2. At quasi-steady state or equilibrium, the net in-flux of the carrier-substrate complex CS is balanced by the net out-flux of the free carrier C.

Size: px
Start display at page:

Download "2. At quasi-steady state or equilibrium, the net in-flux of the carrier-substrate complex CS is balanced by the net out-flux of the free carrier C."

Transcription

1 Facilitated Transport Instructor: Nam un Wang facilitmcd Process escription In facilitated transport, a carrier molecule C binds to the substrate to form a carrier-substrate complex C at the outer side of the cell membrane The complex diffuses by Fick's diffusion from the outer side of the membrane toward the inner side of the membrane, where the substrate is released into the cell cytoplasm and the free carrier C is regenerated The free carrier shuttles back, again by Fick's diffusion, toward the outer side of the membrane, where it picks up another substrate; and the cycle is repeated The following "reaction mechanism" describes this process C e + C diffusion across cell membrane C C i + C e diffusion across cell membrane C i Alternate Process description with more intermediate steps C e + intermediate C diffusion across cell membrane C intermediate C i + Underlying Ideas Flux of a chemical species across cell membrane via Fick's diffusion flux c e c i in mole/s m 2 where iffusivity of a chemical species thickness of cell membrane c e concentration of the chemical species at the outer cell membrane (extracellular) c i concentration of the chemical species at the inner cell membrane (intracellular) We apply Fick's diffusion to both the complex and the free carrier flux C C C flux of the carrier-substrate complex C flux C C e C i flux of the free carrier At quasi-steady state or equilibrium, the net in-flux of the carrier-substrate complex Cs balanced by the net out-flux of the free carrier C flux C flux C 3 The carrier can take on two forms: complex with the substrate and free We assume that the binding event is reversible and fast; thus, it is described by an equilibrium constant, which is related to the affinity of the carrier molecule for the substrate molecule The extent of complex depends on the substrate concentration C C + C C

2 2 facilitmcd 4 The total number of the carrier molecules is conserved trictly speaking, the concentration of the carrier species is not conserved, and we cannot simply add up concentrations from an arbitrary number of locations, say, at the inner and outer membrane For example, we miss by a factor of 2 if we simply add up concentrations at the inner and outer cell membrane C total Area C( x) Area dx C( x) Area dx Because of Fick's diffusion, the concentration profiles for C and C within the cell membrane are linear C( x) C x e C C C( x) C x e C e C i ubstituting C(x) and C(x) into the integral yields, C total 2 C C C e C i Another way of thinking is that the different forms of carrier (free unassociated form C and associated form C) are conserved C total C average C average where C average C C 2 C average C e erivation Below, we express the above ideas mathematically and let Mathcad crank out the answer Given teady-state in- and out- fluxes flux C C C flux C e C i efinition of dissociation constant C C Conservation of different forms C total 2 C C C e C i The above 5 equations allows us to solve for 5 variables, which are flux (which is what we are really after) and the different forms of carrier species (which are what we do not want to see appearing on the RH of flux=?) C e C i 2 C i

3 3 facilitmcd C C C total i C C 2 C 2 e C e i Find C, C e, C, C i, flux 2 C C C total i C C 2 C 2 e C e C C e total i C C 2 C 2 e C e i C C C e total i C C 2 C 2 e C e i i C C total i C C 2 C 2 e C e flux e C C total C i C C 2 C 2 e i e C C C total e 2 ( α) where α i 2 α C pecial case: identical diffusion coefficient for C and C α C C total flux e e flux max where flux e max i pecial case: Very rapid rate of consumption of the substrate in the cell leads to a minimal intracellular concentration of flux flux e max Michaelis-Menten saturation expression C total

4 4 facilitmcd 4 Alternate a -- correct The total concentration of the carrier molecules is conserved at each side -- a better interpretation of "C totale =C +C e " is not "conservation" but a mere definitino of what "C totale " is Note that conservation of the total number of moles of carrier species is a fact; however, we cannot impose C totali =C totale, because that does not follow from material balance and because doing so will result in an over-specified system of equations with 6 equations and only 5 unknowns to solve for: C, C e, C, C i, flux Indeed, the result below shows that C totali C totale (Think hard why in general the total carrier concentrations may be different between the extracellular and the intracelluar sides) Given teady-state in- and out- fluxes flux C C C flux C e C i C e C i efinition of dissociation constant C C Conservation of different forms C totale C C e C totali C C i The above 6 equations allows us to solve for 6 variables C totale Find C, C e, C, C i, flux, C totali C totale C C e totale e i C 2 i C C C C e totale e i C 2 i C C i C C totale e C C C i e C totale e i C 2 i C C C C C totali C totale in general, C C totali C totale if C C C totali C totale if C =

5 5 facilitmcd 4 Alternate b -- ok Assume the total concentration of the carrier molecules is conserved at each side, and they are equal on both sides "C total =C +C e =C +C i " As mentioned in section "Alternative a" above, we will later examine when this assumption holds Because keeping all the equations will result in an over-specified system of equations with 6 equations and only 5 unknowns to solve for, we take away one of the flux equations Given teady-state in- and out- fluxes flux C C C e C i efinition of dissociation constant C C Conservation of different forms C total C C e C total C C i The above 6 equations allows us to solve for 6 variables C total e C total Find C, C e, C, C i, flux C total C total C C total 2 i e This alternative yields the following expression for flux, which is eqn (42) of huler flux C C i C total J max where J max C total Check: Let's see when the reverse flux equals to the forward flux Basically how the diffusivities of C and C (ie, & C ) need to be related C reverse flux C C e C i C total For the forward and reverse flux to be equal, we require: C total C C total C Thus, the total carrier concentrations are idential on both sides when diffusivities are equal: C =C C Conversely, the total carrier concentrations are different on two sides when diffusivities are unequal

6 6 facilitmcd 4 Alternate b -- repeat of above Instead of assuming the total concentration of the carrier molecules are equal on both sides "C total =C +C e =C +C i ", we state they are (not an assumption) We solve a system of 6 equations and 6 unknowns, by adding as an unknown Given teady-state in- and out- fluxes flux C C C flux C e C i C e C i efinition of dissociation constant C C e Conservation of different forms C total C C e C total C C i The above 6 equations allows us to solve for 6 variables C total C total Find C, C e, C, C i, flux, C total C total C C total 2 i e C As expected, the results are identical to the last section, including the requirement: C

7 7 facilitmcd Graph to show general behavior flux max flux e e flux max e, 5 Facilitated Transport ubstrate Flux Into Cells flux Extracelluar ubstrate Conc Flux as a function of the driving force, which is the difference in the extracellular and intracellular substrate concentrations: - flux flux e max 2 i 2 i ubstrate Flux Into Cells flux Facilitated Transport flux max flux max riving Force (Conc ifference)

8 8 facilitmcd Active Transport -- when the equilibrium values are different at the outer and inner membrane Note that when diffusivities & C are different ( C ), active transport is also possible -- basically we need different/asymetric transport and/or kinetic properties assume, Given teady-state in- and out- fluxes flux C e efinition of dissociation constant e C C C flux i C i C C Conservation of different forms C total 2 C C C e C i The above 5 equations allows us to solve for 5 variables C e total C i C e 2 C e i C i e e 2 C e C i e C total C e 2 C e i C i e e 2 C i Find C, C e, C, C i, flux 2 C e C total C e 2 C e i C i e e 2 i C e C total C e 2 C e i C i e e 2 e i C C total C e 2 C e i C i e e 2 C C C total flux i e C C e 2 i i e C e i 2 C e i C i C C total i e where α e i ( α ) e i i e 2 α C pecial case: identical diffusion coefficient for C and C α C C total flux i e i e flux max where flux e i max i e i pecial case: Very rapid rate of consumption of the substrate in the cell leads to a minimal intracellular concentration of flux flux max e Michaelis-Menten saturation expression C total

9 9 facilitmcd pecial case: symmetric membrane (ie, same properties at both the inner and outer cell membrane e i flux flux e max e For the flux to be positive, we must have > Thus, with a symmetrical membrane it is not possible to achieve a positive flux into the cell against the concentration gradient Active transport, where the substrate moves against the concentration gradient, is possible for an asymmetric membrane ince the denominator of the flux equation is positive, the numerator must be positive For flux> numerator i e e e e > > i Transport against the concentration gradient means the intracellular concentration is higher than than the extracellular concentration For < > Combining the last two inequality relationship yields, e > > i Thus, active transport requires the dissociation constant at the inner cell membrane to be greater than that at the outer cell membrane i > e

10 facilitmcd Graph to show the general behavior flux max k i k e k ie k ii 2 m k ie k e flux flux max, 2 k ii m e k ie k ii k ii k ie k e i k ii k i k i k ie k i e k ii k i k i i k e k ii k ii 4 Active Transport ubstrate Flux Into Cells flux 2 2 e i Facilitated -- Active -- Facilitated Extracelluar ubstrate Conc The above plot has three regions: facilitated transport along the concentration gradient (in out), active transport against the concentration gradient (out in), and facilitated transport along the concentration gradient (out in) pecifically, between =( e / i ) and =, substrate flux is against the concentration gradient

Introduction to cardiac electrophysiology 1. Dr. Tóth András 2018

Introduction to cardiac electrophysiology 1. Dr. Tóth András 2018 Introduction to cardiac electrophysiology 1. Dr. Tóth ndrás 2018 Topics Transmembran transport Donnan equilibrium Resting potential 1 Transmembran transport Major types of transmembran transport J: net

More information

Enzyme reaction example of Catalysis, simplest form: E + P at end of reaction No consumption of E (ES): enzyme-substrate complex Intermediate

Enzyme reaction example of Catalysis, simplest form: E + P at end of reaction No consumption of E (ES): enzyme-substrate complex Intermediate V 41 Enzyme Kinetics Enzyme reaction example of Catalysis, simplest form: k 1 E + S k -1 ES E at beginning and ES k 2 k -2 E + P at end of reaction No consumption of E (ES): enzyme-substrate complex Intermediate

More information

After lectures by. disappearance of reactants or appearance of. measure a reaction rate we monitor the. Reaction Rates (reaction velocities): To

After lectures by. disappearance of reactants or appearance of. measure a reaction rate we monitor the. Reaction Rates (reaction velocities): To Revised 3/21/2017 After lectures by Dr. Loren Williams (GeorgiaTech) Protein Folding: 1 st order reaction DNA annealing: 2 nd order reaction Reaction Rates (reaction velocities): To measure a reaction

More information

over K in Glial Cells of Bee Retina

over K in Glial Cells of Bee Retina Online Supplemental Material for J. Gen. Physiol. Vol. 116 No. 2 p. 125, Marcaggi and Coles A Cl Cotransporter Selective for 4 over K in Glial Cells of Bee Retina Païkan Marcaggi and Jonathan A. Coles

More information

CHM333 LECTURES 14 & 15: 2/15 17/12 SPRING 2012 Professor Christine Hrycyna

CHM333 LECTURES 14 & 15: 2/15 17/12 SPRING 2012 Professor Christine Hrycyna ENZYME KINETICS: The rate of the reaction catalyzed by enzyme E A + B P is defined as -Δ[A] or -Δ[B] or Δ[P] Δt Δt Δt A and B changes are negative because the substrates are disappearing P change is positive

More information

A. One-Substrate Reactions (1) Kinetic concepts

A. One-Substrate Reactions (1) Kinetic concepts A. One-Substrate Reactions (1) Kinetic concepts (2) Kinetic analysis (a) Briggs-Haldane steady-state treatment (b) Michaelis constant (K m ) (c) Specificity constant (3) Graphical analysis (4) Practical

More information

Problem Set No. 4 Due: Monday, 11/18/10 at the start of class

Problem Set No. 4 Due: Monday, 11/18/10 at the start of class Department of Chemical Engineering ChE 170 University of California, Santa Barbara Fall 2010 Problem Set No. 4 Due: Monday, 11/18/10 at the start of class Objective: To understand the thermodynamic and

More information

Introduction to electrophysiology 1. Dr. Tóth András

Introduction to electrophysiology 1. Dr. Tóth András Introduction to electrophysiology 1. Dr. Tóth András Today topics Transmembran transport Donnan equilibrium Resting potential Level of significance Entry level (even under 6) Student level (for most of

More information

/639 Final Examination Solutions

/639 Final Examination Solutions 58.439/639 Final Examination Solutions Problem 1 Part a) The A group binds in a region of the molecule that is designed to attract potassium ions, by having net negative charges surrounding the pore; the

More information

Michaelis-Menten Kinetics

Michaelis-Menten Kinetics Michaelis-Menten Kinetics Two early 20th century scientists, Leonor Michaelis and Maud Leonora Menten, proposed the model known as Michaelis-Menten Kinetics to account for enzymatic dynamics. The model

More information

Enzyme Kinetics 2014

Enzyme Kinetics 2014 V 41 Enzyme Kinetics 2014 Atkins Ch.23, Tinoco 4 th -Ch.8 Enzyme rxn example Catalysis/Mechanism: E + S k -1 ES k 1 ES E is at beginning and k 2 k -2 E + P at end of reaction Catalyst: No consumption of

More information

Thermodynamics of diffusion (extracurricular material - not tested)

Thermodynamics of diffusion (extracurricular material - not tested) Thermodynamics of diffusion (etracurricular material - not tested) riving force for diffusion iffusion in ideal and real solutions Thermodynamic factor iffusion against the concentration gradient Spinodal

More information

Previous Class. Today. Cosubstrates (cofactors)

Previous Class. Today. Cosubstrates (cofactors) Previous Class Cosubstrates (cofactors) Today Proximity effect Basic equations of Kinetics Steady state kinetics Michaelis Menten equations and parameters Enzyme Kinetics Enzyme kinetics implies characterizing

More information

4. What is the general expression Keq (the equilibrium constant) in terms of product and reactant concentration? tell us about the enzyme.

4. What is the general expression Keq (the equilibrium constant) in terms of product and reactant concentration? tell us about the enzyme. Section 8 Enzyme Kinetics Pre-Activity Assignment 1. Produce a reading log for the sections in your text that discuss the Michaelis-Menten equation and including kcat. 2. Focus on the derivation of the

More information

Biophysics I. DIFFUSION

Biophysics I. DIFFUSION Biophysics I. DIFFUSION Experiment add a droplet of ink to a glass of water Observation: the stain spreads and eventually colours the entire fluid add a droplet of ink to HOT and COLD water Observation:

More information

Overview of Kinetics

Overview of Kinetics Overview of Kinetics [P] t = ν = k[s] Velocity of reaction Conc. of reactant(s) Rate of reaction M/sec Rate constant sec -1, M -1 sec -1 1 st order reaction-rate depends on concentration of one reactant

More information

The following question(s) were incorrectly answered.

The following question(s) were incorrectly answered. Name: Marcie Joseph Module: Cells & chemistry Test topic/animation: My animations/all animations Test type: Multiple choice Score: 48/50 Percent correct: 96% The following question(s) were incorrectly

More information

Chemical Kinetics I: The Dry Lab. Up until this point in our study of physical chemistry we have been interested in

Chemical Kinetics I: The Dry Lab. Up until this point in our study of physical chemistry we have been interested in Chemical Kinetics I: The Dry Lab Up until this point in our study of physical chemistry we have been interested in equilibrium properties; now we will begin to investigate non-equilibrium properties and

More information

Lecture 11: Enzymes: Kinetics [PDF] Reading: Berg, Tymoczko & Stryer, Chapter 8, pp

Lecture 11: Enzymes: Kinetics [PDF] Reading: Berg, Tymoczko & Stryer, Chapter 8, pp Lecture 11: Enzymes: Kinetics [PDF] Reading: Berg, Tymoczko & Stryer, Chapter 8, pp. 216-225 Updated on: 2/4/07 at 9:00 pm Key Concepts Kinetics is the study of reaction rates. Study of enzyme kinetics

More information

Resting membrane potential,

Resting membrane potential, Resting membrane potential Inside of each cell is negative as compared with outer surface: negative resting membrane potential (between -30 and -90 mv) Examination with microelectrode (Filled with KCl

More information

Nernst Equation and Equilibrium Potentials

Nernst Equation and Equilibrium Potentials CELLULAR AND AUTONOMIC PHYSIOLOGY 13 Case 3 Nernst Equation and Equilibrium Potentials This case will guide you through the principles underlying diffusion potentials and electrochemical equilibrium. veil

More information

Biochemical Kinetics: the science that studies rates of chemical reactions An example is the reaction (A P), The velocity, v, or rate, of the

Biochemical Kinetics: the science that studies rates of chemical reactions An example is the reaction (A P), The velocity, v, or rate, of the Biochemical Kinetics: the science that studies rates of chemical reactions An example is the reaction (A P), The velocity, v, or rate, of the reaction A P is the amount of P formed or the amount of A consumed

More information

Ali Yaghi. Gumana Ghashan. Mamoun Ahram

Ali Yaghi. Gumana Ghashan. Mamoun Ahram 21 Ali Yaghi Gumana Ghashan Mamoun Ahram Kinetics The study of Kinetics deals with the rates of chemical reactions. Chemical kinetics is the study of the rate of chemical reactions. For the reaction (A

More information

Kinetic & Affinity Analysis

Kinetic & Affinity Analysis Kinetic & Affinity Analysis An introduction What are kinetics and affinity? Kinetics How fast do things happen? Time-dependent Association how fast molecules bind Dissociation how fast complexes fall apart

More information

ENZYME KINETICS. What happens to S, P, E, ES?

ENZYME KINETICS. What happens to S, P, E, ES? ENZYME KINETICS Go to lecture notes and/or supplementary handouts for the following: 1 Basic observations in enzyme inetics 2 Michaelis-Menten treatment of enzyme inetics 3 Briggs-Haldane treatment of

More information

1 inhibit3.mcd. Substrate Inhibition. Instructor: Nam Sun Wang

1 inhibit3.mcd. Substrate Inhibition. Instructor: Nam Sun Wang Subtrate Inhibition Intructor: Nam Sun Wang inhibitmcd Mechanim Enzyme combine with a ubtrate molecule for form a complex, which lead to product The active enzyme complex ES can further combine with a

More information

Simple kinetics of enzyme action

Simple kinetics of enzyme action Simple kinetics of enzyme action It is established that enzymes form a bound complex to their reactants (i.e. substrates) during the course of their catalysis and prior to the release of products. This

More information

CHEM 341 PHYSICAL CHEMISTRY FINAL EXAM. Name

CHEM 341 PHYSICAL CHEMISTRY FINAL EXAM. Name CHEM 341 PHYSICAL CHEMISTRY FINAL EXAM Name Do not open this exam until told to do so. The exam consists of 6 pages, including this one. Count them to insure that they are all there. Constants: R = 8.31

More information

Physics of biological membranes, diffusion, osmosis Dr. László Nagy

Physics of biological membranes, diffusion, osmosis Dr. László Nagy Physics of biological membranes, diffusion, osmosis Dr. László Nagy -Metabolic processes and transport processes. - Macrotransport : transport of large amount of material : through vessel systems : in

More information

CHEM 251 (4 credits): Description

CHEM 251 (4 credits): Description CHEM 251 (4 credits): Intermediate Reactions of Nucleophiles and Electrophiles (Reactivity 2) Description: An understanding of chemical reactivity, initiated in Reactivity 1, is further developed based

More information

BIOCHEMISTRY - CLUTCH REVIEW 2.

BIOCHEMISTRY - CLUTCH REVIEW 2. !! www.clutchprep.com CONCEPT: BINDING AFFINITY Protein-ligand binding is reversible, like a chemical equilibrium [S] substrate concentration [E] enzyme concentration Ligands bind to proteins via the same

More information

Introduction to Physiology II: Control of Cell Volume and Membrane Potential

Introduction to Physiology II: Control of Cell Volume and Membrane Potential Introduction to Physiology II: Control of Cell Volume and Membrane Potential J. P. Keener Mathematics Department Math Physiology p.1/23 Basic Problem The cell is full of stuff: Proteins, ions, fats, etc.

More information

Chemical kinetics and catalysis

Chemical kinetics and catalysis Chemical kinetics and catalysis Outline Classification of chemical reactions Definition of chemical kinetics Rate of chemical reaction The law of chemical raction rate Collision theory of reactions, transition

More information

A First Course on Kinetics and Reaction Engineering. Class 9 on Unit 9

A First Course on Kinetics and Reaction Engineering. Class 9 on Unit 9 A First Course on Kinetics and Reaction Engineering Class 9 on Unit 9 Part I - Chemical Reactions Part II - Chemical Reaction Kinetics Where We re Going A. Rate Expressions - 4. Reaction Rates and Temperature

More information

Chemical Processes. Transport Processes in the Environment. Transport Processes. Advection. Advection. t 1 t 2

Chemical Processes. Transport Processes in the Environment. Transport Processes. Advection. Advection. t 1 t 2 hemical Processes by Stefan Trapp (taken from course 4) Transport Processes in the Environment a definition of our nomenklatura Transport Processes Only 3 types of transport processes exist ) by advection

More information

Tala Saleh. Mohammad Omari. Dr. Ma moun

Tala Saleh. Mohammad Omari. Dr. Ma moun 20 0 Tala Saleh Mohammad Omari Razi Kittaneh Dr. Ma moun Quick recap The rate of Chemical Reactions Rises linearly as the substrate concentration [S] increases. The rate of Enzymatic Reactions Rises rapidly

More information

TRANSPORT ACROSS MEMBRANE

TRANSPORT ACROSS MEMBRANE TRANSPORT ACROSS MEMBRANE The plasma membrane functions to isolate the inside of the cell from its environment, but isolation is not complete. A large number of molecules constantly transit between the

More information

Nernst Equilibrium Potential. p. 1

Nernst Equilibrium Potential. p. 1 Nernst Equilibrium Potential p. 1 Diffusion The conservation law for a compound with concentration c: rate change of c = local production + accumulation due to transport. Model: d c dv = p dv J n da dt

More information

Previous Class. Today. Michaelis Menten equation Steady state vs pre-steady state

Previous Class. Today. Michaelis Menten equation Steady state vs pre-steady state Previous Class Michaelis Menten equation Steady state vs pre-steady state Today Review derivation and interpretation Graphical representation Michaelis Menten equations and parameters The Michaelis Menten

More information

2 Dilution of Proteins Due to Cell Growth

2 Dilution of Proteins Due to Cell Growth Problem Set 1 1 Transcription and Translation Consider the following set of reactions describing the process of maing a protein out of a gene: G β g G + M M α m M β m M + X X + S 1+ 1 X S 2+ X S X S 2

More information

Kinetic modelling of coupled transport across biological membranes

Kinetic modelling of coupled transport across biological membranes Indian Journal of Biochemistry & Biophysics Vol. 51, April 14, pp. 93-99 Kinetic modelling of coupled transport across biological membranes Kalyani Korla and Chanchal K Mitra* School of Life Sciences,

More information

Reversible reactions

Reversible reactions Reversible reactions A reversible enzymic reaction (e.g. the conversion of glucose to fructose, catalysed by glucose isomerase) may be represented by the following scheme where the reaction goes through

More information

Introduction to Partial Differential Equations

Introduction to Partial Differential Equations Introduction to Partial Differential Equations Philippe B. Laval KSU Current Semester Philippe B. Laval (KSU) 1D Heat Equation: Derivation Current Semester 1 / 19 Introduction The derivation of the heat

More information

Regulation of metabolism

Regulation of metabolism Regulation of metabolism So far in this course we have assumed that the metabolic system is in steady state For the rest of the course, we will abandon this assumption, and look at techniques for analyzing

More information

Part I.

Part I. Part I bblee@unimp . Introduction to Mass Transfer and Diffusion 2. Molecular Diffusion in Gasses 3. Molecular Diffusion in Liquids Part I 4. Molecular Diffusion in Biological Solutions and Gels 5. Molecular

More information

Quantitative Electrophysiology

Quantitative Electrophysiology ECE 795: Quantitative Electrophysiology Notes for Lecture #1 Wednesday, September 13, 2006 1. INTRODUCTION TO EXCITABLE CELLS Historical perspective: Bioelectricity first discovered by Luigi Galvani in

More information

Enzyme Reactions. Lecture 13: Kinetics II Michaelis-Menten Kinetics. Margaret A. Daugherty Fall v = k 1 [A] E + S ES ES* EP E + P

Enzyme Reactions. Lecture 13: Kinetics II Michaelis-Menten Kinetics. Margaret A. Daugherty Fall v = k 1 [A] E + S ES ES* EP E + P Lecture 13: Kinetics II Michaelis-Menten Kinetics Margaret A. Daugherty Fall 2003 Enzyme Reactions E + S ES ES* EP E + P E = enzyme ES = enzyme-substrate complex ES* = enzyme/transition state complex EP

More information

Michaelis-Menten Kinetics. Lecture 13: Kinetics II. Enzyme Reactions. Margaret A. Daugherty. Fall Substrates bind to the enzyme s active site

Michaelis-Menten Kinetics. Lecture 13: Kinetics II. Enzyme Reactions. Margaret A. Daugherty. Fall Substrates bind to the enzyme s active site Lecture 13: Kinetics II Michaelis-Menten Kinetics Margaret A. Daugherty Fall 2003 Enzyme Reactions E + S ES ES* EP E + P E = enzyme ES = enzyme-substrate complex ES* = enzyme/transition state complex EP

More information

PHARMACOKINETIC DERIVATION OF RATES AND ORDERS OF REACTIONS IN MULTI- COMPARTMENT MODEL USING MATLAB

PHARMACOKINETIC DERIVATION OF RATES AND ORDERS OF REACTIONS IN MULTI- COMPARTMENT MODEL USING MATLAB IJPSR (2016), Vol. 7, Issue 11 (Research Article) Received on 29 May, 2016; received in revised form, 07 July, 2016; accepted, 27 July, 2016; published 01 November, 2016 PHARMACOKINETIC DERIVATION OF RATES

More information

MITOCW enzyme_kinetics

MITOCW enzyme_kinetics MITOCW enzyme_kinetics In beer and wine production, enzymes in yeast aid the conversion of sugar into ethanol. Enzymes are used in cheese-making to degrade proteins in milk, changing their solubility,

More information

Part II => PROTEINS and ENZYMES. 2.7 Enzyme Kinetics 2.7a Chemical Kinetics 2.7b Enzyme Inhibition

Part II => PROTEINS and ENZYMES. 2.7 Enzyme Kinetics 2.7a Chemical Kinetics 2.7b Enzyme Inhibition Part II => PROTEINS and ENZYMES 2.7 Enzyme Kinetics 2.7a Chemical Kinetics 2.7b Enzyme Inhibition Section 2.7a: Chemical Kinetics Synopsis 2.7a - Chemical kinetics (or reaction kinetics) is the study of

More information

Main idea of this lecture:

Main idea of this lecture: Ac#ve Transport Main idea of this lecture: How do molecules, big and small, get in OR out of a cell? 2 Main ways: Passive Transport (Does not require energy) Lecture 1 Ac=ve Transport (Requires energy)

More information

Chapt. 12, Movement Across Membranes. Chapt. 12, Movement through lipid bilayer. Chapt. 12, Movement through lipid bilayer

Chapt. 12, Movement Across Membranes. Chapt. 12, Movement through lipid bilayer. Chapt. 12, Movement through lipid bilayer Chapt. 12, Movement Across Membranes Two ways substances can cross membranes Passing through the lipid bilayer Passing through the membrane as a result of specialized proteins 1 Chapt. 12, Movement through

More information

Section 7: Diffusion. Jaeger Chapter 4. EE143 Ali Javey

Section 7: Diffusion. Jaeger Chapter 4. EE143 Ali Javey Section 7: Diffusion Jaeger Chapter 4 Surface Diffusion: Dopant Sources (a) Gas Source: AsH 3, PH 3, B 2 H 6 (b) Solid Source BN Si BN Si (c) Spin-on-glass SiO 2 +dopant oxide (d) Liquid Source. Fick s

More information

Michaelis-Menton kinetics

Michaelis-Menton kinetics Michaelis-Menton kinetics The rate of an enzyme catalyzed reaction in which substrate S is converted into products P depends on the concentration of the enzyme E even though the enzyme does not undergo

More information

Chapter 7-3 Cells and Their Environment

Chapter 7-3 Cells and Their Environment Chapter 7-3 Cells and Their Environment 7-3 Passive Transport Passive transport-the movement of substances across the cell membrane without using NRG Concentration Gradient-difference in concentration

More information

Quantitative Electrophysiology

Quantitative Electrophysiology ECE 795: Quantitative Electrophysiology Notes for Lecture #1 Tuesday, September 18, 2012 1. INTRODUCTION TO EXCITABLE CELLS Historical perspective: Bioelectricity first discovered by Luigi Galvani in 1780s

More information

Lecture 15 (10/20/17) Lecture 15 (10/20/17)

Lecture 15 (10/20/17) Lecture 15 (10/20/17) Reading: Ch6; 98-203 Ch6; Box 6- Lecture 5 (0/20/7) Problems: Ch6 (text); 8, 9, 0,, 2, 3, 4, 5, 6 Ch6 (study guide-facts); 6, 7, 8, 9, 20, 2 8, 0, 2 Ch6 (study guide-applying); NEXT Reading: Ch6; 207-20

More information

Exercise 3: Michaelis-Menten kinetics

Exercise 3: Michaelis-Menten kinetics Chemistry 255 Name(s): Exercise 3: Michaelis-Menten kinetics The study of enzyme kinetics is key to understanding the mechanism of how an enzyme performs its function. In 1913, Leonor Michaelis (German

More information

2013 W. H. Freeman and Company. 6 Enzymes

2013 W. H. Freeman and Company. 6 Enzymes 2013 W. H. Freeman and Company 6 Enzymes CHAPTER 6 Enzymes Key topics about enzyme function: Physiological significance of enzymes Origin of catalytic power of enzymes Chemical mechanisms of catalysis

More information

Lecture 4 STEADY STATE KINETICS

Lecture 4 STEADY STATE KINETICS Lecture 4 STEADY STATE KINETICS The equations of enzyme kinetics are the conceptual tools that allow us to interpret quantitative measures of enzyme activity. The object of this lecture is to thoroughly

More information

Advanced Higher Biology. Unit 1- Cells and Proteins 2c) Membrane Proteins

Advanced Higher Biology. Unit 1- Cells and Proteins 2c) Membrane Proteins Advanced Higher Biology Unit 1- Cells and Proteins 2c) Membrane Proteins Membrane Structure Phospholipid bilayer Transmembrane protein Integral protein Movement of Molecules Across Membranes Phospholipid

More information

Deriving the Michaelis-Menten Equation

Deriving the Michaelis-Menten Equation Page 1 of 5 Deriving the Michaelis-Menten Equation This page is originally authored by Gale Rhodes ( Jan 2000) and is still under continuous update. The page has been modified with permission by Claude

More information

Transporters and Membrane Motors Nov 15, 2007

Transporters and Membrane Motors Nov 15, 2007 BtuB OM vitamin B12 transporter F O F 1 ATP synthase Human multiple drug resistance transporter P-glycoprotein Transporters and Membrane Motors Nov 15, 2007 Transport and membrane motors Concentrations

More information

Class Business. I will have Project I graded by the end of the week. The discussion groups for Project 2 are cancelled

Class Business. I will have Project I graded by the end of the week. The discussion groups for Project 2 are cancelled Quiz 1 Class Business I will have Project I graded by the end of the week. Project 2 is due on 11/15 The discussion groups for Project 2 are cancelled There is additional reading for classes held on 10/30

More information

Introduction to electrophysiology. Dr. Tóth András

Introduction to electrophysiology. Dr. Tóth András Introduction to electrophysiology Dr. Tóth András Topics Transmembran transport Donnan equilibrium Resting potential Ion channels Local and action potentials Intra- and extracellular propagation of the

More information

Introduction to Mass Transfer

Introduction to Mass Transfer Introduction to Mass Transfer Introduction Three fundamental transfer processes: i) Momentum transfer ii) iii) Heat transfer Mass transfer Mass transfer may occur in a gas mixture, a liquid solution or

More information

Sample Questions for the Chemistry of Life Topic Test

Sample Questions for the Chemistry of Life Topic Test Sample Questions for the Chemistry of Life Topic Test 1. Enzymes play a crucial role in biology by serving as biological catalysts, increasing the rates of biochemical reactions by decreasing their activation

More information

CHEM 341 PHYSICAL CHEMISTRY FINAL EXAM. Name

CHEM 341 PHYSICAL CHEMISTRY FINAL EXAM. Name CHEM 341 PHYSICAL CHEMISTRY FINAL EXAM Name Do not open this exam until told to do so. The exam consists of 6 pages, including this one. Count them to insure that they are all there. Constants: R = 8.31

More information

Enzymes II. Dr. Mamoun Ahram Summer, 2017

Enzymes II. Dr. Mamoun Ahram Summer, 2017 Enzymes II Dr. Mamoun Ahram Summer, 2017 Kinetics Kinetics is deals with the rates of chemical reactions. Chemical kinetics is the study of the rates of chemical reactions. For the reaction (A P), The

More information

Chemical Kinetics. Topic 7

Chemical Kinetics. Topic 7 Chemical Kinetics Topic 7 Corrosion of Titanic wrec Casón shipwrec 2Fe(s) + 3/2O 2 (g) + H 2 O --> Fe 2 O 3.H 2 O(s) 2Na(s) + 2H 2 O --> 2NaOH(aq) + H 2 (g) Two examples of the time needed for a chemical

More information

Objective: Building a Bioreactor with intracellular reactions

Objective: Building a Bioreactor with intracellular reactions www.optience.com BioCell Model Objective: Building a Bioreactor with intracellular reactions This example shows a more advanced bioreactor model where both intracellular and extracellular concentrations

More information

Chemistry 112 Chemical Kinetics. Kinetics of Simple Enzymatic Reactions: The Case of Competitive Inhibition

Chemistry 112 Chemical Kinetics. Kinetics of Simple Enzymatic Reactions: The Case of Competitive Inhibition Chemistry Chemical Kinetics Kinetics of Simple Enzymatic Reactions: The Case of Competitive Inhibition Introduction: In the following, we will develop the equations describing the kinetics of a single

More information

Computational Neuroscience. Session 2-1

Computational Neuroscience. Session 2-1 Computational Neuroscience. Session 2-1 Dr. Marco A Roque Sol 06/04/2018 All living cells exhibit an electrical potential difference between the inner and outer surface of the cytoplasmic membrane. This

More information

Conceptual Model of Diffusion

Conceptual Model of Diffusion Conceptual Model of Diffusion This section introduces the concept of molecular diffusion based on the random path of molecules. The theory and animation demonstrate how, through Brownian motion, a Gaussian

More information

Lecture 27. Transition States and Enzyme Catalysis

Lecture 27. Transition States and Enzyme Catalysis Lecture 27 Transition States and Enzyme Catalysis Reading for Today: Chapter 15 sections B and C Chapter 16 next two lectures 4/8/16 1 Pop Question 9 Binding data for your thesis protein (YTP), binding

More information

Rate laws, Reaction Orders. Reaction Order Molecularity. Determining Reaction Order

Rate laws, Reaction Orders. Reaction Order Molecularity. Determining Reaction Order Rate laws, Reaction Orders The rate or velocity of a chemical reaction is loss of reactant or appearance of product in concentration units, per unit time d[p] = d[s] The rate law for a reaction is of the

More information

3. Based on how energy is stored in the molecules, explain why ΔG is independent of the path of the reaction.

3. Based on how energy is stored in the molecules, explain why ΔG is independent of the path of the reaction. B. Thermodynamics 1. What is "free energy"? 2. Where is this energy stored? We say that ΔG is a thermodynamic property, meaning that it is independent of the way that the conversion of reactants to products

More information

Name Student number. UNIVERSITY OF GUELPH CHEM 4540 ENZYMOLOGY Winter 2002 Quiz #1: February 14, 2002, 11:30 13:00 Instructor: Prof R.

Name Student number. UNIVERSITY OF GUELPH CHEM 4540 ENZYMOLOGY Winter 2002 Quiz #1: February 14, 2002, 11:30 13:00 Instructor: Prof R. UNIVERSITY OF GUELPH CHEM 4540 ENZYMOLOGY Winter 2002 Quiz #1: February 14, 2002, 11:30 13:00 Instructor: Prof R. Merrill Instructions: Time allowed = 90 minutes. Total marks = 30. This quiz represents

More information

v = k, [ES] Name(s): Chemistry 255

v = k, [ES] Name(s): Chemistry 255 Chemistry 255 Name(s): Exercise 3: Michaelis-Menten kinetics (Due Weds, 11/2) The study of enzyme kinetics is key to understanding the mechanism of how an enzyme performs its function. In 1913, Leonor

More information

Discussion Exercise 5: Analyzing Graphical Data

Discussion Exercise 5: Analyzing Graphical Data Discussion Exercise 5: Analyzing Graphical Data Skill 1: Use axis labels to describe a phenomenon as a function of a variable Some value y may be described as a function of some variable x and used to

More information

Chapter 8. Enzymes: basic concept and kinetics

Chapter 8. Enzymes: basic concept and kinetics Chapter 8 Enzymes: basic concept and kinetics Learning objectives: mechanism of enzymatic catalysis Michaelis -Menton Model Inhibition Single Molecule of Enzymatic Reaction Enzymes: catalysis chemical

More information

On the status of the Michaelis-Menten equation and its implications for enzymology

On the status of the Michaelis-Menten equation and its implications for enzymology 1 On the status of the Michaelis-Menten equation and its implications for enzymology Sosale Chandrasekhar 1 Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, India 1 E-mail:

More information

Mechanics of Motor Proteins and the Cytoskeleton Jonathon Howard Chapter 10 Force generation 2 nd part. Andrea and Yinyun April 4 th,2012

Mechanics of Motor Proteins and the Cytoskeleton Jonathon Howard Chapter 10 Force generation 2 nd part. Andrea and Yinyun April 4 th,2012 Mechanics of Motor Proteins and the Cytoskeleton Jonathon Howard Chapter 10 Force generation 2 nd part Andrea and Yinyun April 4 th,2012 I. Equilibrium Force Reminder: http://www.youtube.com/watch?v=yt59kx_z6xm

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C7: BIOLOGICAL PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C7: BIOLOGICAL PHYSICS 2757 SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C7: BIOLOGICAL PHYSICS TRINITY TERM 2011 Monday, 27 June, 9.30 am 12.30 pm Answer

More information

SIMPLE MODEL Direct Binding Analysis

SIMPLE MODEL Direct Binding Analysis Neurochemistry, 56:120:575 Dr. Patrick J. McIlroy Supplementary Notes SIMPLE MODEL Direct Binding Analysis The interaction of a (radio)ligand, L, with its receptor, R, to form a non-covalent complex, RL,

More information

Biological Chemistry and Metabolic Pathways

Biological Chemistry and Metabolic Pathways Biological Chemistry and Metabolic Pathways 1. Reaction a. Thermodynamics b. Kinetics 2. Enzyme a. Structure and Function b. Regulation of Activity c. Kinetics d. Inhibition 3. Metabolic Pathways a. REDOX

More information

56:198:582 Biological Networks Lecture 11

56:198:582 Biological Networks Lecture 11 56:198:582 Biological Networks Lecture 11 Network Motifs in Signal Transduction Networks Signal transduction networks Signal transduction networks are composed of interactions between signaling proteins.

More information

Physical-Chemistry Factors Affecting Oral Absorption. Objectives. ph - Partition Theory. 27 September Chapter 23 1

Physical-Chemistry Factors Affecting Oral Absorption. Objectives. ph - Partition Theory. 27 September Chapter 23 1 Physical-Chemistry Factors Affecting Oral Absorption Objectives Understand the physical-chemical factors that affect oral absorption Understand the ph-partition hypothesis as it applies to drug absorption

More information

Diffusion - The Heat Equation

Diffusion - The Heat Equation Chapter 6 Diffusion - The Heat Equation 6.1 Goal Understand how to model a simple diffusion process and apply it to derive the heat equation in one dimension. We begin with the fundamental conservation

More information

Program for the rest of the course

Program for the rest of the course Program for the rest of the course 16.4 Enzyme kinetics 17.4 Metabolic Control Analysis 19.4. Exercise session 5 23.4. Metabolic Control Analysis, cont. 24.4 Recap 27.4 Exercise session 6 etabolic Modelling

More information

Lecture Series 9 Cellular Pathways That Harvest Chemical Energy

Lecture Series 9 Cellular Pathways That Harvest Chemical Energy Lecture Series 9 Cellular Pathways That Harvest Chemical Energy Reading Assignments Review Chapter 3 Energy, Catalysis, & Biosynthesis Read Chapter 13 How Cells obtain Energy from Food Read Chapter 14

More information

CHAPTER 1: ENZYME KINETICS AND APPLICATIONS

CHAPTER 1: ENZYME KINETICS AND APPLICATIONS CHAPTER 1: ENZYME KINETICS AND APPLICATIONS EM 1 2012/13 ERT 317 BIOCHEMICAL ENGINEERING Course details Credit hours/units : 4 Contact hours : 3 hr (L), 3 hr (P) and 1 hr (T) per week Evaluations Final

More information

2002NSC Human Physiology Semester Summary

2002NSC Human Physiology Semester Summary 2002NSC Human Physiology Semester Summary Griffith University, Nathan Campus Semester 1, 2014 Topics include: - Diffusion, Membranes & Action Potentials - Fundamentals of the Nervous System - Neuroanatomy

More information

Enzymes Part III: Enzyme kinetics. Dr. Mamoun Ahram Summer semester,

Enzymes Part III: Enzyme kinetics. Dr. Mamoun Ahram Summer semester, Enzymes Part III: Enzyme kinetics Dr. Mamoun Ahram Summer semester, 2015-2016 Kinetics Kinetics is deals with the rates of chemical reactions. Chemical kinetics is the study of the rates of chemical reactions.

More information

Chapter 18. Reversible Reactions. A chemical reaction in which the products can react to re-form the reactants is called a reversible reaction.

Chapter 18. Reversible Reactions. A chemical reaction in which the products can react to re-form the reactants is called a reversible reaction. Section 1 The Nature of Chemical Equilibrium Reversible Reactions A chemical reaction in which the products can react to re-form the reactants is called a reversible reaction. Section 1 The Nature of Chemical

More information

CELL BIOLOGY - CLUTCH CH. 9 - TRANSPORT ACROSS MEMBRANES.

CELL BIOLOGY - CLUTCH CH. 9 - TRANSPORT ACROSS MEMBRANES. !! www.clutchprep.com K + K + K + K + CELL BIOLOGY - CLUTCH CONCEPT: PRINCIPLES OF TRANSMEMBRANE TRANSPORT Membranes and Gradients Cells must be able to communicate across their membrane barriers to materials

More information

Cell membrane resistance and capacitance

Cell membrane resistance and capacitance Cell membrane resistance and capacitance 1 Two properties of a cell membrane gives rise to two passive electrical properties: Resistance: Leakage pathways allow inorganic ions to cross the membrane. Capacitance:

More information

Final Chem 4511/6501 Spring 2011 May 5, 2011 b Name

Final Chem 4511/6501 Spring 2011 May 5, 2011 b Name Key 1) [10 points] In RNA, G commonly forms a wobble pair with U. a) Draw a G-U wobble base pair, include riboses and 5 phosphates. b) Label the major groove and the minor groove. c) Label the atoms of

More information

Bacterial Physiology Lec -3

Bacterial Physiology Lec -3 Bacterial Physiology Lec -3 Uptake of nutrients by the cell The first step in nutrient use is uptake of the required nutrients by the microbial cell,uptake mechanism must be specific-that is the necessary

More information