Polymerization and force generation

Size: px
Start display at page:

Download "Polymerization and force generation"

Transcription

1 Polymerization and force generation by Eric Cytrynbaum April 8, 2008 Equilibrium polymer in a box An equilibrium polymer is a polymer has no source of extraneous energy available to it. This does not mean that an equilibrium polymer is always at equilibrium but it cannot move itself away from equilibrium on it own. In the toy problem described here, the initial configuration is away from equilibrium. Actin filaments and microtubules are not equilibrium polymers because they are capable of hydrolyzing ATP and GTP, respectively, which means they are capable of more clever tricks than the polymer described here. Consider the experiment in which a small box of volume V, measured in µm 3, is filled with a solution containing a concentration A 0 of a protein that is capable of polymerizing into a twostranded polymer. At one edge of the box, a couple monomers are glued to the wall to provide a site on which growth can occur (see Figure 1. A k off Figure 1: A polymer in box. Monomers attach to the tip of the polymer at a rate A(t and fall off at a rate k off which is in units of µm per second. The equation describing the change in concentration A(t is da dt = A + k off (1 This can be solved by a number of techniques. I ll use separation of variables. First, separate function of A from functions of t by division: 1 da A + k off dt = 1, 1

2 then integrate with respect to t: 1 da A + k off dt dt = dt, Using a substitution on the left side, u = A(t, du = da dt dt (and immediately replacing the letter u with A, gives: 1 da = dt = t + C. A + k off The LHS can be integrated to get which can be rearranged into 1 log A + k off = t + C A + k off = exp( (t + C = Be kont where B = exp( C, which is necessarily positive. Because B is an unknown positive value, we can simultaneously remove the and allow B to be any value (positive or negative: or, equivalently, A + k off = Be kont A(t = B 2 e kont where the constant B just absorbed a to become B 2 and = k off /. Applying the initial condition, A(0 = A 0, we find that the concentration is A(t = + (A 0 e kont. Note that lim x A(t =. This means that if the concentration starts above, A(t exponentially decays down to. As this decay is occurring, the polymer is growing from zero length to some asymptotic equilibrium length. Unfortunately, when A 0 <, the solution makes it seem as if A(t rises to. However, any rise in concentration has to come at the expense of a shrinking polymer. Because the initial length of the polymer is assumed to be zero, the equations are inappropriate in this case. The intuitive explanation for what happens at these lower concentrations is that no net assembly of polymer is possible so that the concentration simply remains at A 0 indefinitely. To see explicitly what is happening to the length of the polymer, we must recognize that monomers are conserved and hence must appear either in solution or in the polymer. If the length is denoted by l(t, conservation implies that αv δa(t + l(t = αv δa tot (2 whereα is a conversion factor required only because of the units in which quantities are measured (see Table 1, V is the volume of the container, 2δ is the size of a monomer (the 2 is introduced to account for the fact that in a two-stranded polymer, addition of one monomer will increase the polymer length by δ this simplifies several expressions later on and A tot is what the concentration would be if all monomers were in solution. In this example, because the initial length was assumed to be zero, A tot = A 0. Solving equation (2 for l(t, it becomes clear that if A(t were to initially increase from A 0 (as would be the case, apparently, if A 0 <, l(t would have to become negative. This is clearly impossible so we must think of the model in a piecewise manner. Figure 2 shows a few solutions to the problem, taking this piecewise nature into account. 2

3 A(t (A 0 > (A 0 < Figure 2: Concentration as a function of time in the polymer in a box experiment. For A tot >, concentration drops exponentially to. For A tot <, no polymerization can occur (the ostensible growth rate of the polymer is negative so the concentration remains at the initial level. t One way of summarizing the results is to consider the equilibrium state of the system as a function of the total concentration (or, equivalently in this case, the initial concentration. If we define A eq (A tot to be the asymptotic (t concentration and l eq (A tot to be the asymptotic length then { Atot for A A eq (A tot = tot < for A tot > and Figure 3 shows these relationships. { 0 for Atot < K l eq (A tot = D αv δ(a tot for A tot > Table 1: Typical values for parameters Quantity Value V 10 µm 3 A tot 100 µm k off α δ 600 monomers/µm 3 /µm 3 nm 3

4 l eq A eq A tot Figure 3: Asymptotic concentration and polymer length as a function of initial concentration. For initial concentrations below, the concentration is constant so the asymptotic concentration is the same as the initial concentration. For initial concentrations above, the concentration always drops to. All excess monomers above end up in the polymer. A polymer and a spring at equilibrium Now imagine that a spring is placed in the box in such a way that if the polymer grows relatively long, it must compress the spring. Figure 4 shows the geometry of the problem. If l gap is less k sp l gap Figure 4: A polymer and a spring. than the l eq calculated in the Polymer in a Box problem above then the polymer will be able to compress the spring as it grows (see Figure 5. How do we calculate the new equilibrium length, l eq, to which the polymer grows? At equilibrium, the chemical force driving polymerization must exactly oppose the force generated by the compressed spring. In terms of energies, the chemical potential must match the work done by the spring when adding a single monomer. This translates 4

5 x Figure 5: A polymer and a spring at equilibrium. into the following equation: ( A F δ = k B T ln where F = k sp x eq is the equilibrium spring force (in the general case, called the stall force, k sp is the spring constant, x eq is the distance through which the spring is compressed at equilibrium, k B is Boltzmann s constant, T is the absolute temperature and A = A eq is the monomer concentration at equilibrium for the polymer-spring system. Note that equation (3 is a general expression for the force required to stop a polymer with equilibrium constant from growing when the ambient monomer concentration is A. As before, any concentration can be converted to length using equation (2 so that equation (3 can be written in terms of only one unknown, x eq : ( Atot 1 αv δ k sp x eq δ = k B T ln (l gap + x eq. (4 Unfortunately, this equation is transcendental and thus cannot be solved analytically. However, by drawing curves for the left and right hand sides of the equation, you can get a sense of how the solution changes as a function of the parameters. To solve the equation numerically, Newton s method works well. A growing polymer and a spring So far we have discussed a dynamic polymer approaching equilibrium in the absence of any impinging force and a polymer subject to a spring force at equilibrium. What about the dynamics of a polymer under an opposing force? 1 The derivation of the velocity of growth subject to a force F requires a more advanced set of tools beyond the scope of this set of notes [?]. However, in the case when the monomer on and off rates are slow compared to the time required for a gap at the tip of the polymer to appear by diffusion, the growth rate turns out to be a relatively simple function of the applied force [?]: v = dl ( dt = αv δ Ae F δ k B T k off. (5 1 Add section on mechanisms for generating force - power stroke versus Brownian ratchet (3 5

6 As before, the presence of α and V only serve to convert the given units of concentration to length (see Table 1. Notice that when the polymer eventually stops growing and dl/dt = 0, this expression returns the equilibrium result above (problem 3. Furthermore, in the absence of force (F = 0, the expression reduces to equation (1 after the appropriate conversion between length and concentration (given by equation (2 is made on the left hand side. Relationships like (5 are called force-velocity relationships and are often calculated theoretically, measured experimentally and plotted in various ways (sometime v versus F, sometimes F versus v for all kinds of motors both molecular and otherwise. Technically, equation (5 is only valid when F is a constant but for an example like the polymer and spring, when the monomer size is small compared to x, the spring force opposing growth is roughly constant throughout each monomer addition (increasing only a small amount from k sp x to k sp ( x + δ so it is still a useful relationship for situations in which F changes with time and/or with position of the tip. To give a macroscopic example, think of a person pulling a wagon up a slight incline. When the wagon is empty, the person can step forward at some maximum rate (analogous to ( A k off steps per second. As weight is added to the wagon, the person is only able to move at sub-maximal rates up until the weight gets sufficiently large that no progress is possible (when A exp ( F δ k B T k off = 0. If the weight exceeds the maximum load (analogous to the stall force, the wagon will slide backward. The force-velocity relationship (5 can be interpreted in two ways. First, as written, it tells you the velocity v of polymer growth when a force F is applied to its tip, thus denoted v(f. However, it also describes the force F that a polymer is capable of generating when growing against an obstacle at a rate v relative to the obstacle. This interpretation arises from the fact that equation (5 says that the velocity is constant for a given applied force so that the obstacle applying the force moves without acceleration thus the force applied by the object is exactly matched by the force generated by polymerization (acceleration is zero precisely when the sum of forces is zero. In this way, we can solve for F and write down the force generated by the polymer when it is growing at a rate v, Treadmilling F (v = k BT δ ( ln v AαV δ + A The next step in understanding polymer driven motility is to understand how a polymer can continue to polymerize indefinitely. Our examples so far have involved a polymer attached to the wall of the box and have all reached an equilibrium. The important point of the spring example is that provided the monomer concentration is kept above for the growing tip, the polymer can generate force. Obviously, an equilibrium polymer cannot generate a pushing force indefinitely (i.e. generating work for free so we must consider a polymer that somehow uses energy to keep the concentration above or, in other words, keep the polymer length away from equilibrium. By hydrolyzing ATP after attaching to a polymer but before dissociating from it, actin monomers manage to create a situation in which the dissociation constant at is different at opposite ends of the polymer (see Figure 6. It is worth noting that an equilibrium polymer can have different values of k off and at either end as long as the ratio of the two constants is the same. For generating force in an ongoing manner, we must have different values for K + D = k+ off /k+ on and K D = k off /k on. By convention, biologists have agreed to name the end with the lower the plus end (aka the growing end and the end with the higher the minus end (aka the shrinking end. So from now on, we assume that K + D < K D. And, yes, I got this ordering right if you don t see why, think. 6

7 - A + A - k off + k off y(t x(t Figure 6: A polymer with both ends free to polymerize and depolimerize. We define x(t to be the position of the plus end and y(t to be the position of the minus end. about what happens when A > = k off / and A < in equation (1. The treadmilling equation for the concentration of monomers is da dt = k+ ona + k + off k ona + k off (6 and the equations for the positions of the plus (x(t and minus (y(t ends of the polymer are dx dt dy dt = δαv (A + k + off = δαv k+ on(a K + D, (7 = δαv (kona k off = δαv k on(a K D. (8 Pop quiz: why is there a minus sign in front of the y equation? As before, there is a conservation law for this system. In particular, what quantity is conserved? In the first section, we wrote down the conservation law based on intuition for the problem but we could have done it mathematically instead - we ll do that here. This time, we ve written equations for all variables in the system, x, y and A. Notice that a particular combination of the equations above gives a zero sum; in particular, δαv times the A equation added to the difference between the x and y equations: da dt + dx dt dy dt = 0. Integrating this up, we find that δαv A(t+x(t y(t = C. Clearly, the constant must be δαv A tot. Physically, this conservation law says that the total amount of monomer, converted into a length (δαv A(t plus the length of the polymer (x y is constant. That is, monomers are neither created nor destroyed and must either be in monomer or polymer form. Notice that the A equation is expressed entirely in terms of A and the rate constants so it can be solved without considering the other variables. The solution (to be verified as an exercise is A(t = + (A tot e kont where = (k + off + k off /(k+ on + kon and = + + kon. One important feature of this equation is that it immediately tells us that the steady state concentration is. The location of this constant relative to K + D and K D is important because this determines the sign of both dx/dt and dy/dt at steady state (see equations (7,(8. Problem 7 below asks you to examine this in detail. 7

8 At steady state, you should find (after working through the problems below that the plus end grows continually because lim t A(t = > K + D. As we saw in the previous section, a polymer tip that is growing under such a condition (ambient concentration greater than the dissociation constant has the capacity to generate a force. Problem set 1. Sketch the length of the polymer as a function of time for the polymer in a box example for three different values of A tot : one value less than and two different values greater than. 2. Sketch the force-velocity curve (v versus F given by equation (5. Label (i the point at which the applied force is zero - the velocity here is called the free velocity, (ii the point at which the motor stalls - the force at this point is called the stall force, (iii the interval of forces for which the motor moves forward and (iv the interval of forces for which the motor is overwhelmed by the applied force and moves backward. 3. Assume that the applied force, F, is constant (i.e. not generated by a spring but instead by an invisible hand. Convert equation (5 into an equation for A(t by replacing all appearances of l(t using (2. Show that as t, the solution to the resulting equation, A(t, approaches A eq, the solution to equation (3, by showing that A eq is a steady state and, using graphical (phase line arguments, that it is a stable steady state. 4. Assume that the applied force, F, is generated by the compressed spring whereby F = k sp (l(t l gap. There is now the added complication that l(t also appears in the exponent on the right hand side of equation (5. Proceed as in the previous problem - derive an equation for the steady state and show using graphical (phase line arguments that there is only one steady state and that it is stable. 5. Draw the steady state length l eq = l gap + x eq as a function of A tot for the polymer and spring example. As equation (4 cannot be solved explicitly for l eq as a function of A tot, you can solve for A tot as a function of l eq and plot the desired function l eq (A tot by plotting A tot (l eq with the l eq axis vertically and the A tot axis horizontally 2. Keep in mind that until A tot is large enough that the polymer touches the spring, this problem is indistinguishable from the case shown in Figure Fill in each table entry with either grows or shrinks : A < K + D K + D < A < K D K D < A plus end... minus end Show that the value of A(t as t (i.e. is greater than K + D and less than K D using the assumption that K + D < K D. Use these inequalities to show that the plus end grows and the minus end shrinks. Furthermore, show that the growth rate and shrink rate are equal at steady state this is precisely treadmilling! 2 Suggested by Derek Inman thanks, Derek. 8

9 8. Calculate the solutions A(t, x(t and y(t to equations (6, (7 and (8. A(t is plotted below. Plot x(t and y(t on the axes provided assuming that x(0 = y(0 = 0. A(t A x(t, y(t t t 9

Figure 1: Doing work on a block by pushing it across the floor.

Figure 1: Doing work on a block by pushing it across the floor. Work Let s imagine I have a block which I m pushing across the floor, shown in Figure 1. If I m moving the block at constant velocity, then I know that I have to apply a force to compensate the effects

More information

Mechanics of Motor Proteins and the Cytoskeleton Jonathon Howard Chapter 10 Force generation 2 nd part. Andrea and Yinyun April 4 th,2012

Mechanics of Motor Proteins and the Cytoskeleton Jonathon Howard Chapter 10 Force generation 2 nd part. Andrea and Yinyun April 4 th,2012 Mechanics of Motor Proteins and the Cytoskeleton Jonathon Howard Chapter 10 Force generation 2 nd part Andrea and Yinyun April 4 th,2012 I. Equilibrium Force Reminder: http://www.youtube.com/watch?v=yt59kx_z6xm

More information

Springs: Part I Modeling the Action The Mass/Spring System

Springs: Part I Modeling the Action The Mass/Spring System 17 Springs: Part I Second-order differential equations arise in a number of applications We saw one involving a falling object at the beginning of this text (the falling frozen duck example in section

More information

monomer polymer polymeric network cell

monomer polymer polymeric network cell 3.1 Motivation 3.2 Polymerization The structural stability of the cell is provided by the cytoskeleton. Assembling and disassembling dynamically, the cytoskeleton enables cell movement through a highly

More information

On the stall force for growing microtubules

On the stall force for growing microtubules Eur Biophys J (2000) 29: 2±6 Ó Springer-Verlag 2000 ARTICLE G. Sander van Doorn á Catalin Tanase á Bela M. Mulder Marileen Dogterom On the stall force for growing microtubules Received: 27 September 1999

More information

Name: Unit 4 Newton s 1 st & 3 rd Law

Name: Unit 4 Newton s 1 st & 3 rd Law Name: Period: Table #: Unit 4 Newton s 1 st & 3 rd Law 1 UNIT IV: Reading - Force Diagrams The analysis of a problem in dynamics usually involves the selection and analysis of the relevant forces acting

More information

Chapter 4. Forces in One Dimension

Chapter 4. Forces in One Dimension Chapter 4 Forces in One Dimension Chapter 4 Forces in One Dimension In this chapter you will: *VD Note Use Newton s laws to solve problems. Determine the magnitude and direction of the net force that causes

More information

t For l = 1 a monomer cannot be destroyed or created from nothing: = b p(2,t) a p(1,t).

t For l = 1 a monomer cannot be destroyed or created from nothing: = b p(2,t) a p(1,t). IITS: Statistical Physics in Biology Assignment # 5 KU Leuven 5/31/2013 Drift, Diffusion, and Dynamic Instability 1. Treadmilling Actin: Actin filaments are long, asymmetric, polymers involved in a variety

More information

DON T PANIC! If you get stuck, take a deep breath and go on to the next question. Come back to the question you left if you have time at the end.

DON T PANIC! If you get stuck, take a deep breath and go on to the next question. Come back to the question you left if you have time at the end. Math 307, Midterm 2 Winter 2013 Name: Instructions. DON T PANIC! If you get stuck, take a deep breath and go on to the next question. Come back to the question you left if you have time at the end. There

More information

MAT 1320 Study Sheet for the final exam. Format. Topics

MAT 1320 Study Sheet for the final exam. Format. Topics MAT 1320 Study Sheet for the final exam August 2015 Format The exam consists of 10 Multiple Choice questions worth 1 point each, and 5 Long Answer questions worth 30 points in total. Please make sure that

More information

Newton s First Law. Section 2. Inertia. Main Ideas

Newton s First Law. Section 2. Inertia. Main Ideas Newton s First Law Key Terms inertia net force equilibrium Inertia A hovercraft, such as the one in Figure 2.1, glides along the surface of the water on a cushion of air. A common misconception is that

More information

Chapter Four Holt Physics. Forces and the Laws of Motion

Chapter Four Holt Physics. Forces and the Laws of Motion Chapter Four Holt Physics Forces and the Laws of Motion Physics Force and the study of dynamics 1.Forces - a. Force - a push or a pull. It can change the motion of an object; start or stop movement; and,

More information

Static and Kinetic Friction

Static and Kinetic Friction Experiment 12 If you try to slide a heavy box resting on the floor, you may find it difficult to get the box moving. Static friction is the force that is acting against the box. If you apply a light horizontal

More information

General Physics I Work & Energy

General Physics I Work & Energy General Physics I Work & Energy Forms of Energy Kinetic: Energy of motion. A car on the highway has kinetic energy. We have to remove this energy to stop it. The brakes of a car get HOT! This is an example

More information

Free-Body Diagrams: Introduction

Free-Body Diagrams: Introduction Free-Body Diagrams: Introduction Learning Goal: To learn to draw free-body diagrams for various real-life situations. Imagine that you are given a description of a real-life situation and are asked to

More information

8.5 Taylor Polynomials and Taylor Series

8.5 Taylor Polynomials and Taylor Series 8.5. TAYLOR POLYNOMIALS AND TAYLOR SERIES 50 8.5 Taylor Polynomials and Taylor Series Motivating Questions In this section, we strive to understand the ideas generated by the following important questions:

More information

Work, Power, and Energy Lecture 8

Work, Power, and Energy Lecture 8 Work, Power, and Energy Lecture 8 ˆ Back to Earth... ˆ We return to a topic touched on previously: the mechanical advantage of simple machines. In this way we will motivate the definitions of work, power,

More information

2.3 Damping, phases and all that

2.3 Damping, phases and all that 2.3. DAMPING, PHASES AND ALL THAT 107 2.3 Damping, phases and all that If we imagine taking our idealized mass on a spring and dunking it in water or, more dramatically, in molasses), then there will be

More information

PHYSICS 211 LAB #8: Periodic Motion

PHYSICS 211 LAB #8: Periodic Motion PHYSICS 211 LAB #8: Periodic Motion A Lab Consisting of 6 Activities Name: Section: TA: Date: Lab Partners: Circle the name of the person to whose report your group printouts will be attached. Individual

More information

Computer Problems for Methods of Solving Ordinary Differential Equations

Computer Problems for Methods of Solving Ordinary Differential Equations Computer Problems for Methods of Solving Ordinary Differential Equations 1. Have a computer make a phase portrait for the system dx/dt = x + y, dy/dt = 2y. Clearly indicate critical points and separatrices.

More information

General Physics I Spring Applying Newton s Laws

General Physics I Spring Applying Newton s Laws General Physics I Spring 2011 pplying Newton s Laws 1 Friction When you push horizontally on a heavy box at rest on a horizontal floor with a steadily increasing force, the box will remain at rest initially,

More information

Relevant sections from AMATH 351 Course Notes (Wainwright): 1.3 Relevant sections from AMATH 351 Course Notes (Poulin and Ingalls): 1.1.

Relevant sections from AMATH 351 Course Notes (Wainwright): 1.3 Relevant sections from AMATH 351 Course Notes (Poulin and Ingalls): 1.1. Lecture 8 Qualitative Behaviour of Solutions to ODEs Relevant sections from AMATH 351 Course Notes (Wainwright): 1.3 Relevant sections from AMATH 351 Course Notes (Poulin and Ingalls): 1.1.1 The last few

More information

Chapter 4. Answer Key. Physics Lab Sample Data. Mini Lab Worksheet. Tug-of-War Challenge. b. Since the rocket takes off from the ground, d i

Chapter 4. Answer Key. Physics Lab Sample Data. Mini Lab Worksheet. Tug-of-War Challenge. b. Since the rocket takes off from the ground, d i Chapter 3 continued b. Since the rocket takes off from the ground, d i 0.0 m, and at its highest point, v f 0.0 m/s. v f v i a t f (d f d i ) 0 v i a t f d f v i d f a t f (450 m/s) ( 9.80 m/s )(4.6 s)

More information

Lecture 6 Force and Motion. Identifying Forces Free-body Diagram Newton s Second Law

Lecture 6 Force and Motion. Identifying Forces Free-body Diagram Newton s Second Law Lecture 6 Force and Motion Identifying Forces Free-body Diagram Newton s Second Law We are now moving on from the study of motion to studying what causes motion. Forces are what cause motion. Forces are

More information

Discussion Session 6 Newton s Second & Third Laws Week 07. The Plan

Discussion Session 6 Newton s Second & Third Laws Week 07. The Plan PHYS 100 Discussion Session 6 Newton s Second & Third Laws Week 07 The Plan This week we use Newton s Third Law ( F A on B = F B on A ) to relate the forces between two different objects. We can use this

More information

Lab 7 Energy. What You Need To Know: Physics 225 Lab

Lab 7 Energy. What You Need To Know: Physics 225 Lab b Lab 7 Energy What You Need To Know: The Physics This lab is going to cover all of the different types of energy that you should be discussing in your lecture. Those energy types are kinetic energy, gravitational

More information

Physics 20 Homework 3 SIMS 2016

Physics 20 Homework 3 SIMS 2016 Physics 20 Homework 3 SIMS 2016 Due: Thursday, August 25 th Special thanks to Sebastian Fischetti for problems 1, 5, and 6. Edits in red made by Keith Fratus. 1. The ballistic pendulum is a device used

More information

4.2. Visualize: Assess: Note that the climber does not touch the sides of the crevasse so there are no forces from the crevasse walls.

4.2. Visualize: Assess: Note that the climber does not touch the sides of the crevasse so there are no forces from the crevasse walls. 4.1. Solve: A force is basically a push or a pull on an object. There are five basic characteristics of forces. (i) A force has an agent that is the direct and immediate source of the push or pull. (ii)

More information

Anatoly B. Kolomeisky. Department of Chemistry CAN WE UNDERSTAND THE COMPLEX DYNAMICS OF MOTOR PROTEINS USING SIMPLE STOCHASTIC MODELS?

Anatoly B. Kolomeisky. Department of Chemistry CAN WE UNDERSTAND THE COMPLEX DYNAMICS OF MOTOR PROTEINS USING SIMPLE STOCHASTIC MODELS? Anatoly B. Kolomeisky Department of Chemistry CAN WE UNDERSTAND THE COMPLEX DYNAMICS OF MOTOR PROTEINS USING SIMPLE STOCHASTIC MODELS? Motor Proteins Enzymes that convert the chemical energy into mechanical

More information

Friction Can Be Rough

Friction Can Be Rough 10.1 Observe and Find a Pattern Friction Can Be Rough Observe the following experiment: Rest a brick on a rough surface. Tie a string around the brick and attach a large spring scale to it. Pull the scale

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01T Fall Term 2004

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01T Fall Term 2004 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.0T Fall Term 2004 Problem Set 3: Newton's Laws of Motion, Motion: Force, Mass, and Acceleration, Vectors in Physics Solutions Problem

More information

Unit 1: Equilibrium and Center of Mass

Unit 1: Equilibrium and Center of Mass Unit 1: Equilibrium and Center of Mass FORCES What is a force? Forces are a result of the interaction between two objects. They push things, pull things, keep things together, pull things apart. It s really

More information

AP Physics C - Mechanics

AP Physics C - Mechanics Slide 1 / 84 Slide 2 / 84 P Physics C - Mechanics Energy Problem Solving Techniques 2015-12-03 www.njctl.org Table of Contents Slide 3 / 84 Introduction Gravitational Potential Energy Problem Solving GPE,

More information

Newton s Second and Third Laws

Newton s Second and Third Laws Section 3 Objectives Describe an object s acceleration in terms of its mass and the net force acting on it. Predict the direction and magnitude of the acceleration caused by a known net force. Identify

More information

Chapter 8. Conservation of Energy

Chapter 8. Conservation of Energy Chapter 8 Conservation of Energy Energy Review Kinetic Energy Associated with movement of members of a system Potential Energy Determined by the configuration of the system Gravitational and Elastic Potential

More information

A P T E R 9 QUANTITATIVE TOOLS CONCEPTS

A P T E R 9 QUANTITATIVE TOOLS CONCEPTS Ch09n10v3.26_Ch09n10v2.34 9/24/10 5:14 PM Page 1 C H A P T E R 9 Work CONCEPTS 9.1 Force displacement 9.2 Positive and negative work 9.3 Energy diagrams 9.4 Choice of system QUANTITATIVE TOOLS 9.5 Work

More information

Chapter 4 Force and Motion

Chapter 4 Force and Motion Chapter 4 Force and Motion Units of Chapter 4 The Concepts of Force and Net Force Inertia and Newton s First Law of Motion Newton s Second Law of Motion Newton s Third Law of Motion More on Newton s Laws:

More information

Fundamentals of Dynamical Systems / Discrete-Time Models. Dr. Dylan McNamara people.uncw.edu/ mcnamarad

Fundamentals of Dynamical Systems / Discrete-Time Models. Dr. Dylan McNamara people.uncw.edu/ mcnamarad Fundamentals of Dynamical Systems / Discrete-Time Models Dr. Dylan McNamara people.uncw.edu/ mcnamarad Dynamical systems theory Considers how systems autonomously change along time Ranges from Newtonian

More information

Lesson 14: Friction. a) Fill in the table that follows by constructing a force diagram for the block (the system) for these five situations.

Lesson 14: Friction. a) Fill in the table that follows by constructing a force diagram for the block (the system) for these five situations. Lesson 14: Friction 14.1 Observe and Find a Pattern Perform the following experiment: Rest a wooden block (or some other object, like your shoe) on a table. Attach a large spring scale to a string attached

More information

A force is could described by its magnitude and by the direction in which it acts.

A force is could described by its magnitude and by the direction in which it acts. 8.2.a Forces Students know a force has both direction and magnitude. P13 A force is could described by its magnitude and by the direction in which it acts. 1. Which of the following could describe the

More information

1. What does the catapult exert on or apply to the plane?

1. What does the catapult exert on or apply to the plane? Unit 1: Forces and Motion Lesson 2.b Newton s Second Law of Motion Newton s laws predict the motion of most objects. As a basis for understanding this concept: Students know how to apply the law F = ma

More information

Introduction to Polymerization Kinetics

Introduction to Polymerization Kinetics Introduction to Polymerization Kinetics Perspecties The cytoskeletal biopolymers are largely semi-rigid rods on typical size scale of cells. We here examine their assembly kinetics in free polymerization

More information

i. Indicate on the figure the point P at which the maximum speed of the car is attained. ii. Calculate the value vmax of this maximum speed.

i. Indicate on the figure the point P at which the maximum speed of the car is attained. ii. Calculate the value vmax of this maximum speed. 1. A 0.20 kg object moves along a straight line. The net force acting on the object varies with the object's displacement as shown in the graph above. The object starts from rest at displacement x = 0

More information

Exam 2 Spring 2014

Exam 2 Spring 2014 95.141 Exam 2 Spring 2014 Section number Section instructor Last/First name Last 3 Digits of Student ID Number: Answer all questions, beginning each new question in the space provided. Show all work. Show

More information

Molecular Machines and Enzymes

Molecular Machines and Enzymes Molecular Machines and Enzymes Principles of functioning of molecular machines Enzymes and catalysis Molecular motors: kinesin 1 NB Queste diapositive sono state preparate per il corso di Biofisica tenuto

More information

1. (4) For this reaction: NO 2. + H 3 AsO 3 D H 2 AsO 3

1. (4) For this reaction: NO 2. + H 3 AsO 3 D H 2 AsO 3 Exam 1 Chem 1B, Spring 2017 Fossum Name: There are 6 points of extra credit built in to this exam. Always show your work and explain your reasoning, include units, and check significant figures. Note:

More information

Computational Fluid Dynamics Prof. Dr. Suman Chakraborty Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Computational Fluid Dynamics Prof. Dr. Suman Chakraborty Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Computational Fluid Dynamics Prof. Dr. Suman Chakraborty Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture No. #12 Fundamentals of Discretization: Finite Volume Method

More information

(Refer Slide Time: 01:17)

(Refer Slide Time: 01:17) Heat and Mass Transfer Prof. S.P. Sukhatme Department of Mechanical Engineering Indian Institute of Technology, Bombay Lecture No. 7 Heat Conduction 4 Today we are going to look at some one dimensional

More information

To factor an expression means to write it as a product of factors instead of a sum of terms. The expression 3x

To factor an expression means to write it as a product of factors instead of a sum of terms. The expression 3x Factoring trinomials In general, we are factoring ax + bx + c where a, b, and c are real numbers. To factor an expression means to write it as a product of factors instead of a sum of terms. The expression

More information

MAC 2311 Calculus I Spring 2004

MAC 2311 Calculus I Spring 2004 MAC 2 Calculus I Spring 2004 Homework # Some Solutions.#. Since f (x) = d dx (ln x) =, the linearization at a = is x L(x) = f() + f ()(x ) = ln + (x ) = x. The answer is L(x) = x..#4. Since e 0 =, and

More information

Asimple spring-loaded toy that jumps up off

Asimple spring-loaded toy that jumps up off Springbok: The Physics of Jumping Robert J. Dufresne, William J. Gerace, and William J. Leonard Asimple spring-loaded toy that jumps up off the table when compressed and released offers the physics teacher

More information

EQUILIBRIUM OBJECTIVES PRE-LECTURE

EQUILIBRIUM OBJECTIVES PRE-LECTURE 27 FE3 EQUILIBRIUM Aims OBJECTIVES In this chapter you will learn the concepts and principles needed to understand mechanical equilibrium. You should be able to demonstrate your understanding by analysing

More information

Starters and activities in Mechanics. MEI conference 2012 Keele University. Centre of mass: two counter-intuitive stable positions of equilibrium

Starters and activities in Mechanics. MEI conference 2012 Keele University. Centre of mass: two counter-intuitive stable positions of equilibrium Starters and activities in Mechanics MEI conference 2012 Keele University Starters Centre of mass: two counter-intuitive stable positions of equilibrium The directions of displacement, velocity and acceleration

More information

Static and Kinetic Friction

Static and Kinetic Friction Experiment Static and Kinetic Friction Prelab Questions 1. Examine the Force vs. time graph and the Position vs. time graph below. The horizontal time scales are the same. In Region I, explain how an object

More information

SECTION 1. Objectives. Describe how force affects the motion of an object. Interpret and construct free-body diagrams.

SECTION 1. Objectives. Describe how force affects the motion of an object. Interpret and construct free-body diagrams. SECTION 1 Plan and Prepare Preview Vocabulary Academic Vocabulary In common usage, the words pressure and force sometimes are used interchangeably. In physics, these words are distinctive. Force is any

More information

Chapter 1A -- Real Numbers. iff. Math Symbols: Sets of Numbers

Chapter 1A -- Real Numbers. iff. Math Symbols: Sets of Numbers Fry Texas A&M University! Fall 2016! Math 150 Notes! Section 1A! Page 1 Chapter 1A -- Real Numbers Math Symbols: iff or Example: Let A = {2, 4, 6, 8, 10, 12, 14, 16,...} and let B = {3, 6, 9, 12, 15, 18,

More information

Topic: Force PHYSICS 231

Topic: Force PHYSICS 231 Topic: Force PHYSICS 231 Current Assignments Homework Set 2 due this Thursday, Jan 27, 11 pm Reading for next week: Chapters 10.1-6,10.10,8.3 2/1/11 Physics 231 Spring 2011 2 Key Concepts: Force Free body

More information

Muscle regulation and Actin Topics: Tropomyosin and Troponin, Actin Assembly, Actin-dependent Movement

Muscle regulation and Actin Topics: Tropomyosin and Troponin, Actin Assembly, Actin-dependent Movement 1 Muscle regulation and Actin Topics: Tropomyosin and Troponin, Actin Assembly, Actin-dependent Movement In the last lecture, we saw that a repeating alternation between chemical (ATP hydrolysis) and vectorial

More information

Modeling with Differential Equations

Modeling with Differential Equations Modeling with Differential Equations 1. Exponential Growth and Decay models. Definition. A quantity y(t) is said to have an exponential growth model if it increases at a rate proportional to the amount

More information

Figure 1. Distance depends upon time.

Figure 1. Distance depends upon time. Section 3.1 Linear Models 219 3.1 Linear Models Sebastian waves good-bye to his brother, who is talking to a group of his friends approximately feet away. Sebastian then begins to walk away from his brother

More information

CHAPTER 1. REVIEW: NUMBERS

CHAPTER 1. REVIEW: NUMBERS CHAPTER. REVIEW: NUMBERS Yes, mathematics deals with numbers. But doing math is not number crunching! Rather, it is a very complicated psychological process of learning and inventing. Just like listing

More information

Unit IV Derivatives 20 Hours Finish by Christmas

Unit IV Derivatives 20 Hours Finish by Christmas Unit IV Derivatives 20 Hours Finish by Christmas Calculus There two main streams of Calculus: Differentiation Integration Differentiation is used to find the rate of change of variables relative to one

More information

Computer Problems for Taylor Series and Series Convergence

Computer Problems for Taylor Series and Series Convergence Computer Problems for Taylor Series and Series Convergence The two problems below are a set; the first should be done without a computer and the second is a computer-based follow up. 1. The drawing below

More information

Unit IV Derivatives 20 Hours Finish by Christmas

Unit IV Derivatives 20 Hours Finish by Christmas Unit IV Derivatives 20 Hours Finish by Christmas Calculus There two main streams of Calculus: Differentiation Integration Differentiation is used to find the rate of change of variables relative to one

More information

Chapter 7 Potential Energy and Energy Conservation

Chapter 7 Potential Energy and Energy Conservation Chapter 7 Potential Energy and Energy Conservation We saw in the previous chapter the relationship between work and kinetic energy. We also saw that the relationship was the same whether the net external

More information

Charged objects in Conducting Fluids

Charged objects in Conducting Fluids Charged objects in Conducting Fluids Net charge in a sphere of radius λ D is approximately zero. λ D 2 = ε 0κ k B T c 0 e 2 Z 2 k B T k c = 1 / 4πε 0 c 0 Z e κ Thermal energy (Joules) Coulomb constant

More information

Lecture 6.1 Work and Energy During previous lectures we have considered many examples, which can be solved using Newtonian approach, in particular,

Lecture 6.1 Work and Energy During previous lectures we have considered many examples, which can be solved using Newtonian approach, in particular, Lecture 6. Work and Energy During previous lectures we have considered many examples, which can be solved using Newtonian approach, in particular, Newton's second law. However, this is not always the most

More information

Kinematics and Dynamics

Kinematics and Dynamics AP PHYS 1 Test Review Kinematics and Dynamics Name: Other Useful Site: http://www.aplusphysics.com/ap1/ap1- supp.html 2015-16 AP Physics: Kinematics Study Guide The study guide will help you review all

More information

Polymerization/depolymerization motors

Polymerization/depolymerization motors Polymerization/depolymerization motors Movement formation Kuo Lab, J.H.U. http://www.nature.com/nature/journal/v407/n6807/extref/40 71026a0_S3.mov http://www.bme.jhu.edu/~skuo/movies/macrophchase.mov http://www.bme.jhu.edu/~skuo/movies/gc_filo.mov

More information

Exam II: Solutions. UNIVERSITY OF ALABAMA Department of Physics and Astronomy. PH 125 / LeClair Spring 2009

Exam II: Solutions. UNIVERSITY OF ALABAMA Department of Physics and Astronomy. PH 125 / LeClair Spring 2009 UNIVERSITY OF ALABAMA Department of Physics and Astronomy PH 15 / LeClair Spring 009 Exam II: Solutions 1. A block of mass m is released from rest at a height d=40 cm and slides down a frictionless ramp

More information

For slowly varying probabilities, the continuum form of these equations is. = (r + d)p T (x) (u + l)p D (x) ar x p T(x, t) + a2 r

For slowly varying probabilities, the continuum form of these equations is. = (r + d)p T (x) (u + l)p D (x) ar x p T(x, t) + a2 r 3.2 Molecular Motors A variety of cellular processes requiring mechanical work, such as movement, transport and packaging material, are performed with the aid of protein motors. These molecules consume

More information

Rational Functions. Elementary Functions. Algebra with mixed fractions. Algebra with mixed fractions

Rational Functions. Elementary Functions. Algebra with mixed fractions. Algebra with mixed fractions Rational Functions A rational function f (x) is a function which is the ratio of two polynomials, that is, Part 2, Polynomials Lecture 26a, Rational Functions f (x) = where and are polynomials Dr Ken W

More information

Phys 450 Spring 2011 Solution set 6. A bimolecular reaction in which A and B combine to form the product P may be written as:

Phys 450 Spring 2011 Solution set 6. A bimolecular reaction in which A and B combine to form the product P may be written as: Problem Phys 45 Spring Solution set 6 A bimolecular reaction in which A and combine to form the product P may be written as: k d A + A P k d k a where k d is a diffusion-limited, bimolecular rate constant

More information

Chapter Seven Notes: Newton s Third Law of Motion Action and Reaction

Chapter Seven Notes: Newton s Third Law of Motion Action and Reaction Chapter Seven Notes: Newton s Third Law of Motion Action and Reaction A force is always part of a mutual action that involves another force. A mutual action is an interaction between one thing and another

More information

AP* Calculus Free-response Question Type Analysis and Notes Revised to include the 2013 Exam By Lin McMullin

AP* Calculus Free-response Question Type Analysis and Notes Revised to include the 2013 Exam By Lin McMullin AP* Calculus Free-response Question Type Analysis and Notes Revised to include the 2013 Exam By Lin McMullin General note: AP Questions often test several diverse ideas or concepts in the same question.

More information

Lecture for Week 2 (Secs. 1.3 and ) Functions and Limits

Lecture for Week 2 (Secs. 1.3 and ) Functions and Limits Lecture for Week 2 (Secs. 1.3 and 2.2 2.3) Functions and Limits 1 First let s review what a function is. (See Sec. 1 of Review and Preview.) The best way to think of a function is as an imaginary machine,

More information

Isaac Newton ( ) 1687 Published Principia Invented Calculus 3 Laws of Motion Universal Law of Gravity

Isaac Newton ( ) 1687 Published Principia Invented Calculus 3 Laws of Motion Universal Law of Gravity Isaac Newton (1642-1727) 1687 Published Principia Invented Calculus 3 Laws of Motion Universal Law of Gravity Newton s First Law (Law of Inertia) An object will remain at rest or in a constant state of

More information

Physics General Physics. Lecture 3 Newtonian Mechanics. Fall 2016 Semester. Prof. Matthew Jones

Physics General Physics. Lecture 3 Newtonian Mechanics. Fall 2016 Semester. Prof. Matthew Jones Physics 22000 General Physics Lecture 3 Newtonian Mechanics Fall 2016 Semester Prof. Matthew Jones 1 Review of Lectures 1 and 2 In the previous lectures we learned how to describe some special types of

More information

UNIT XX: DYNAMICS AND NEWTON S LAWS. DYNAMICS is the branch of mechanics concerned with the forces that cause motions of bodies

UNIT XX: DYNAMICS AND NEWTON S LAWS. DYNAMICS is the branch of mechanics concerned with the forces that cause motions of bodies I. Definition of FORCE UNIT XX: DYNAMICS AND NEWTON S LAWS DYNAMICS is the branch of mechanics concerned with the forces that cause motions of bodies FORCE is a quantitative interaction between two (or

More information

Experiment 4 Free Fall

Experiment 4 Free Fall PHY9 Experiment 4: Free Fall 8/0/007 Page Experiment 4 Free Fall Suggested Reading for this Lab Bauer&Westfall Ch (as needed) Taylor, Section.6, and standard deviation rule ( t < ) rule in the uncertainty

More information

CHAPTER 6 VECTOR CALCULUS. We ve spent a lot of time so far just looking at all the different ways you can graph

CHAPTER 6 VECTOR CALCULUS. We ve spent a lot of time so far just looking at all the different ways you can graph CHAPTER 6 VECTOR CALCULUS We ve spent a lot of time so far just looking at all the different ways you can graph things and describe things in three dimensions, and it certainly seems like there is a lot

More information

PHYSICS 107. Lecture 5 Newton s Laws of Motion

PHYSICS 107. Lecture 5 Newton s Laws of Motion PHYSICS 107 Lecture 5 Newton s Laws of Motion First Law We saw that the type of motion which was most difficult for Aristotle to explain was horizontal motion of nonliving objects, particularly after they've

More information

Newton s First Law and IRFs

Newton s First Law and IRFs Goals: Physics 207, Lecture 6, Sept. 22 Recognize different types of forces and know how they act on an object in a particle representation Identify forces and draw a Free Body Diagram Solve 1D and 2D

More information

Chapter 4. Table of Contents. Section 1 Changes in Motion. Section 2 Newton's First Law. Section 3 Newton's Second and Third Laws

Chapter 4. Table of Contents. Section 1 Changes in Motion. Section 2 Newton's First Law. Section 3 Newton's Second and Third Laws Forces and the Laws of Motion Table of Contents Section 1 Changes in Motion Section 2 Newton's First Law Section 3 Newton's Second and Third Laws Section 4 Everyday Forces Section 1 Changes in Motion Objectives

More information

Ph211 Summer 09 HW #4, week of 07/13 07/16. Ch6: 44, 46, 52; Ch7: 29, 41. (Knight, 2nd Ed).

Ph211 Summer 09 HW #4, week of 07/13 07/16. Ch6: 44, 46, 52; Ch7: 29, 41. (Knight, 2nd Ed). Solutions 1 for HW #4: Ch6: 44, 46, 52; Ch7: 29, 41. (Knight, 2nd Ed). We make use of: equations of kinematics, and Newton s Laws. You also (routinely) need to handle components of a vector, in nearly

More information

Physics 2210 Homework 18 Spring 2015

Physics 2210 Homework 18 Spring 2015 Physics 2210 Homework 18 Spring 2015 Charles Jui April 12, 2015 IE Sphere Incline Wording A solid sphere of uniform density starts from rest and rolls without slipping down an inclined plane with angle

More information

AP Calculus AB Summer Assignment

AP Calculus AB Summer Assignment AP Calculus AB Summer Assignment Name: When you come back to school, it is my epectation that you will have this packet completed. You will be way behind at the beginning of the year if you haven t attempted

More information

Entropy, free energy and equilibrium. Spontaneity Entropy Free energy and equilibrium

Entropy, free energy and equilibrium. Spontaneity Entropy Free energy and equilibrium Entropy, free energy and equilibrium Spontaneity Entropy Free energy and equilibrium Learning objectives Discuss what is meant by spontaneity Discuss energy dispersal and its relevance to spontaneity Describe

More information

Physics 2A Chapter 4: Forces and Newton s Laws of Motion

Physics 2A Chapter 4: Forces and Newton s Laws of Motion Physics 2A Chapter 4: Forces and Newton s Laws of Motion There is nothing either good or bad, but thinking makes it so. William Shakespeare It s not what happens to you that determines how far you will

More information

Chapter 4: Newton's Laws of Motion

Chapter 4: Newton's Laws of Motion Chapter 4 Lecture Chapter 4: Newton's Laws of Motion Goals for Chapter 4 To understand force either directly or as the net force of multiple components. To study and apply Newton's first law. To study

More information

Goals: Equipment: Introduction:

Goals: Equipment: Introduction: Goals: To explore the electric potential surrounding two equally and oppositely charged conductors To identify equipotential surfaces/lines To show how the electric field and electric potential are related

More information

Capacitors. Chapter How capacitors work Inside a capacitor

Capacitors. Chapter How capacitors work Inside a capacitor Chapter 6 Capacitors In every device we have studied so far sources, resistors, diodes and transistors the relationship between voltage and current depends only on the present, independent of the past.

More information

Ideas from Vector Calculus Kurt Bryan

Ideas from Vector Calculus Kurt Bryan Ideas from Vector Calculus Kurt Bryan Most of the facts I state below are for functions of two or three variables, but with noted exceptions all are true for functions of n variables..1 Tangent Line Approximation

More information

1.20 Formulas, Equations, Expressions and Identities

1.20 Formulas, Equations, Expressions and Identities 1.0 Formulas, Equations, Expressions and Identities Collecting terms is equivalent to noting that 4 + 4 + 4 + 4 + 4 + 4 can be written as 6 4; i.e., that multiplication is repeated addition. It s wise

More information

Chapter 9. Linear Momentum and Collisions

Chapter 9. Linear Momentum and Collisions Chapter 9 Linear Momentum and Collisions Momentum Analysis Models Force and acceleration are related by Newton s second law. When force and acceleration vary by time, the situation can be very complicated.

More information

Unit 08 Work and Kinetic Energy. Stuff you asked about:

Unit 08 Work and Kinetic Energy. Stuff you asked about: Unit 08 Work and Kinetic Energy Today s Concepts: Work & Kinetic Energy Work in a non-constant direction Work by springs Mechanics Lecture 7, Slide 1 Stuff you asked about: Can we go over the falling,

More information

FORCE AND MOTION. Conceptual Questions F G as seen in the figure. n, and a kinetic frictional force due to the rough table surface f k

FORCE AND MOTION. Conceptual Questions F G as seen in the figure. n, and a kinetic frictional force due to the rough table surface f k FORCE AND MOTION 5 Conceptual Questions 5.1. Two forces are present, tension T in the cable and gravitational force 5.. F G as seen in the figure. Four forces act on the block: the push of the spring F

More information

Physics I: Oscillations and Waves Prof. S. Bharadwaj Department of Physics and Meteorology. Indian Institute of Technology, Kharagpur

Physics I: Oscillations and Waves Prof. S. Bharadwaj Department of Physics and Meteorology. Indian Institute of Technology, Kharagpur Physics I: Oscillations and Waves Prof. S. Bharadwaj Department of Physics and Meteorology Indian Institute of Technology, Kharagpur Lecture No 03 Damped Oscillator II We were discussing, the damped oscillator

More information

2. Friction is the that. 3. PREDICT what is going to happen to the motion of the book when the person stops pushing it. (CIRCLE YOUR CHOICE)

2. Friction is the that. 3. PREDICT what is going to happen to the motion of the book when the person stops pushing it. (CIRCLE YOUR CHOICE) Name: Block: Date: IP 670 All About Friction Introduction: The force of friction is one of the hidden forces that affects the motion of objects. Forces like these are hidden in the sense that they are

More information

Chemical Reaction Engineering Prof. JayantModak Department of Chemical Engineering Indian Institute of Science, Bangalore

Chemical Reaction Engineering Prof. JayantModak Department of Chemical Engineering Indian Institute of Science, Bangalore Chemical Reaction Engineering Prof. JayantModak Department of Chemical Engineering Indian Institute of Science, Bangalore Module No. #05 Lecture No. #29 Non Isothermal Reactor Operation Let us continue

More information