Physical Biology of the Cell. Rob Phillips, Jane Kondev and Julie Theriot

Size: px
Start display at page:

Download "Physical Biology of the Cell. Rob Phillips, Jane Kondev and Julie Theriot"

Transcription

1 Physical Biology of the Cell Rob Phillips, Jane Kondev and Julie Theriot April 4, 2008

2 Contents 0.1 Preface I The Facts of Life 21 1 Why: Biology By the Numbers Physical Biology of the Cell The Stuff of Life Model Building in Biology Models as Idealizations Cartoons and Models Quantitative Models and the Power of Idealization On the Springiness of Stuff The Toolbox of Fundamental Physical Models The Role of Estimates On Being Wrong Rules of Thumb: Biology by the Numbers Summary and Conclusions Further Reading References What and Where: Construction Plans for Cells and Organisms An Ode to E. coli The Bacterial Standard Ruler Taking the Molecular Census Looking Inside of Cells Where Does E. coli Fit? Cells and Structures Within Them Cells: A Rogue s Gallery The Cellular Interior: Organelles Macromolecular Assemblies: The Whole is Greater than the Sum of the Parts Viruses as Assemblies The Molecular Architecture of Cells: From PDB Files to Ribbon Diagrams

3 4 CONTENTS 2.3 Telescoping Up in Scale: Cells Don t Go It Alone Multicellularity As One of Evolution s Great Inventions Cellular Structures From Tissues to Nerve Networks Multicellular Organisms Summary and Conclusions Problems Further Reading References When: Stopwatches at Many Scales The Hierarchy of Temporal Scales The Pageant of Biological Processes The Evolutionary Stopwatch The Cell Cycle and the Standard Clock Three Views of Time in Biology Procedural Time The Machines (or Processes) of the Central Dogma Clocks and Oscillators Relative Time Checkpoints and the Cell Cycle Measuring Relative Time Killing the Cell: The Life Cycles of Viruses The Process of Development Manipulated Time Chemical Kinetics and Enzyme Turnover Beating the Diffusive Speed Limit Beating the Replication Limit Eggs and Spores: Planning for the Next Generation Summary and Conclusions Problems Further Reading References Who: Bless the Little Beasties Choosing a Grain of Sand Biochemistry and Genetics Hemoglobin as a Model Protein Hemoglobin, Receptor-Ligand Binding and the Other Bohr Hemoglobin and the Origins of Structural Biology Hemoglobin and Molecular Models of Disease The Rise of Allostery and Cooperativity Bacteriophage and Molecular Biology Bacteriophage and the Origins of Molecular Biology Bacteriophage and Modern Biophysics A Tale of Two Cells: E. Coli as a Model System Bacteria and Molecular Biology

4 CONTENTS E. coli and The Central Dogma The lac Operon as the Hydrogen Atom of Genetic Circuits Signaling and Motility: The Case of Bacterial Chemotaxis Yeast: From Biochemistry to the Cell Cycle Yeast and the Rise of Biochemistry Dissecting the Cell Cycle Deciding Which Way is Up: Yeast and Polarity Dissecting Membrane Traffic Genomics and Proteomics Flies and Modern Biology Flies and the Rise of Modern Genetics How the Fly Got His Stripes Of Mice and Men The Case for Exotica Specialists and Experts The Squid Giant Axon and Biological Electricity Exotica Toolkit Summary and Conclusions Problems Further Reading References II Life at Rest Mechanical and Chemical Equilibrium in the Living Cell Energy and the Life of Cells The Interplay of Deterministic and Thermal Forces Constructing the Cell: Managing the Mass and Energy Budget of the Cell Biological Systems as Minimizers Equilibrium Models for Out of Equilibrium Systems Proteins in Equilibrium Cells in Equilibrium Mechanical Equilibrium From a Minimization Perspective The Mathematics of Superlatives The Mathematization of Judgement: Functions and Functionals The Calculus of Superlatives Configurational Energy Hooke s Law: Actin to Lipids Structures as Free Energy Minimizers Entropy and Hydrophobicity Gibbs and the Calculus of Equilibrium Structure as a Competition An Ode to G

5 6 CONTENTS 5.6 Summary and Conclusions Appendix: The Euler-Lagrange Equations, Finding the Superlative Problems Further Reading References Entropy Rules! The Analytical Engine of Statistical Mechanics A First Look at Ligand-Receptor Binding The Statistical Mechanics of Gene Expression: RNA Polymerase and the Promoter Classic Derivation of the Boltzmann Distribution Boltzmann Distribution by Counting Boltzmann Distribution by Guessing On Being Ideal Average Energy of a Molecule in a Gas Free Energy of Dilute Solutions Osmotic Pressure as an Entropic Spring The Calculus of Equilibrium Applied: Law of Mass Action Law of Mass Action and Equilibrium Constants Applications of the Calculus of Equilibrium A Second Look at Ligand-Receptor Binding Measuring Ligand-Receptor Binding Beyond Simple Ligand-Receptor Binding: The Hill Function ATP Power Summary and Conclusions Problems Further Reading References Two-State Systems: From Ion Channels to Cooperative Binding Macromolecules With Multiple States The Internal State Variable Idea Ion Channels as an Example of Internal State Variables State Variable Description of Binding The Gibbs Distribution: Contact with a Particle Reservoir Simple Ligand-Receptor Binding Revisited Phosphorylation as an Example of Two Internal State Variables Hemoglobin as a Case Study in Cooperativity Summary and Conclusions Problems Further Reading References

6 CONTENTS 7 8 Random Walks and the Structure of Macromolecules What is a Structure: PDB or R G? Deterministic vs. Statistical Descriptions of Structure Macromolecules as Random Walks A Mathematical Stupor How Big is a Genome? The Geography of Chromosomes DNA Looping: From Chromosomes to Gene Regulation PCR, DNA Melting and DNA Bubbles The New World of Single Molecule Mechanics Force-Extension Curves: A New Spectroscopy Random Walk Models for Force-Extension Curves Proteins as Random Walks Compact Random Walks and the Size of Proteins Hydrophobic and Polar Residues: The HP Model HP Models of Protein Folding Summary and Conclusions Problems Further Reading References Electrostatics for Salty Solutions Water as Life s Aether The Chemistry of Water ph and the Equilibrium Constant The Charge on DNA and Proteins Salt and Binding Electrostatics for Salty Solutions An Electrostatics Primer The Charged Life of a Protein The Notion of Screening: Electrostatics in Salty Solutions The Poisson-Boltzmann Equation Viruses as Charged Spheres Summary and Conclusion Problems Further Reading References Beam Theory: Architecture for Cells and Skeletons Beams are Everywhere: From Flagella to the Cytoskeleton Geometry and Energetics of Beam Deformation Stretch, Bend and Twist Beam Theory and the Persistence Length: Stiffness is Relative Elasticity and Entropy: The Worm-like Chain The Mechanics of Transcriptional Regulation: DNA Looping Redux508

7 8 CONTENTS The Lac Operon and Other Looping Systems Energetics of DNA Looping Putting it all together: The J Factor DNA Packing: From Viruses to Eukaryotes The Problem of Viral DNA Packing Constructing the Nucleosome Equilibrium Accessibility of Nucleosomal DNA The Cytoskeleton and Beam Theory The Cellular Interior: A Structural Perspective Stiffness of Cytoskeletal Filaments Cytoskeletal Buckling Estimate of the Buckling Force Beams and Biotechnology Biofunctionalized Cantilevers and Molecular Recognition Summary and Conclusions Appendix: The Mathematics of the Worm-Like Chain Problems Further Reading References Biological Membranes: Life in Two Dimensions The Nature of Biological Membranes Cells and Membranes The Chemistry and Shape of Lipids The Liveliness of Membranes On the Springiness of Membranes An Interlude on Membrane Geometry Free Energy of Membrane Deformation Structure, Energetics and Function of Vesicles Measuring Membrane Stiffness Membrane Pulling Vesicles in Cells Fusion and Fission Membranes and Shape The Shapes of Organelles The Shapes of Cells The Active Membrane Mechanosensitive Ion Channels and Membrane Elasticity Elastic Deformations of Membranes Produced by Proteins One-Dimensional Solution for MscL Summary and Conclusions Problems Further Reading References

8 CONTENTS 9 III Life in Motion The Mathematics of Water Putting Water in its Place Hydrodynamics of Water and Other Fluids Water as a continuum What Can Newton Tell Us? F = ma For Fluids The Newtonian Fluid and the Navier-Stokes Equations The River Within: Fluid Dynamics of Blood Boats in the River: Leukocyte Rolling and Adhesion The Low-Reynolds Number World Stokes Flow: Consider a Spherical Bacterium Stokes Drag in Single Molecule Experiments Dissipative Time Scales and the Reynolds Number Fish Gotta Swim, Birds Gotta Fly and Bacteria Gotta Swim Too Centrifugation and Sedimentation: Spin it Down Summary and Conclusions Problems Further Reading References A Statistical View of Biological Dynamics Diffusion in the Cell Active versus Passive Transport Biological Distances Measured in Diffusion Times Random Walk Redux Concentration Fields and Diffusive Dynamics Diffusion by Summing Over Microtrajectories Solutions and properties of the diffusion equation FRAP and FCS Drunks on a Hill: The Smoluchowski Equation The Einstein Relation Diffusion to capture Modeling the cell signaling problem A Universal Rate for Diffusion-Limited Chemical Reactions Summary and Conclusions Problems Further Reading References

9 10 CONTENTS 14 Life in Crowded and Disordered Environments Crowding, Linkage and Entanglement The Cell is Crowded Macromolecular Networks: The Cytoskeleton and Beyond Crowding on Membranes Consequences of Crowding Equilibria in Crowded Environments Crowding and binding Osmotic Pressures in Crowded Solutions Depletion Forces: Order from Disorder Excluded Volume and Polymers Crowded Dynamics Crowding and Reaction Rates Diffusion in Crowded Environments Summary and Conclusions Problems Further Reading References Rate Equations and Dynamics in the Cell Biological Statistical Dynamics: A First Look Cells as Chemical Factories Dynamics of the Cytoskeleton A Chemical Picture of Biological Dynamics The Rate Equation Paradigm All Good Things Must End A Single Molecule View of Degradation: Statistical Mechanics Over Trajectories Bimolecular Reactions Dynamics of Ion Channels as a Case Study Rapid equilibrium Michaelis-Menten and Enzyme Kinetics The Cytoskeleton is Always Under Construction The Eukaryotic Cytoskeleton The Curious Case of the Bacterial Cytoskeleton Simple Models of Cytoskeletal Polymerization The Equilibrium Polymer Rate Equation Description of Cytoskeletal Polymerization Nucleotide Hydrolysis and Cytoskeletal Polymerization Dynamic Instability: A Toy Model of the Cap Summary and Conclusions Problems Further Reading References

10 CONTENTS Dynamics of Molecular Motors The Dynamics of Molecular Motors: Life in the Noisy Lane Translational Motors: Beating the Diffusive Speed Limit Rotary Motors Polymerization Motors: Pushing By Growing Translocation Motors: Pushing by Pulling Rectified Brownian Motion and Molecular Motors The Random Walk Yet Again The One-state Model Motor stepping from a free energy perspective The Two-state model More General Motor Models Coordination of Motor Protein Activity Rotary Motors Polymerization and Translocation as Motor Action The Polymerization Ratchet Force Generation by Growth The Translocation Ratchet Summary and Conclusions Problems Further Reading References Biological Electricity and the Hodgkin-Huxley Model The Role of Electricity in Cells The Charge State of the Cell The Electrical Status of Cells and Their Membranes Electrochemical Equilibrium and the Nernst Equation Membrane Permeability: Pumps and Channels Ion Channels and Membrane Permeability Maintaining a Nonequilibrium Charge State The Action Potential Membrane Depolarization: The Membrane as a Bistable Switch The Cable Equation Depolarization waves Spikes Hodgkin-Huxley and Membrane Transport Summary and Conclusions Problems Further Reading References

11 12 CONTENTS IV The Meaning of Life Sequences, Specificity and Evolution Biological Information Why Sequences? Genomes and Sequences by the Numbers Sequence Alignment and Homology The HP Model as a Coarse-Grained Model for Bioinformatics Scoring Success Sequences and Evolution Evolution by the Numbers: Hemoglobin as a Case Study in Sequence Alignment Evolution and Drug Resistance The Evolution of Viruses Phylogenetic Trees The Molecular Basis of Fidelity Keeping it Specific: Beating Thermodynamic Specificity Summary and Conclusions Problems Further Reading References Network Organization in Space and Time Chemical and Informational Organization in the Cell Genetic Networks: Doing the Right Thing at the Right Time The Molecular Implementation of Regulation: Promoters, Activators and Repressors The Mathematics of Recruitment and Rejection Transcriptional Regulation By the Numbers: Binding Energies and Equilibrium Constants A Simple Statistical Mechanics Model of Positive and Negative Regulation The lac Operon Regulatory Dynamics The Dynamics of RNA Polymerase and the Promoter Genetic Switches: Natural and Synthetic Genetic Networks That Oscillate: The Repressilator Putting Space in the Model: Reaction-Diffusion Models Cellular Fast Response: Signaling Bacterial Chemotaxis Biochemistry on a Leash Summary and Conclusions Appendix: Stability Analysis for the Genetic Switch Problems Further Reading

12 CONTENTS References Whither Physical Biology? Quantitative Data Demands Quantitative Models Wrong Again Order-of-Magnitude Biology and Beyond Difficulties on Theory A Charge to the Reader Further Reading References

Physical Biology of the Cell

Physical Biology of the Cell [!_ PH'-{ \to ~UJIJ Physical Biology of the Cell Second Edition Rob Phillips Jane Kondev Julie Theriot Hernan G. Garcia Illustrated by Nigel Orme f'o Garland Science \...:J...:> Taylor & Francis Group

More information

CELL BIOLOGY. by the numbers. Ron Milo. Rob Phillips. illustrated by. Nigel Orme

CELL BIOLOGY. by the numbers. Ron Milo. Rob Phillips. illustrated by. Nigel Orme CELL BIOLOGY by the numbers Ron Milo Rob Phillips illustrated by Nigel Orme viii Detailed Table of Contents List of Estimates xii Preface xv Acknowledgments xiii The Path to Biological Numeracy Why We

More information

APh150: Physics of Biological Structure and Function

APh150: Physics of Biological Structure and Function APh150: Physics of Biological Structure and Function Winter 2003 When: To be determined Who: You and me (Rob Phillips, x 3374, phillips@aero.caltech.edu, 221 Steele) Where: 104 Watson What: See below!

More information

F. Piazza Center for Molecular Biophysics and University of Orléans, France. Selected topic in Physical Biology. Lecture 1

F. Piazza Center for Molecular Biophysics and University of Orléans, France. Selected topic in Physical Biology. Lecture 1 Zhou Pei-Yuan Centre for Applied Mathematics, Tsinghua University November 2013 F. Piazza Center for Molecular Biophysics and University of Orléans, France Selected topic in Physical Biology Lecture 1

More information

Organisms: We will need to have some examples in mind for our spherical cows.

Organisms: We will need to have some examples in mind for our spherical cows. Lecture 4: Structure and Composition (Sept. 15) 4.1 Reading Assignment for Lectures 3-4: Phillips, Kondev, Theriot (PKT), Chapter 2 Problem Set 1 (due Sept. 24) now posted on the website. Cellular materials:

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C7: BIOLOGICAL PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C7: BIOLOGICAL PHYSICS 2757 SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C7: BIOLOGICAL PHYSICS TRINITY TERM 2013 Monday, 17 June, 2.30 pm 5.45 pm 15

More information

GACE Biology Assessment Test I (026) Curriculum Crosswalk

GACE Biology Assessment Test I (026) Curriculum Crosswalk Subarea I. Cell Biology: Cell Structure and Function (50%) Objective 1: Understands the basic biochemistry and metabolism of living organisms A. Understands the chemical structures and properties of biologically

More information

13.4 Gene Regulation and Expression

13.4 Gene Regulation and Expression 13.4 Gene Regulation and Expression Lesson Objectives Describe gene regulation in prokaryotes. Explain how most eukaryotic genes are regulated. Relate gene regulation to development in multicellular organisms.

More information

Molecular Driving Forces

Molecular Driving Forces Molecular Driving Forces Statistical Thermodynamics in Chemistry and Biology SUBGfittingen 7 At 216 513 073 / / Ken A. Dill Sarina Bromberg With the assistance of Dirk Stigter on the Electrostatics chapters

More information

Macromolecular Crowding

Macromolecular Crowding Macromolecular Crowding Keng-Hwee Chiam Mathematical and Theoretical Biology Group Goodsell (1994) Macromolecular Crowding, Oct. 15, 2003 p.1/33 Outline What: introduction, definition Why: implications

More information

Diffusion in biological systems and Life at low Reynolds number

Diffusion in biological systems and Life at low Reynolds number Diffusion in biological systems and Life at low Reynolds number Aleksandra Radenovic EPFL Ecole Polytechnique Federale de Lausanne Bioengineering Institute Laboratory of Nanoscale Biology Lausanne September

More information

Lecture 1: Introduction. Keywords: Mathematics as a language, Need of learning mathematics, Applications of mathematics in BIology

Lecture 1: Introduction. Keywords: Mathematics as a language, Need of learning mathematics, Applications of mathematics in BIology NPTEL Syllabus Biomathematics - Video course COURSE OUTLINE Graphs and functions, Derivative of a function, Techniques of differentiation Differentiation and its application in Biology, Finding maxima,

More information

Outline. Introduction, program and reference textbooks A few definition and facts Modeling of biological systems:

Outline. Introduction, program and reference textbooks A few definition and facts Modeling of biological systems: Introduction 1 Outline Introduction, program and reference textbooks A few definition and facts Modeling of biological systems: Models in space and time: from molecules to the cell Quantitative models

More information

Introduction to Mathematical Physiology I - Biochemical Reactions

Introduction to Mathematical Physiology I - Biochemical Reactions Introduction to Mathematical Physiology I - Biochemical Reactions J. P. Keener Mathematics Department Math Physiology p.1/28 Introduction The Dilemma of Modern Biology The amount of data being collected

More information

Statistical mechanics of biological processes

Statistical mechanics of biological processes Statistical mechanics of biological processes 1 Modeling biological processes Describing biological processes requires models. If reaction occurs on timescales much faster than that of connected processes

More information

Fundamental Principles to Tutorials. Lecture 3: Introduction to Electrostatics in Salty Solution. Giuseppe Milano

Fundamental Principles to Tutorials. Lecture 3: Introduction to Electrostatics in Salty Solution. Giuseppe Milano III Advanced School on Biomolecular Simulation: Fundamental Principles to Tutorials Multiscale Methods from Lecture 3: Introduction to Electrostatics in Salty Solution Giuseppe Milano Reference Rob Phillips,

More information

Physical Biology of the Cell Erratum. Hernan G. Garcia, Evgeni Frenkel, Rob Phillips, Jane Kondev and Julie A. Theriot

Physical Biology of the Cell Erratum. Hernan G. Garcia, Evgeni Frenkel, Rob Phillips, Jane Kondev and Julie A. Theriot Physical Biology of the Cell Erratum Hernan G. Garcia, Evgeni Frenkel, Rob Phillips, Jane Kondev and Julie A. Theriot May 13, 2011 2 Chapter 2 Biological Structures: Rulers at Many Different Scales Page

More information

Cells and the Stuff They re Made of. Indiana University P575 1

Cells and the Stuff They re Made of. Indiana University P575 1 Cells and the Stuff They re Made of Indiana University P575 1 Goal: Establish hierarchy of spatial and temporal scales, and governing processes at each scale of cellular function: o Where does emergent

More information

Gene Regulation and Expression

Gene Regulation and Expression THINK ABOUT IT Think of a library filled with how-to books. Would you ever need to use all of those books at the same time? Of course not. Now picture a tiny bacterium that contains more than 4000 genes.

More information

Biology. Biology. Slide 1 of 26. End Show. Copyright Pearson Prentice Hall

Biology. Biology. Slide 1 of 26. End Show. Copyright Pearson Prentice Hall Biology Biology 1 of 26 Fruit fly chromosome 12-5 Gene Regulation Mouse chromosomes Fruit fly embryo Mouse embryo Adult fruit fly Adult mouse 2 of 26 Gene Regulation: An Example Gene Regulation: An Example

More information

Map of AP-Aligned Bio-Rad Kits with Learning Objectives

Map of AP-Aligned Bio-Rad Kits with Learning Objectives Map of AP-Aligned Bio-Rad Kits with Learning Objectives Cover more than one AP Biology Big Idea with these AP-aligned Bio-Rad kits. Big Idea 1 Big Idea 2 Big Idea 3 Big Idea 4 ThINQ! pglo Transformation

More information

Chapter 16. Cellular Movement: Motility and Contractility. Lectures by Kathleen Fitzpatrick Simon Fraser University Pearson Education, Inc.

Chapter 16. Cellular Movement: Motility and Contractility. Lectures by Kathleen Fitzpatrick Simon Fraser University Pearson Education, Inc. Chapter 16 Cellular Movement: Motility and Contractility Lectures by Kathleen Fitzpatrick Simon Fraser University Two eukaryotic motility systems 1. Interactions between motor proteins and microtubules

More information

Chapter 6- An Introduction to Metabolism*

Chapter 6- An Introduction to Metabolism* Chapter 6- An Introduction to Metabolism* *Lecture notes are to be used as a study guide only and do not represent the comprehensive information you will need to know for the exams. The Energy of Life

More information

3.B.1 Gene Regulation. Gene regulation results in differential gene expression, leading to cell specialization.

3.B.1 Gene Regulation. Gene regulation results in differential gene expression, leading to cell specialization. 3.B.1 Gene Regulation Gene regulation results in differential gene expression, leading to cell specialization. We will focus on gene regulation in prokaryotes first. Gene regulation accounts for some of

More information

Bacterial Genetics & Operons

Bacterial Genetics & Operons Bacterial Genetics & Operons The Bacterial Genome Because bacteria have simple genomes, they are used most often in molecular genetics studies Most of what we know about bacterial genetics comes from the

More information

Final exam. Please write your name on the exam and keep an ID card ready. You may use a calculator (but no computer or smart phone) and a dictionary.

Final exam. Please write your name on the exam and keep an ID card ready. You may use a calculator (but no computer or smart phone) and a dictionary. Biophysics of Macromolecules Prof. D. Braun and Prof. J. Lipfert SS 2015 Final exam Final exam Name: Student number ( Matrikelnummer ): Please write your name on the exam and keep an ID card ready. You

More information

Life is Cellular Section 7.1

Life is Cellular Section 7.1 Life is Cellular Section 7.1 Objectives Understand Cell theory Distinguish between prokaryotes and eukaryotes Understand different types of microscopy, and how they work in more detail What is a Cell?

More information

Topic 4: Equilibrium binding and chemical kinetics

Topic 4: Equilibrium binding and chemical kinetics Topic 4: Equilibrium binding and chemical kinetics Outline: Applications, applications, applications use Boltzmann to look at receptor-ligand binding use Boltzmann to look at PolII-DNA binding and gene

More information

Lesson Overview. Gene Regulation and Expression. Lesson Overview Gene Regulation and Expression

Lesson Overview. Gene Regulation and Expression. Lesson Overview Gene Regulation and Expression 13.4 Gene Regulation and Expression THINK ABOUT IT Think of a library filled with how-to books. Would you ever need to use all of those books at the same time? Of course not. Now picture a tiny bacterium

More information

Contents. xiii. Preface v

Contents. xiii. Preface v Contents Preface Chapter 1 Biological Macromolecules 1.1 General PrincipIes 1.1.1 Macrornolecules 1.2 1.1.2 Configuration and Conformation Molecular lnteractions in Macromolecular Structures 1.2.1 Weak

More information

Activation of a receptor. Assembly of the complex

Activation of a receptor. Assembly of the complex Activation of a receptor ligand inactive, monomeric active, dimeric When activated by growth factor binding, the growth factor receptor tyrosine kinase phosphorylates the neighboring receptor. Assembly

More information

Topic 4 - #14 The Lactose Operon

Topic 4 - #14 The Lactose Operon Topic 4 - #14 The Lactose Operon The Lactose Operon The lactose operon is an operon which is responsible for the transport and metabolism of the sugar lactose in E. coli. - Lactose is one of many organic

More information

Honors Biology-CW/HW Cell Biology 2018

Honors Biology-CW/HW Cell Biology 2018 Class: Date: Honors Biology-CW/HW Cell Biology 2018 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Hooke s discovery of cells was made observing a. living

More information

Warm-Up. Explain how a secondary messenger is activated, and how this affects gene expression. (LO 3.22)

Warm-Up. Explain how a secondary messenger is activated, and how this affects gene expression. (LO 3.22) Warm-Up Explain how a secondary messenger is activated, and how this affects gene expression. (LO 3.22) Yesterday s Picture The first cell on Earth (approx. 3.5 billion years ago) was simple and prokaryotic,

More information

Chapter 15 Active Reading Guide Regulation of Gene Expression

Chapter 15 Active Reading Guide Regulation of Gene Expression Name: AP Biology Mr. Croft Chapter 15 Active Reading Guide Regulation of Gene Expression The overview for Chapter 15 introduces the idea that while all cells of an organism have all genes in the genome,

More information

CHAPTER : Prokaryotic Genetics

CHAPTER : Prokaryotic Genetics CHAPTER 13.3 13.5: Prokaryotic Genetics 1. Most bacteria are not pathogenic. Identify several important roles they play in the ecosystem and human culture. 2. How do variations arise in bacteria considering

More information

Bi 8 Lecture 11. Quantitative aspects of transcription factor binding and gene regulatory circuit design. Ellen Rothenberg 9 February 2016

Bi 8 Lecture 11. Quantitative aspects of transcription factor binding and gene regulatory circuit design. Ellen Rothenberg 9 February 2016 Bi 8 Lecture 11 Quantitative aspects of transcription factor binding and gene regulatory circuit design Ellen Rothenberg 9 February 2016 Major take-home messages from λ phage system that apply to many

More information

CORE MOLIT ACTIVITIES at a glance

CORE MOLIT ACTIVITIES at a glance CORE MOLIT ACTIVITIES at a glance 1. Amplification of Biochemical Signals: The ELISA Test http://molit.concord.org/database/activities/248.html The shape of molecules affects the way they function. A test

More information

Regulation and signaling. Overview. Control of gene expression. Cells need to regulate the amounts of different proteins they express, depending on

Regulation and signaling. Overview. Control of gene expression. Cells need to regulate the amounts of different proteins they express, depending on Regulation and signaling Overview Cells need to regulate the amounts of different proteins they express, depending on cell development (skin vs liver cell) cell stage environmental conditions (food, temperature,

More information

DNA/RNA structure and packing

DNA/RNA structure and packing DNA/RNA structure and packing Reminder: Nucleic acids one oxygen atom distinguishes RNA from DNA, increases reactivity (so DNA is more stable) base attaches at 1, phosphate at 5 purines pyrimidines Replace

More information

Entropy and Free Energy in Biology

Entropy and Free Energy in Biology Entropy and Free Energy in Biology Energy vs. length from Phillips, Quake. Physics Today. 59:38-43, 2006. kt = 0.6 kcal/mol = 2.5 kj/mol = 25 mev typical protein typical cell Thermal effects = deterministic

More information

I. Molecules and Cells: Cells are the structural and functional units of life; cellular processes are based on physical and chemical changes.

I. Molecules and Cells: Cells are the structural and functional units of life; cellular processes are based on physical and chemical changes. I. Molecules and Cells: Cells are the structural and functional units of life; cellular processes are based on physical and chemical changes. A. Chemistry of Life B. Cells 1. Water How do the unique chemical

More information

12-5 Gene Regulation

12-5 Gene Regulation 12-5 Gene Regulation Fruit fly chromosome 12-5 Gene Regulation Mouse chromosomes Fruit fly embryo Mouse embryo Adult fruit fly Adult mouse 1 of 26 12-5 Gene Regulation Gene Regulation: An Example Gene

More information

I. Molecules & Cells. A. Unit One: The Nature of Science. B. Unit Two: The Chemistry of Life. C. Unit Three: The Biology of the Cell.

I. Molecules & Cells. A. Unit One: The Nature of Science. B. Unit Two: The Chemistry of Life. C. Unit Three: The Biology of the Cell. I. Molecules & Cells A. Unit One: The Nature of Science a. How is the scientific method used to solve problems? b. What is the importance of controls? c. How does Darwin s theory of evolution illustrate

More information

Untangling the Mechanics of Entangled Biopolymers

Untangling the Mechanics of Entangled Biopolymers Untangling the Mechanics of Entangled Biopolymers Rae M. Robertson-Anderson Physics Department University of San Diego students/postdocs: Cole Chapman, PhD Tobias Falzone, PhD Stephanie Gorczyca, USD 16

More information

Genetic transcription and regulation

Genetic transcription and regulation Genetic transcription and regulation Central dogma of biology DNA codes for DNA DNA codes for RNA RNA codes for proteins not surprisingly, many points for regulation of the process DNA codes for DNA replication

More information

AP* Biology Prep Course

AP* Biology Prep Course AP* Biology Prep Course SYLLABUS Welcome to the FlinnPREP AP* Biology Online Prep Course! Your enrollment in this course is your first step toward a 5 on the AP* Biology exam. FlinnPREP covers fundamental

More information

BE/APh161 Physical Biology of the Cell. Rob Phillips Applied Physics and Bioengineering California Institute of Technology

BE/APh161 Physical Biology of the Cell. Rob Phillips Applied Physics and Bioengineering California Institute of Technology BE/APh161 Physical Biology of the Cell Rob Phillips Applied Physics and Bioengineering California Institute of Technology Cells Decide: Where to Go The Hunters of the Immune Response (Berman et al.) There

More information

Big Idea 3: Living systems store, retrieve, transmit and respond to information essential to life processes. Tuesday, December 27, 16

Big Idea 3: Living systems store, retrieve, transmit and respond to information essential to life processes. Tuesday, December 27, 16 Big Idea 3: Living systems store, retrieve, transmit and respond to information essential to life processes. Enduring understanding 3.B: Expression of genetic information involves cellular and molecular

More information

Big Idea 1: The process of evolution drives the diversity and unity of life.

Big Idea 1: The process of evolution drives the diversity and unity of life. Big Idea 1: The process of evolution drives the diversity and unity of life. understanding 1.A: Change in the genetic makeup of a population over time is evolution. 1.A.1: Natural selection is a major

More information

Biological Pathways Representation by Petri Nets and extension

Biological Pathways Representation by Petri Nets and extension Biological Pathways Representation by and extensions December 6, 2006 Biological Pathways Representation by and extension 1 The cell Pathways 2 Definitions 3 4 Biological Pathways Representation by and

More information

AP Curriculum Framework with Learning Objectives

AP Curriculum Framework with Learning Objectives Big Ideas Big Idea 1: The process of evolution drives the diversity and unity of life. AP Curriculum Framework with Learning Objectives Understanding 1.A: Change in the genetic makeup of a population over

More information

Brief contents. Chapter 1 Virus Dynamics 33. Chapter 2 Physics and Biology 52. Randomness in Biology. Chapter 3 Discrete Randomness 59

Brief contents. Chapter 1 Virus Dynamics 33. Chapter 2 Physics and Biology 52. Randomness in Biology. Chapter 3 Discrete Randomness 59 Brief contents I First Steps Chapter 1 Virus Dynamics 33 Chapter 2 Physics and Biology 52 II Randomness in Biology Chapter 3 Discrete Randomness 59 Chapter 4 Some Useful Discrete Distributions 96 Chapter

More information

Virginia Western Community College BIO 101 General Biology I

Virginia Western Community College BIO 101 General Biology I BIO 101 General Biology I Prerequisites Successful completion of MTE 1, 2, 3, 4, and 5; and a placement recommendation for ENG 111, co-enrollment in ENF 3/ENG 111, or successful completion of all developmental

More information

Flow of Genetic Information

Flow of Genetic Information presents Flow of Genetic Information A Montagud E Navarro P Fernández de Córdoba JF Urchueguía Elements Nucleic acid DNA RNA building block structure & organization genome building block types Amino acid

More information

A A A A B B1

A A A A B B1 LEARNING OBJECTIVES FOR EACH BIG IDEA WITH ASSOCIATED SCIENCE PRACTICES AND ESSENTIAL KNOWLEDGE Learning Objectives will be the target for AP Biology exam questions Learning Objectives Sci Prac Es Knowl

More information

Regulation of Gene Expression

Regulation of Gene Expression Chapter 18 Regulation of Gene Expression Edited by Shawn Lester PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley

More information

Enduring understanding 1.A: Change in the genetic makeup of a population over time is evolution.

Enduring understanding 1.A: Change in the genetic makeup of a population over time is evolution. The AP Biology course is designed to enable you to develop advanced inquiry and reasoning skills, such as designing a plan for collecting data, analyzing data, applying mathematical routines, and connecting

More information

Introduction. Gene expression is the combined process of :

Introduction. Gene expression is the combined process of : 1 To know and explain: Regulation of Bacterial Gene Expression Constitutive ( house keeping) vs. Controllable genes OPERON structure and its role in gene regulation Regulation of Eukaryotic Gene Expression

More information

Curriculum Map. Biology, Quarter 1 Big Ideas: From Molecules to Organisms: Structures and Processes (BIO1.LS1)

Curriculum Map. Biology, Quarter 1 Big Ideas: From Molecules to Organisms: Structures and Processes (BIO1.LS1) 1 Biology, Quarter 1 Big Ideas: From Molecules to Organisms: Structures and Processes (BIO1.LS1) Focus Standards BIO1.LS1.2 Evaluate comparative models of various cell types with a focus on organic molecules

More information

Biology EOC Review Study Questions

Biology EOC Review Study Questions Biology EOC Review Study Questions Microscopes and Characteristics of Life 1. How do you calculate total magnification on a compound light microscope? 2. What is the basic building block of all living

More information

Principles of Cellular Biology

Principles of Cellular Biology Principles of Cellular Biology آشنایی با مبانی اولیه سلول Biologists are interested in objects ranging in size from small molecules to the tallest trees: Cell Basic building blocks of life Understanding

More information

Lecture 10 : Neuronal Dynamics. Eileen Nugent

Lecture 10 : Neuronal Dynamics. Eileen Nugent Lecture 10 : Neuronal Dynamics Eileen Nugent Origin of the Cells Resting Membrane Potential: Nernst Equation, Donnan Equilbrium Action Potentials in the Nervous System Equivalent Electrical Circuits and

More information

2. What was the Avery-MacLeod-McCarty experiment and why was it significant? 3. What was the Hershey-Chase experiment and why was it significant?

2. What was the Avery-MacLeod-McCarty experiment and why was it significant? 3. What was the Hershey-Chase experiment and why was it significant? Name Date Period AP Exam Review Part 6: Molecular Genetics I. DNA and RNA Basics A. History of finding out what DNA really is 1. What was Griffith s experiment and why was it significant? 1 2. What was

More information

Lecture 18 June 2 nd, Gene Expression Regulation Mutations

Lecture 18 June 2 nd, Gene Expression Regulation Mutations Lecture 18 June 2 nd, 2016 Gene Expression Regulation Mutations From Gene to Protein Central Dogma Replication DNA RNA PROTEIN Transcription Translation RNA Viruses: genome is RNA Reverse Transcriptase

More information

Computational Biology 1

Computational Biology 1 Computational Biology 1 Protein Function & nzyme inetics Guna Rajagopal, Bioinformatics Institute, guna@bii.a-star.edu.sg References : Molecular Biology of the Cell, 4 th d. Alberts et. al. Pg. 129 190

More information

L3.1: Circuits: Introduction to Transcription Networks. Cellular Design Principles Prof. Jenna Rickus

L3.1: Circuits: Introduction to Transcription Networks. Cellular Design Principles Prof. Jenna Rickus L3.1: Circuits: Introduction to Transcription Networks Cellular Design Principles Prof. Jenna Rickus In this lecture Cognitive problem of the Cell Introduce transcription networks Key processing network

More information

Complete all warm up questions Focus on operon functioning we will be creating operon models on Monday

Complete all warm up questions Focus on operon functioning we will be creating operon models on Monday Complete all warm up questions Focus on operon functioning we will be creating operon models on Monday 1. What is the Central Dogma? 2. How does prokaryotic DNA compare to eukaryotic DNA? 3. How is DNA

More information

Chapter 1. DNA is made from the building blocks adenine, guanine, cytosine, and. Answer: d

Chapter 1. DNA is made from the building blocks adenine, guanine, cytosine, and. Answer: d Chapter 1 1. Matching Questions DNA is made from the building blocks adenine, guanine, cytosine, and. Answer: d 2. Matching Questions : Unbranched polymer that, when folded into its three-dimensional shape,

More information

Basic Synthetic Biology circuits

Basic Synthetic Biology circuits Basic Synthetic Biology circuits Note: these practices were obtained from the Computer Modelling Practicals lecture by Vincent Rouilly and Geoff Baldwin at Imperial College s course of Introduction to

More information

Chapt. 12, Movement Across Membranes. Chapt. 12, Movement through lipid bilayer. Chapt. 12, Movement through lipid bilayer

Chapt. 12, Movement Across Membranes. Chapt. 12, Movement through lipid bilayer. Chapt. 12, Movement through lipid bilayer Chapt. 12, Movement Across Membranes Two ways substances can cross membranes Passing through the lipid bilayer Passing through the membrane as a result of specialized proteins 1 Chapt. 12, Movement through

More information

7.32/7.81J/8.591J. Rm Rm (under construction) Alexander van Oudenaarden Jialing Li. Bernardo Pando. Rm.

7.32/7.81J/8.591J. Rm Rm (under construction) Alexander van Oudenaarden Jialing Li. Bernardo Pando. Rm. Introducing... 7.32/7.81J/8.591J Systems Biology modeling biological networks Lectures: Recitations: ti TR 1:00-2:30 PM W 4:00-5:00 PM Rm. 6-120 Rm. 26-204 (under construction) Alexander van Oudenaarden

More information

Genetic transcription and regulation

Genetic transcription and regulation Genetic transcription and regulation Central dogma of biology DNA codes for DNA DNA codes for RNA RNA codes for proteins not surprisingly, many points for regulation of the process https://www.youtube.com/

More information

Slide 1 / Describe the setup of Stanley Miller s experiment and the results. What was the significance of his results?

Slide 1 / Describe the setup of Stanley Miller s experiment and the results. What was the significance of his results? Slide 1 / 57 1 Describe the setup of Stanley Miller s experiment and the results. What was the significance of his results? Slide 2 / 57 2 Explain how dehydration synthesis and hydrolysis are related.

More information

Cellular Neuroanatomy I The Prototypical Neuron: Soma. Reading: BCP Chapter 2

Cellular Neuroanatomy I The Prototypical Neuron: Soma. Reading: BCP Chapter 2 Cellular Neuroanatomy I The Prototypical Neuron: Soma Reading: BCP Chapter 2 Functional Unit of the Nervous System The functional unit of the nervous system is the neuron. Neurons are cells specialized

More information

Lecture 7: Simple genetic circuits I

Lecture 7: Simple genetic circuits I Lecture 7: Simple genetic circuits I Paul C Bressloff (Fall 2018) 7.1 Transcription and translation In Fig. 20 we show the two main stages in the expression of a single gene according to the central dogma.

More information

Lecture 1: Anatomy of a Blood Test - Window on the Cell Theory

Lecture 1: Anatomy of a Blood Test - Window on the Cell Theory Lecture 1: Anatomy of a Blood Test - Window on the Cell Theory Quantitative Models of Biological Function Mannella et al. APh/BE161: Physical Biology of the Theriot et al. Cell The Beauty of the Beating

More information

Proteins polymer molecules, folded in complex structures. Konstantin Popov Department of Biochemistry and Biophysics

Proteins polymer molecules, folded in complex structures. Konstantin Popov Department of Biochemistry and Biophysics Proteins polymer molecules, folded in complex structures Konstantin Popov Department of Biochemistry and Biophysics Outline General aspects of polymer theory Size and persistent length of ideal linear

More information

BME 5742 Biosystems Modeling and Control

BME 5742 Biosystems Modeling and Control BME 5742 Biosystems Modeling and Control Lecture 24 Unregulated Gene Expression Model Dr. Zvi Roth (FAU) 1 The genetic material inside a cell, encoded in its DNA, governs the response of a cell to various

More information

Quiz answers. Allele. BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 17: The Quiz (and back to Eukaryotic DNA)

Quiz answers. Allele. BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 17: The Quiz (and back to Eukaryotic DNA) BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 17: The Quiz (and back to Eukaryotic DNA) http://compbio.uchsc.edu/hunter/bio5099 Larry.Hunter@uchsc.edu Quiz answers Kinase: An enzyme

More information

Newly made RNA is called primary transcript and is modified in three ways before leaving the nucleus:

Newly made RNA is called primary transcript and is modified in three ways before leaving the nucleus: m Eukaryotic mrna processing Newly made RNA is called primary transcript and is modified in three ways before leaving the nucleus: Cap structure a modified guanine base is added to the 5 end. Poly-A tail

More information

AP Bio Module 16: Bacterial Genetics and Operons, Student Learning Guide

AP Bio Module 16: Bacterial Genetics and Operons, Student Learning Guide Name: Period: Date: AP Bio Module 6: Bacterial Genetics and Operons, Student Learning Guide Getting started. Work in pairs (share a computer). Make sure that you log in for the first quiz so that you get

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C7: BIOLOGICAL PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C7: BIOLOGICAL PHYSICS 2757 SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C7: BIOLOGICAL PHYSICS TRINITY TERM 2011 Monday, 27 June, 9.30 am 12.30 pm Answer

More information

CS-E5880 Modeling biological networks Gene regulatory networks

CS-E5880 Modeling biological networks Gene regulatory networks CS-E5880 Modeling biological networks Gene regulatory networks Jukka Intosalmi (based on slides by Harri Lähdesmäki) Department of Computer Science Aalto University January 12, 2018 Outline Modeling gene

More information

Biology Tutorial. Aarti Balasubramani Anusha Bharadwaj Massa Shoura Stefan Giovan

Biology Tutorial. Aarti Balasubramani Anusha Bharadwaj Massa Shoura Stefan Giovan Biology Tutorial Aarti Balasubramani Anusha Bharadwaj Massa Shoura Stefan Giovan Viruses A T4 bacteriophage injecting DNA into a cell. Influenza A virus Electron micrograph of HIV. Cone-shaped cores are

More information

week: 4 Date: Microscopes Cell Structure Cell Function Standards None 1b, 1h 1b, 1h, 4f, 5a 1a, 1c, 1d, 1e, 1g, 1j

week: 4 Date: Microscopes Cell Structure Cell Function Standards None 1b, 1h 1b, 1h, 4f, 5a 1a, 1c, 1d, 1e, 1g, 1j July, 2004 week: 1 Topics Course introduction Lab Safety week: 2 Introduction to chemistry Chapter summarizing Note Taking week: 3 Biochemistry: Compounds of life week: 4 Microscopes Cell Structure Cell

More information

Foundations of Biochemistry (Chap 1)

Foundations of Biochemistry (Chap 1) Foundations of Biochemistry (Chap 1) Sections (Why this organization?): 1. Cellular 2. Chemical 3. Physical 4. Genetic 5. Evolutionary 1 Three questions to consider: 1. How does animate matter (living

More information

BMB Lecture 7. Allostery and Cooperativity

BMB Lecture 7. Allostery and Cooperativity BMB 178 2017 Lecture 7 October 18, 2017 Allostery and Cooperativity A means for exquisite control Allostery: the basis of enzymatic control From the Greek: allos = other stereos = solid or space Action

More information

Gene Control Mechanisms at Transcription and Translation Levels

Gene Control Mechanisms at Transcription and Translation Levels Gene Control Mechanisms at Transcription and Translation Levels Dr. M. Vijayalakshmi School of Chemical and Biotechnology SASTRA University Joint Initiative of IITs and IISc Funded by MHRD Page 1 of 9

More information

Acto-myosin: from muscles to single molecules. Justin Molloy MRC National Institute for Medical Research LONDON

Acto-myosin: from muscles to single molecules. Justin Molloy MRC National Institute for Medical Research LONDON Acto-myosin: from muscles to single molecules. Justin Molloy MRC National Institute for Medical Research LONDON Energy in Biological systems: 1 Photon = 400 pn.nm 1 ATP = 100 pn.nm 1 Ion moving across

More information

Regulation of gene Expression in Prokaryotes & Eukaryotes

Regulation of gene Expression in Prokaryotes & Eukaryotes Regulation of gene Expression in Prokaryotes & Eukaryotes 1 The trp Operon Contains 5 genes coding for proteins (enzymes) required for the synthesis of the amino acid tryptophan. Also contains a promoter

More information

REQUIREMENTS FOR THE BIOCHEMISTRY MAJOR

REQUIREMENTS FOR THE BIOCHEMISTRY MAJOR REQUIREMENTS FOR THE BIOCHEMISTRY MAJOR Grade Requirement: All courses required for the Biochemistry major (CH, MATH, PHYS, BI courses) must be graded and passed with a grade of C- or better. Core Chemistry

More information

active site Region of an enzyme surface to which a substrate molecule binds in order to undergo a catalyzed reaction.

active site Region of an enzyme surface to which a substrate molecule binds in order to undergo a catalyzed reaction. Glossary acetyl Chemical group derived from acetic acid. Acetyl groups are important in metabolism and are added covalently to some proteins as a posttranslational modification. actin Abundant protein

More information

Chapter 12. Genes: Expression and Regulation

Chapter 12. Genes: Expression and Regulation Chapter 12 Genes: Expression and Regulation 1 DNA Transcription or RNA Synthesis produces three types of RNA trna carries amino acids during protein synthesis rrna component of ribosomes mrna directs protein

More information

Topic 3: Cells Ch. 6. Microscopes pp Microscopes. Microscopes. Microscopes. Microscopes

Topic 3: Cells Ch. 6. Microscopes pp Microscopes. Microscopes. Microscopes. Microscopes Topic 3: Cells Ch. 6 -All life is composed of cells and all cells have a plasma membrane, cytoplasm, and DNA. pp.105-107 - The development of the microscope was the key to understanding that all living

More information

REQUIREMENTS FOR THE BIOCHEMISTRY MAJOR

REQUIREMENTS FOR THE BIOCHEMISTRY MAJOR REQUIREMENTS FOR THE BIOCHEMISTRY MAJOR Grade Requirement: All courses required for the Biochemistry major (CH, MATH, PHYS, BI courses) must be graded and passed with a grade of C- or better. Core Chemistry

More information

Biology I. Chapter 7

Biology I. Chapter 7 Biology I Chapter 7 Interest Grabber NOTEBOOK #1 Are All Cells Alike? All living things are made up of cells. Some organisms are composed of only one cell. Other organisms are made up of many cells. 1.

More information

Nuclear Functional Organization

Nuclear Functional Organization Lecture #4 The Cell as a Machine Nuclear Functional Organization Background readings from Chapters 4 of Alberts et al. Molecular Biology of the Cell (4 th Edition) Description of Functions by Biosystems

More information

Bioinformatics Chapter 1. Introduction

Bioinformatics Chapter 1. Introduction Bioinformatics Chapter 1. Introduction Outline! Biological Data in Digital Symbol Sequences! Genomes Diversity, Size, and Structure! Proteins and Proteomes! On the Information Content of Biological Sequences!

More information

Midterm Review Guide. Unit 1 : Biochemistry: 1. Give the ph values for an acid and a base. 2. What do buffers do? 3. Define monomer and polymer.

Midterm Review Guide. Unit 1 : Biochemistry: 1. Give the ph values for an acid and a base. 2. What do buffers do? 3. Define monomer and polymer. Midterm Review Guide Name: Unit 1 : Biochemistry: 1. Give the ph values for an acid and a base. 2. What do buffers do? 3. Define monomer and polymer. 4. Fill in the Organic Compounds chart : Elements Monomer

More information