BME Engineering Molecular Cell Biology. Review: Basics of the Diffusion Theory. The Cytoskeleton (I)

Size: px
Start display at page:

Download "BME Engineering Molecular Cell Biology. Review: Basics of the Diffusion Theory. The Cytoskeleton (I)"

Transcription

1 BME Engineering Molecular Cell Biology Lecture 08: Review: Basics of the Diffusion Theory The Cytoskeleton (I) BME Lecture 08, September 22,

2 Outline Background: FRAP & SPT Review: microscopic diffusion theory Review: macroscopic diffusion theory An overview of the cytoskeleton Actin and its associated proteins 2

3 Outline Background: FRAP & SPT Review: microscopic diffusion theory Review: macroscopic diffusion theory An overview of the cytoskeleton Actin and its associated proteins 3

4 Fluorescence Microscopy of Cell Dynamics

5 Two Frequently Used Methods to Determine Diffusion Coefficient Method 1: Fluorescence recovery after photobleaching Method 2: Single particle tracking 5

6 Fluorescence Recovery After Photobleaching (FRAP) FRAP provides a convenient approach to visualize diffusion. Diffusion coefficient can be estimated from FRAP. 2 w D 1/2 4t w: radius of a Gaussian profile bleaching beam t 1/2 : hlfti half time of ffluorescence recovery 1) D. Axelrod, D.E. Koppel, J. Schlessinger, E. Elson, and W.W. Webb. Mobility Measurement by Analysis of Fluorescence Photobleaching Recovery Kinetics. Biophys. J. 1976; 16(9): ) J. Lippincott-Schwartz, N. Altan-Bonnet, G. H. Patterson, Photobleaching and photoactivation: following protein dynamics in living cells. Nature Cell Biology, 2003 Sep;Suppl:S

7 Single Particle Tracking (SPT) D. Wirtz, Particle-tracking t microrheology of fliving i cells, Ann. Rev. Biophys. 38: ,

8 Outline Background: FRAP & SPT Review: microscopic diffusion theory Review: macroscopic diffusion theory An overview of the cytoskeleton Actin and its associated proteins 8

9 1D Random Walk in Solution (I) Assumptions: (1) A particle i has equal probabilities to walk to the left and to the right. (2) Particle movement at consecutive time points are independent. (3) Movement of different particles are independent. d (4) Each particle moves at a average step size of δ=v x τ i 1 x n x n i 9

10 1D Random Walk in Solution (II) Property 1: The mean position of an ensemble of particles undergoing random walk remains at the origin. The same holds for a single particle over a sufficiently long period of time (ergodicity). i 1 x n x n i N N 1 1 x n xi n xi n 1 N i 1 N i1 N 1 xi n1 xn1 N i1 10

11 1D Random Walk in Solution (III) Property 2: The mean square displacement of an ensemble of particles undergoing random walk increases linearly w.r.t. time. Again, the same holds for a single particle. 1 1 x n x n x n x n N N i i 12 i 1 N i1 N i1 2 2 x n1 t x n n 2Dt r n x n y n 4Dt r n x n y n z n 6Dt D 2 2 V x

12 1D Random Walk in Solution (IV) Property 3: The displacement of a particle follows a normal distribution. p k;n n! 1 1 k k! n k!2 2 nk p k 1 e 2 2 k 2 n n where and x n k n k k n x n 2 k n x n k k nn n n n n n x 1 4Dt 2 p x e where n 2 Dt 4 Dt 12

13 Application of the Microscopic Theory (I) Object Distance diffused 1 μm 100 μm 1mm 1m K ms 2.5s s s (7 hrs) (8 yrs) Protein 5ms 50s s (6 days) s (150 yrs) Organelle 1s 10 4 s 10 8 s s (3 hrs) (3 yrs) (31710 yers) K+: Radius = 0.1nm, viscosity = 1mPa s -1 ;T=25 C; D=2000 μm 2 /sec Protein: Radius = 3nm, viscosity = mPa s -1 ; T = 37; D = 100 μm 2 /sec Organelle: Radis = 500nm, viscosity = mPa s -1 ; T = 25 C; D = 0.5 μm 2 /sec 13

14 Application of the Microscopic Theory (II) Diffusion with external flow x 2 > acement < uare displa Mean squ H. Qian, M. P. Sheetz, E. L. Elson, Single particle tracking: analysis of diffusion and flow in two-dimensional systems, Biophysical Journal, 60(4): , Pure diffusion Diffusion in a cage t 14

15 Outline Background: FRAP & SPT Review: microscopic diffusion theory Review: macroscopic diffusion theory An overview of the cytoskeleton Actin and its associated proteins 15

16 Macroscopic Theory of Diffusion (I) Fick's first equation: net flux is proportional to the spatial gradient of the concentration function. 1 2 N x N x 1 Fx lim 0 2 N x N x / A 2 1 Nx Nx lim 0 2 A A 1 lim D Cx Cx 0 C D x F C x D x 16

17 Macroscopic Theory of Diffusion (II) Fick's second equation 1 Ct Ct FxxFxxA A Ct Ct Fxx Fxx A A 1 Fx x Fx x 2 C F x C D 2 t x x Change over time Change over space The time rate of change in concentration is proportional to the curvature of the concentration ti function. 17

18 Diffusion Coefficient of a Particle Einstein-Smoluchowski Relation v d 1 1 Fx a 2 2 m 2 2m 2 2 Fx 2m mvx kt f 2 vd D D kt D f: viscous drag coefficient f Stokes' relation: the viscous drag coefficient of a sphere moving in an unbounded fluid f 6 r : viscousity r: radius 18

19 An example of D calculation Calculation of diffusion coefficient D kt 6r k= J/k= N m/k T = =0.8904mPa s= N m -2 s r= 500nm=0 0.5μm D=0.5 m 2 /s 19

20 References Howard Berg, Random Walks in Biology, Princeton University Press, Jonathon Howard, Mechanics of Motor Proteins and the Cytoskeleton, Sinauer Associated,

21 Outline Background: FRAP & SPT Review: microscopic diffusion theory Review: macroscopic diffusion theory An overview of the cytoskeleton Actin and its associated proteins 21

22 The Cytoskeleton is Highly Dynamic and Regulated 22

23 The Cytoskeleton (I) Three classes of filaments - actin: stress fiber; cell cortex; filopodium - microtubule: centrosome - intermediate filaments Red: actin Green: microtubule 23

24 The Cytoskeleton (II) Intermediate filaments Spatial organization of cytoskeletal filaments is dependent on many factors, e.g. - cell type - cell states (cycle) - cell activities Green: vimentin IF Red: microtubule Orange: keratin IF Green: desmosome 24

25 The cytoskeleton plays a critical role in many basic cellular l functions, e.g. The Cytoskeleton (III) - structural organization & support - shape control - intracellular transport - force and motion generation -signaling g integration Highly dynamic and adaptive 25

26 Overview of Cytoskeletal Filaments Shape Diameter Subunits Polarized actin cable ~6 nm actin monomer microtubule tube ~25nm tubulin heterodimer intermediate filament rope ~10nm Various dimers yes yes no 26

27 Organization of Actin with a Cell 27

28 Actin Structure and Function Each actin subunit is a globular monomer. One ATP binding site per monomer. Functions - Cell migration - Cell shape - Used as tracks for myosin for short distance transport Pollard & Cooper, Science, ,

29 Basics Terms of Chemical Reaction Kinetics A reversible bimolecular binding reaction A + B AB Rate of association = k + [A][B] Rate of disassociation = k - [AB] At equilibrium k + [A][B] = k - [AB] 29

30 Actin Nucleation and Nucleotide Hydrolysis Actin polymerizes and depolymerizes substantially faster at tthe plus end d(barbed b end) d)than at the minus end (pointed end). 30

31 Outline Background: FRAP & SPT Review: microscopic diffusion theory Review: macroscopic diffusion theory An overview of the cytoskeleton Actin and its associated proteins 31

32 Actin Accessory Proteins (I) More than 60 families identified so far. Functions - Monomer binding - Nucleation - Filament capping - Filament severing - Filament side-binding and supporting - Filament crosslinking -Signaling g adapter Functional overlap and collaboration between actin- binding proteins 32

33 Actin Accessory Proteins (II) Monomer binding proteins - profilin: to bind actin monomer and accelerate elongation - thymosin: to bind and lock actin monomer - ADF/cofilin: to bind and destabilize ADP-actin filaments 33

34 Actin Accessory Proteins (III) Actin nucleation - Formins: to initiate unbranched actin filaments - Arp2/3: to bind the side of actin and initiate branching 34

35 Actin Accessory Proteins (IV) Actin capping protein - Blocks subunit addition and disassociation Actin severing protein Three families of proteins perform both functions - Gelsolin - Fragmin-severin - ADF/cofilin 35

36 Actin Accessory Proteins (V) Actin side-binding proteins tropomyosin, nebulin, caldesmon Actin crosslinking protein - -actinin - filamin - spectrin -ERM 36

37 Actin Adapter Protein Adaptor proteins such as WASP (a branching mediating factor) & VASP (a polymerization mediating factor) server as connectors between signaling pathways and actin assembly. 37

38 Actin Regulation GTPase: Molecule switch; Family of proteins that are activated by GTP binding and inactivated by GTP hydrolysis and phosphate dissociation. Rho GTPase: cdc42: its activation triggers actin polymerization and bundling at filopodia. Rho: its activation promotes actin bundling. Rac: its activation promotes polymerization at the cell periphery. 38

39 Rac on Actin Organization 39

40 Summary: actin Relatively soft (quantification in following lectures). Often form bundles; mechanical strength comes mostly from bundling and crosslinking. Mostly function to withstand tension rather than compression. Relatively stable and easy to work with (biochemically). 40

41 Summary: actin accessory proteins Different proteins have distinct functions. Proteins with multiple functional domains can have multiple l functions. Some of them are essential. Most of the proteins have functional overlap. 41

42 Required Reading Chapter 16 42

43 Questions? 43

BME Engineering Molecular Cell Biology. Basics of the Diffusion Theory. The Cytoskeleton (I)

BME Engineering Molecular Cell Biology. Basics of the Diffusion Theory. The Cytoskeleton (I) BME 42-620 Engineering Molecular Cell Biology Lecture 07: Basics of the Diffusion Theory The Cytoskeleton (I) BME42-620 Lecture 07, September 20, 2011 1 Outline Diffusion: microscopic theory Diffusion:

More information

Neurite formation & neuronal polarization

Neurite formation & neuronal polarization Neurite formation & neuronal polarization Paul Letourneau letou001@umn.edu Chapter 16; The Cytoskeleton; Molecular Biology of the Cell, Alberts et al. 1 An immature neuron in cell culture first sprouts

More information

Neurite formation & neuronal polarization. The cytoskeletal components of neurons have characteristic distributions and associations

Neurite formation & neuronal polarization. The cytoskeletal components of neurons have characteristic distributions and associations Mechanisms of neuronal migration & Neurite formation & neuronal polarization Paul Letourneau letou001@umn.edu Chapter 16; The Cytoskeleton; Molecular Biology of the Cell, Alberts et al. 1 The cytoskeletal

More information

monomer polymer polymeric network cell

monomer polymer polymeric network cell 3.1 Motivation 3.2 Polymerization The structural stability of the cell is provided by the cytoskeleton. Assembling and disassembling dynamically, the cytoskeleton enables cell movement through a highly

More information

Neurite initiation. Neurite formation begins with a bud that sprouts from the cell body. One or several neurites can sprout at a time.

Neurite initiation. Neurite formation begins with a bud that sprouts from the cell body. One or several neurites can sprout at a time. Neurite initiation. Neuronal maturation initiation f-actin polarization and maturation tubulin stage 1: "spherical" neuron stage 2: neurons extend several neurites stage 3: one neurite accelerates its

More information

Chapter 16. Cellular Movement: Motility and Contractility. Lectures by Kathleen Fitzpatrick Simon Fraser University Pearson Education, Inc.

Chapter 16. Cellular Movement: Motility and Contractility. Lectures by Kathleen Fitzpatrick Simon Fraser University Pearson Education, Inc. Chapter 16 Cellular Movement: Motility and Contractility Lectures by Kathleen Fitzpatrick Simon Fraser University Two eukaryotic motility systems 1. Interactions between motor proteins and microtubules

More information

Introduction to Polymerization Kinetics

Introduction to Polymerization Kinetics Introduction to Polymerization Kinetics Perspecties The cytoskeletal biopolymers are largely semi-rigid rods on typical size scale of cells. We here examine their assembly kinetics in free polymerization

More information

1. The plasma membrane of eukaryotic cells is supported by a. actin filaments. b. microtubules. c. lamins. d. intermediate filaments.

1. The plasma membrane of eukaryotic cells is supported by a. actin filaments. b. microtubules. c. lamins. d. intermediate filaments. ANALYSIS AND MODELING OF CELL MECHANICS Homework #2 (due 1/30/13) This homework involves comprehension of key biomechanical concepts of the cytoskeleton, cell-matrix adhesions, and cellcell adhesions.

More information

Mechanics of Motor Proteins and the Cytoskeleton Jonathon Howard Chapter 10 Force generation 2 nd part. Andrea and Yinyun April 4 th,2012

Mechanics of Motor Proteins and the Cytoskeleton Jonathon Howard Chapter 10 Force generation 2 nd part. Andrea and Yinyun April 4 th,2012 Mechanics of Motor Proteins and the Cytoskeleton Jonathon Howard Chapter 10 Force generation 2 nd part Andrea and Yinyun April 4 th,2012 I. Equilibrium Force Reminder: http://www.youtube.com/watch?v=yt59kx_z6xm

More information

Biophysics I. DIFFUSION

Biophysics I. DIFFUSION Biophysics I. DIFFUSION Experiment add a droplet of ink to a glass of water Observation: the stain spreads and eventually colours the entire fluid add a droplet of ink to HOT and COLD water Observation:

More information

The biological motors

The biological motors Motor proteins The definition of motor proteins Miklós Nyitrai, November 30, 2016 Molecular machines key to understand biological processes machines in the micro/nano-world (unidirectional steps): nm,

More information

BE/APh161 Physical Biology of the Cell. Rob Phillips Applied Physics and Bioengineering California Institute of Technology

BE/APh161 Physical Biology of the Cell. Rob Phillips Applied Physics and Bioengineering California Institute of Technology BE/APh161 Physical Biology of the Cell Rob Phillips Applied Physics and Bioengineering California Institute of Technology Cells Decide: Where to Go The Hunters of the Immune Response (Berman et al.) There

More information

Fluorescence polarisation, anisotropy FRAP

Fluorescence polarisation, anisotropy FRAP Fluorescence polarisation, anisotropy FRAP Reminder: fluorescence spectra Definitions! a. Emission sp. b. Excitation sp. Stokes-shift The difference (measured in nm) between the peak of the excitation

More information

Effects of Nonequilibrium Processes on Actin Polymerization and Force Generation

Effects of Nonequilibrium Processes on Actin Polymerization and Force Generation Effects of Nonequilibrium Processes on Actin Polymerization and Force Generation Anders Carlsson Washington University in St Louis Biological cells constantly utilize the influx of energy mediated by ATP

More information

Chemical aspects of the cell. Shape and structure of the cell

Chemical aspects of the cell. Shape and structure of the cell Chemical aspects of the cell Shape and structure of the cell Cellular composition https://www.studyblue.com/ 2 Cellular composition Set of videos with basic information: Cell characteristics: https://www.youtube.com/watch?v=urujd5nexc8

More information

Anatoly B. Kolomeisky. Department of Chemistry CAN WE UNDERSTAND THE COMPLEX DYNAMICS OF MOTOR PROTEINS USING SIMPLE STOCHASTIC MODELS?

Anatoly B. Kolomeisky. Department of Chemistry CAN WE UNDERSTAND THE COMPLEX DYNAMICS OF MOTOR PROTEINS USING SIMPLE STOCHASTIC MODELS? Anatoly B. Kolomeisky Department of Chemistry CAN WE UNDERSTAND THE COMPLEX DYNAMICS OF MOTOR PROTEINS USING SIMPLE STOCHASTIC MODELS? Motor Proteins Enzymes that convert the chemical energy into mechanical

More information

Molecular Cell Biology 5068 In Class Exam 1 September 30, Please print your name:

Molecular Cell Biology 5068 In Class Exam 1 September 30, Please print your name: Molecular Cell Biology 5068 In Class Exam 1 September 30, 2014 Exam Number: Please print your name: Instructions: Please write only on these pages, in the spaces allotted and not on the back. Write your

More information

BIO 311C Spring 2010

BIO 311C Spring 2010 BIO 311C Spring 2010 Prokaryotic cells contain structures that are very similar to structures of the eukaryotic cytoskeleton. Prokaryotic cytoskeletal elements are required for cell division, maintaining

More information

Diffusion in biological systems and Life at low Reynolds number

Diffusion in biological systems and Life at low Reynolds number Diffusion in biological systems and Life at low Reynolds number Aleksandra Radenovic EPFL Ecole Polytechnique Federale de Lausanne Bioengineering Institute Laboratory of Nanoscale Biology Lausanne September

More information

A Theoretical Approach to Actin Filament Dynamics

A Theoretical Approach to Actin Filament Dynamics Journal of Statistical Physics ( C 2006 ) DOI: 10.1007/s10955-006-9204-x A Theoretical Approach to Actin Filament Dynamics Jifeng Hu, 1 Anastasios Matzavinos 1 and Hans G. Othmer 1,2 Received February

More information

Physics of Cellular materials: Filaments

Physics of Cellular materials: Filaments Physics of Cellular materials: Filaments Tom Chou Dept. of Biomathematics, UCLA, Los Angeles, CA 995-766 (Dated: December 6, ) The basic filamentary structures in a cell are reviewed. Their basic structures

More information

Sec. 2.1 Filaments in the cell 21 PART I - RODS AND ROPES

Sec. 2.1 Filaments in the cell 21 PART I - RODS AND ROPES Sec. 2.1 Filaments in the cell 21 PART I - RODS AND ROPES Sec. 2.1 Filaments in the cell 22 CHAPTER 2 - POLYMERS The structural elements of the cell can be broadly classified as filaments or sheets, where

More information

Cytokinesis in fission yeast: Modeling the assembly of the contractile ring

Cytokinesis in fission yeast: Modeling the assembly of the contractile ring Cytokinesis in fission yeast: Modeling the assembly of the contractile ring Nikola Ojkic, Dimitrios Vavylonis Department of Physics, Lehigh University Damien Laporte, Jian-Qiu Wu Department of Molecular

More information

Transport of single molecules along the periodic parallel lattices with coupling

Transport of single molecules along the periodic parallel lattices with coupling THE JOURNAL OF CHEMICAL PHYSICS 124 204901 2006 Transport of single molecules along the periodic parallel lattices with coupling Evgeny B. Stukalin The James Franck Institute The University of Chicago

More information

Two Tails of Motility in Cells. Andrea J. Liu Department of Physics & Astronomy University of Pennsylvania

Two Tails of Motility in Cells. Andrea J. Liu Department of Physics & Astronomy University of Pennsylvania Two Tails of Motility in Cells Andrea J. Liu Department of Physics & Astronomy University of Pennsylvania Kun-Chun Lee Edward Banigan Gareth Alexander Zemer Gitai Ned Wingreen Biophysics, UC Davis Physics,

More information

Muscle regulation and Actin Topics: Tropomyosin and Troponin, Actin Assembly, Actin-dependent Movement

Muscle regulation and Actin Topics: Tropomyosin and Troponin, Actin Assembly, Actin-dependent Movement 1 Muscle regulation and Actin Topics: Tropomyosin and Troponin, Actin Assembly, Actin-dependent Movement In the last lecture, we saw that a repeating alternation between chemical (ATP hydrolysis) and vectorial

More information

Hydrodynamics: Viscosity and Diffusion Hydrodynamics is the study of mechanics in a liquid, where the frictional drag of the liquid cannot be ignored

Hydrodynamics: Viscosity and Diffusion Hydrodynamics is the study of mechanics in a liquid, where the frictional drag of the liquid cannot be ignored Hydrodynamics: Viscosity and Diffusion Hydrodynamics is the study of mechanics in a liquid, where the frictional drag of the liquid cannot be ignored First let s just consider fluid flow, where the fluid

More information

Regulation of Actin Filament Assembly by Arp2/3 Complex and Formins

Regulation of Actin Filament Assembly by Arp2/3 Complex and Formins Annu. Rev. Biophys. Biomol. Struct. 2007. 36:451 77 The Annual Review of Biophysics and Biomolecular Structure is online at biophys.annualreviews.org This article s doi: 10.1146/annurev.biophys.35.040405.101936

More information

Untangling the Mechanics of Entangled Biopolymers

Untangling the Mechanics of Entangled Biopolymers Untangling the Mechanics of Entangled Biopolymers Rae M. Robertson-Anderson Physics Department University of San Diego students/postdocs: Cole Chapman, PhD Tobias Falzone, PhD Stephanie Gorczyca, USD 16

More information

Intracellular transport

Intracellular transport Transport in cells Intracellular transport introduction: transport in cells, molecular players etc. cooperation of motors, forces good and bad transport regulation, traffic issues, Stefan Klumpp image

More information

A theoretical analysis of filament length fluctuations in actin and other polymers

A theoretical analysis of filament length fluctuations in actin and other polymers Journal of Mathematical Biology manuscript No. (will be inserted by the editor) Jifeng Hu Hans G. Othmer A theoretical analysis of filament length fluctuations in actin and other polymers c Springer-Verlag

More information

Acto-myosin: from muscles to single molecules. Justin Molloy MRC National Institute for Medical Research LONDON

Acto-myosin: from muscles to single molecules. Justin Molloy MRC National Institute for Medical Research LONDON Acto-myosin: from muscles to single molecules. Justin Molloy MRC National Institute for Medical Research LONDON Energy in Biological systems: 1 Photon = 400 pn.nm 1 ATP = 100 pn.nm 1 Ion moving across

More information

Activation of a receptor. Assembly of the complex

Activation of a receptor. Assembly of the complex Activation of a receptor ligand inactive, monomeric active, dimeric When activated by growth factor binding, the growth factor receptor tyrosine kinase phosphorylates the neighboring receptor. Assembly

More information

Actin-Binding Proteins in Nerve Cell Growth Cones

Actin-Binding Proteins in Nerve Cell Growth Cones J Pharmacol Sci 105, 6 11 (2007) Journal of Pharmacological Sciences 2007 The Japanese Pharmacological Society Current Perspective Actin-Binding Proteins in Nerve Cell Growth Cones Ryoki Ishikawa 1, *

More information

Unit 2: Cells Guided Reading Questions (60 pts total)

Unit 2: Cells Guided Reading Questions (60 pts total) Name: AP Biology Biology, Campbell and Reece, 7th Edition Adapted from chapter reading guides originally created by Lynn Miriello Chapter 6 A Tour of the Cell Unit 2: Cells Guided Reading Questions (60

More information

Measurements and Models of Cytoskeletal Rheology

Measurements and Models of Cytoskeletal Rheology Measurements and Models of Cytoskeletal Rheology Roger D. Kamm MIT Department of Mechanical Engineering Department of Biological Engineering Acknowledgements: TaeYoon Kim, Hyunsuk Lee, Belinda Yap, Jeff

More information

Polymerization/depolymerization motors

Polymerization/depolymerization motors Polymerization/depolymerization motors Movement formation Kuo Lab, J.H.U. http://www.nature.com/nature/journal/v407/n6807/extref/40 71026a0_S3.mov http://www.bme.jhu.edu/~skuo/movies/macrophchase.mov http://www.bme.jhu.edu/~skuo/movies/gc_filo.mov

More information

Supporting Text - Jégou et al.

Supporting Text - Jégou et al. Supporting Text - Jégou et al. I. PAUSES DURING DEPOLYMERIZATION Pauses were observed during the ymerization of individual filaments grown from ADP-, CrATP- or MgATPactin, in the presence or in the absence

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature09450 Supplementary Table 1 Summary of kinetic parameters. Kinetic parameters were V = V / 1 K / ATP and obtained using the relationships max ( + m [ ]) V d s /( 1/ k [ ATP] + 1 k ) =,

More information

Cells to Tissues. Peter Takizawa Department of Cell Biology

Cells to Tissues. Peter Takizawa Department of Cell Biology Cells to Tissues Peter Takizawa Department of Cell Biology From one cell to ensembles of cells. Multicellular organisms require individual cells to work together in functional groups. This means cells

More information

Title: A Theoretical Approach to Actin Filament Dynamics

Title: A Theoretical Approach to Actin Filament Dynamics Editorial Manager(tm) for Journal of Statistical Physics Manuscript Draft Manuscript Number: Title: A Theoretical Approach to Actin Filament Dynamics Article Type: Special Issue Applications to Biology

More information

A. The Cell: The Basic Unit of Life. B. Prokaryotic Cells. D. Organelles that Process Information. E. Organelles that Process Energy

A. The Cell: The Basic Unit of Life. B. Prokaryotic Cells. D. Organelles that Process Information. E. Organelles that Process Energy The Organization of Cells A. The Cell: The Basic Unit of Life Lecture Series 4 The Organization of Cells B. Prokaryotic Cells C. Eukaryotic Cells D. Organelles that Process Information E. Organelles that

More information

MAE 545: Lecture 2 (9/22) E. coli chemotaxis

MAE 545: Lecture 2 (9/22) E. coli chemotaxis MAE 545: Lecture 2 (9/22) E. coli chemotaxis Recap from Lecture 1 Fokker-Planck equation 5` 4` 3` 2` ` 0 ` 2` 3` 4` 5` x In general the probability distribution of jump lengths s can depend on the particle

More information

Flexing Protein muscles: How to Pull with a "Burning Rope"

Flexing Protein muscles: How to Pull with a Burning Rope Flexing Protein muscles: How to Pull with a "Burning Rope" J. P. Keener 215 Joint International Conference on via Guangzhou University and Huaihua University Huaihua 8/15 p.1/28 Eukaryotic Chromosomal

More information

Diffusion in the cell

Diffusion in the cell Diffusion in the cell Single particle (random walk) Microscopic view Macroscopic view Measuring diffusion Diffusion occurs via Brownian motion (passive) Ex.: D = 100 μm 2 /s for typical protein in water

More information

Lecture 1: Introduction. Keywords: Mathematics as a language, Need of learning mathematics, Applications of mathematics in BIology

Lecture 1: Introduction. Keywords: Mathematics as a language, Need of learning mathematics, Applications of mathematics in BIology NPTEL Syllabus Biomathematics - Video course COURSE OUTLINE Graphs and functions, Derivative of a function, Techniques of differentiation Differentiation and its application in Biology, Finding maxima,

More information

Molecular Motors. Dave Wee 24 Sept Mathematical & Theoretical Biology Seminar

Molecular Motors. Dave Wee 24 Sept Mathematical & Theoretical Biology Seminar Molecular Motors Dave Wee 24 Sept 2003 Mathematical & Theoretical Biology Seminar Overview Types of motors and their working mechanisms. Illustrate the importance of motors using the example of : ATP-Synthase

More information

Biophysik der Moleküle!

Biophysik der Moleküle! Biophysik der Moleküle!!"#$%&'()*+,-$./0()'$12$34!4! Molecular Motors:! - linear motors" 6. Dec. 2010! Muscle Motors and Cargo Transporting Motors! There are striking structural similarities but functional

More information

SELF-DIFFUSIOPHORESIS AND BIOLOGICAL MOTILITY. Department of Physics & Astronomy University of Pennsylvania

SELF-DIFFUSIOPHORESIS AND BIOLOGICAL MOTILITY. Department of Physics & Astronomy University of Pennsylvania SELF-DIFFUSIOPHORESIS AND BIOLOGICAL MOTILITY Department of Physics & Astronomy University of Pennsylvania Informal Seminar, University of Oxford, 8th June 2011 ACTIN BASED PROPULSION Listeria monocytogenes

More information

Supplementary Information

Supplementary Information Supplementary Information Switching of myosin-v motion between the lever-arm swing and Brownian search-and-catch Keisuke Fujita 1*, Mitsuhiro Iwaki 2,3*, Atsuko H. Iwane 1, Lorenzo Marcucci 1 & Toshio

More information

Lecture 7 : Molecular Motors. Dr Eileen Nugent

Lecture 7 : Molecular Motors. Dr Eileen Nugent Lecture 7 : Molecular Motors Dr Eileen Nugent Molecular Motors Energy Sources: Protonmotive Force, ATP Single Molecule Biophysical Techniques : Optical Tweezers, Atomic Force Microscopy, Single Molecule

More information

Solution structure and dynamics of biopolymers

Solution structure and dynamics of biopolymers Solution structure and dynamics of biopolymers Atomic-detail vs. low resolution structure Information available at different scales Mobility of macromolecules in solution Brownian motion, random walk,

More information

The cytoskeleton and neurite initiation

The cytoskeleton and neurite initiation This article was downloaded by: [69.147.207.89] On: 18 January 2015, At: 16:21 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer

More information

For slowly varying probabilities, the continuum form of these equations is. = (r + d)p T (x) (u + l)p D (x) ar x p T(x, t) + a2 r

For slowly varying probabilities, the continuum form of these equations is. = (r + d)p T (x) (u + l)p D (x) ar x p T(x, t) + a2 r 3.2 Molecular Motors A variety of cellular processes requiring mechanical work, such as movement, transport and packaging material, are performed with the aid of protein motors. These molecules consume

More information

BIOMECHANICS 3 Origins and consequences of forces in biological systems

BIOMECHANICS 3 Origins and consequences of forces in biological systems BIOMECHANICS 3 Origins and consequences of forces in biological systems MOLECULAR MECHANISMS OF BIOLOGICAL MOVEMENT AT THE LEVELOF ORGANISMS MOLECULAR BASIS OF MUSCLE CONTRACTION DR. BEÁTA BUGYI - BIOPHYSICS

More information

Nuclear import of DNA: genetic modification of plants

Nuclear import of DNA: genetic modification of plants Nuclear import of DNA: genetic modification of plants gene delivery by Agrobacterium tumefaciens T. Tzfira & V. Citovsky. 2001. Trends in Cell Biol. 12: 121-129 VirE2 binds ssdna in vitro forms helical

More information

Molecular Motors. Structural and Mechanistic Overview! Kimberly Nguyen - December 6, 2013! MOLECULAR MOTORS - KIMBERLY NGUYEN

Molecular Motors. Structural and Mechanistic Overview! Kimberly Nguyen - December 6, 2013! MOLECULAR MOTORS - KIMBERLY NGUYEN Molecular Motors Structural and Mechanistic Overview!! Kimberly Nguyen - December 6, 2013!! 1 Molecular Motors: A Structure and Mechanism Overview! Introduction! Molecular motors are fundamental agents

More information

Introduction: actin and myosin

Introduction: actin and myosin Introduction: actin and myosin Actin Myosin Myosin V and actin 375 residues Found in all eukaryotes Polymeric Forms track for myosin Many other cellular functions 36 nm pseudo-helical repeat Catalytic

More information

Polymerization of Cytoskeletal Filaments. Rami Amro Instructor: Dr.Alexander Neiman

Polymerization of Cytoskeletal Filaments. Rami Amro Instructor: Dr.Alexander Neiman Polymerization of Cytoskeletal Filaments Rami Amro Instructor: Dr.Alexander Neiman properties Actin filaments range in length: ~35 nm in Cortex of erythrocytes and other cells 10-100 nm in the stereocilia

More information

3 Biopolymers Uncorrelated chains - Freely jointed chain model

3 Biopolymers Uncorrelated chains - Freely jointed chain model 3.4 Entropy When we talk about biopolymers, it is important to realize that the free energy of a biopolymer in thermal equilibrium is not constant. Unlike solids, biopolymers are characterized through

More information

Cell Structure and Function. The Development of Cell Theory

Cell Structure and Function. The Development of Cell Theory Cell Structure and Function The Development of Cell Theory Hooke's original microscope, that he used at Oxford University, in 1665. Robert Hooke first examined a thin piece of cork (see below), and coined

More information

Motility and Force Generation Based on the Dynamics of Actin Gels

Motility and Force Generation Based on the Dynamics of Actin Gels Aus der Universität Bayreuth Motility and Force Generation Based on the Dynamics of Actin Gels Dissertation zur Erlangung des akademischen Grades Doktor der Naturwissenschaften Dr. rer. nat. im Fach Chemie

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C7: BIOLOGICAL PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C7: BIOLOGICAL PHYSICS 2757 SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C7: BIOLOGICAL PHYSICS TRINITY TERM 2011 Monday, 27 June, 9.30 am 12.30 pm Answer

More information

Reference: Forscher, P., Kaczmarek, L.K., Buchanan, J. and Smith, S.J. (1987) Cyclic AMP induces changes in distribution and transport of organelles

Reference: Forscher, P., Kaczmarek, L.K., Buchanan, J. and Smith, S.J. (1987) Cyclic AMP induces changes in distribution and transport of organelles Reference: Forscher, P., Kaczmarek, L.K., Buchanan, J. and Smith, S.J. (1987) Cyclic AMP induces changes in distribution and transport of organelles within growth cones of Aplysia bag cell neurons. J.

More information

Analysis of Active Transport by Fluorescence Recovery after Photobleaching. MV Ciocanel, JA Kreiling, JA Gagnon, KL Mowry, B Sandstede

Analysis of Active Transport by Fluorescence Recovery after Photobleaching. MV Ciocanel, JA Kreiling, JA Gagnon, KL Mowry, B Sandstede Analysis of Active Transport by Fluorescence Recovery after Photobleaching MV Ciocanel, JA Kreiling, JA Gagnon, KL Mowry, B Sandstede Analysis of Active Transport by Fluorescence Recovery after Photobleaching

More information

Advanced Protein Models

Advanced Protein Models Advanced Protein Models James. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University March 27, 2014 Outline Advanced Protein Models The Bound Fraction Transcription

More information

Advanced Protein Models

Advanced Protein Models Advanced Protein Models James. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University March 27, 2014 Outline 1 Advanced Protein Models 2 The Bound Fraction

More information

BMB Class 17, November 30, Single Molecule Biophysics (II)

BMB Class 17, November 30, Single Molecule Biophysics (II) BMB 178 2018 Class 17, November 30, 2018 15. Single Molecule Biophysics (II) New Advances in Single Molecule Techniques Atomic Force Microscopy Single Molecule Manipulation - optical traps and tweezers

More information

Cytoskeleton dynamics simulation of the red blood cell

Cytoskeleton dynamics simulation of the red blood cell 1 Cytoskeleton dynamics simulation of the red blood cell Ju Li Collaborators: Subra Suresh, Ming Dao, George Lykotrafitis, Chwee-Teck Lim Optical tweezers stretching of healthy human red blood cell 2 Malaria

More information

Modelling Biochemical Reaction Networks. Lecture 1: Overview of cell biology

Modelling Biochemical Reaction Networks. Lecture 1: Overview of cell biology Modelling Biochemical Reaction Networks Lecture 1: Overview of cell biology Marc R. Roussel Department of Chemistry and Biochemistry Types of cells Prokaryotes: Cells without nuclei ( bacteria ) Very little

More information

SPRING 2011 Phys 450 Solution set 2

SPRING 2011 Phys 450 Solution set 2 SPRING 011 Phys 450 Solution set Problem 1 (a) Estimate the diameter of a ater molecule from its self-diffusion coefficient, and using the Stokes-Einstein relation, assuming that it is a spherical molecule.

More information

Three cytoskeletal polymers actin filaments,

Three cytoskeletal polymers actin filaments, The cytoskeleton, cellular motility and the reductionist agenda Thomas D. Pollard Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven Connecticut 06520-8103, USA (e-mail:

More information

Regulation of Actin Dynamics in Rapidly Moving Cells: A Quantitative Analysis

Regulation of Actin Dynamics in Rapidly Moving Cells: A Quantitative Analysis Biophysical Journal Volume 83 September 2002 1237 1258 1237 Regulation of Actin Dynamics in Rapidly Moving Cells: A Quantitative Analysis Alex Mogilner* and Leah Edelstein-Keshet *Department of Mathematics

More information

FROM LOCALIZATION TO INTERACTION

FROM LOCALIZATION TO INTERACTION EPFL SV PTBIOP FROM LOCALIZATION TO INTERACTION BIOP COURSE 2015 COLOCALIZATION TYPICAL EXAMPLE EPFL SV PTBIOP Vinculin Alexa568 Actin Alexa488 http://www.olympusconfocal.com/applications/colocalization.html

More information

A. The Cell: The Basic Unit of Life. B. Prokaryotic Cells. C. Eukaryotic Cells. D. Organelles that Process Information

A. The Cell: The Basic Unit of Life. B. Prokaryotic Cells. C. Eukaryotic Cells. D. Organelles that Process Information The Organization of Cells A. The Cell: The Basic Unit of Life Lecture Series 4 The Organization of Cells B. Prokaryotic Cells C. Eukaryotic Cells D. Organelles that Process Information E. Organelles that

More information

arxiv: v1 [cond-mat.soft] 12 Sep 2008

arxiv: v1 [cond-mat.soft] 12 Sep 2008 arxiv:0809.2228v1 [cond-mat.soft] 12 Sep 2008 Non-equilibrium self-assembly of a filament coupled to ATP/GTP hydrolysis Padinhateeri Ranjith 1 Physico-Chimie UMR 168 Institut Curie, 26 rue d Ulm 75248

More information

This is a Gaussian probability centered around m = 0 (the most probable and mean position is the origin) and the mean square displacement m 2 = n,or

This is a Gaussian probability centered around m = 0 (the most probable and mean position is the origin) and the mean square displacement m 2 = n,or Physics 7b: Statistical Mechanics Brownian Motion Brownian motion is the motion of a particle due to the buffeting by the molecules in a gas or liquid. The particle must be small enough that the effects

More information

Possible mechanisms for initiating macroscopic left-right asymmetry in developing organisms

Possible mechanisms for initiating macroscopic left-right asymmetry in developing organisms Possible mechanisms for initiating macroscopic left-right asymmetry in developing organisms Chris Henley, Ricky Chachra, Jimmy Shen Cornell U. [Support: U.S. Dept. of Energy] APS March Meeting, Mar. 2,

More information

MUSCLE BIOLOGY OVERVIEW OF THE SKELETAL MUSCLE CYTOSKELETON

MUSCLE BIOLOGY OVERVIEW OF THE SKELETAL MUSCLE CYTOSKELETON MUSCLE BIOLOGY OVERVIEW OF THE SKELETAL MUSCLE CYTOSKELETON Ted Huiatt, Ph.D. Associate Professor, Department of Animal Science and Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology,

More information

Lecture 6 - Intracellular compartments and transport I

Lecture 6 - Intracellular compartments and transport I 01.26.11 Lecture 6 - Intracellular compartments and transport I Intracellular transport and compartments 1. Protein sorting: How proteins get to their appropriate destinations within the cell 2. Vesicular

More information

Lecture Series 3 The Organization of Cells

Lecture Series 3 The Organization of Cells Lecture Series 3 The Organization of Cells Reading Assignments Read Chapter 15 Endomembrane System Read Chapter 17 Cytoskeleton A. The Cell: The Basic Unit of Life Cell Theory: All cells come from preexisting

More information

Biological Process Term Enrichment

Biological Process Term Enrichment Biological Process Term Enrichment cellular protein localization cellular macromolecule localization intracellular protein transport intracellular transport generation of precursor metabolites and energy

More information

Mathematics of cell motility: have we got its number?

Mathematics of cell motility: have we got its number? J. Math. Biol. (2009) 58:105 134 DOI 10.1007/s00285-008-0182-2 Mathematical Biology Mathematics of cell motility: have we got its number? Alex Mogilner Received: 12 July 2007 / Revised: 15 April 2008 /

More information

Cells Under the Microscope Measuring Cell Structures

Cells Under the Microscope Measuring Cell Structures Copy into Note Packet and Return to Teacher Chapter 3 Cell Structure Section 1: Looking at Cells Objectives Describe how scientists measure the length of objects. Relate magnification and resolution in

More information

Pulling forces in Cell Division

Pulling forces in Cell Division Pulling forces in Cell Division Frank Jülicher Max Planck Institute for the Physics of Complex Systems Dresden, Germany Max Planck Institute for the Physics of Complex Systems A. Zumdieck A. J.-Dalmaroni

More information

Cytoskeleton and Cell Motility

Cytoskeleton and Cell Motility Cytoskeleton and Cell Motility Thomas Risler 1 1 Laboratoire Physicochimie Curie (CNRS-UMR 168), Institut Curie, Section de Recherche, 26 rue d Ulm, 75248 Paris Cedex 05, France (Dated: January 23, 2008)

More information

Macromolecular Crowding

Macromolecular Crowding Macromolecular Crowding Keng-Hwee Chiam Mathematical and Theoretical Biology Group Goodsell (1994) Macromolecular Crowding, Oct. 15, 2003 p.1/33 Outline What: introduction, definition Why: implications

More information

Lesson Plan: Diffusion

Lesson Plan: Diffusion Lesson Plan: Diffusion Background Particles in cells show rapid back and forth movement, or Brownian motion, which is also known as diffusion. The back and forth motion consists of random steps from a

More information

According to the diagram, which of the following is NOT true?

According to the diagram, which of the following is NOT true? Instructions: Review Chapter 44 on muscular-skeletal systems and locomotion, and then complete the following Blackboard activity. This activity will introduce topics that will be covered in the next few

More information

Supporting Information Converter domain mutations in myosin alter structural kinetics and motor function. Hershey, PA, MN 55455, USA

Supporting Information Converter domain mutations in myosin alter structural kinetics and motor function. Hershey, PA, MN 55455, USA Supporting Information Converter domain mutations in myosin alter structural kinetics and motor function Laura K. Gunther 1, John A. Rohde 2, Wanjian Tang 1, Shane D. Walton 1, William C. Unrath 1, Darshan

More information

Emergence of polarity in early C. elegans Embryo. Abstract

Emergence of polarity in early C. elegans Embryo. Abstract Emergence of polarity in early C. elegans Embryo Pin-Yi Li Department of Physics, University of Illinois Urbana-Champaign (Dated: May 13, 2018) Abstract The establishment of cell polarity during embryogenesis

More information

Quantitative Analysis of Forces in Cells

Quantitative Analysis of Forces in Cells Quantitative Analysis of Forces in Cells Anders Carlsson Washington University in St Louis Basic properties of forces in cells Measurement methods and magnitudes of particular types of forces: Polymerization

More information

Dynamics of an inchworm nano walker

Dynamics of an inchworm nano walker Dynamics of an inchworm nano walker A. Ciudad a, J.M. Sancho a A.M. Lacasta b a Departament d Estructura i Constituents de la Matèria, Facultat de Física, Universitat de Barcelona, Diagonal 647, E-08028

More information

ATP Synthase. Proteins as nanomachines. ATP Synthase. Protein physics, Lecture 11. Create proton gradient across. Thermal motion and small objects

ATP Synthase. Proteins as nanomachines. ATP Synthase. Protein physics, Lecture 11. Create proton gradient across. Thermal motion and small objects Proteins as nanomachines Protein physics, Lecture 11 ATP Synthase ATP synthase, a molecular motor Thermal motion and small objects Brownian motors and ratchets Actin and Myosin using random motion to go

More information

Examination paper for Bi3016 Molecular Cell Biology

Examination paper for Bi3016 Molecular Cell Biology Department of Biology Examination paper for Bi3016 Molecular Cell Biology Academic contact during examination: Per Winge Phone: 99369359 Examination date: 20 th December 2017 Examination time (from-to):

More information

Measuring S using an analytical ultracentrifuge. Moving boundary

Measuring S using an analytical ultracentrifuge. Moving boundary Measuring S using an analytical ultracentrifuge Moving boundary [C] t = 0 t 1 t 2 0 top r bottom 1 dr b r b (t) r b ω 2 = S ln = ω 2 S (t-t dt r b (t o ) o ) r b = boundary position velocity = dr b dt

More information

Actin Growth, Capping, and Fragmentation

Actin Growth, Capping, and Fragmentation Chapter 5 Actin Growth, Capping, and Fragmentation The two ends of an actin filament have different polymerization rate constants. Below we explore the consequences of this fact in simple polymerization

More information

Lecture Series 3 The Organization of Cells

Lecture Series 3 The Organization of Cells Lecture Series 3 The Organization of Cells Reading Assignments Read Chapter 15 Endomembrane System Read Chapter 17 Cytoskeleton A. The Cell: The Basic Unit of Life Cell Theory: All cells come from preexisting

More information

Reading Assignments. A. The Cell: The Basic Unit of Life. Lecture Series 3 The Organization of Cells

Reading Assignments. A. The Cell: The Basic Unit of Life. Lecture Series 3 The Organization of Cells Lecture Series 3 The Organization of Cells Reading Assignments Read Chapter 15 Endomembrane System Read Chapter 17 Cytoskeleton A. The Cell: The Basic Unit of Life Cell Theory: All cells come from preexisting

More information

An Introduction to Metabolism

An Introduction to Metabolism LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 8 An Introduction to Metabolism

More information