Diffusion in biological systems and Life at low Reynolds number

Size: px
Start display at page:

Download "Diffusion in biological systems and Life at low Reynolds number"

Transcription

1 Diffusion in biological systems and Life at low Reynolds number Aleksandra Radenovic EPFL Ecole Polytechnique Federale de Lausanne Bioengineering Institute Laboratory of Nanoscale Biology Lausanne September 26 th 2013.

2 Main contents Diffusion in biological systems Diffusion in the cell Diffusive dynamics Biological applications of diffusion Life at low Reynolds number Friction in fluids Low Reynolds number world Biological applications

3 Brownian motion Brown (1828) Pollen grains (1μm) suspended in water do a peculiar dance The motion of the pollen has never stopped Totally lifeless particles do exactly the same thing Einstein (1905) Quantitative explanation from thermal motion of water molecules

4 Random Walk Models for Life in Motion Dynamics in cells is mostly driven by random jiggling of small molecules in solution: diffusion Because diffusion of molecules is powered by thermal energy, movement is random. Collisions in chemical reactions Ligand binding/unbinding Distribution of ions or newly made proteins Homogeneous distribution of abundant molecules Equilibrium of pressure and equipartition of energy Opening of ion channel & diffusion of ions When channel is open, ions diffusion inward Passive transport (no energy input)

5 Diffusive & directed motions of RNA polymerase Passive: Free RNA polymerase molecule diffusing in a bacterial cell Active: One dimensional motion of RNA polymerase along DNA Energy source: NTP

6 Patterns of E. coli swimming at different scales At low magnification, the swimming movement of a single bacterium appears to be a random walk At higher magnification, it is clear that each step of this random walk is made up of very straight, regular movements

7 Biological distances measured in diffusion times How long does it take to move across the bacterial cell? Diffusion time as a function of the length

8 Diffusion is no effective over large cellular distances Nerve cell In reality, it takes much longer than 12 days, because viscosity of cytoplasm is much higher for large particles and the crowding effect slows down diffusion. Time scale of the active transport by virtue of molecular motors is shortened by many orders of magnitude than passive diffusion

9 Experimental techniques: measuring diffusive dynamics Fluorescence recovery after photobleaching Fluorescently labeled molecule Photobleached region by laser pulse Fluorescently labeled Molecules diffuse into the region

10 Snapshots from photobleaching and photoactivation experiments

11 Snapshots from photobleaching and photoactivation experiments FRAP and photoactivation measurements must be interpreted with caution; in particular, one cannot assign an effective viscosity to the cytoplasm which would be applicable to all proteins inside it. Mobility depends sensitively on the protein under consideration, on its concentration, and on any genetic modification it may have undergone, such as His tagging. Thus, protein mobility must be seen not only as a property of the geometrical structure of cytoplasm and the background macromolecular concentrations alone but also as a characteristic of the diffusing species

12 FRAP experiment showing recovery of a GFP labeled protein confined to the membrane of the endoplasmic reticulum The boxed region is photobleached at time instant, t = 0. In subsequent frames, fluorescent molecules from elsewhere in the cell diffuse into the bleached region.

13 FRAP FRAP denotes an optical technique capable of quantifying the diffusion of fluorescentlylabeled biological molecules. Diffusion can be in 1 D in long processes (e.g. flagellum), 2 D on membrane proteins in a lipid bilayer or 3 D inside cytoplasm. (B) High power laser pulse is sent to photobleach all of the fluorescent probes in certain region. (C) Recovery of the fluorescent from the neighboring area is recorded as a function of time. (D) The half life of recovery is a function of diffusion constant. Recovered signal may be

14 Single particle tracking Record trajectory {x(t),y(t),z(t)} of a particle Calculate Diffusion constant

15 Fluorescence correlation spectroscopy 1) Measure the fluorescence intensity in a small region of the cell as a function of time (2) By analyzing the temporal fluctuations of the intensity through the use of timedependent correlation functions, the diffusion constant and other characteristics of the molecular motion can be uncovered such as concentration

16 Random Walk Redux

17 Diffusive dynamics :Diffusion & Random Walk What is a meaning of <> Equivalent to release simultaneously M particles at origin and then let them do independently random walk (or diffuse to other places)

18 Random Walk Redux Diffusion can be modeled as one, two or three dimensional random walk: Step size is fixed Number of steps is not fixed and time dependent Assume that the molecule takes one step at every Δt. From one dimensional random walk: D is an experimentally measurable parameter

19 D is an experimentally measurable parameter We assumed molecular scale parameters L and Δt, which are not experimentally measurable. To verify the idea that diffusion and friction are manifestations of thermal motion, Einstein noticed that there is a third relation between Land Δt.

20 Diffusive dynamics :Fick's law Assumption Large number particles Uniform in y, z direction Nonuniform in x direction Jump distance L per time Δt Same jump probability to left and right N(x,t): the number of particles in the box between x L/2 and x+l/2 at time t. (1/2)N(x,t) particles will pass through x L/2 to the left in Δt. Simultaneously, (1/2)N(x L,t) particles pass through x L/2 to the right Concentration of molecules

21 Diffusive dynamics :Fick's law Question: why is there a flux since each particle has the same jump probability to left and right? Reason for net flow: there are more particles in one slot than in the neighbouring one due to nonuniform distribution. Continuity equation

22 Diffusive dynamics :Fick's law Average rate of crossing a surface per unit are is flux J measures the number of particles moving from left to right (+x direction) If there are more particles on the left, c is decreasing by x, and its negative derivative is positive. There will be net flux of particles towards right. Particles will move from densely populated regions to sparsely populated regions to equilibrate their chemical potential (Entropic Forces)

23 Diffusion Equation If there is order in the initial state, diffusion will erase that memory. Fick s Law is useful if concentration gradient is time independent. However if the concentration gradient is changing over time due to diffusion of particles, Fick s Law does not tell much. N(x,t)

24 Fundamental Pulse Equation What happens if we introduce N number of particles to x = 0 position in pure water. Net flux of particles on the left towards the left side Net flux of particles on the right towards the right side Concentration of particles decreases by time due to diffusion of particles away from 0 position Diffusion finally erases the bump. We expect the variance of the pulse to increase with time. Can simple Gaussian be a solution?

25 Fundamental Pulse Equation

26 Biased Diffusion A force F exerted on a particle results in a drift velocity: The movement of particles under the same net v drift would generate a net flux: We can write the total flux due to random diffusion and net movement under the drift velocity:

27 Biased Diffusion In equilibrium, the net flux vanishes, J(x) = 0 Out of equilibrium,

28 The Role of Diffusion in Biological Reactions The cell membrane is uniformly decorated a by receptor proteins. A signaling process depends on the arrival of ligand molecules and attachment to receptors. The spherical cell of radius R is introduced into a solution with concentration c 0 at the far distance. We assume that the cell membrane is a perfect absorber, that concentration of ligand at the surface is 0. In a steady state

29 The Role of Diffusion in Biological Reactions

30 The Role of Diffusion in Biological Reactions What if the receptors have a finite rate of kon n adsorbing ligands? The number of adsorbed ligands per unit time, where M is the number of receptors on the membrane:

31 The Role of Diffusion in Biological Reactions

32 Universal Rate for Diffusion Limited Chemical Reactions dn 8 We obtain k diff dt kt 3

33 Friction in Fluids We learned that diffusion is a dissipative process. It tends to erase ordered arrangements of molecules. Friction is dissipative, too. It tends to erase ordered motion. In biology, dynamics of small molecules can be envisioned as a marble dropped into a jar of honey. We will learn that water acts like a highly viscous fluid for small molecules. Viscous friction dominates mechanics in the nanoworld. We learned that v drift F small particles fall under gravity because the nominator (F) increases by the mass (m) of particle which is proportional to R 3, whereas the drag coefficient (ς) increases by R. Therefore vdrift is proportional to R 2. How about small particles?

34 Pulse Equation under Bias You release 1 billion molecules at position x = 0 in the middle of a narrow tube. The molecules, diffusion constant is 100 μm2s 1. An electric field pulls the molecules to the right with drift velocity of 1 μms 1. After 80s, what percentage of molecules will be on the left?

35 Pulse Equation under Bias

36 Pulse Equation under Bias

37 The Role of Diffusion in Biological Reactions

38 Fluctuation Molecular thermal motion (random) ==> Diffusion equation Question: Why is diffusion equation deterministic? Answer: Average on ensemble (collection of large number repeated systems) available to describe a system of large number particles. Finite particle system: its behavior deviated from the prediction of diffusion equation. This deviation is called statistical fluctuation. Few particle system: Statistical fluctuations will be significant, and the system's evolution really will appear random, not deterministic. Nanoworld of single molecules: need to take fluctuations seriously

39 Stokes Drag at a Single Molecule Level ATP synthase is a rotary motor which turns 120 counterclockwise per ATP produced. To demonstrate the rotation of the enzyme, fluorescently tagged actin filament was attached to the F1 subunit Myosin V motor carries a micron sized bead in optical trap experiments, demonstrating its ability to carry large vesicles and organelles. Viscous drag produced in these experiments is: Drag force is small compared to force production of a single motor (2 6 pn)

40 Friction in fluids Suspension

41 Small Particles Remain in Suspension in Water Most proteins have slightly higher densities than water. Gravity pulls the object downward. Buoyant force reduces the effect of gravity.

42 Centrifugation While the molecules stay homogenously distributed under Earth s gravity, they can be forced to sediment under centrifugal acceleration with many orders of magnitude of g. The particle wants to move in a straight line (no acceleration). The centripetal acceleration points toward the axis of rotation. This force can only come from frictional drag force of the surrounding fluid. Therefore, particle remains in solution, while slowly drifting towards the bottom of the tube. Centrifugation artificially increases the gravity.

43 Friction in fluids Centrifuge Centripetal

44 Friction in fluids Sedimentation time scale

45 Separation of Molecules by Ultracentrifugation Under centrifugation, molecules both undergo diffusional motion and drifted motion. Each species of particles will have different vdrift and D, depending its density and size. Width of the band of molecules will increase by diffusive law x 2Dt The center position of the band will be given by x v t Center drift Since particle moves linearly with time, by dissipate by the square root of time, the method allows separation of molecules.

46 Friction in fluids Sedimentation time scale

47 Friction in fluids Hard to mix a viscous liquid

48 Friction in fluids Hard to mix a viscous liquid

49 Low Reynolds Number World Newtonian fluid

50 Low Reynolds Number World Viscous critical force

51 Low Reynolds Number World Newtonian fluid

52 Low Reynolds Number World Reynolds number Osborne Reynolds FRS (23 August February 1912)

53 Low Reynolds Number World Newtonian fluid

54 Sedimentation Centrifugation can be used to separate particles with different sizes from each other.

55 Viscosity of Fluids, revisited The response of a fluid to applied force is flow. If you rapidly pull a spoon from a jar of honey, the whole jar will come along. If you pull slowly, there will be little force resisting it. Viscosity is a mechanical property of a fluid, resisting motion. (Right) When you move one plate with force F, it shears the hypothetical layers of water. The force will create a linear velocity gradient from the top to the bottom plate. Velocity is equal to zero at the bottom plate surface.

56 Shearing of Water Shear Modulus of Solids Viscosity of fluids Solids shear under force and come to an equilibrium. Fluids flow under force. The unit of viscosity is Pa.s Velocity is inversely proportional to viscosity. Shear Modulus of Solids Viscosity of Fluids

57 Laminar and Turbulent Flow When a fluid encounters an obstacle, it flows the way around it. If the viscosity of the fluid is high, and velocity is low, it will display a laminar flow. In contrast, fluid with low viscosity forms turbulent flow at high velocity.

58 Reynolds Number Assume that motion of a small fluid element, a cube with a side length of l, encounters an obstacle with a diameter of R. To sidestep the sphere, fluid must undergo radial acceleration Newton s Law of motion says that To estimate the frictional force, we need to generalize Newtonian Fluid relation where the velocity of fluid is not uniform

59 Reynolds Number The net frictional force on a fluid is the force exerted above it, minus the force exerted below it. The Reynolds number is the ratio of inertial and friction terms Note that R ~ l, length scale is similar to the size of the molecule.

60 Reynolds Number In other words, kinetic energy of a particle travelling with a velocity v: Energy dissipated by viscous friction: Ratio of these terms again gives the Reynolds number.

61 The Life at Low Reynolds Number When Re is small, friction term dominates. When Re is large, inertial term dominates. In the low Re world, momentum (or kinetic energy) is rapidly dissipated by friction. In other words, when a ship stops its engines, it still moves a long distance (due to its inertia) before it stops. When a fish swims in water, friction has some effect on its motion. Fish can move a distance similar to its size without swimming before it stops completely. When a bacteria stops its engines, it stops moving in 0.1 Å. Water acts like an intensely viscous environment

62 Dissipative Time Scales and the Reynolds Number We can estimate the time to dissipate kinetic energy of the molecule in a fluid. Time it takes a molecule to move comparable to its size: The ratio of these two terms again yields the Reynolds number (R ~ l) Dissipation of kinetic energy by viscous drag: At times greater than τ viscous, the inertial term can be dropped in above equation. Dependence of the velocity of the object on its initial velocity also drops out if viscous time scale is shorter than time it takes to travel a distance of x(0). Without bias, swimming objects lose their momentum within the dissipative timescale

63 How Do Small Organisms Swim? Suppose you flap a paddle, then bring it back to its original position by the same path. No net progress! Reciprocal motion won t work for swimming. It must be periodic so that it can be repeated. Swimming cycle can be divided into two strokes that are time reversals of one another. Scallop model (three plates and two hinges) has been proposed to explain swimming motility of Spiroplasma. NYvQTWYc

64 Bacterial Flagella Generates Net Force in Direction of Motion Tangential velocity per small section of flagellum experiences a drag force that resists its motion. Viscous drag coefficient for motion parallel to the axis is SMALLER than the one in perpendicular axis of motion. Therefore, force vector is not parallel to the velocity vector, and is closer to the perpendicular direction. x and y components of force cancel out (symmetry), but the one in z does not.

65 Bacterial Flagella Generates Net Force in Direction of Motion

66 Bacterial Flagella Generates Net Force in Direction of Motion velocity of bacteria is 30 μm/sec. Why does bacteria swim? If the food is plenty, diffusion is sufficient to feed the bacteria. It is only relevant, when diffusion takes much longer, or food is rare. Bacteria moves in a straight line, pauses, and takes of in a new random direction. While swimming, cell continuously sample the environment for rich nutrients. Biased random walk

67 Further reading Further reading Reichl, A modern course in statistical physics Phillips, Physical biology of the cell, Ch13 Nelson, Biological physics, Ch4

C C C C 2 C 2 C 2 C + u + v + (w + w P ) = D t x y z X. (1a) y 2 + D Z. z 2

C C C C 2 C 2 C 2 C + u + v + (w + w P ) = D t x y z X. (1a) y 2 + D Z. z 2 This chapter provides an introduction to the transport of particles that are either more dense (e.g. mineral sediment) or less dense (e.g. bubbles) than the fluid. A method of estimating the settling velocity

More information

Biophysics I. DIFFUSION

Biophysics I. DIFFUSION Biophysics I. DIFFUSION Experiment add a droplet of ink to a glass of water Observation: the stain spreads and eventually colours the entire fluid add a droplet of ink to HOT and COLD water Observation:

More information

Hydrodynamics: Viscosity and Diffusion Hydrodynamics is the study of mechanics in a liquid, where the frictional drag of the liquid cannot be ignored

Hydrodynamics: Viscosity and Diffusion Hydrodynamics is the study of mechanics in a liquid, where the frictional drag of the liquid cannot be ignored Hydrodynamics: Viscosity and Diffusion Hydrodynamics is the study of mechanics in a liquid, where the frictional drag of the liquid cannot be ignored First let s just consider fluid flow, where the fluid

More information

Diffusion in the cell

Diffusion in the cell Diffusion in the cell Single particle (random walk) Microscopic view Macroscopic view Measuring diffusion Diffusion occurs via Brownian motion (passive) Ex.: D = 100 μm 2 /s for typical protein in water

More information

ATP Synthase. Proteins as nanomachines. ATP Synthase. Protein physics, Lecture 11. Create proton gradient across. Thermal motion and small objects

ATP Synthase. Proteins as nanomachines. ATP Synthase. Protein physics, Lecture 11. Create proton gradient across. Thermal motion and small objects Proteins as nanomachines Protein physics, Lecture 11 ATP Synthase ATP synthase, a molecular motor Thermal motion and small objects Brownian motors and ratchets Actin and Myosin using random motion to go

More information

MAE 545: Lecture 2 (9/22) E. coli chemotaxis

MAE 545: Lecture 2 (9/22) E. coli chemotaxis MAE 545: Lecture 2 (9/22) E. coli chemotaxis Recap from Lecture 1 Fokker-Planck equation 5` 4` 3` 2` ` 0 ` 2` 3` 4` 5` x In general the probability distribution of jump lengths s can depend on the particle

More information

For slowly varying probabilities, the continuum form of these equations is. = (r + d)p T (x) (u + l)p D (x) ar x p T(x, t) + a2 r

For slowly varying probabilities, the continuum form of these equations is. = (r + d)p T (x) (u + l)p D (x) ar x p T(x, t) + a2 r 3.2 Molecular Motors A variety of cellular processes requiring mechanical work, such as movement, transport and packaging material, are performed with the aid of protein motors. These molecules consume

More information

8.6 Drag Forces in Fluids

8.6 Drag Forces in Fluids 86 Drag Forces in Fluids When a solid object moves through a fluid it will experience a resistive force, called the drag force, opposing its motion The fluid may be a liquid or a gas This force is a very

More information

Biophysik der Moleküle!

Biophysik der Moleküle! Biophysik der Moleküle!!"#$%&'()*+,-$./0()'$12$34!4! Molecular Motors:! - linear motors" 6. Dec. 2010! Muscle Motors and Cargo Transporting Motors! There are striking structural similarities but functional

More information

Acto-myosin: from muscles to single molecules. Justin Molloy MRC National Institute for Medical Research LONDON

Acto-myosin: from muscles to single molecules. Justin Molloy MRC National Institute for Medical Research LONDON Acto-myosin: from muscles to single molecules. Justin Molloy MRC National Institute for Medical Research LONDON Energy in Biological systems: 1 Photon = 400 pn.nm 1 ATP = 100 pn.nm 1 Ion moving across

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C7: BIOLOGICAL PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C7: BIOLOGICAL PHYSICS 2757 SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C7: BIOLOGICAL PHYSICS TRINITY TERM 2013 Monday, 17 June, 2.30 pm 5.45 pm 15

More information

BME Engineering Molecular Cell Biology. Basics of the Diffusion Theory. The Cytoskeleton (I)

BME Engineering Molecular Cell Biology. Basics of the Diffusion Theory. The Cytoskeleton (I) BME 42-620 Engineering Molecular Cell Biology Lecture 07: Basics of the Diffusion Theory The Cytoskeleton (I) BME42-620 Lecture 07, September 20, 2011 1 Outline Diffusion: microscopic theory Diffusion:

More information

How DLS Works: Interference of Light

How DLS Works: Interference of Light Static light scattering vs. Dynamic light scattering Static light scattering measures time-average intensities (mean square fluctuations) molecular weight radius of gyration second virial coefficient Dynamic

More information

Life in the low-reynolds number world

Life in the low-reynolds number world Lecture 11 Life in the low-reynolds number world Sources: Purcell Life at low Reynolds number (Am. J. Phys 1977) Nelson Biological Physics (CH.5) Tsvi Tlusty, tsvi@unist.ac.kr I. Friction in fluids. Outline

More information

Chapter 10. Solids and Fluids

Chapter 10. Solids and Fluids Chapter 10 Solids and Fluids Surface Tension Net force on molecule A is zero Pulled equally in all directions Net force on B is not zero No molecules above to act on it Pulled toward the center of the

More information

Lecture 7 : Molecular Motors. Dr Eileen Nugent

Lecture 7 : Molecular Motors. Dr Eileen Nugent Lecture 7 : Molecular Motors Dr Eileen Nugent Molecular Motors Energy Sources: Protonmotive Force, ATP Single Molecule Biophysical Techniques : Optical Tweezers, Atomic Force Microscopy, Single Molecule

More information

Diffusion and cellular-level simulation. CS/CME/BioE/Biophys/BMI 279 Nov. 7 and 9, 2017 Ron Dror

Diffusion and cellular-level simulation. CS/CME/BioE/Biophys/BMI 279 Nov. 7 and 9, 2017 Ron Dror Diffusion and cellular-level simulation CS/CME/BioE/Biophys/BMI 279 Nov. 7 and 9, 2017 Ron Dror 1 Outline How do molecules move around in a cell? Diffusion as a random walk (particle-based perspective)

More information

Contains ribosomes attached to the endoplasmic reticulum. Genetic material consists of linear chromosomes. Diameter of the cell is 1 m

Contains ribosomes attached to the endoplasmic reticulum. Genetic material consists of linear chromosomes. Diameter of the cell is 1 m 1. (a) Complete each box in the table, which compares a prokaryotic and a eukaryotic cell, with a tick if the statement is correct or a cross if it is incorrect. Prokaryotic cell Eukaryotic cell Contains

More information

Organisms: We will need to have some examples in mind for our spherical cows.

Organisms: We will need to have some examples in mind for our spherical cows. Lecture 4: Structure and Composition (Sept. 15) 4.1 Reading Assignment for Lectures 3-4: Phillips, Kondev, Theriot (PKT), Chapter 2 Problem Set 1 (due Sept. 24) now posted on the website. Cellular materials:

More information

Molecular Machines and Enzymes

Molecular Machines and Enzymes Molecular Machines and Enzymes Principles of functioning of molecular machines Enzymes and catalysis Molecular motors: kinesin 1 NB Queste diapositive sono state preparate per il corso di Biofisica tenuto

More information

SPRING 2011 Phys 450 Solution set 2

SPRING 2011 Phys 450 Solution set 2 SPRING 011 Phys 450 Solution set Problem 1 (a) Estimate the diameter of a ater molecule from its self-diffusion coefficient, and using the Stokes-Einstein relation, assuming that it is a spherical molecule.

More information

Fluid Mechanics Prof. T.I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture - 17 Laminar and Turbulent flows

Fluid Mechanics Prof. T.I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture - 17 Laminar and Turbulent flows Fluid Mechanics Prof. T.I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay Lecture - 17 Laminar and Turbulent flows Welcome back to the video course on fluid mechanics. In

More information

Bacterial Chemotaxis

Bacterial Chemotaxis Bacterial Chemotaxis Bacteria can be attracted/repelled by chemicals Mechanism? Chemoreceptors in bacteria. attractant Adler, 1969 Science READ! This is sensing, not metabolism Based on genetic approach!!!

More information

Chapter Six News! DO NOT FORGET We ARE doing Chapter 4 Sections 4 & 5

Chapter Six News! DO NOT FORGET We ARE doing Chapter 4 Sections 4 & 5 Chapter Six News! DO NOT FORGET We ARE doing Chapter 4 Sections 4 & 5 CH 4: Uniform Circular Motion The velocity vector is tangent to the path The change in velocity vector is due to the change in direction.

More information

Experimental biophysics: Optical tweezer lab Supervisor: Stefan Holm,

Experimental biophysics: Optical tweezer lab Supervisor: Stefan Holm, Experimental biophysics: Optical tweezer lab :, stefan.holm@ftf.lth.se Written by Jason Beech & Henrik Persson, March 2009. Modified 2014 Karl Adolfsson, 2016 Experimental Biophysics: FAF010F, FYST23,

More information

Newton s first law. Objectives. Assessment. Assessment. Assessment. Assessment 5/20/14. State Newton s first law and explain its meaning.

Newton s first law. Objectives. Assessment. Assessment. Assessment. Assessment 5/20/14. State Newton s first law and explain its meaning. Newton s first law Objectives State Newton s first law and explain its meaning. Calculate the effect of forces on objects using the law of inertia. Explain conceptually why moving objects do not always

More information

Fluid Mechanics. du dy

Fluid Mechanics. du dy FLUID MECHANICS Technical English - I 1 th week Fluid Mechanics FLUID STATICS FLUID DYNAMICS Fluid Statics or Hydrostatics is the study of fluids at rest. The main equation required for this is Newton's

More information

Microfluidics 1 Basics, Laminar flow, shear and flow profiles

Microfluidics 1 Basics, Laminar flow, shear and flow profiles MT-0.6081 Microfluidics and BioMEMS Microfluidics 1 Basics, Laminar flow, shear and flow profiles 11.1.2017 Ville Jokinen Outline of the next 3 weeks: Today: Microfluidics 1: Laminar flow, flow profiles,

More information

Diffusion. CS/CME/BioE/Biophys/BMI 279 Nov. 15 and 20, 2016 Ron Dror

Diffusion. CS/CME/BioE/Biophys/BMI 279 Nov. 15 and 20, 2016 Ron Dror Diffusion CS/CME/BioE/Biophys/BMI 279 Nov. 15 and 20, 2016 Ron Dror 1 Outline How do molecules move around in a cell? Diffusion as a random walk (particle-based perspective) Continuum view of diffusion

More information

Anatoly B. Kolomeisky. Department of Chemistry CAN WE UNDERSTAND THE COMPLEX DYNAMICS OF MOTOR PROTEINS USING SIMPLE STOCHASTIC MODELS?

Anatoly B. Kolomeisky. Department of Chemistry CAN WE UNDERSTAND THE COMPLEX DYNAMICS OF MOTOR PROTEINS USING SIMPLE STOCHASTIC MODELS? Anatoly B. Kolomeisky Department of Chemistry CAN WE UNDERSTAND THE COMPLEX DYNAMICS OF MOTOR PROTEINS USING SIMPLE STOCHASTIC MODELS? Motor Proteins Enzymes that convert the chemical energy into mechanical

More information

4. The Green Kubo Relations

4. The Green Kubo Relations 4. The Green Kubo Relations 4.1 The Langevin Equation In 1828 the botanist Robert Brown observed the motion of pollen grains suspended in a fluid. Although the system was allowed to come to equilibrium,

More information

2. FLUID-FLOW EQUATIONS SPRING 2019

2. FLUID-FLOW EQUATIONS SPRING 2019 2. FLUID-FLOW EQUATIONS SPRING 2019 2.1 Introduction 2.2 Conservative differential equations 2.3 Non-conservative differential equations 2.4 Non-dimensionalisation Summary Examples 2.1 Introduction Fluid

More information

CELLS STRUCTURE AND FUNCTION

CELLS STRUCTURE AND FUNCTION CELLS STRUCTURE AND FUNCTION Jhia Anjela D. Rivera Department of Biological Sciences School of Science and Technology Centro Escolar University DISCOVERY OF CELLS Robert Hooke (1665): Observed a thin slice

More information

PHY 481/581. Some classical/quantum physics for the nanometer length scale.

PHY 481/581. Some classical/quantum physics for the nanometer length scale. PHY 481/581 Some classical/quantum physics for the nanometer length scale http://creativecommons.org/licenses/by-nc-sa/3.0/ 1 What is nano-science? the science of materials whose properties scale with

More information

Nicholas J. Giordano. Chapter 10 Fluids

Nicholas J. Giordano.  Chapter 10 Fluids Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 10 Fluids Fluids A fluid may be either a liquid or a gas Some characteristics of a fluid Flows from one place to another Shape varies according

More information

3.1 Cell Theory. KEY CONCEPT Cells are the Basic unit of life.

3.1 Cell Theory. KEY CONCEPT Cells are the Basic unit of life. 3.1 Cell Theory KEY CONCEPT Cells are the Basic unit of life. 3.1 Cell Theory The cell theory grew out of the work of many scientists and improvements in the microscope. Many scientists contributed to

More information

Principles of Convection

Principles of Convection Principles of Convection Point Conduction & convection are similar both require the presence of a material medium. But convection requires the presence of fluid motion. Heat transfer through the: Solid

More information

What s important: viscosity Poiseuille's law Stokes' law Demo: dissipation in flow through a tube

What s important: viscosity Poiseuille's law Stokes' law Demo: dissipation in flow through a tube PHYS 101 Lecture 29x - Viscosity 29x - 1 Lecture 29x Viscosity (extended version) What s important: viscosity Poiseuille's law Stokes' law Demo: dissipation in flow through a tube Viscosity We introduced

More information

BME Engineering Molecular Cell Biology. Review: Basics of the Diffusion Theory. The Cytoskeleton (I)

BME Engineering Molecular Cell Biology. Review: Basics of the Diffusion Theory. The Cytoskeleton (I) BME 42-620 Engineering Molecular Cell Biology Lecture 08: Review: Basics of the Diffusion Theory The Cytoskeleton (I) BME42-620 Lecture 08, September 22, 2011 1 Outline Background: FRAP & SPT Review: microscopic

More information

Applications in Biofluidics

Applications in Biofluidics Applications in Biofluidics Last Class: 1. Introduction of μpiv 2. Considerations of Microscopy in μpiv 3. Depth of Correlation 4. Physics of Particles in Micro PIV 5. Measurement Errors 6. Special Processing

More information

centrifugal acceleration, whose magnitude is r cos, is zero at the poles and maximum at the equator. This distribution of the centrifugal acceleration

centrifugal acceleration, whose magnitude is r cos, is zero at the poles and maximum at the equator. This distribution of the centrifugal acceleration Lecture 10. Equations of Motion Centripetal Acceleration, Gravitation and Gravity The centripetal acceleration of a body located on the Earth's surface at a distance from the center is the force (per unit

More information

Mechanics of Motor Proteins and the Cytoskeleton Jonathon Howard Chapter 10 Force generation 2 nd part. Andrea and Yinyun April 4 th,2012

Mechanics of Motor Proteins and the Cytoskeleton Jonathon Howard Chapter 10 Force generation 2 nd part. Andrea and Yinyun April 4 th,2012 Mechanics of Motor Proteins and the Cytoskeleton Jonathon Howard Chapter 10 Force generation 2 nd part Andrea and Yinyun April 4 th,2012 I. Equilibrium Force Reminder: http://www.youtube.com/watch?v=yt59kx_z6xm

More information

Final exam. Please write your name on the exam and keep an ID card ready. You may use a calculator (but no computer or smart phone) and a dictionary.

Final exam. Please write your name on the exam and keep an ID card ready. You may use a calculator (but no computer or smart phone) and a dictionary. Biophysics of Macromolecules Prof. D. Braun and Prof. J. Lipfert SS 2015 Final exam Final exam Name: Student number ( Matrikelnummer ): Please write your name on the exam and keep an ID card ready. You

More information

11.1 Mass Density. Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an

11.1 Mass Density. Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an Chapter 11 Fluids 11.1 Mass Density Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an important factor that determines its behavior

More information

of Friction in Fluids Dept. of Earth & Clim. Sci., SFSU

of Friction in Fluids Dept. of Earth & Clim. Sci., SFSU Summary. Shear is the gradient of velocity in a direction normal to the velocity. In the presence of shear, collisions among molecules in random motion tend to transfer momentum down-shear (from faster

More information

Matter, Atoms & Molecules

Matter, Atoms & Molecules Matter, Atoms & Molecules Matter is anything that has mass and takes up space. All matter is made of tiny particles called atoms, which are too small to see with the naked eye. Matter Matter is anything

More information

Chapt. 12, Movement Across Membranes. Chapt. 12, Movement through lipid bilayer. Chapt. 12, Movement through lipid bilayer

Chapt. 12, Movement Across Membranes. Chapt. 12, Movement through lipid bilayer. Chapt. 12, Movement through lipid bilayer Chapt. 12, Movement Across Membranes Two ways substances can cross membranes Passing through the lipid bilayer Passing through the membrane as a result of specialized proteins 1 Chapt. 12, Movement through

More information

Theme Music: Take the A Train Duke Ellington Cartoon: FoxTrot Bill Amend

Theme Music: Take the A Train Duke Ellington Cartoon: FoxTrot Bill Amend November 11, 2016 Prof. E. F. Redish Theme Music: Take the A Train Duke Ellington Cartoon: FoxTrot Bill Amend 1 Basic Principles of Motion Prof. Redish Description of motion v = Δ r vector displacement

More information

Physical Biology of the Cell. Rob Phillips, Jane Kondev and Julie Theriot

Physical Biology of the Cell. Rob Phillips, Jane Kondev and Julie Theriot Physical Biology of the Cell Rob Phillips, Jane Kondev and Julie Theriot April 4, 2008 Contents 0.1 Preface................................ 14 I The Facts of Life 21 1 Why: Biology By the Numbers 23 1.1

More information

The... of a particle is defined as its change in position in some time interval.

The... of a particle is defined as its change in position in some time interval. Distance is the. of a path followed by a particle. Distance is a quantity. The... of a particle is defined as its change in position in some time interval. Displacement is a.. quantity. The... of a particle

More information

15. Physics of Sediment Transport William Wilcock

15. Physics of Sediment Transport William Wilcock 15. Physics of Sediment Transport William Wilcock (based in part on lectures by Jeff Parsons) OCEAN/ESS 410 Lecture/Lab Learning Goals Know how sediments are characteried (sie and shape) Know the definitions

More information

Lecture 3. Rotational motion and Oscillation 06 September 2018

Lecture 3. Rotational motion and Oscillation 06 September 2018 Lecture 3. Rotational motion and Oscillation 06 September 2018 Wannapong Triampo, Ph.D. Angular Position, Velocity and Acceleration: Life Science applications Recall last t ime. Rigid Body - An object

More information

AGITATION AND AERATION

AGITATION AND AERATION AGITATION AND AERATION Although in many aerobic cultures, gas sparging provides the method for both mixing and aeration - it is important that these two aspects of fermenter design be considered separately.

More information

Lecture 2. Lecture 1. Forces on a rotating planet. We will describe the atmosphere and ocean in terms of their:

Lecture 2. Lecture 1. Forces on a rotating planet. We will describe the atmosphere and ocean in terms of their: Lecture 2 Lecture 1 Forces on a rotating planet We will describe the atmosphere and ocean in terms of their: velocity u = (u,v,w) pressure P density ρ temperature T salinity S up For convenience, we will

More information

Topic 3: Cells Ch. 6. Microscopes pp Microscopes. Microscopes. Microscopes. Microscopes

Topic 3: Cells Ch. 6. Microscopes pp Microscopes. Microscopes. Microscopes. Microscopes Topic 3: Cells Ch. 6 -All life is composed of cells and all cells have a plasma membrane, cytoplasm, and DNA. pp.105-107 - The development of the microscope was the key to understanding that all living

More information

CHAPTER V. Brownian motion. V.1 Langevin dynamics

CHAPTER V. Brownian motion. V.1 Langevin dynamics CHAPTER V Brownian motion In this chapter, we study the very general paradigm provided by Brownian motion. Originally, this motion is that a heavy particle, called Brownian particle, immersed in a fluid

More information

= o + t = ot + ½ t 2 = o + 2

= o + t = ot + ½ t 2 = o + 2 Chapters 8-9 Rotational Kinematics and Dynamics Rotational motion Rotational motion refers to the motion of an object or system that spins about an axis. The axis of rotation is the line about which the

More information

TALLINN UNIVERSITY OF TECHNOLOGY, DIVISION OF PHYSICS 13. STOKES METHOD

TALLINN UNIVERSITY OF TECHNOLOGY, DIVISION OF PHYSICS 13. STOKES METHOD 13. STOKES METHOD 1. Objective To determine the coefficient of viscosity of a known fluid using Stokes method.. Equipment needed A glass vessel with glycerine, micrometer calliper, stopwatch, ruler. 3.

More information

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost Game and Media Technology Master Program - Utrecht University Dr. Nicolas Pronost Essential physics for game developers Introduction The primary issues Let s move virtual objects Kinematics: description

More information

CONVECTIVE HEAT TRANSFER

CONVECTIVE HEAT TRANSFER CONVECTIVE HEAT TRANSFER Mohammad Goharkhah Department of Mechanical Engineering, Sahand Unversity of Technology, Tabriz, Iran CHAPTER 3 LAMINAR BOUNDARY LAYER FLOW LAMINAR BOUNDARY LAYER FLOW Boundary

More information

Fundamentals of Fluid Dynamics: Elementary Viscous Flow

Fundamentals of Fluid Dynamics: Elementary Viscous Flow Fundamentals of Fluid Dynamics: Elementary Viscous Flow Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI bluebox.ippt.pan.pl/ tzielins/ Institute of Fundamental Technological Research

More information

Simple math for a complex world: Random walks in biology and finance. Jake Hofman Physics Department Columbia University

Simple math for a complex world: Random walks in biology and finance. Jake Hofman Physics Department Columbia University Simple math for a complex world: Random walks in biology and finance Jake Hofman Physics Department Columbia University 2007.10.31 1 Outline Complex systems The atomic hypothesis and Brownian motion Mathematics

More information

Before we consider two canonical turbulent flows we need a general description of turbulence.

Before we consider two canonical turbulent flows we need a general description of turbulence. Chapter 2 Canonical Turbulent Flows Before we consider two canonical turbulent flows we need a general description of turbulence. 2.1 A Brief Introduction to Turbulence One way of looking at turbulent

More information

Biomolecular hydrodynamics

Biomolecular hydrodynamics Biomolecular hydrodynamics David Case Rutgers, Spring, 2009 February 1, 2009 Why study hydrodynamical methods? The methods we study in this section are low resolution ones one studies diffusional motion

More information

Introduction to Turbulence AEEM Why study turbulent flows?

Introduction to Turbulence AEEM Why study turbulent flows? Introduction to Turbulence AEEM 7063-003 Dr. Peter J. Disimile UC-FEST Department of Aerospace Engineering Peter.disimile@uc.edu Intro to Turbulence: C1A Why 1 Most flows encountered in engineering and

More information

t = no of steps of length s

t = no of steps of length s s t = no of steps of length s Figure : Schematic of the path of a diffusing molecule, for example, one in a gas or a liquid. The particle is moving in steps of length s. For a molecule in a liquid the

More information

Introduction to Aerodynamics. Dr. Guven Aerospace Engineer (P.hD)

Introduction to Aerodynamics. Dr. Guven Aerospace Engineer (P.hD) Introduction to Aerodynamics Dr. Guven Aerospace Engineer (P.hD) Aerodynamic Forces All aerodynamic forces are generated wither through pressure distribution or a shear stress distribution on a body. The

More information

Investigation of the E. coli Flagellar Motor using Optical Tweezers

Investigation of the E. coli Flagellar Motor using Optical Tweezers FOPRA 2017/2018 Physik-Department Lehrstuhl für Biophysik E22 Technische Universität München Investigation of the E. coli Flagellar Motor using Optical Tweezers Alfredo Sciortino (alfredo.sciortino@tum.de)

More information

Biomolecular hydrodynamics

Biomolecular hydrodynamics Biomolecular hydrodynamics Chem 341, Fall, 2014 1 Frictional coefficients Consider a particle moving with velocity v under the influence of some external force F (say a graviational or electrostatic external

More information

Untangling the Mechanics of Entangled Biopolymers

Untangling the Mechanics of Entangled Biopolymers Untangling the Mechanics of Entangled Biopolymers Rae M. Robertson-Anderson Physics Department University of San Diego students/postdocs: Cole Chapman, PhD Tobias Falzone, PhD Stephanie Gorczyca, USD 16

More information

Supplementary Methods

Supplementary Methods Supplementary Methods Modeling of magnetic field In this study, the magnetic field was generated with N52 grade nickel-plated neodymium block magnets (K&J Magnetics). The residual flux density of the magnets

More information

Fluid Mechanics Theory I

Fluid Mechanics Theory I Fluid Mechanics Theory I Last Class: 1. Introduction 2. MicroTAS or Lab on a Chip 3. Microfluidics Length Scale 4. Fundamentals 5. Different Aspects of Microfluidcs Today s Contents: 1. Introduction to

More information

Forces and Motion in One Dimension

Forces and Motion in One Dimension Nicholas J. Giordano www.cengage.com/physics/giordano Forces and Motion in One Dimension Applications of Newton s Laws We will learn how Newton s Laws apply in various situations We will begin with motion

More information

Honors Biology-CW/HW Cell Biology 2018

Honors Biology-CW/HW Cell Biology 2018 Class: Date: Honors Biology-CW/HW Cell Biology 2018 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Hooke s discovery of cells was made observing a. living

More information

Exam 2: Equation Summary

Exam 2: Equation Summary MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.01 Physics Fall Term 2012 Exam 2: Equation Summary Newton s Second Law: Force, Mass, Acceleration: Newton s Third Law: Center of Mass: Velocity

More information

Ch. 2 The Laws of Motion

Ch. 2 The Laws of Motion Ch. 2 The Laws of Motion Lesson 1 Gravity and Friction Force - A push or pull we pull on a locker handle push a soccer ball or on the computer keys Contact force - push or pull on one object by another

More information

Chapter 8. Dynamics II: Motion in a Plane

Chapter 8. Dynamics II: Motion in a Plane Chapter 8. Dynamics II: Motion in a Plane Chapter Goal: To learn how to solve problems about motion in a plane. Slide 8-2 Chapter 8 Preview Slide 8-3 Chapter 8 Preview Slide 8-4 Chapter 8 Preview Slide

More information

EXPERIMENT 17. To Determine Avogadro s Number by Observations on Brownian Motion. Introduction

EXPERIMENT 17. To Determine Avogadro s Number by Observations on Brownian Motion. Introduction EXPERIMENT 17 To Determine Avogadro s Number by Observations on Brownian Motion Introduction In 1827 Robert Brown, using a microscope, observed that very small pollen grains suspended in water appeared

More information

Transport Properties: Momentum Transport, Viscosity

Transport Properties: Momentum Transport, Viscosity Transport Properties: Momentum Transport, Viscosity 13th February 2011 1 Introduction Much as mass(material) is transported within luids (gases and liquids), linear momentum is also associated with transport,

More information

Dynamics. Dynamics of mechanical particle and particle systems (many body systems)

Dynamics. Dynamics of mechanical particle and particle systems (many body systems) Dynamics Dynamics of mechanical particle and particle systems (many body systems) Newton`s first law: If no net force acts on a body, it will move on a straight line at constant velocity or will stay at

More information

Force, Friction & Gravity Notes

Force, Friction & Gravity Notes Force, Friction & Gravity Notes Key Terms to Know Speed: The distance traveled by an object within a certain amount of time. Speed = distance/time Velocity: Speed in a given direction Acceleration: The

More information

Biology Exam #1 Study Guide. True/False Indicate whether the statement is true or false. F 1. All living things are composed of many cells.

Biology Exam #1 Study Guide. True/False Indicate whether the statement is true or false. F 1. All living things are composed of many cells. Biology Exam #1 Study Guide True/False Indicate whether the statement is true or false. F 1. All living things are composed of many cells. T 2. Membranes are selectively permeable if they allow only certain

More information

Chapter 6. Circular Motion and Other Applications of Newton s Laws

Chapter 6. Circular Motion and Other Applications of Newton s Laws Chapter 6 Circular Motion and Other Applications of Newton s Laws Circular Motion Two analysis models using Newton s Laws of Motion have been developed. The models have been applied to linear motion. Newton

More information

This is a Gaussian probability centered around m = 0 (the most probable and mean position is the origin) and the mean square displacement m 2 = n,or

This is a Gaussian probability centered around m = 0 (the most probable and mean position is the origin) and the mean square displacement m 2 = n,or Physics 7b: Statistical Mechanics Brownian Motion Brownian motion is the motion of a particle due to the buffeting by the molecules in a gas or liquid. The particle must be small enough that the effects

More information

2. Molecules in Motion

2. Molecules in Motion 2. Molecules in Motion Kinetic Theory of Gases (microscopic viewpoint) assumptions (1) particles of mass m and diameter d; ceaseless random motion (2) dilute gas: d λ, λ = mean free path = average distance

More information

Mechanics Answers to Examples B (Momentum) - 1 David Apsley

Mechanics Answers to Examples B (Momentum) - 1 David Apsley TOPIC B: MOMENTUM ANSWERS SPRING 2019 (Full worked answers follow on later pages) Q1. (a) 2.26 m s 2 (b) 5.89 m s 2 Q2. 8.41 m s 2 and 4.20 m s 2 ; 841 N Q3. (a) 1.70 m s 1 (b) 1.86 s Q4. (a) 1 s (b) 1.5

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C7: BIOLOGICAL PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C7: BIOLOGICAL PHYSICS 2757 SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C7: BIOLOGICAL PHYSICS TRINITY TERM 2011 Monday, 27 June, 9.30 am 12.30 pm Answer

More information

Circular Orbits. Slide Pearson Education, Inc.

Circular Orbits. Slide Pearson Education, Inc. Circular Orbits The figure shows a perfectly smooth, spherical, airless planet with one tower of height h. A projectile is launched parallel to the ground with speed v 0. If v 0 is very small, as in trajectory

More information

Quantitative Electrophysiology

Quantitative Electrophysiology ECE 795: Quantitative Electrophysiology Notes for Lecture #1 Wednesday, September 13, 2006 1. INTRODUCTION TO EXCITABLE CELLS Historical perspective: Bioelectricity first discovered by Luigi Galvani in

More information

Lecture 1: Random walk

Lecture 1: Random walk Lecture : Random walk Paul C Bressloff (Spring 209). D random walk q p r- r r+ Figure 2: A random walk on a D lattice. Consider a particle that hops at discrete times between neighboring sites on a one

More information

7 The Navier-Stokes Equations

7 The Navier-Stokes Equations 18.354/12.27 Spring 214 7 The Navier-Stokes Equations In the previous section, we have seen how one can deduce the general structure of hydrodynamic equations from purely macroscopic considerations and

More information

According to the diagram, which of the following is NOT true?

According to the diagram, which of the following is NOT true? Instructions: Review Chapter 44 on muscular-skeletal systems and locomotion, and then complete the following Blackboard activity. This activity will introduce topics that will be covered in the next few

More information

Kinematics vs. Dynamics

Kinematics vs. Dynamics NEWTON'S LAWS Kinematics vs. Dynamics Kinematics describe motion paths mathematically No description of the matter that may travel along motion path Dynamics prediction of motion path(s) of matter Requires

More information

Part III. Polymer Dynamics molecular models

Part III. Polymer Dynamics molecular models Part III. Polymer Dynamics molecular models I. Unentangled polymer dynamics I.1 Diffusion of a small colloidal particle I.2 Diffusion of an unentangled polymer chain II. Entangled polymer dynamics II.1.

More information

Chapter 8 Lecture. Pearson Physics. Rotational Motion and Equilibrium. Prepared by Chris Chiaverina Pearson Education, Inc.

Chapter 8 Lecture. Pearson Physics. Rotational Motion and Equilibrium. Prepared by Chris Chiaverina Pearson Education, Inc. Chapter 8 Lecture Pearson Physics Rotational Motion and Equilibrium Prepared by Chris Chiaverina Chapter Contents Describing Angular Motion Rolling Motion and the Moment of Inertia Torque Static Equilibrium

More information

Newton s Third Law of Motion Newton s Law of Gravitation Buoyancy Momentum. 3-2 Section 3.4

Newton s Third Law of Motion Newton s Law of Gravitation Buoyancy Momentum. 3-2 Section 3.4 Martha Casquete Newton s Third Law of Motion Newton s Law of Gravitation Buoyancy Momentum 3-2 Section 3.4 Net force/balance and unbalance forces Newton s First Law of Motion/Law of Inertia Newton s Second

More information

Topics covered so far:

Topics covered so far: Topics covered so far: Chap 1: The kinetic theory of gases P, T, and the Ideal Gas Law Chap 2: The principles of statistical mechanics 2.1, The Boltzmann law (spatial distribution) 2.2, The distribution

More information

Solution structure and dynamics of biopolymers

Solution structure and dynamics of biopolymers Solution structure and dynamics of biopolymers Atomic-detail vs. low resolution structure Information available at different scales Mobility of macromolecules in solution Brownian motion, random walk,

More information

Brownian Motion and The Atomic Theory

Brownian Motion and The Atomic Theory Brownian Motion and The Atomic Theory Albert Einstein Annus Mirabilis Centenary Lecture Simeon Hellerman Institute for Advanced Study, 5/20/2005 Founders Day 1 1. What phenomenon did Einstein explain?

More information

Q1. Which of the following is the correct combination of dimensions for energy?

Q1. Which of the following is the correct combination of dimensions for energy? Tuesday, June 15, 2010 Page: 1 Q1. Which of the following is the correct combination of dimensions for energy? A) ML 2 /T 2 B) LT 2 /M C) MLT D) M 2 L 3 T E) ML/T 2 Q2. Two cars are initially 150 kilometers

More information