that sprouts from the cell body. One or several neurites can sprout at a time.

Neurite initiation. Neurite formation begins with a bud that sprouts from the cell body. One or several neurites can sprout at a time. Neurite initiation. Neuronal maturation initiation f-actin polarization and maturation tubulin stage 1: "spherical" neuron stage 2: neurons extend several neurites stage 3: one neurite accelerates its

More information

Diffusion in biological systems and Life at low Reynolds number

Diffusion in biological systems and Life at low Reynolds number Diffusion in biological systems and Life at low Reynolds number Aleksandra Radenovic EPFL Ecole Polytechnique Federale de Lausanne Bioengineering Institute Laboratory of Nanoscale Biology Lausanne September

More information

Muscle regulation and Actin Topics: Tropomyosin and Troponin, Actin Assembly, Actin-dependent Movement

Muscle regulation and Actin Topics: Tropomyosin and Troponin, Actin Assembly, Actin-dependent Movement 1 Muscle regulation and Actin Topics: Tropomyosin and Troponin, Actin Assembly, Actin-dependent Movement In the last lecture, we saw that a repeating alternation between chemical (ATP hydrolysis) and vectorial

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C7: BIOLOGICAL PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C7: BIOLOGICAL PHYSICS 2757 SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C7: BIOLOGICAL PHYSICS TRINITY TERM 2011 Monday, 27 June, 9.30 am 12.30 pm Answer

More information

Monte Carlo simulations of rigid biopolymer growth processes

Monte Carlo simulations of rigid biopolymer growth processes THE JOURNAL OF CHEMICAL PHYSICS 123, 124902 2005 Monte Carlo simulations of rigid biopolymer growth processes Jenny Son and G. Orkoulas a Department of Chemical and Biomolecular Engineering, University

More information

The biological motors

The biological motors Motor proteins The definition of motor proteins Miklós Nyitrai, November 30, 2016 Molecular machines key to understand biological processes machines in the micro/nano-world (unidirectional steps): nm,

More information

Mechanical Simulations of cell motility

Mechanical Simulations of cell motility Mechanical Simulations of cell motility What are the overarching questions? How is the shape and motility of the cell regulated? How do cells polarize, change shape, and initiate motility? How do they

More information

Name: Regents Chemistry: Notes: Unit 8 Gases.

Name: Regents Chemistry: Notes: Unit 8 Gases. Name: Regents Chemistry: Notes: Unit 8 Gases 1 Name: KEY IDEAS The concept of an ideal gas is a model to explain the behavior of gases. A real gas is most like an ideal gas when the real gas is at low

More information

Molecular Cell Biology 5068 In Class Exam 1 September 30, Please print your name:

Molecular Cell Biology 5068 In Class Exam 1 September 30, Please print your name: Molecular Cell Biology 5068 In Class Exam 1 September 30, 2014 Exam Number: Please print your name: Instructions: Please write only on these pages, in the spaces allotted and not on the back. Write your

More information

Final exam. Please write your name on the exam and keep an ID card ready. You may use a calculator (but no computer or smart phone) and a dictionary.

Final exam. Please write your name on the exam and keep an ID card ready. You may use a calculator (but no computer or smart phone) and a dictionary. Biophysics of Macromolecules Prof. D. Braun and Prof. J. Lipfert SS 2015 Final exam Final exam Name: Student number ( Matrikelnummer ): Please write your name on the exam and keep an ID card ready. You

More information

ATP Synthase. Proteins as nanomachines. ATP Synthase. Protein physics, Lecture 11. Create proton gradient across. Thermal motion and small objects

ATP Synthase. Proteins as nanomachines. ATP Synthase. Protein physics, Lecture 11. Create proton gradient across. Thermal motion and small objects Proteins as nanomachines Protein physics, Lecture 11 ATP Synthase ATP synthase, a molecular motor Thermal motion and small objects Brownian motors and ratchets Actin and Myosin using random motion to go

More information

Intracellular transport

Intracellular transport Transport in cells Intracellular transport introduction: transport in cells, molecular players etc. cooperation of motors, forces good and bad transport regulation, traffic issues, Stefan Klumpp image

More information

SELF-DIFFUSIOPHORESIS AND BIOLOGICAL MOTILITY. Department of Physics & Astronomy University of Pennsylvania

SELF-DIFFUSIOPHORESIS AND BIOLOGICAL MOTILITY. Department of Physics & Astronomy University of Pennsylvania SELF-DIFFUSIOPHORESIS AND BIOLOGICAL MOTILITY Department of Physics & Astronomy University of Pennsylvania Informal Seminar, University of Oxford, 8th June 2011 ACTIN BASED PROPULSION Listeria monocytogenes

More information

Chemical aspects of the cell. Shape and structure of the cell

Chemical aspects of the cell. Shape and structure of the cell Chemical aspects of the cell Shape and structure of the cell Cellular composition https://www.studyblue.com/ 2 Cellular composition Set of videos with basic information: Cell characteristics: https://www.youtube.com/watch?v=urujd5nexc8

More information

Untangling the Mechanics of Entangled Biopolymers

Untangling the Mechanics of Entangled Biopolymers Untangling the Mechanics of Entangled Biopolymers Rae M. Robertson-Anderson Physics Department University of San Diego students/postdocs: Cole Chapman, PhD Tobias Falzone, PhD Stephanie Gorczyca, USD 16

More information

Physics of Cellular materials: Filaments

Physics of Cellular materials: Filaments Physics of Cellular materials: Filaments Tom Chou Dept. of Biomathematics, UCLA, Los Angeles, CA 995-766 (Dated: December 6, ) The basic filamentary structures in a cell are reviewed. Their basic structures

More information

Physical Pharmacy. Diffusion

Physical Pharmacy. Diffusion Physical Pharmacy Diffusion Diffusion Diffusion is defined as a process of mass transfer of individual molecules of a substance brought about by random molecular motion and associated with a driving force

More information

BE/APh161 Physical Biology of the Cell. Rob Phillips Applied Physics and Bioengineering California Institute of Technology

BE/APh161 Physical Biology of the Cell. Rob Phillips Applied Physics and Bioengineering California Institute of Technology BE/APh161 Physical Biology of the Cell Rob Phillips Applied Physics and Bioengineering California Institute of Technology Cells Decide: Where to Go The Hunters of the Immune Response (Berman et al.) There

More information

NIH Public Access Author Manuscript J Phys Condens Matter. Author manuscript; available in PMC 2014 November 20.

NIH Public Access Author Manuscript J Phys Condens Matter. Author manuscript; available in PMC 2014 November 20. NIH Public Access Author Manuscript Published in final edited form as: J Phys Condens Matter. 2013 November 20; 25(46):. doi:10.1088/0953-8984/25/46/463101. Motor Proteins and Molecular Motors: How to

More information

Molecular Driving Forces

Molecular Driving Forces Molecular Driving Forces Statistical Thermodynamics in Chemistry and Biology SUBGfittingen 7 At 216 513 073 / / Ken A. Dill Sarina Bromberg With the assistance of Dirk Stigter on the Electrostatics chapters

More information

Nuclear Functional Organization

Nuclear Functional Organization Lecture #4 The Cell as a Machine Nuclear Functional Organization Background readings from Chapters 4 of Alberts et al. Molecular Biology of the Cell (4 th Edition) Description of Functions by Biosystems

More information

Newton s First Law of Motion. Newton s Second Law of Motion. Weight 9/30/2015

Newton s First Law of Motion. Newton s Second Law of Motion. Weight 9/30/2015 Forces Newton s Three Laws of Motion Types of Forces Weight Friction Terminal Velocity Periodic Motion Forces Defined as a push or a pull Types of Forces 1) Gravitational - attractive force that exists

More information

Cvičení 3: MOVEMENT AND IRRITATION Name: BROWNIAN MOLECULAR MOTION

Cvičení 3: MOVEMENT AND IRRITATION Name: BROWNIAN MOLECULAR MOTION Cvičení 3: MOVEMENT AND IRRITATION Name: Group: BROWNIAN MOLECULAR MOTION Place a drop of ferric oxide suspension onto a slide and cover it. Observe one small moving particle and draw trajectory of its

More information

Cytokinesis in fission yeast: Modeling the assembly of the contractile ring

Cytokinesis in fission yeast: Modeling the assembly of the contractile ring Cytokinesis in fission yeast: Modeling the assembly of the contractile ring Nikola Ojkic, Dimitrios Vavylonis Department of Physics, Lehigh University Damien Laporte, Jian-Qiu Wu Department of Molecular

More information

Lecture 1: Introduction. Keywords: Mathematics as a language, Need of learning mathematics, Applications of mathematics in BIology

Lecture 1: Introduction. Keywords: Mathematics as a language, Need of learning mathematics, Applications of mathematics in BIology NPTEL Syllabus Biomathematics - Video course COURSE OUTLINE Graphs and functions, Derivative of a function, Techniques of differentiation Differentiation and its application in Biology, Finding maxima,

More information

Supplementary Methods

Supplementary Methods Supplementary Methods Modeling of magnetic field In this study, the magnetic field was generated with N52 grade nickel-plated neodymium block magnets (K&J Magnetics). The residual flux density of the magnets

More information

Sec. 2.1 Filaments in the cell 21 PART I - RODS AND ROPES

Sec. 2.1 Filaments in the cell 21 PART I - RODS AND ROPES Sec. 2.1 Filaments in the cell 21 PART I - RODS AND ROPES Sec. 2.1 Filaments in the cell 22 CHAPTER 2 - POLYMERS The structural elements of the cell can be broadly classified as filaments or sheets, where

More information

Molecular Motors. Structural and Mechanistic Overview! Kimberly Nguyen - December 6, 2013! MOLECULAR MOTORS - KIMBERLY NGUYEN

Molecular Motors. Structural and Mechanistic Overview! Kimberly Nguyen - December 6, 2013! MOLECULAR MOTORS - KIMBERLY NGUYEN Molecular Motors Structural and Mechanistic Overview!! Kimberly Nguyen - December 6, 2013!! 1 Molecular Motors: A Structure and Mechanism Overview! Introduction! Molecular motors are fundamental agents

More information

BIO 311C Spring 2010

BIO 311C Spring 2010 BIO 311C Spring 2010 Prokaryotic cells contain structures that are very similar to structures of the eukaryotic cytoskeleton. Prokaryotic cytoskeletal elements are required for cell division, maintaining

More information

Supplementary Information

Supplementary Information Supplementary Information Switching of myosin-v motion between the lever-arm swing and Brownian search-and-catch Keisuke Fujita 1*, Mitsuhiro Iwaki 2,3*, Atsuko H. Iwane 1, Lorenzo Marcucci 1 & Toshio

More information

Isothermal experiments characterize time-dependent aggregation and unfolding

Isothermal experiments characterize time-dependent aggregation and unfolding 1 Energy Isothermal experiments characterize time-dependent aggregation and unfolding Technical ote Introduction Kinetic measurements have, for decades, given protein scientists insight into the mechanisms

More information

Life is Cellular Section 7.1

Life is Cellular Section 7.1 Life is Cellular Section 7.1 Objectives Understand Cell theory Distinguish between prokaryotes and eukaryotes Understand different types of microscopy, and how they work in more detail What is a Cell?

More information

Acto-myosin: from muscles to single molecules. Justin Molloy MRC National Institute for Medical Research LONDON

Acto-myosin: from muscles to single molecules. Justin Molloy MRC National Institute for Medical Research LONDON Acto-myosin: from muscles to single molecules. Justin Molloy MRC National Institute for Medical Research LONDON Energy in Biological systems: 1 Photon = 400 pn.nm 1 ATP = 100 pn.nm 1 Ion moving across

More information

Guided Reading Activities

Guided Reading Activities Name Period Chapter 4: A Tour of the Cell Guided Reading Activities Big Idea: Introduction to the Cell Answer the following questions as you read Modules 4.1 4.4: 1. A(n) uses a beam of light to illuminate

More information

Pulling forces in Cell Division

Pulling forces in Cell Division Pulling forces in Cell Division Frank Jülicher Max Planck Institute for the Physics of Complex Systems Dresden, Germany Max Planck Institute for the Physics of Complex Systems A. Zumdieck A. J.-Dalmaroni

More information

Molecular Motors. Dave Wee 24 Sept Mathematical & Theoretical Biology Seminar

Molecular Motors. Dave Wee 24 Sept Mathematical & Theoretical Biology Seminar Molecular Motors Dave Wee 24 Sept 2003 Mathematical & Theoretical Biology Seminar Overview Types of motors and their working mechanisms. Illustrate the importance of motors using the example of : ATP-Synthase

More information

A theoretical analysis of filament length fluctuations in actin and other polymers

A theoretical analysis of filament length fluctuations in actin and other polymers Journal of Mathematical Biology manuscript No. (will be inserted by the editor) Jifeng Hu Hans G. Othmer A theoretical analysis of filament length fluctuations in actin and other polymers c Springer-Verlag

More information

Evidence that Cytochalasin B depolymerizes F-actin filaments involved in. Pseudopod formation in Amoeba proteus

Evidence that Cytochalasin B depolymerizes F-actin filaments involved in. Pseudopod formation in Amoeba proteus Evidence that Cytochalasin B depolymerizes F-actin filaments involved in Pseudopod formation in Amoeba proteus Ali Hussain Independent Research Project Report Biology 219 Cell Biology, Wheaton College,

More information

Cell Motility Driven by Actin Polymerization

Cell Motility Driven by Actin Polymerization 3030 Cell Motility Driven by Actin Polymerization Biophysical Journal Volume 71 December 1996 30303045 Alexander Mogilner* and George Oster# *Department of Mathematics, University of California, Davis,

More information

Plasmid Segregation: Is a Total Understanding Within Reach?

Plasmid Segregation: Is a Total Understanding Within Reach? Plasmid Segregation: Is a Total Understanding Within Reach? The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters. Citation Published

More information

Motor Proteins as Nanomachines: The Roles of Thermal Fluctuations in Generating Force and Motion

Motor Proteins as Nanomachines: The Roles of Thermal Fluctuations in Generating Force and Motion Séminaire Poincaré XII (2009) 33 44 Séminaire Poincaré Motor Proteins as Nanomachines: The Roles of Thermal Fluctuations in Generating Force and Motion Jonathon Howard Max Planck Institute of Molecular

More information

Elasticity of biological gels

Elasticity of biological gels Seminar II Elasticity of biological gels Author: Gašper Gregorič Mentor: assoc. prof. Primož Ziherl Ljubljana, February 2014 Abstract In the seminar we discuss the elastic behavior of biological gels,

More information

2. At quasi-steady state or equilibrium, the net in-flux of the carrier-substrate complex CS is balanced by the net out-flux of the free carrier C.

2. At quasi-steady state or equilibrium, the net in-flux of the carrier-substrate complex CS is balanced by the net out-flux of the free carrier C. Facilitated Transport Instructor: Nam un Wang facilitmcd Process escription In facilitated transport, a carrier molecule C binds to the substrate to form a carrier-substrate complex C at the outer side

More information

Molecular Machines and Enzymes

Molecular Machines and Enzymes Molecular Machines and Enzymes Principles of functioning of molecular machines Enzymes and catalysis Molecular motors: kinesin 1 NB Queste diapositive sono state preparate per il corso di Biofisica tenuto

More information

Biomolecular Motors: Topology in Biology, Structural Integration. and Emergence of Functions

Biomolecular Motors: Topology in Biology, Structural Integration. and Emergence of Functions Biotopology: 4 th July 2014 To understand the basic concepts of Topology from the viewpoint of Biology and To focus on natural topological phenomena Biomolecular Motors: Topology in Biology, Structural

More information

Regulation of Actin Dynamics in Rapidly Moving Cells: A Quantitative Analysis

Regulation of Actin Dynamics in Rapidly Moving Cells: A Quantitative Analysis Biophysical Journal Volume 83 September 2002 1237 1258 1237 Regulation of Actin Dynamics in Rapidly Moving Cells: A Quantitative Analysis Alex Mogilner* and Leah Edelstein-Keshet *Department of Mathematics

More information

Active Biological Materials

Active Biological Materials Annu. Rev. Phys. Chem. 2009. 60:469 86 First published online as a Review in Advance on December 2, 2008 The Annual Review of Physical Chemistry is online at physchem.annualreviews.org This article s doi:

More information

A Model for Integrin Binding in Cells

A Model for Integrin Binding in Cells A Model for Integrin Binding in Cells By: Kara Huyett Advisor: Doctor Stolarska 31 st of August, 2015 Cell movement, and cell crawling in particular, has implications in various biological phenomena. For

More information

A Poroelastic Immersed Boundary Method with Applications to Cell Biology

A Poroelastic Immersed Boundary Method with Applications to Cell Biology A Poroelastic Immersed Boundary Method with Applications to Cell Biology Wanda Strychalski a,, Calina A. Copos b, Owen L. Lewis b, Robert D. Guy b a Department of Mathematics, Applied Mathematics, and

More information

Cells to Tissues. Peter Takizawa Department of Cell Biology

Cells to Tissues. Peter Takizawa Department of Cell Biology Cells to Tissues Peter Takizawa Department of Cell Biology From one cell to ensembles of cells. Multicellular organisms require individual cells to work together in functional groups. This means cells

More information

High Specificity and Reversibility

High Specificity and Reversibility Lecture #8 The Cell as a Machine High Specificity and Reversibility In considering the problem of transcription factor binding in the nucleus and the great specificity that is called for to transcribe

More information

APh150: Physics of Biological Structure and Function

APh150: Physics of Biological Structure and Function APh150: Physics of Biological Structure and Function Winter 2003 When: To be determined Who: You and me (Rob Phillips, x 3374, phillips@aero.caltech.edu, 221 Steele) Where: 104 Watson What: See below!

More information

Cell motility driven by actin polymerization

Cell motility driven by actin polymerization Cell motility driven by actin polymerization Alexander Mogilner *, George Oster * Department of Mathematics, University of California, Davis, CA 95616, mogilner@ucdmath.ucdavis.edu Department of Molecular

More information

A Theoretical Approach to Actin Filament Dynamics

A Theoretical Approach to Actin Filament Dynamics Journal of Statistical Physics ( C 2006 ) DOI: 10.1007/s10955-006-9204-x A Theoretical Approach to Actin Filament Dynamics Jifeng Hu, 1 Anastasios Matzavinos 1 and Hans G. Othmer 1,2 Received February

More information

Possible mechanisms for initiating macroscopic left-right asymmetry in developing organisms

Possible mechanisms for initiating macroscopic left-right asymmetry in developing organisms Possible mechanisms for initiating macroscopic left-right asymmetry in developing organisms Chris Henley, Ricky Chachra, Jimmy Shen Cornell U. [Support: U.S. Dept. of Energy] APS March Meeting, Mar. 2,

More information

Name Lesson 7. Homework Work and Energy Problem Solving Outcomes

Name Lesson 7. Homework Work and Energy Problem Solving Outcomes Physics 1 Name Lesson 7. Homework Work and Energy Problem Solving Outcomes Date 1. Define work. 2. Define energy. 3. Determine the work done by a constant force. Period 4. Determine the work done by a

More information

9 Generation of Action Potential Hodgkin-Huxley Model

9 Generation of Action Potential Hodgkin-Huxley Model 9 Generation of Action Potential Hodgkin-Huxley Model (based on chapter 12, W.W. Lytton, Hodgkin-Huxley Model) 9.1 Passive and active membrane models In the previous lecture we have considered a passive

More information

Question 1: What are the factors affecting the rate of diffusion? Diffusion is the passive movement of substances from a region of higher concentration to a region of lower concentration. Diffusion of

More information

The ability to determine protein structure has made great advances in recent years

The ability to determine protein structure has made great advances in recent years Weighted-Ensemble Brownian Dynamics Simulation Amanda McCoy, Harvard University Daniel M. Zuckerman, Ph.D., University of Pittsburgh, Department of Computational Biology I. Introduction The ability to

More information

Motility and Force Generation Based on the Dynamics of Actin Gels

Motility and Force Generation Based on the Dynamics of Actin Gels Aus der Universität Bayreuth Motility and Force Generation Based on the Dynamics of Actin Gels Dissertation zur Erlangung des akademischen Grades Doktor der Naturwissenschaften Dr. rer. nat. im Fach Chemie

More information

Molecular Motors: Examples

Molecular Motors: Examples This is page 356 Printer: Opaque this CHAPTER 13 Molecular Motors: Examples 13.1 Switching in the bacterial ßagellar motor As an example of the numerical algorithm developed in the previous chapter, we

More information

Model Solutions Spring 2003

Model Solutions Spring 2003 Exam I BE.462J/3.962J Model Solutions Spring 2003 (60 points total) 1. (5 points) Explain the following observation: autocatalysis generally has a smaller influence on the degradation rate of surface-eroding

More information

Dynamics of an inchworm nano walker

Dynamics of an inchworm nano walker Dynamics of an inchworm nano walker A. Ciudad a, J.M. Sancho a A.M. Lacasta b a Departament d Estructura i Constituents de la Matèria, Facultat de Física, Universitat de Barcelona, Diagonal 647, E-08028

More information

Supplementary Figures:

Supplementary Figures: Supplementary Figures: Supplementary Figure 1: Simulations with t(r) 1. (a) Snapshots of a quasi- 2D actomyosin droplet crawling along the treadmilling direction (to the right in the picture). There is

More information

Physics B Newton s Laws AP Review Packet

Physics B Newton s Laws AP Review Packet Force A force is a push or pull on an object. Forces cause an object to accelerate To speed up To slow down To change direction Unit: Newton (SI system) Newton s First Law The Law of Inertia. A body in

More information

Biological motors 18.S995 - L10

Biological motors 18.S995 - L10 Biological motors 18.S995 - L1 Reynolds numbers Re = UL µ = UL m the organism is mo E.coli (non-tumbling HCB 437) Drescher, Dunkel, Ganguly, Cisneros, Goldstein (211) PNAS Bacterial motors movie: V. Kantsler

More information

Mathematics of cell motility: have we got its number?

Mathematics of cell motility: have we got its number? J. Math. Biol. (2009) 58:105 134 DOI 10.1007/s00285-008-0182-2 Mathematical Biology Mathematics of cell motility: have we got its number? Alex Mogilner Received: 12 July 2007 / Revised: 15 April 2008 /

More information

MSP dynamics drives nematode sperm locomotion

MSP dynamics drives nematode sperm locomotion Revised: 8/8/04 MSP dynamics drives nematode sperm locomotion Charles W. Wolgemuth *, Long Miao, Orion Vanderlinde, Tom Roberts, George Oster * University of Connecticut Health Center, Department of Cell

More information

Physics A - PHY 2048C

Physics A - PHY 2048C Kinetic Mechanical Physics A - PHY 2048C and 11/01/2017 My Office Hours: Thursday 2:00-3:00 PM 212 Keen Building Warm-up Questions Kinetic Mechanical 1 How do you determine the direction of kinetic energy

More information

MOLECULAR MOTORS. The miracle of motion. Primož Dolenc Adviser: Dr. Andrej Vilfan

MOLECULAR MOTORS. The miracle of motion. Primož Dolenc Adviser: Dr. Andrej Vilfan MOLECULAR MOTORS The miracle of motion Primož Dolenc Adviser: Dr. Andrej Vilfan University of Ljubljana Faculty of Mathematics and Physics February 006 Abstract Biological motion from the contraction of

More information

Force Generation by Actin Polymerization II: The Elastic Ratchet and Tethered Filaments

Force Generation by Actin Polymerization II: The Elastic Ratchet and Tethered Filaments Biophysical Journal Volume 84 March 2003 1591 1605 1591 Force Generation by Actin Polymerization II: The Elastic Ratchet and Tethered Filaments Alex Mogilner* and George Oster y *Department of Mathematics

More information

The neuron as a secretory cell

The neuron as a secretory cell The neuron as a secretory cell EXOCYTOSIS ENDOCYTOSIS The secretory pathway. Transport and sorting of proteins in the secretory pathway occur as they pass through the Golgi complex before reaching the

More information

Biasing Brownian motion from thermal ratchets

Biasing Brownian motion from thermal ratchets Mayra Vega MAE 216- Statistical Thermodynamics June 18, 2012 Introduction Biasing Brownian motion from thermal ratchets Brownian motion is the random movement of small particles however, by understanding

More information

Explaining and modelling the rheology of polymeric fluids with the kinetic theory

Explaining and modelling the rheology of polymeric fluids with the kinetic theory Explaining and modelling the rheology of polymeric fluids with the kinetic theory Dmitry Shogin University of Stavanger The National IOR Centre of Norway IOR Norway 2016 Workshop April 25, 2016 Overview

More information

After lectures by. disappearance of reactants or appearance of. measure a reaction rate we monitor the. Reaction Rates (reaction velocities): To

After lectures by. disappearance of reactants or appearance of. measure a reaction rate we monitor the. Reaction Rates (reaction velocities): To Revised 3/21/2017 After lectures by Dr. Loren Williams (GeorgiaTech) Protein Folding: 1 st order reaction DNA annealing: 2 nd order reaction Reaction Rates (reaction velocities): To measure a reaction

More information

BMB Class 17, November 30, Single Molecule Biophysics (II)

BMB Class 17, November 30, Single Molecule Biophysics (II) BMB 178 2018 Class 17, November 30, 2018 15. Single Molecule Biophysics (II) New Advances in Single Molecule Techniques Atomic Force Microscopy Single Molecule Manipulation - optical traps and tweezers

More information

Chapter 1. DNA is made from the building blocks adenine, guanine, cytosine, and. Answer: d

Chapter 1. DNA is made from the building blocks adenine, guanine, cytosine, and. Answer: d Chapter 1 1. Matching Questions DNA is made from the building blocks adenine, guanine, cytosine, and. Answer: d 2. Matching Questions : Unbranched polymer that, when folded into its three-dimensional shape,

More information

Work and energy. 15 m. c. Find the work done by the normal force exerted by the incline on the crate.

Work and energy. 15 m. c. Find the work done by the normal force exerted by the incline on the crate. Work and energy 1. A 10.0-kg crate is pulled 15.0 m up along a frictionless incline as shown in the figure below. The crate starts at rest and has a final speed of 6.00 m/s. motor 15 m 5 a. Draw the free-body

More information