2010 F=ma Solutions. that is

Size: px
Start display at page:

Download "2010 F=ma Solutions. that is"

Transcription

1 2010 F=ma Solutions 1. The slope of a position vs time graph gives the velocity of the object So you can see that the position from B to D gives the steepest slope, so the speed is the greatest in that area. 2. Speed is the magnitude of velocity and as we are given a velocity v. time graph, we are looking for the maximum and minimum points and on this graph we see they occur at points B and D and as the magnitude of the velocity are equivalent at those two points, the greatest speed is at points B and D. 3. The area under an acceleration vs time gives the velocity, so from the choices listed we see that the area under the curve at B gives the greatest area. After time B, the speed decreases because the object reverses direction so the overall area will decrease. 4. The time for the piano to hit the ground is. The movers notice the piano after it falls so the piano has to fall another and the time for that is so 5. Define the initial launch point at so we are looking at the time it takes for the projectile to cross this point again as that is the difference in time or 6. At the point of maximum height, because the object reverses vertical direction, so using in the vertical direction, The total time of motion is therefore twice this or Horizontal velocity is constant so. For maximum height, the projectile is in free fall, so ( ) Therefore 7. Angular momentum is defined as so we need to solve for Centripetal force withstands the force from the carousel of so so 8. The only forces acting in the x direction are friction and the horizontal component of gravity. Friction force prevents the car from accelerating up the hill, so it is greater than the horizontal component of gravity. Therefore, from the free body diagram, ( ) 9. The only acceleration is in the x-direction and the forces acting on the ball are at an angle and gravity down, so writing the vertical and horizontal net forces,

2 10. Because block 1 slips on block 2, there is friction on block 1 acting right (block 1 slips left) so by Newton s third law, the same friction acts on block 2 left. We also have the friction from block 2 being pulled right, so summing the forces, 11. Tension is uniform through this one string, so from the first point mass, the forces are T up and gravity down, so. Now let the horizontal distance from the center mass to the left string be Therefore, the horizontal distance from the center mass to the right string is. The net torque of this system is zero, so we can find by taking the torque about the center mass, so Now we find the angle formed from the string about the center mass and the horizontal by taking the net vertical force of the center mass, so and from earlier, so. Therefore, we have a right triangle on both sides of the center mass with legs and, so 12. Apply the work kinetic energy theorem. The work due to gravity is the only work over this time so Therefore for the block to gain the ball must lose in potential energy. The initial energy of the ball is and so 13. The initial PE is equal to the total kinetic energy including rotational energy, so ( ) When the ball is projected up, it has a velocity of and rises to with no rotational energy so, maximum PE = maximum KE so 14. We find the velocity of the 5kg block, call that block a, by using the work kinetic energy theorem, from the onset to right before block a hits the second block, b. The work is due to friction, so. This is the speed right before collision so call it Now this is an elastic collision, so momentum and kinetic energy are conserved, so call the velocity of block b right after the collision to be and the velocity of block a after the collision to be So we have Solve the first equation for and and plug it into the energy equation to get Now apply the work kinetic energy theorem again except and so ( )

3 15. There are no external forces, so momentum and kinetic energy are conserved. First thing is to solve for the speed of the combined masses by using conservation of momentum, so. Energy is conserved and we have the initial kinetic energy of and the kinetic energy of the combined masses and the potential energy of the small mass on the larger mass, or 16. This is an elastic collision, so momentum and kinetic energy are conserved before the collision and while the blocks separate again, so we have. The negative sign indicates the smaller block is moving left and is the mass of the larger block moving right. Energy is conserved, so and from the first equation, and substitute that in the second equation to get ( ) ( ). Now complete the square or use the quadratic equation to get and ( ) from which the two solutions are however we already defined as positive by the inclusion of the negative sign because it s moving left, so indicates the block is moving right, therefore the answer is 17. Each mass is connected to the other masses, so the combined gravitational energy is the sum of the individual energies without overlap, so since there are 4 pairs, there are 6 possible pairs, so the total energy is 18. Force is defined as the derivative of the potential energy or so the corresponding force graph is found by calculating the individual slopes of the line segments on the potential energy graph, and doing so, in order, gives and 0 constant over the appropriate distances, so the correct graph is 19. For this question, compare the positioning in each graph with the energy diagram to determine which ones are possible. For graph 1, x is constant at 15 m so v=0 and on the energy diagram, at x=15 m, so that means the kinetic energy is either at a maximum or 0 so, graph 1 is possible. For graph 2, x is constant at -5m, so v=0 and K=0, but on the energy diagram, U is decreasing so by conservation of energy, there is KE increasing so graph 2 is not possible. For graph 3, x increases linearly from 10 to 15m, so

4 there is constant velocity. From graph 1 we deduced that since U is 0 at m, KE is at a maximum or 0, so graph 3 is reasonable because the KE must be at a maximum. Therefore I and III are possible. 20. Recall conservation of energy or. For this question, we need to find where the potential energy is at a maximum so that K is 0. The kinetic energy is zero when the velocity is zero, so the position when the velocity is zero can be deduced by the maximum and minimum of the position graph, since velocity is the derivative or slope of the position graph, which is zero at a maximum and minimum. Therefore, the maximum and minimum of the position graph is 5 and -5 m, and the corresponding potential energy is -5 J, which is the same for both positions as expected. 21. This problem implies that the gravitational self potential energy depends on the universal gravitational constant, the radius of the object, the density, and some numerical constant. To solve this problem, we need to figure out how energy scales with the radius by determining the dimension quantities of this equation. Energy is in terms of, density is in terms of radius is in terms of and the gravitational constant is in terms of Now let Therefore our equation is where k is the numerical constant. Each quantity increases exponentially by some constants, a, b and c. Therefore, by matching the exponents, our 3 equations are. Therefore, 2 and, so the radius increases exponentially as so increasing the radius by a factor of while keeping everything else constant increases the energy by a factor of so the new energy is 22. Helium is less dense than air (air is mostly made up of nitrogen, which is heavier than helium), so as the car is traveling around the circle, air will move outwards, towards B, so as helium is less dense, the balloon will be pushed inwards, towards D. 23. Because the net force on each tube is the same, the applied forces to each tube are equal, so we know that For the left tube, the change in momentum is equal where is the mass of the flowing water or where is the mass flow rate (mass of water moving per unit time) so so equating the forces gives

5 24. The moment of inertia of a uniform solid disk is A circular section with radius is removed, so the cross sectional area of the disk is removed, so the mass of the removed section is The axis of rotation is units from the center of the removed section, so by the parallel axis theorem, the inertia of the removed section is. Therefore, the moment of inertia of the remaining disk is 25. First find the speed of the ship in the circular orbit of radius by equating the centripetal and gravitational force or. Now in elliptical orbit, energy is conserved so at the minimum and maximum radius, the respective velocities are and. By conservation of energy, we have Angular momentum is conserved in orbit so Plugging in this speed gives Finally,

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Common Quiz Mistakes / Practice for Final Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A ball is thrown directly upward and experiences

More information

8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology. Problem Set 8

8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology. Problem Set 8 8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology 1. Spring-Loop-the-Loop Problem Set 8 A small block of mass m is pushed against a spring with spring constant k and held in place

More information

BROCK UNIVERSITY. Course: PHYS 1P21/1P91 Number of students: 234 Examination date: 5 December 2014 Number of hours: 3

BROCK UNIVERSITY. Course: PHYS 1P21/1P91 Number of students: 234 Examination date: 5 December 2014 Number of hours: 3 Name: Student #: BROCK UNIVERSITY Page 1 of 12 Final Exam: December 2014 Number of pages: 12 (+ formula sheet) Course: PHYS 1P21/1P91 Number of students: 234 Examination date: 5 December 2014 Number of

More information

AP Physics II Summer Packet

AP Physics II Summer Packet Name: AP Physics II Summer Packet Date: Period: Complete this packet over the summer, it is to be turned it within the first week of school. Show all work were needed. Feel free to use additional scratch

More information

Circular Motion and Gravitation Practice Test Provincial Questions

Circular Motion and Gravitation Practice Test Provincial Questions Circular Motion and Gravitation Practice Test Provincial Questions 1. A 1 200 kg car is traveling at 25 m s on a horizontal surface in a circular path of radius 85 m. What is the net force acting on this

More information

December 2015 Exam Review July :39 AM. Here are solutions to the December 2014 final exam.

December 2015 Exam Review July :39 AM. Here are solutions to the December 2014 final exam. December 2015 Exam Review July-15-14 10:39 AM Here are solutions to the December 2014 final exam. 1. [5 marks] A soccer ball is kicked from the ground so that it is projected at an initial angle of 39

More information

Axis Balanced Forces Centripetal force. Change in velocity Circular Motion Circular orbit Collision. Conservation of Energy

Axis Balanced Forces Centripetal force. Change in velocity Circular Motion Circular orbit Collision. Conservation of Energy When something changes its velocity The rate of change of velocity of a moving object. Can result from a change in speed and/or a change in direction On surface of earth, value is 9.8 ms-²; increases nearer

More information

2. What would happen to his acceleration if his speed were half? Energy The ability to do work

2. What would happen to his acceleration if his speed were half? Energy The ability to do work 1. A 40 kilogram boy is traveling around a carousel with radius 0.5 meters at a constant speed of 1.7 meters per second. Calculate his centripetal acceleration. 2. What would happen to his acceleration

More information

EXAM 3 MECHANICS 40% of the final grade

EXAM 3 MECHANICS 40% of the final grade EXAM 3 MECHANICS 40% of the final grade Winter 2018 Name: Each multiple-choice question is worth 2 marks. 1. The mass of the two wheels shown in the diagram is the same. A force of 1 N is exerted on the

More information

2007 Problem Topic Comment 1 Kinematics Position-time equation Kinematics 7 2 Kinematics Velocity-time graph Dynamics 6 3 Kinematics Average velocity

2007 Problem Topic Comment 1 Kinematics Position-time equation Kinematics 7 2 Kinematics Velocity-time graph Dynamics 6 3 Kinematics Average velocity 2007 Problem Topic Comment 1 Kinematics Position-time equation Kinematics 7 2 Kinematics Velocity-time graph Dynamics 6 3 Kinematics Average velocity Energy 7 4 Kinematics Free fall Collisions 3 5 Dynamics

More information

Page kg kg kg kg (Total 1 mark) Q4. The diagram shows two positions, X and Y, o the Ea th s su fa e.

Page kg kg kg kg (Total 1 mark) Q4. The diagram shows two positions, X and Y, o the Ea th s su fa e. Q1. body moves with simple harmonic motion of amplitude and frequency What is the magnitude of the acceleration when the body is at maximum displacement? zero 4π 2 b 2 b 2 PhysicsndMathsTutor.com Page

More information

Experiencing Acceleration: The backward force you feel when your car accelerates is caused by your body's inertia. Chapter 3.3

Experiencing Acceleration: The backward force you feel when your car accelerates is caused by your body's inertia. Chapter 3.3 Experiencing Acceleration: The backward force you feel when your car accelerates is caused by your body's inertia. Chapter 3.3 Feeling of apparent weight: Caused your body's reaction to the push that the

More information

Name (please print): UW ID# score last first

Name (please print): UW ID# score last first Name (please print): UW ID# score last first Question I. (20 pts) Projectile motion A ball of mass 0.3 kg is thrown at an angle of 30 o above the horizontal. Ignore air resistance. It hits the ground 100

More information

Study Guide Solutions

Study Guide Solutions Study Guide Solutions Table of Contents Chapter 1 A Physics Toolkit... 3 Vocabulary Review... 3 Section 1.1: Mathematics and Physics... 3 Section 1.2: Measurement... 3 Section 1.3: Graphing Data... 4 Chapter

More information

Physics for Scientists and Engineers 4th Edition, 2017

Physics for Scientists and Engineers 4th Edition, 2017 A Correlation of Physics for Scientists and Engineers 4th Edition, 2017 To the AP Physics C: Mechanics Course Descriptions AP is a trademark registered and/or owned by the College Board, which was not

More information

The diagram below shows a block on a horizontal frictionless surface. A 100.-newton force acts on the block at an angle of 30. above the horizontal.

The diagram below shows a block on a horizontal frictionless surface. A 100.-newton force acts on the block at an angle of 30. above the horizontal. Name: 1) 2) 3) Two students are pushing a car. What should be the angle of each student's arms with respect to the flat ground to maximize the horizontal component of the force? A) 90 B) 0 C) 30 D) 45

More information

AP practice ch 7-8 Multiple Choice

AP practice ch 7-8 Multiple Choice AP practice ch 7-8 Multiple Choice 1. A spool of thread has an average radius of 1.00 cm. If the spool contains 62.8 m of thread, how many turns of thread are on the spool? "Average radius" allows us to

More information

Circular Motion Dynamics Concept Questions

Circular Motion Dynamics Concept Questions Circular Motion Dynamics Concept Questions Problem 1: A puck of mass m is moving in a circle at constant speed on a frictionless table as shown above. The puck is connected by a string to a suspended bob,

More information

King Fahd University of Petroleum and Minerals Department of Physics. Final Exam 041. Answer key - First choice is the correct answer

King Fahd University of Petroleum and Minerals Department of Physics. Final Exam 041. Answer key - First choice is the correct answer King Fahd University of Petroleum and Minerals Department of Physics MSK Final Exam 041 Answer key - First choice is the correct answer Q1 A 20 kg uniform ladder is leaning against a frictionless wall

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 111.6 MIDTERM TEST #2 November 15, 2001 Time: 90 minutes NAME: STUDENT NO.: (Last) Please Print (Given) LECTURE SECTION

More information

is acting on a body of mass m = 3.0 kg and changes its velocity from an initial

is acting on a body of mass m = 3.0 kg and changes its velocity from an initial PHYS 101 second major Exam Term 102 (Zero Version) Q1. A 15.0-kg block is pulled over a rough, horizontal surface by a constant force of 70.0 N acting at an angle of 20.0 above the horizontal. The block

More information

RELEASED. Go to next page. 2. The graph shows the acceleration of a car over time.

RELEASED. Go to next page. 2. The graph shows the acceleration of a car over time. 1. n object is launched across a room. How can a student determine the average horizontal velocity of the object using a meter stick and a calculator? The student can calculate the object s initial potential

More information

Physics 130: Questions to study for midterm #1 from Chapter 7

Physics 130: Questions to study for midterm #1 from Chapter 7 Physics 130: Questions to study for midterm #1 from Chapter 7 1. Kinetic energy is defined to be one-half the a. mass times the speed. b. mass times the speed squared. c. mass times the acceleration. d.

More information

4) Vector = and vector = What is vector = +? A) B) C) D) E)

4) Vector = and vector = What is vector = +? A) B) C) D) E) 1) Suppose that an object is moving with constant nonzero acceleration. Which of the following is an accurate statement concerning its motion? A) In equal times its speed changes by equal amounts. B) In

More information

Energy and Angular Momentum

Energy and Angular Momentum Notes 13 Rotation Page 1 Energy and Angular Momentum The kinetic energy associate with a rotating object is simply the sum of the regular kinetic energies. Our goal is to state the rotational kinetic energy

More information

Circular Motion (Chapter 5)

Circular Motion (Chapter 5) Circular Motion (Chapter 5) So far we have focused on linear motion or motion under gravity (free-fall). Question: What happens when a ball is twirled around on a string at constant speed? Ans: Its velocity

More information

Chapter 6: Systems in Motion

Chapter 6: Systems in Motion Chapter 6: Systems in Motion The celestial order and the beauty of the universe compel me to admit that there is some excellent and eternal Being, who deserves the respect and homage of men Cicero (106

More information

Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity. Copyright 2009 Pearson Education, Inc.

Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity. Copyright 2009 Pearson Education, Inc. Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity How do we describe motion? Precise definitions to describe motion: Speed: Rate at which object moves speed = distance time

More information

PRACTICE TEST for Midterm Exam

PRACTICE TEST for Midterm Exam South Pasadena AP Physics PRACTICE TEST for Midterm Exam FORMULAS Name Period Date / / d = vt d = v o t + ½ at 2 d = v o + v 2 t v = v o + at v 2 = v 2 o + 2ad v = v x 2 + v y 2 = tan 1 v y v v x = v cos

More information

Physics 11 Fall 2012 Practice Problems 6

Physics 11 Fall 2012 Practice Problems 6 Physics 11 Fall 2012 Practice Problems 6 1. Two points are on a disk that is turning about a fixed axis perpendicular to the disk and through its center at increasing angular velocity. One point is on

More information

Solutions to Exam #1

Solutions to Exam #1 SBCC 2017Summer2 P 101 Solutions to Exam 01 2017Jul11A Page 1 of 9 Solutions to Exam #1 1. Which of the following natural sciences most directly involves and applies physics? a) Botany (plant biology)

More information

2. To study circular motion, two students use the hand-held device shown above, which consists of a rod on which a spring scale is attached.

2. To study circular motion, two students use the hand-held device shown above, which consists of a rod on which a spring scale is attached. 1. A ball of mass M attached to a string of length L moves in a circle in a vertical plane as shown above. At the top of the circular path, the tension in the string is twice the weight of the ball. At

More information

Momentum & Energy Review Checklist

Momentum & Energy Review Checklist Momentum & Energy Review Checklist Impulse and Momentum 3.1.1 Use equations to calculate impulse; momentum; initial speed; final speed; force; or time. An object with a mass of 5 kilograms is moving at

More information

Lecture Presentation. Chapter 6 Preview Looking Ahead. Chapter 6 Circular Motion, Orbits, and Gravity

Lecture Presentation. Chapter 6 Preview Looking Ahead. Chapter 6 Circular Motion, Orbits, and Gravity Chapter 6 Preview Looking Ahead Lecture Presentation Chapter 6 Circular Motion, Orbits, and Gravity Text: p. 160 Slide 6-2 Chapter 6 Preview Looking Back: Centripetal Acceleration In Section 3.8, you learned

More information

Chapter 8, Rotational Equilibrium and Rotational Dynamics. 3. If a net torque is applied to an object, that object will experience:

Chapter 8, Rotational Equilibrium and Rotational Dynamics. 3. If a net torque is applied to an object, that object will experience: CHAPTER 8 3. If a net torque is applied to an object, that object will experience: a. a constant angular speed b. an angular acceleration c. a constant moment of inertia d. an increasing moment of inertia

More information

HADDONFIELD PUBLIC SCHOOLS Curriculum Map for AP Physics, Mechanics C

HADDONFIELD PUBLIC SCHOOLS Curriculum Map for AP Physics, Mechanics C Curriculum Map for AP Physics, Mechanics C September Enduring Understandings (The big ideas): Chapter 2 -- Motion Along a Straight Line Essential Questions: How do objects move? 1. Displacement, time,

More information

v (m/s) 10 d. displacement from 0-4 s 28 m e. time interval during which the net force is zero 0-2 s f. average velocity from 0-4 s 7 m/s x (m) 20

v (m/s) 10 d. displacement from 0-4 s 28 m e. time interval during which the net force is zero 0-2 s f. average velocity from 0-4 s 7 m/s x (m) 20 Physics Final Exam Mechanics Review Answers 1. Use the velocity-time graph below to find the: a. velocity at 2 s 6 m/s v (m/s) 1 b. acceleration from -2 s 6 c. acceleration from 2-4 s 2 m/s 2 2 4 t (s)

More information

Page 1. Name:

Page 1. Name: Name: 3834-1 - Page 1 1) If a woman runs 100 meters north and then 70 meters south, her total displacement is A) 170 m south B) 170 m north C) 30 m south D) 30 m north 2) The graph below represents the

More information

Extra Circular Motion Questions

Extra Circular Motion Questions Extra Circular Motion Questions Elissa is at an amusement park and is driving a go-cart around a challenging track. Not being the best driver in the world, Elissa spends the first 10 minutes of her go-cart

More information

Today s lecture. WEST VIRGINIA UNIVERSITY Physics

Today s lecture. WEST VIRGINIA UNIVERSITY Physics Today s lecture Review of chapters 1-14 Note: I m taking for granted that you ll still know SI/cgs units, order-of-magnitude estimates, etc., so I m focusing on problems. Velocity and acceleration (1d)

More information

= o + t = ot + ½ t 2 = o + 2

= o + t = ot + ½ t 2 = o + 2 Chapters 8-9 Rotational Kinematics and Dynamics Rotational motion Rotational motion refers to the motion of an object or system that spins about an axis. The axis of rotation is the line about which the

More information

Question: Are distance and time important when describing motion? DESCRIBING MOTION. Motion occurs when an object changes position relative to a.

Question: Are distance and time important when describing motion? DESCRIBING MOTION. Motion occurs when an object changes position relative to a. Question: Are distance and time important when describing motion? DESCRIBING MOTION Motion occurs when an object changes position relative to a. DISTANCE VS. DISPLACEMENT Distance Displacement distance

More information

RELEASED FORM RELEASED. North Carolina Test of Physics

RELEASED FORM RELEASED. North Carolina Test of Physics Name Physics Form North arolina Test of Physics RELESE Public Schools of North arolina www.ncpublicschools.org State oard of Education epartment of Public Instruction ivision of ccountability Services/North

More information

Evidence of Learning/Assessments: Weekly Socrative Quiz, Unit Test

Evidence of Learning/Assessments: Weekly Socrative Quiz, Unit Test Instructor: Mike Maksimchuk Course/Grade Level: Physics A Week: 1 Unit 1: Intro & Energy Transfer P4.3A - Identify the form of energy in given situations (e.g., moving objects, stretched springs, rocks

More information

Practice Test for Midterm Exam

Practice Test for Midterm Exam A.P. Physics Practice Test for Midterm Exam Kinematics 1. Which of the following statements are about uniformly accelerated motion? Select two answers. a) If an object s acceleration is constant then it

More information

Summer Physics 41 Pretest. Shorty Shorts (2 pts ea): Circle the best answer. Show work if a calculation is required.

Summer Physics 41 Pretest. Shorty Shorts (2 pts ea): Circle the best answer. Show work if a calculation is required. Summer Physics 41 Pretest Name: Shorty Shorts (2 pts ea): Circle the best answer. Show work if a calculation is required. 1. An object hangs in equilibrium suspended by two identical ropes. Which rope

More information

Period: Date: Review - UCM & Energy. Page 1. Base your answers to questions 1 and 2 on the information and diagram below.

Period: Date: Review - UCM & Energy. Page 1. Base your answers to questions 1 and 2 on the information and diagram below. Base your answers to questions 1 and 2 on the information and diagram below. The diagram shows the top view of a -kilogram student at point A on an amusement park ride. The ride spins the student in a

More information

Lab/Demo 5 Periodic Motion and Momentum PHYS 1800

Lab/Demo 5 Periodic Motion and Momentum PHYS 1800 Lab/Demo 5 Periodic Motion and Momentum PHYS 1800 Objectives: Learn to recognize and describe periodic motion. Develop some intuition for the principle of conservation of energy in periodic systems. Use

More information

C) D) 2. The diagram below shows a worker using a rope to pull a cart.

C) D) 2. The diagram below shows a worker using a rope to pull a cart. 1. Which graph best represents the relationship between the acceleration of an object falling freely near the surface of Earth and the time that it falls? 2. The diagram below shows a worker using a rope

More information

1 Forces. 2 Energy & Work. GS 104, Exam II Review

1 Forces. 2 Energy & Work. GS 104, Exam II Review 1 Forces 1. What is a force? 2. Is weight a force? 3. Define weight and mass. 4. In European countries, they measure their weight in kg and in the United States we measure our weight in pounds (lbs). Who

More information

PH1104/PH114S MECHANICS

PH1104/PH114S MECHANICS PH04/PH4S MECHANICS SEMESTER I EXAMINATION 06-07 SOLUTION MULTIPLE-CHOICE QUESTIONS. (B) For freely falling bodies, the equation v = gh holds. v is proportional to h, therefore v v = h h = h h =.. (B).5i

More information

6-1. Conservation law of mechanical energy

6-1. Conservation law of mechanical energy 6-1. Conservation law of mechanical energy 1. Purpose Investigate the mechanical energy conservation law and energy loss, by studying the kinetic and rotational energy of a marble wheel that is moving

More information

Saint Lucie County Science Scope and Sequence

Saint Lucie County Science Scope and Sequence Course: Honors Physics 1 Course Code: 2003390 UNIT 4 TOPIC of STUDY: Newton s Laws of Motion and the Law of Gravity STANDARDS: 10: Energy, 12: Motion ~Net force produces motion ~There are four fundamental

More information

Work and kinetic Energy

Work and kinetic Energy Work and kinetic Energy Problem 66. M=4.5kg r = 0.05m I = 0.003kgm 2 Q: What is the velocity of mass m after it dropped a distance h? (No friction) h m=0.6kg mg Work and kinetic Energy Problem 66. M=4.5kg

More information

Base your answers to questions 5 and 6 on the information below.

Base your answers to questions 5 and 6 on the information below. 1. A car travels 90. meters due north in 15 seconds. Then the car turns around and travels 40. meters due south in 5.0 seconds. What is the magnitude of the average velocity of the car during this 20.-second

More information

Mechanics II. Which of the following relations among the forces W, k, N, and F must be true?

Mechanics II. Which of the following relations among the forces W, k, N, and F must be true? Mechanics II 1. By applying a force F on a block, a person pulls a block along a rough surface at constant velocity v (see Figure below; directions, but not necessarily magnitudes, are indicated). Which

More information

Section Study Guide. Teacher Notes and Answers. Circular Motion and Gravitation

Section Study Guide. Teacher Notes and Answers. Circular Motion and Gravitation Section Study Guide Teacher Notes and Answers CIRCULAR MOTION 1. a. yes b. The car has a non-zero acceleration because the direction of motion is changing. c. The direction of centripetal acceleration

More information

Energy Conservation AP

Energy Conservation AP Energy Conservation AP Manicouagan Reservoir seen from space shuttle; formed almost 1 million years ago when a large meteorite hit Earth Earth did work on meteorite to change its kinetic energy energy

More information

l Every object in a state of uniform motion tends to remain in that state of motion unless an

l Every object in a state of uniform motion tends to remain in that state of motion unless an Motion and Machine Unit Notes DO NOT LOSE! Name: Energy Ability to do work To cause something to change move or directions Energy cannot be created or destroyed, but transferred from one form to another.

More information

Motion. Argument: (i) Forces are needed to keep things moving, because they stop when the forces are taken away (evidence horse pulling a carriage).

Motion. Argument: (i) Forces are needed to keep things moving, because they stop when the forces are taken away (evidence horse pulling a carriage). 1 Motion Aristotle s Study Aristotle s Law of Motion This law of motion was based on false assumptions. He believed that an object moved only if something was pushing it. His arguments were based on everyday

More information

Big Ideas 3 & 5: Circular Motion and Rotation 1 AP Physics 1

Big Ideas 3 & 5: Circular Motion and Rotation 1 AP Physics 1 Big Ideas 3 & 5: Circular Motion and Rotation 1 AP Physics 1 1. A 50-kg boy and a 40-kg girl sit on opposite ends of a 3-meter see-saw. How far from the girl should the fulcrum be placed in order for the

More information

Distance travelled time taken and if the particle is a distance s(t) along the x-axis, then its instantaneous speed is:

Distance travelled time taken and if the particle is a distance s(t) along the x-axis, then its instantaneous speed is: Chapter 1 Kinematics 1.1 Basic ideas r(t) is the position of a particle; r = r is the distance to the origin. If r = x i + y j + z k = (x, y, z), then r = r = x 2 + y 2 + z 2. v(t) is the velocity; v =

More information

Fall 2007 RED Barcode Here Physics 105, sections 1 and 2 Please write your CID Colton

Fall 2007 RED Barcode Here Physics 105, sections 1 and 2 Please write your CID Colton Fall 007 RED Barcode Here Physics 105, sections 1 and Exam 3 Please write your CID Colton -3669 3 hour time limit. One 3 5 handwritten note card permitted (both sides). Calculators permitted. No books.

More information

Dr. Galeazzi PHY205 Final Exam December 12, I.D. number:

Dr. Galeazzi PHY205 Final Exam December 12, I.D. number: Signature: I.D. number: Name: 1 You must do the first two problems which consists of five multiple choice questions each. Then you must do four of the five long problems numbered 3-7. Clearly cross out

More information

UCM-Circular Motion. Base your answers to questions 1 and 2 on the information and diagram below.

UCM-Circular Motion. Base your answers to questions 1 and 2 on the information and diagram below. Base your answers to questions 1 and 2 on the information and diagram The diagram shows the top view of a 65-kilogram student at point A on an amusement park ride. The ride spins the student in a horizontal

More information

Forces. Dynamics FORCEMAN

Forces. Dynamics FORCEMAN 1 Forces Dynamics FORCEMAN 2 What causes things to move? Forces What is a force? A push or a pull that one body exerts on another. 3 Balanced No change in motion 4 5 Unbalanced If the forces acting on

More information

Unit 2: Forces Chapter 6: Systems in Motion

Unit 2: Forces Chapter 6: Systems in Motion Forces Unit 2: Forces Chapter 6: Systems in Motion 6.1 Motion in Two Dimension 6.2 Circular Motion 6.3 Centripetal Force, Gravitation, and Satellites 6.4 Center of Mass 6.1 Investigation: Launch Angle

More information

Momentum & Energy Review Checklist

Momentum & Energy Review Checklist Momentum & Energy Review Checklist Impulse and Momentum 3.1.1 Use equations to calculate impulse; momentum; initial speed; final speed; force; or time. An object with a mass of 5 kilograms is moving at

More information

Ch. 2 The Laws of Motion

Ch. 2 The Laws of Motion Ch. 2 The Laws of Motion Lesson 1 Gravity and Friction Force - A push or pull we pull on a locker handle push a soccer ball or on the computer keys Contact force - push or pull on one object by another

More information

Chapter 13: universal gravitation

Chapter 13: universal gravitation Chapter 13: universal gravitation Newton s Law of Gravitation Weight Gravitational Potential Energy The Motion of Satellites Kepler s Laws and the Motion of Planets Spherical Mass Distributions Apparent

More information

Preparing for Six Flags Physics Concepts

Preparing for Six Flags Physics Concepts Preparing for Six Flags Physics Concepts uniform means constant, unchanging At a uniform speed, the distance traveled is given by Distance = speed x time At uniform velocity, the displacement is given

More information

AP* Circular & Gravitation Free Response Questions

AP* Circular & Gravitation Free Response Questions 1992 Q1 AP* Circular & Gravitation Free Response Questions A 0.10-kilogram solid rubber ball is attached to the end of a 0.80-meter length of light thread. The ball is swung in a vertical circle, as shown

More information

PHYSICS 221 Fall 2016 EXAM 2: November 02, :15pm 10:15pm. Name (printed): Recitation Instructor: Section #:

PHYSICS 221 Fall 2016 EXAM 2: November 02, :15pm 10:15pm. Name (printed): Recitation Instructor: Section #: PHYSICS 221 Fall 2016 EXAM 2: November 02, 2016 8:15pm 10:15pm Name (printed): Recitation Instructor: Section #: INSTRUCTIONS: This exam contains 25 multiple-choice questions, plus 2 extra-credit questions,

More information

Written Homework problems. Spring (taken from Giancoli, 4 th edition)

Written Homework problems. Spring (taken from Giancoli, 4 th edition) Written Homework problems. Spring 014. (taken from Giancoli, 4 th edition) HW1. Ch1. 19, 47 19. Determine the conversion factor between (a) km / h and mi / h, (b) m / s and ft / s, and (c) km / h and m

More information

5. Use the graph below to determine the displacement of the object at the end of the first seven seconds.

5. Use the graph below to determine the displacement of the object at the end of the first seven seconds. Name: Hour: 1. The slope of the tangent on a position-time graph equals the: Sem 1 Exam Review Advanced Physics 2015-2016 2. The area under the curve on a velocity-time graph equals the: 3. The graph below

More information

CPS lesson Work and Energy ANSWER KEY

CPS lesson Work and Energy ANSWER KEY CPS lesson Work and Energy ANSWER KEY 1. A ball feeder slowly pushes a bowling ball up a 1-m ramp to a height of 0.5 m above the floor. Neglecting friction, what constant force must be exerted on the 5-kg

More information

PROBLEM 2 10 points. [ ] increases [ ] decreases [ ] stays the same. Briefly justify your answer:

PROBLEM 2 10 points. [ ] increases [ ] decreases [ ] stays the same. Briefly justify your answer: PROBLEM 2 10 points A disk of mass m is tied to a block of mass 2m via a string that passes through a hole at the center of a rotating turntable. The disk rotates with the turntable at a distance R from

More information

THE INDIAN COMMUNITY SCHOOL,KUWAIT PHYSICS SECTION-A

THE INDIAN COMMUNITY SCHOOL,KUWAIT PHYSICS SECTION-A THE INDIAN COMMUNITY SCHOOL,KUWAIT CLASS:XI MAX MARKS:70 PHYSICS TIME ALLOWED : 3HOURS ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ General Instructions:

More information

Phys 270 Final Exam. Figure 1: Question 1

Phys 270 Final Exam. Figure 1: Question 1 Phys 270 Final Exam Time limit: 120 minutes Each question worths 10 points. Constants: g = 9.8m/s 2, G = 6.67 10 11 Nm 2 kg 2. 1. (a) Figure 1 shows an object with moment of inertia I and mass m oscillating

More information

University of Houston Mathematics Contest: Physics Exam 2017

University of Houston Mathematics Contest: Physics Exam 2017 Unless otherwise specified, please use g as the acceleration due to gravity at the surface of the earth. Vectors x, y, and z are unit vectors along x, y, and z, respectively. Let G be the universal gravitational

More information

In this lecture we will discuss three topics: conservation of energy, friction, and uniform circular motion.

In this lecture we will discuss three topics: conservation of energy, friction, and uniform circular motion. 1 PHYS:100 LECTURE 9 MECHANICS (8) In this lecture we will discuss three topics: conservation of energy, friction, and uniform circular motion. 9 1. Conservation of Energy. Energy is one of the most fundamental

More information

NAME. (2) Choose the graph below that represents the velocity vs. time for constant, nonzero acceleration in one dimension.

NAME. (2) Choose the graph below that represents the velocity vs. time for constant, nonzero acceleration in one dimension. (1) The figure shows a lever (which is a uniform bar, length d and mass M), hinged at the bottom and supported steadily by a rope. The rope is attached a distance d/4 from the hinge. The two angles are

More information

Description: Using conservation of energy, find the final velocity of a "yo yo" as it unwinds under the influence of gravity.

Description: Using conservation of energy, find the final velocity of a yo yo as it unwinds under the influence of gravity. Chapter 10 [ Edit ] Overview Summary View Diagnostics View Print View with Answers Chapter 10 Due: 11:59pm on Sunday, November 6, 2016 To understand how points are awarded, read the Grading Policy for

More information

- 1 -APPH_MidTerm. Mid - Term Exam. Part 1: Write your answers to all multiple choice questions in this space. A B C D E A B C D E

- 1 -APPH_MidTerm. Mid - Term Exam. Part 1: Write your answers to all multiple choice questions in this space. A B C D E A B C D E Name - 1 -APPH_MidTerm AP Physics Date Mid - Term Exam Part 1: Write your answers to all multiple choice questions in this space. 1) 2) 3) 10) 11) 19) 20) 4) 12) 21) 5) 13) 22) 6) 7) 14) 15) 23) 24) 8)

More information

SAPTARSHI CLASSES PVT. LTD.

SAPTARSHI CLASSES PVT. LTD. SAPTARSHI CLASSES PVT. LTD. NEET/JEE Date : 13/05/2017 TEST ID: 120517 Time : 02:00:00 Hrs. PHYSICS, Chem Marks : 360 Phy : Circular Motion, Gravitation, Che : Halogen Derivatives Of Alkanes Single Correct

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 111.6 MIDTERM TEST #2 November 16, 2000 Time: 90 minutes NAME: STUDENT NO.: (Last) Please Print (Given) LECTURE SECTION

More information

Physics 201 Quiz 1. Jan 14, 2013

Physics 201 Quiz 1. Jan 14, 2013 Physics 201 Quiz 1 Jan 14, 2013 1. A VW Beetle goes from 0 to 60.0 mph with an acceleration of 2.35 m/s 2. (a) How much time does it take for the Beetle to reach this speed? (b) A top-fuel dragster can

More information

Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Class: _ Date: _ Physics Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A weather balloon records the temperature every hour. From the table

More information

Rotation. PHYS 101 Previous Exam Problems CHAPTER

Rotation. PHYS 101 Previous Exam Problems CHAPTER PHYS 101 Previous Exam Problems CHAPTER 10 Rotation Rotational kinematics Rotational inertia (moment of inertia) Kinetic energy Torque Newton s 2 nd law Work, power & energy conservation 1. Assume that

More information

PHYSICS 111 SPRING EXAM 2: March 7, 2017; 8:15-9:45 pm

PHYSICS 111 SPRING EXAM 2: March 7, 2017; 8:15-9:45 pm PHYSICS 111 SPRING 017 EXAM : March 7, 017; 8:15-9:45 pm Name (printed): Recitation Instructor: Section # INSTRUCTIONS: This exam contains 0 multiple-choice questions plus 1 extra credit question, each

More information

FORCES. Integrated Science Unit 8. I. Newton s Laws of Motion

FORCES. Integrated Science Unit 8. I. Newton s Laws of Motion Integrated Science Unit 8 FORCES I. Newton s Laws of Motion A. Newton s First Law Sir Isaac Newton 1643 1727 Lincolnshire, England 1. An object at rest remains at rest, and an object in motion maintains

More information

More examples: Summary of previous lecture

More examples: Summary of previous lecture More examples: 3 N Individual Forces Net Force 5 N 37 o 4 N Summary of previous lecture 1 st Law A net non zero force is required to change the velocity of an object. nd Law What happens when there is

More information

St. Joseph s Anglo-Chinese School

St. Joseph s Anglo-Chinese School Time allowed:.5 hours Take g = 0 ms - if necessary. St. Joseph s Anglo-Chinese School 008 009 First Term Examination Form 6 ASL Physics Section A (40%) Answer ALL questions in this section. Write your

More information

Applied Mathematics B Study Guide

Applied Mathematics B Study Guide Science, Engineering and Technology Portfolio School of Life and Physical Sciences Foundation Studies (Applied Science/Engineering) Applied Mathematics B Study Guide Topics Kinematics Dynamics Work, Energy

More information

Static Equilibrium, Gravitation, Periodic Motion

Static Equilibrium, Gravitation, Periodic Motion This test covers static equilibrium, universal gravitation, and simple harmonic motion, with some problems requiring a knowledge of basic calculus. Part I. Multiple Choice 1. 60 A B 10 kg A mass of 10

More information

Dynamics Review Outline

Dynamics Review Outline Dynamics Review Outline 2.1.1-C Newton s Laws of Motion 2.1 Contact Forces First Law (Inertia) objects tend to remain in their current state of motion (at rest of moving at a constant velocity) until acted

More information

Dynamics Review Checklist

Dynamics Review Checklist Dynamics Review Checklist Newton s Laws 2.1.1 Explain Newton s 1 st Law (the Law of Inertia) and the relationship between mass and inertia. Which of the following has the greatest amount of inertia? (a)

More information

PHYS 101 Previous Exam Problems. Gravitation

PHYS 101 Previous Exam Problems. Gravitation PHYS 101 Previous Exam Problems CHAPTER 13 Gravitation Newton s law of gravitation Shell theorem Variation of g Potential energy & work Escape speed Conservation of energy Kepler s laws - planets Orbits

More information

Gravity and Orbits. Objectives. Clarify a number of basic concepts. Gravity

Gravity and Orbits. Objectives. Clarify a number of basic concepts. Gravity Gravity and Orbits Objectives Clarify a number of basic concepts Speed vs. velocity Acceleration, and its relation to force Momentum and angular momentum Gravity Understand its basic workings Understand

More information

SIR MICHELANGELO REFALO CENTRE FOR FURTHER STUDIES VICTORIA GOZO

SIR MICHELANGELO REFALO CENTRE FOR FURTHER STUDIES VICTORIA GOZO SIR MICHELANGELO REFALO CENTRE FOR FURTHER STUDIES VICTORIA GOZO Half-Yearly Exam 2013 Subject: Physics Level: Advanced Time: 3hrs Name: Course: Year: 1st This paper carries 200 marks which are 80% of

More information