Diverse M-Best Solutions in Markov Random Fields

Size: px
Start display at page:

Download "Diverse M-Best Solutions in Markov Random Fields"

Transcription

1 Dverse M-Best Solutons n Markov Random Felds Dhruv Batra Vrgna Tech Jont work wth: Students: Payman Yadollahpour (TTIC), Abner Guzman-Rvera (UIUC) Colleagues: Chrs Dyer (CMU), Greg Shakhnarovch (TTIC), Pushmeet Kohl (MSRC), Kevn Gmpel (TTIC)

2 (C) Dhruv Batra 2

3 Ambguty Ambguty Ambguty?? One nstance / Two nstances? (C) Dhruv Batra 3

4 Problems wth MAP Sngle Not Model-Class Predcton Enough Tranng s = Uncertanty Wrong! Data! Msmanagement -- Inherent MAP Approxmaton s NP-Hard Error -- Estmaton Error Ambguty -- Optmzaton Error Make -- Bayes Multple Error Predctons! (C) Dhruv Batra 4

5 Multple Predctons P (X ) x x x x X X MAP Samplng Porway & Zhu, 211! TU & Zhu, 22! Rch Hstory! (C) Dhruv Batra 5

6 Multple Predctons P (X ) X X MAP Samplng Porway & Zhu, 211! TU & Zhu, 22! Rch Hstory! M-Best MAP Flerova et al., 211! Fromer et al., 29! Yanover et al., 23!! Ideally: M-Best Modes (C) Dhruv Batra 6

7 Multple Predctons P (X ) X X MAP Our work: Dverse M-Best n MRFs [ECCV 12]! Samplng M-Best MAP - Don t hope for dversty. Explctly encode t. Ideally: Porway & Zhu, 211! Flerova et al., 211! TU & Zhu, 22! - Not guaranteed Fromer et to al., be 29! modes. M-Best Modes Rch Hstory! Yanover et al., 23! (C) Dhruv Batra 7

8 Example Result CRF Dverse Segmentatons. Re-ranker α ψ(x, y) Re-ranked Lst Top Soluton (C) Dhruv Batra 8

9 Example Result CRF Dverse Segmentatons Stage 1. Dscrmnatve Re-rankng of Dverse Segmentaton Re-ranker Re-ranked Lst α ψ(x, y) [Yadollahpour et al., CVPR13, Wednesday Poster] Stage 2 Top Soluton. (C) Dhruv Batra 9

10 MAP Integer Program max y S(y) = µ θ (s) (s) θ (y ) + θ j (y,y j ) (,j) kx1 (C) Dhruv Batra 1

11 MAP Integer Program max y S(y) = θ (s) + θ j (y,y j ) (,j) 1 kx1 (C) Dhruv Batra 11

12 MAP Integer Program max y S(y) = 1 θ (s) + θ j (y,y j ) (,j) kx1 (C) Dhruv Batra 12

13 MAP Integer Program max y S(y) = θ (s) + θ j (y,y j ) (,j) 1 kx1 (C) Dhruv Batra 13

14 MAP Integer Program max y S(y) = θ (s) + θ j (y,y j ) (,j) 1 kx1 (C) Dhruv Batra 14

15 MAP Integer Program max y S(y) = θ (s) 1 kx1 + (,j) θ j (s, t) µ j (s, t) k 2 x1 (C) Dhruv Batra 15

16 MAP Integer Program max y S(y) = max µ C θ (s) θ µ + θ j µ j (,j) s.t. µ ( ), µ j ( ) {, 1} 1 kx1 + (,j) θ j (s, t) µ j (s, t) k 2 x1 P (X ) X MAP (C) Dhruv Batra 16 X

17 MAP Integer Program max µ C θ µ + θ j µ j (,j) s.t. µ ( ), µ j ( ) {, 1} Graphcuts, BP, Expanson, etc P (X ) X MAP (C) Dhruv Batra 17 X

18 Dverse 2 nd -Best max µ C θ µ + θ j µ j (,j) s.t. µ ( ), µ j ( ) {, 1} (µ, µ (1) ) k Dversty MAP (µ, µ (1) ) k P (X ) X MAP (C) Dhruv Batra 18 X

19 Dverse M-Best max µ C θ µ + θ j µ j (,j) s.t. µ ( ), µ j ( ) {, 1} (µ, µ (1) ) k (µ, µ (2) ) k (µ, µ (M 1) ) k (µ, µ (1) ) k (µ, µ (M 1) ) k (µ, µ (2) ) k P (X ) X MAP (C) Dhruv Batra 19 X

20 Dverse 2 nd -Best max µ C θ µ + θ j µ j (,j) s.t. µ ( ), µ j ( ) {, 1} (µ, µ (1) ) k Q1: How do we solve DvMBest? Q2: What knd of dversty functons are allowed? Q3: How much dversty? (C) Dhruv Batra 2

21 Dverse 2 nd -Best Prmal max µ C θ µ + θ j µ j (,j) s.t. µ ( ), µ j ( ) {, 1} (µ, µ (1) ) k Dversty-Augmented Score +λ (µ, µ (1) ) k Dualze S(y) + Dv(y, y (1) ) P (X ) X X MAP (C) Dhruv Batra 21

22 Dverse 2 nd -Best Lagrangan Relaxaton f(λ) = max µ C θ µ + θ j µ j (,j) s.t. µ ( ), µ j ( ) {, 1} Dversty-Augmented Score +λ (µ, µ (1) ) k Dual f(λ) mn λ f(λ) f(λ) = (µ λ, µ (1) ) k Subgradent Descent f(λ () ) f(λ (1) ) Concave (Non-smooth) Upper-Bound on Dv2Best Score Dv2Best score λ () λ (1) (C) Dhruv Batra 22 λ

23 Dverse 2 nd -Best Lagrangan Relaxaton Many ways to solve: Dversty-Augmented Energy mn θ µ + θ j µ λ 1. f(λ) Subgradent = j µ CAscent. Optmal. Slow. (,j) (µ, µ (1) ) k 2. Bnary Search. s.t. µ ( ), µ j ( ) Optmal {, 1} for M=2. Faster. (µ, µ (1) ) k 3. Grd-search on lambda. Sub-optmal. Fastest. Dualze (C) Dhruv Batra 23

24 Theorem Statement Theorem [Batra et al 12]: Lagrangan Dual corresponds to solvng the Relaxed Prmal: Based on result from [Geoffron 74] Dual mn λ LagranganDual(λ) Relaxed Prmal max µ s.t. θ µ + θ j µ j j µ Co µ ( ), µ j ( ) {, 1} µ C (µ, µ (1) ) k (C) Dhruv Batra 24

25 Effect of Lagrangan Relaxaton µ (5) µ (3) µ (4) µ (2) µ (1) (C) Dhruv Batra 25

26 Effect of Lagrangan Relaxaton µ (5) µ (3) µ (4) µ (2) µ (1) (C) Dhruv Batra 26

27 Effect of Lagrangan Relaxaton [Mezuman et al. UAI13] Parwse Potental Strength Parwse Potental Strength (C) Dhruv Batra 27

28 Dverse 2 nd -Best mn µ C θ µ + θ j µ j (,j) s.t. µ ( ), µ j ( ) {, 1} (µ, µ (1) ) k Q1: How do we solve DvMBest? Q2: What knd of dversty functons are allowed? Q3: How much dversty? (C) Dhruv Batra 28

29 Dversty [Specal Case] -1 Dversty = [Yanover NIPS3; Fromer NIPS9; Flerova Soft11] M-Best MAP [Specal Case] Max Dversty = [Park & Ramanan ICCV11] Hammng Dversty Cardnalty Dversty Any Dversty max µ C S(µ)+λ (µ, µ (1) ) (C) Dhruv Batra 29

30 Hammng Dversty (µ, µ (1) )= V µ µ (1) 1 1 =1 1 1 = (C) Dhruv Batra 3

31 Hammng Dversty (µ, µ (1) )= V µ µ (1) Dversty Augmented Inference: max µ C θ µ + θ j µ j + λ (µ, µ (1) ) (,j) = θ λµ (1) µ + θ j µ j (,j) θ (C) Dhruv Batra 31

32 Hammng Dversty (µ, µ (1) )= V µ µ (1) Dversty Augmented Inference: for = 1,2,...,n θ [x (1) ] -= λ endfor x (2) = Fnd MAP(θ, θ j ) Unchanged. Can stll use graph-cuts! Smply edt node-terms. Reuse MAP machnery! (C) Dhruv Batra 32

33 Dverse 2 nd -Best mn µ C θ µ + θ j µ j (,j) s.t. µ ( ), µ j ( ) {, 1} (µ, µ (1) ) k Q1: How do we solve DvMBest? Q2: What knd of dversty functons are allowed? Q3: How much dversty? (C) Dhruv Batra 33

34 How Much Dversty? P (X ) X Emprcal Soluton: Cross-Val for k More Effcent: Cross-Val for λ (C) Dhruv Batra 34

35 Experments 3 Applcatons Interactve Segmentaton: Hammng, Cardnalty (n paper) Pose Estmaton: Hammng Semantc Segmentaton: Hammng Baselnes: M-Best MAP (No Dversty) Confdence-Based Perturbaton (No Optmzaton) (C) Dhruv Batra 35

36 Interactve Segmentaton Setup Model: Color/Texture + Potts Grd CRF Inference: Graph-cuts Dataset: 5 tran/val/test mages Image + Scrbbles MAP 2 nd Best MAP Dverse 2 nd Best 1-2 Nodes Flpped 1-5 Nodes Flpped (C) Dhruv Batra 36

37 Pose Trackng Setup Model: Mxture of Parts from [Park & Ramanan, ICCV 11] Inference: Dynamc Programmng Dataset: 4 vdeos, 585 frames (C) Dhruv Batra Image Credt: [Yang & Ramanan, ICCV 11] 37

38 CVPR 213 Dversty Tutoral (C) Dhruv Batra 38

39 Pose Trackng Chan CRF wth M states at each tme M Best Solutons (C) Dhruv Batra Image Credt: [Yang & Ramanan, ICCV 11] 39

40 Pose Trackng MAP DvMBest + Vterb (C) Dhruv Batra 4

41 Pose Trackng Better PCP Accuracy 85% 8% 75% 7% 65% 6% 55% DvMBest (Re-ranked) 13% Gan Same Features Same Model [Park & Ramanan, ICCV 11] (Re-ranked) Confdence-based Perturbaton (Re-ranked) 5% 45% #Solutons / Frame (C) Dhruv Batra 41

42 Machne Translaton Input: De Regerung wll de Folter von Hexen unterbnden und gab ene Broschüre heraus MAP Translaton: The government wants the torture of wtch and gave out a booklet (C) Dhruv Batra 42

43 Machne Translaton Input: De Regerung wll de Folter von Hexen unterbnden und gab ene Broschüre heraus 5-Best Translatons: The government wants the torture of wtch and gave out a booklet The government wants the torture of wtch and gave out a booklet The government wants the torture of wtch and gave out a brochure The government wants the torture of wtch and gave out a leaflet The government wants the torture of wtch and gave out a brochure (C) Dhruv Batra 43

44 Machne Translaton Input: De Regerung wll de Folter von Hexen unterbnden und gab ene Broschüre heraus Dverse 5-Best Translatons: The government wants the torture of wtch and gave out a booklet The government wants to stop torture of wtch and ssued a leaflet ssued The government wants to stop the torture of wtches and gave out a brochure The government ntends to the torture of wtchcraft and were ssued a leaflet The government s the torture of wtches stamp out and gave a brochure (C) Dhruv Batra 44

45 Machne Translaton Input: De Regerung wll de Folter von Hexen unterbnden und gab ene Broschüre heraus Dverse 5-Best Translatons: The government wants the torture of wtch and gave out a booklet The government wants to stop torture of wtch and ssued a leaflet ssued The government wants to stop the torture of wtches and gave out a brochure The government ntends to the torture of wtchcraft and were ssued a leaflet The government s the torture of wtches stamp out and gave a brochure Correct Translaton: The government wants to lmt the torture of wtches, a brochure was released (C) Dhruv Batra 45

ECE 6504: Advanced Topics in Machine Learning Probabilistic Graphical Models and Large-Scale Learning

ECE 6504: Advanced Topics in Machine Learning Probabilistic Graphical Models and Large-Scale Learning ECE 6504: Advanced Topics in Machine Learning Probabilistic Graphical Models and Large-Scale Learning Topics Summary of Class Advanced Topics Dhruv Batra Virginia Tech HW1 Grades Mean: 28.5/38 ~= 74.9%

More information

Efficiently Enforcing Diversity in Multi-Output Structured Prediction

Efficiently Enforcing Diversity in Multi-Output Structured Prediction Effcently Enforcng Dversty n ult-output Structured Predcton Abner Guzman-Rvera Pushmeet Kohl Dhruv Batra Rob A. Rutenbar Unversty of Illnos crosoft Research Cambrdge Vrgna Tech Unversty of Illnos Abstract

More information

EM and Structure Learning

EM and Structure Learning EM and Structure Learnng Le Song Machne Learnng II: Advanced Topcs CSE 8803ML, Sprng 2012 Partally observed graphcal models Mxture Models N(μ 1, Σ 1 ) Z X N N(μ 2, Σ 2 ) 2 Gaussan mxture model Consder

More information

Logistic Regression. CAP 5610: Machine Learning Instructor: Guo-Jun QI

Logistic Regression. CAP 5610: Machine Learning Instructor: Guo-Jun QI Logstc Regresson CAP 561: achne Learnng Instructor: Guo-Jun QI Bayes Classfer: A Generatve model odel the posteror dstrbuton P(Y X) Estmate class-condtonal dstrbuton P(X Y) for each Y Estmate pror dstrbuton

More information

Support Vector Machines. Vibhav Gogate The University of Texas at dallas

Support Vector Machines. Vibhav Gogate The University of Texas at dallas Support Vector Machnes Vbhav Gogate he Unversty of exas at dallas What We have Learned So Far? 1. Decson rees. Naïve Bayes 3. Lnear Regresson 4. Logstc Regresson 5. Perceptron 6. Neural networks 7. K-Nearest

More information

Probabilistic & Unsupervised Learning

Probabilistic & Unsupervised Learning Probablstc & Unsupervsed Learnng Convex Algorthms n Approxmate Inference Yee Whye Teh ywteh@gatsby.ucl.ac.uk Gatsby Computatonal Neuroscence Unt Unversty College London Term 1, Autumn 2008 Convexty A convex

More information

Kernel Methods and SVMs Extension

Kernel Methods and SVMs Extension Kernel Methods and SVMs Extenson The purpose of ths document s to revew materal covered n Machne Learnng 1 Supervsed Learnng regardng support vector machnes (SVMs). Ths document also provdes a general

More information

Lecture 3: Dual problems and Kernels

Lecture 3: Dual problems and Kernels Lecture 3: Dual problems and Kernels C4B Machne Learnng Hlary 211 A. Zsserman Prmal and dual forms Lnear separablty revsted Feature mappng Kernels for SVMs Kernel trck requrements radal bass functons SVM

More information

Support Vector Machines

Support Vector Machines CS 2750: Machne Learnng Support Vector Machnes Prof. Adrana Kovashka Unversty of Pttsburgh February 17, 2016 Announcement Homework 2 deadlne s now 2/29 We ll have covered everythng you need today or at

More information

CS 3710: Visual Recognition Classification and Detection. Adriana Kovashka Department of Computer Science January 13, 2015

CS 3710: Visual Recognition Classification and Detection. Adriana Kovashka Department of Computer Science January 13, 2015 CS 3710: Vsual Recognton Classfcaton and Detecton Adrana Kovashka Department of Computer Scence January 13, 2015 Plan for Today Vsual recognton bascs part 2: Classfcaton and detecton Adrana s research

More information

Why BP Works STAT 232B

Why BP Works STAT 232B Why BP Works STAT 232B Free Energes Helmholz & Gbbs Free Energes 1 Dstance between Probablstc Models - K-L dvergence b{ KL b{ p{ = b{ ln { } p{ Here, p{ s the eact ont prob. b{ s the appromaton, called

More information

Lagrange Multipliers Kernel Trick

Lagrange Multipliers Kernel Trick Lagrange Multplers Kernel Trck Ncholas Ruozz Unversty of Texas at Dallas Based roughly on the sldes of Davd Sontag General Optmzaton A mathematcal detour, we ll come back to SVMs soon! subject to: f x

More information

Hidden Markov Models

Hidden Markov Models Hdden Markov Models Namrata Vaswan, Iowa State Unversty Aprl 24, 204 Hdden Markov Model Defntons and Examples Defntons:. A hdden Markov model (HMM) refers to a set of hdden states X 0, X,..., X t,...,

More information

Intro to Visual Recognition

Intro to Visual Recognition CS 2770: Computer Vson Intro to Vsual Recognton Prof. Adrana Kovashka Unversty of Pttsburgh February 13, 2018 Plan for today What s recognton? a.k.a. classfcaton, categorzaton Support vector machnes Separable

More information

Hidden Markov Models

Hidden Markov Models CM229S: Machne Learnng for Bonformatcs Lecture 12-05/05/2016 Hdden Markov Models Lecturer: Srram Sankararaman Scrbe: Akshay Dattatray Shnde Edted by: TBD 1 Introducton For a drected graph G we can wrte

More information

Let the Shape Speak - Discriminative Face Alignment using Conjugate Priors

Let the Shape Speak - Discriminative Face Alignment using Conjugate Priors Let the Shape Speak - Dscrmnatve Face Algnment usng Conjugate Prors Pedro Martns, Ru Casero, João F. Henrques, Jorge Batsta http://www.sr.uc.pt/~pedromartns Insttute of Systems and Robotcs Unversty of

More information

Image Analysis. Active contour models (snakes)

Image Analysis. Active contour models (snakes) Image Analyss Actve contour models (snakes) Chrstophoros Nkou cnkou@cs.uo.gr Images taken from: Computer Vson course by Krsten Grauman, Unversty of Texas at Austn. Unversty of Ioannna - Department of Computer

More information

Dual Decomposition for Inference

Dual Decomposition for Inference Dual Decomposition for Inference Yunshu Liu ASPITRG Research Group 2014-05-06 References: [1]. D. Sontag, A. Globerson and T. Jaakkola, Introduction to Dual Decomposition for Inference, Optimization for

More information

Curve Fitting with the Least Square Method

Curve Fitting with the Least Square Method WIKI Document Number 5 Interpolaton wth Least Squares Curve Fttng wth the Least Square Method Mattheu Bultelle Department of Bo-Engneerng Imperal College, London Context We wsh to model the postve feedback

More information

Support Vector Machines

Support Vector Machines Support Vector Machnes Konstantn Tretyakov (kt@ut.ee) MTAT.03.227 Machne Learnng So far Supervsed machne learnng Lnear models Least squares regresson Fsher s dscrmnant, Perceptron, Logstc model Non-lnear

More information

Feature Selection: Part 1

Feature Selection: Part 1 CSE 546: Machne Learnng Lecture 5 Feature Selecton: Part 1 Instructor: Sham Kakade 1 Regresson n the hgh dmensonal settng How do we learn when the number of features d s greater than the sample sze n?

More information

Tracking with Kalman Filter

Tracking with Kalman Filter Trackng wth Kalman Flter Scott T. Acton Vrgna Image and Vdeo Analyss (VIVA), Charles L. Brown Department of Electrcal and Computer Engneerng Department of Bomedcal Engneerng Unversty of Vrgna, Charlottesvlle,

More information

Support Vector Machines

Support Vector Machines Support Vector Machnes Konstantn Tretyakov (kt@ut.ee) MTAT.03.227 Machne Learnng So far So far Supervsed machne learnng Lnear models Non-lnear models Unsupervsed machne learnng Generc scaffoldng So far

More information

Large-Margin HMM Estimation for Speech Recognition

Large-Margin HMM Estimation for Speech Recognition Large-Margn HMM Estmaton for Speech Recognton Prof. Hu Jang Department of Computer Scence and Engneerng York Unversty, Toronto, Ont. M3J 1P3, CANADA Emal: hj@cs.yorku.ca Ths s a jont work wth Chao-Jun

More information

EEL 6266 Power System Operation and Control. Chapter 3 Economic Dispatch Using Dynamic Programming

EEL 6266 Power System Operation and Control. Chapter 3 Economic Dispatch Using Dynamic Programming EEL 6266 Power System Operaton and Control Chapter 3 Economc Dspatch Usng Dynamc Programmng Pecewse Lnear Cost Functons Common practce many utltes prefer to represent ther generator cost functons as sngle-

More information

Linear Classification, SVMs and Nearest Neighbors

Linear Classification, SVMs and Nearest Neighbors 1 CSE 473 Lecture 25 (Chapter 18) Lnear Classfcaton, SVMs and Nearest Neghbors CSE AI faculty + Chrs Bshop, Dan Klen, Stuart Russell, Andrew Moore Motvaton: Face Detecton How do we buld a classfer to dstngush

More information

Part 7: Structured Prediction and Energy Minimization (2/2)

Part 7: Structured Prediction and Energy Minimization (2/2) Part 7: Structured Prediction and Energy Minimization (2/2) Colorado Springs, 25th June 2011 G: Worst-case Complexity Hard problem Generality Optimality Worst-case complexity Integrality Determinism G:

More information

Ensemble Methods: Boosting

Ensemble Methods: Boosting Ensemble Methods: Boostng Ncholas Ruozz Unversty of Texas at Dallas Based on the sldes of Vbhav Gogate and Rob Schapre Last Tme Varance reducton va baggng Generate new tranng data sets by samplng wth replacement

More information

Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data

Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data Condtonal Random Felds: Probablstc Models for Segmentng and Labelng Sequence Data Paper by John Lafferty, Andrew McCallum, and Fernando Perera ICML 2001 Presentaton by Joe Drsh May 9, 2002 Man Goals Present

More information

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg prnceton unv. F 17 cos 521: Advanced Algorthm Desgn Lecture 7: LP Dualty Lecturer: Matt Wenberg Scrbe: LP Dualty s an extremely useful tool for analyzng structural propertes of lnear programs. Whle there

More information

Natural Language Processing and Information Retrieval

Natural Language Processing and Information Retrieval Natural Language Processng and Informaton Retreval Support Vector Machnes Alessandro Moschtt Department of nformaton and communcaton technology Unversty of Trento Emal: moschtt@ds.untn.t Summary Support

More information

Quantifying Uncertainty

Quantifying Uncertainty Partcle Flters Quantfyng Uncertanty Sa Ravela M. I. T Last Updated: Sprng 2013 1 Quantfyng Uncertanty Partcle Flters Partcle Flters Appled to Sequental flterng problems Can also be appled to smoothng problems

More information

Making the Right Moves: Guiding Alpha-Expansion using Local Primal-Dual Gaps

Making the Right Moves: Guiding Alpha-Expansion using Local Primal-Dual Gaps Making the Right Moves: Guiding Alpha-Expansion using Local Primal-Dual Gaps Dhruv Batra TTI Chicago dbatra@ttic.edu Pushmeet Kohli Microsoft Research Cambridge pkohli@microsoft.com Abstract 5 This paper

More information

Maximal Margin Classifier

Maximal Margin Classifier CS81B/Stat41B: Advanced Topcs n Learnng & Decson Makng Mamal Margn Classfer Lecturer: Mchael Jordan Scrbes: Jana van Greunen Corrected verson - /1/004 1 References/Recommended Readng 1.1 Webstes www.kernel-machnes.org

More information

Lecture 10 Support Vector Machines. Oct

Lecture 10 Support Vector Machines. Oct Lecture 10 Support Vector Machnes Oct - 20-2008 Lnear Separators Whch of the lnear separators s optmal? Concept of Margn Recall that n Perceptron, we learned that the convergence rate of the Perceptron

More information

Learning undirected Models. Instructor: Su-In Lee University of Washington, Seattle. Mean Field Approximation

Learning undirected Models. Instructor: Su-In Lee University of Washington, Seattle. Mean Field Approximation Readngs: K&F 0.3, 0.4, 0.6, 0.7 Learnng undrected Models Lecture 8 June, 0 CSE 55, Statstcal Methods, Sprng 0 Instructor: Su-In Lee Unversty of Washngton, Seattle Mean Feld Approxmaton Is the energy functonal

More information

Global Optimization of Truss. Structure Design INFORMS J. N. Hooker. Tallys Yunes. Slide 1

Global Optimization of Truss. Structure Design INFORMS J. N. Hooker. Tallys Yunes. Slide 1 Slde 1 Global Optmzaton of Truss Structure Desgn J. N. Hooker Tallys Yunes INFORMS 2010 Truss Structure Desgn Select sze of each bar (possbly zero) to support the load whle mnmzng weght. Bar szes are dscrete.

More information

Introduction to Hidden Markov Models

Introduction to Hidden Markov Models Introducton to Hdden Markov Models Alperen Degrmenc Ths document contans dervatons and algorthms for mplementng Hdden Markov Models. The content presented here s a collecton of my notes and personal nsghts

More information

Structural Extensions of Support Vector Machines. Mark Schmidt March 30, 2009

Structural Extensions of Support Vector Machines. Mark Schmidt March 30, 2009 Structural Extensons of Support Vector Machnes Mark Schmdt March 30, 2009 Formulaton: Bnary SVMs Multclass SVMs Structural SVMs Tranng: Subgradents Cuttng Planes Margnal Formulatons Mn-Max Formulatons

More information

Lecture 10 Support Vector Machines II

Lecture 10 Support Vector Machines II Lecture 10 Support Vector Machnes II 22 February 2016 Taylor B. Arnold Yale Statstcs STAT 365/665 1/28 Notes: Problem 3 s posted and due ths upcomng Frday There was an early bug n the fake-test data; fxed

More information

Structured Perceptrons & Structural SVMs

Structured Perceptrons & Structural SVMs Structured Perceptrons Structural SVMs 4/6/27 CS 59: Advanced Topcs n Machne Learnng Recall: Sequence Predcton Input: x = (x,,x M ) Predct: y = (y,,y M ) Each y one of L labels. x = Fsh Sleep y = (N, V)

More information

UVA CS / Introduc8on to Machine Learning and Data Mining. Lecture 10: Classifica8on with Support Vector Machine (cont.

UVA CS / Introduc8on to Machine Learning and Data Mining. Lecture 10: Classifica8on with Support Vector Machine (cont. UVA CS 4501-001 / 6501 007 Introduc8on to Machne Learnng and Data Mnng Lecture 10: Classfca8on wth Support Vector Machne (cont. ) Yanjun Q / Jane Unversty of Vrgna Department of Computer Scence 9/6/14

More information

Organizing Teacher Education In German Universities

Organizing Teacher Education In German Universities An Operatons Research Approach Bob Grün Unversty of Kaserslautern Department of Mathematcs AG Optmzaton Research Semnar OptALI: Optmzaton and ts Applcatons n Learnng and Industry 28.2.2012 Outlne 1 Introducton

More information

Submodular Maximization and Diversity in Structured Output Spaces

Submodular Maximization and Diversity in Structured Output Spaces Submodular Maximization and Diversity in Structured Output Spaces Adarsh Prasad Virginia Tech, UT Austin adarshprasad27@gmail.com Stefanie Jegelka UC Berkeley stefje@eecs.berkeley.edu Dhruv Batra Virginia

More information

Which Separator? Spring 1

Which Separator? Spring 1 Whch Separator? 6.034 - Sprng 1 Whch Separator? Mamze the margn to closest ponts 6.034 - Sprng Whch Separator? Mamze the margn to closest ponts 6.034 - Sprng 3 Margn of a pont " # y (w $ + b) proportonal

More information

Kristin P. Bennett. Rensselaer Polytechnic Institute

Kristin P. Bennett. Rensselaer Polytechnic Institute Support Vector Machnes and Other Kernel Methods Krstn P. Bennett Mathematcal Scences Department Rensselaer Polytechnc Insttute Support Vector Machnes (SVM) A methodology for nference based on Statstcal

More information

Microwave Diversity Imaging Compression Using Bioinspired

Microwave Diversity Imaging Compression Using Bioinspired Mcrowave Dversty Imagng Compresson Usng Bonspred Neural Networks Youwe Yuan 1, Yong L 1, Wele Xu 1, Janghong Yu * 1 School of Computer Scence and Technology, Hangzhou Danz Unversty, Hangzhou, Zhejang,

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017 U.C. Berkeley CS94: Beyond Worst-Case Analyss Handout 4s Luca Trevsan September 5, 07 Summary of Lecture 4 In whch we ntroduce semdefnte programmng and apply t to Max Cut. Semdefnte Programmng Recall that

More information

Feature Selection & Dynamic Tracking F&P Textbook New: Ch 11, Old: Ch 17 Guido Gerig CS 6320, Spring 2013

Feature Selection & Dynamic Tracking F&P Textbook New: Ch 11, Old: Ch 17 Guido Gerig CS 6320, Spring 2013 Feature Selecton & Dynamc Trackng F&P Textbook New: Ch 11, Old: Ch 17 Gudo Gerg CS 6320, Sprng 2013 Credts: Materal Greg Welch & Gary Bshop, UNC Chapel Hll, some sldes modfed from J.M. Frahm/ M. Pollefeys,

More information

Machine Learning & Data Mining CS/CNS/EE 155. Lecture 4: Regularization, Sparsity & Lasso

Machine Learning & Data Mining CS/CNS/EE 155. Lecture 4: Regularization, Sparsity & Lasso Machne Learnng Data Mnng CS/CS/EE 155 Lecture 4: Regularzaton, Sparsty Lasso 1 Recap: Complete Ppelne S = {(x, y )} Tranng Data f (x, b) = T x b Model Class(es) L(a, b) = (a b) 2 Loss Functon,b L( y, f

More information

Combining Constraint Programming and Integer Programming

Combining Constraint Programming and Integer Programming Combnng Constrant Programmng and Integer Programmng GLOBAL CONSTRAINT OPTIMIZATION COMPONENT Specal Purpose Algorthm mn c T x +(x- 0 ) x( + ()) =1 x( - ()) =1 FILTERING ALGORITHM COST-BASED FILTERING ALGORITHM

More information

Maxent Models & Deep Learning

Maxent Models & Deep Learning Maxent Models & Deep Learnng 1. Last bts of maxent (sequence) models 1.MEMMs vs. CRFs 2.Smoothng/regularzaton n maxent models 2. Deep Learnng 1. What s t? Why s t good? (Part 1) 2. From logstc regresson

More information

CIS526: Machine Learning Lecture 3 (Sept 16, 2003) Linear Regression. Preparation help: Xiaoying Huang. x 1 θ 1 output... θ M x M

CIS526: Machine Learning Lecture 3 (Sept 16, 2003) Linear Regression. Preparation help: Xiaoying Huang. x 1 θ 1 output... θ M x M CIS56: achne Learnng Lecture 3 (Sept 6, 003) Preparaton help: Xaoyng Huang Lnear Regresson Lnear regresson can be represented by a functonal form: f(; θ) = θ 0 0 +θ + + θ = θ = 0 ote: 0 s a dummy attrbute

More information

Computing the M Most Probable Modes of a Graphical Model

Computing the M Most Probable Modes of a Graphical Model Chao Chen Vladimir Kolmogorov Yan Zhu Rutgers University IST Austria Rutgers University Dimitris Metaxas Rutgers University Christoph H. Lampert IST Austria Abstract We introduce the M-Modes problem for

More information

Classification. Representing data: Hypothesis (classifier) Lecture 2, September 14, Reading: Eric CMU,

Classification. Representing data: Hypothesis (classifier) Lecture 2, September 14, Reading: Eric CMU, Machne Learnng 10-701/15-781, 781, Fall 2011 Nonparametrc methods Erc Xng Lecture 2, September 14, 2011 Readng: 1 Classfcaton Representng data: Hypothess (classfer) 2 1 Clusterng 3 Supervsed vs. Unsupervsed

More information

Graph Cut based Inference with Co-occurrence Statistics. Ľubor Ladický, Chris Russell, Pushmeet Kohli, Philip Torr

Graph Cut based Inference with Co-occurrence Statistics. Ľubor Ladický, Chris Russell, Pushmeet Kohli, Philip Torr Graph Cut based Inference with Co-occurrence Statistics Ľubor Ladický, Chris Russell, Pushmeet Kohli, Philip Torr Image labelling Problems Assign a label to each image pixel Geometry Estimation Image Denoising

More information

CSC321 Tutorial 9: Review of Boltzmann machines and simulated annealing

CSC321 Tutorial 9: Review of Boltzmann machines and simulated annealing CSC321 Tutoral 9: Revew of Boltzmann machnes and smulated annealng (Sldes based on Lecture 16-18 and selected readngs) Yue L Emal: yuel@cs.toronto.edu Wed 11-12 March 19 Fr 10-11 March 21 Outlne Boltzmann

More information

Small Area Interval Estimation

Small Area Interval Estimation .. Small Area Interval Estmaton Partha Lahr Jont Program n Survey Methodology Unversty of Maryland, College Park (Based on jont work wth Masayo Yoshmor, Former JPSM Vstng PhD Student and Research Fellow

More information

Assortment Optimization under MNL

Assortment Optimization under MNL Assortment Optmzaton under MNL Haotan Song Aprl 30, 2017 1 Introducton The assortment optmzaton problem ams to fnd the revenue-maxmzng assortment of products to offer when the prces of products are fxed.

More information

Additional Codes using Finite Difference Method. 1 HJB Equation for Consumption-Saving Problem Without Uncertainty

Additional Codes using Finite Difference Method. 1 HJB Equation for Consumption-Saving Problem Without Uncertainty Addtonal Codes usng Fnte Dfference Method Benamn Moll 1 HJB Equaton for Consumpton-Savng Problem Wthout Uncertanty Before consderng the case wth stochastc ncome n http://www.prnceton.edu/~moll/ HACTproect/HACT_Numercal_Appendx.pdf,

More information

Discrete Inference and Learning Lecture 3

Discrete Inference and Learning Lecture 3 Discrete Inference and Learning Lecture 3 MVA 2017 2018 h

More information

Automatic Object Trajectory- Based Motion Recognition Using Gaussian Mixture Models

Automatic Object Trajectory- Based Motion Recognition Using Gaussian Mixture Models Automatc Object Trajectory- Based Moton Recognton Usng Gaussan Mxture Models Fasal I. Bashr, Ashfaq A. Khokhar, Dan Schonfeld Electrcal and Computer Engneerng, Unversty of Illnos at Chcago. Chcago, IL,

More information

Dynamic Programming! CSE 417: Algorithms and Computational Complexity!

Dynamic Programming! CSE 417: Algorithms and Computational Complexity! Dynamc Programmng CSE 417: Algorthms and Computatonal Complexty Wnter 2009 W. L. Ruzzo Dynamc Programmng, I:" Fbonacc & Stamps Outlne: General Prncples Easy Examples Fbonacc, Lckng Stamps Meater examples

More information

Integrals and Invariants of Euler-Lagrange Equations

Integrals and Invariants of Euler-Lagrange Equations Lecture 16 Integrals and Invarants of Euler-Lagrange Equatons ME 256 at the Indan Insttute of Scence, Bengaluru Varatonal Methods and Structural Optmzaton G. K. Ananthasuresh Professor, Mechancal Engneerng,

More information

10-701/ Machine Learning, Fall 2005 Homework 3

10-701/ Machine Learning, Fall 2005 Homework 3 10-701/15-781 Machne Learnng, Fall 2005 Homework 3 Out: 10/20/05 Due: begnnng of the class 11/01/05 Instructons Contact questons-10701@autonlaborg for queston Problem 1 Regresson and Cross-valdaton [40

More information

Clock Synchronization in WSN: from Traditional Estimation Theory to Distributed Signal Processing

Clock Synchronization in WSN: from Traditional Estimation Theory to Distributed Signal Processing Clock Synchronzaton n WS: from Tradtonal Estmaton Theory to Dstrbuted Sgnal Processng Yk-Chung WU The Unversty of Hong Kong Emal: ycwu@eee.hku.hk, Webpage: www.eee.hku.hk/~ycwu Applcatons requre clock

More information

A weighted Mirror Descent algorithm for nonsmooth convex optimization problem

A weighted Mirror Descent algorithm for nonsmooth convex optimization problem Noname manuscrpt No. (wll be nserted by the edtor) A weghted Mrror Descent algorthm for nonsmooth convex optmzaton problem Duy V.N. Luong Panos Parpas Danel Rueckert Berç Rustem Receved: date / Accepted:

More information

= z 20 z n. (k 20) + 4 z k = 4

= z 20 z n. (k 20) + 4 z k = 4 Problem Set #7 solutons 7.2.. (a Fnd the coeffcent of z k n (z + z 5 + z 6 + z 7 + 5, k 20. We use the known seres expanson ( n+l ( z l l z n below: (z + z 5 + z 6 + z 7 + 5 (z 5 ( + z + z 2 + z + 5 5

More information

On the Multicriteria Integer Network Flow Problem

On the Multicriteria Integer Network Flow Problem BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 5, No 2 Sofa 2005 On the Multcrtera Integer Network Flow Problem Vassl Vasslev, Marana Nkolova, Maryana Vassleva Insttute of

More information

Optimization Methods for Engineering Design. Logic-Based. John Hooker. Turkish Operational Research Society. Carnegie Mellon University

Optimization Methods for Engineering Design. Logic-Based. John Hooker. Turkish Operational Research Society. Carnegie Mellon University Logc-Based Optmzaton Methods for Engneerng Desgn John Hooker Carnege Mellon Unerst Turksh Operatonal Research Socet Ankara June 1999 Jont work wth: Srnas Bollapragada General Electrc R&D Omar Ghattas Cl

More information

An Experiment/Some Intuition (Fall 2006): Lecture 18 The EM Algorithm heads coin 1 tails coin 2 Overview Maximum Likelihood Estimation

An Experiment/Some Intuition (Fall 2006): Lecture 18 The EM Algorithm heads coin 1 tails coin 2 Overview Maximum Likelihood Estimation An Experment/Some Intuton I have three cons n my pocket, 6.864 (Fall 2006): Lecture 18 The EM Algorthm Con 0 has probablty λ of heads; Con 1 has probablty p 1 of heads; Con 2 has probablty p 2 of heads

More information

Lecture 14: Bandits with Budget Constraints

Lecture 14: Bandits with Budget Constraints IEOR 8100-001: Learnng and Optmzaton for Sequental Decson Makng 03/07/16 Lecture 14: andts wth udget Constrants Instructor: Shpra Agrawal Scrbed by: Zhpeng Lu 1 Problem defnton In the regular Mult-armed

More information

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009 College of Computer & Informaton Scence Fall 2009 Northeastern Unversty 20 October 2009 CS7880: Algorthmc Power Tools Scrbe: Jan Wen and Laura Poplawsk Lecture Outlne: Prmal-dual schema Network Desgn:

More information

Some Consequences. Example of Extended Euclidean Algorithm. The Fundamental Theorem of Arithmetic, II. Characterizing the GCD and LCM

Some Consequences. Example of Extended Euclidean Algorithm. The Fundamental Theorem of Arithmetic, II. Characterizing the GCD and LCM Example of Extended Eucldean Algorthm Recall that gcd(84, 33) = gcd(33, 18) = gcd(18, 15) = gcd(15, 3) = gcd(3, 0) = 3 We work backwards to wrte 3 as a lnear combnaton of 84 and 33: 3 = 18 15 [Now 3 s

More information

Regression Analysis. Regression Analysis

Regression Analysis. Regression Analysis Regresson Analyss Smple Regresson Multvarate Regresson Stepwse Regresson Replcaton and Predcton Error 1 Regresson Analyss In general, we "ft" a model by mnmzng a metrc that represents the error. n mn (y

More information

rcrf: Recursive Belief Estimation over CRFs in RGB-D Activity Videos

rcrf: Recursive Belief Estimation over CRFs in RGB-D Activity Videos rcrf: Recursve Belef Estmaton over CRFs n RGB-D Actvty Vdeos Ozan Sener School of Electrcal & Computer Eng. Cornell Unversty Ashutosh Saxena Department of Computer Scence Cornell Unversty Abstract For

More information

Section 3.6 Complex Zeros

Section 3.6 Complex Zeros 04 Chapter Secton 6 Comple Zeros When fndng the zeros of polynomals, at some pont you're faced wth the problem Whle there are clearly no real numbers that are solutons to ths equaton, leavng thngs there

More information

Markov Chain Monte Carlo (MCMC), Gibbs Sampling, Metropolis Algorithms, and Simulated Annealing Bioinformatics Course Supplement

Markov Chain Monte Carlo (MCMC), Gibbs Sampling, Metropolis Algorithms, and Simulated Annealing Bioinformatics Course Supplement Markov Chan Monte Carlo MCMC, Gbbs Samplng, Metropols Algorthms, and Smulated Annealng 2001 Bonformatcs Course Supplement SNU Bontellgence Lab http://bsnuackr/ Outlne! Markov Chan Monte Carlo MCMC! Metropols-Hastngs

More information

General theory of fuzzy connectedness segmentations: reconciliation of two tracks of FC theory

General theory of fuzzy connectedness segmentations: reconciliation of two tracks of FC theory General theory of fuzzy connectedness segmentatons: reconclaton of two tracks of FC theory Krzysztof Chrs Ceselsk Department of Mathematcs, West Vrgna Unversty and MIPG, Department of Radology, Unversty

More information

Week 5: Neural Networks

Week 5: Neural Networks Week 5: Neural Networks Instructor: Sergey Levne Neural Networks Summary In the prevous lecture, we saw how we can construct neural networks by extendng logstc regresson. Neural networks consst of multple

More information

Computing Correlated Equilibria in Multi-Player Games

Computing Correlated Equilibria in Multi-Player Games Computng Correlated Equlbra n Mult-Player Games Chrstos H. Papadmtrou Presented by Zhanxang Huang December 7th, 2005 1 The Author Dr. Chrstos H. Papadmtrou CS professor at UC Berkley (taught at Harvard,

More information

An Alternating Direction Method for Dual MAP LP Relaxation

An Alternating Direction Method for Dual MAP LP Relaxation An Alternatng Drecton Method for Dual MAP LP Relaxaton Ofer Mesh and Amr Globerson The School of Computer Scence and Engneerng, The Hebrew Unversty of Jerusalem, Jerusalem, Israel {mesh,gamr}@cs.huj.ac.l

More information

xp(x µ) = 0 p(x = 0 µ) + 1 p(x = 1 µ) = µ

xp(x µ) = 0 p(x = 0 µ) + 1 p(x = 1 µ) = µ CSE 455/555 Sprng 2013 Homework 7: Parametrc Technques Jason J. Corso Computer Scence and Engneerng SUY at Buffalo jcorso@buffalo.edu Solutons by Yngbo Zhou Ths assgnment does not need to be submtted and

More information

Distributed and Stochastic Machine Learning on Big Data

Distributed and Stochastic Machine Learning on Big Data Dstrbuted and Stochastc Machne Learnng on Bg Data Department of Computer Scence and Engneerng Hong Kong Unversty of Scence and Technology Hong Kong Introducton Synchronous ADMM Asynchronous ADMM Stochastc

More information

Bayesian decision theory. Nuno Vasconcelos ECE Department, UCSD

Bayesian decision theory. Nuno Vasconcelos ECE Department, UCSD Bayesan decson theory Nuno Vasconcelos ECE Department UCSD Notaton the notaton n DHS s qute sloppy e.. show that error error z z dz really not clear what ths means we wll use the follown notaton subscrpts

More information

Math Review. CptS 223 Advanced Data Structures. Larry Holder School of Electrical Engineering and Computer Science Washington State University

Math Review. CptS 223 Advanced Data Structures. Larry Holder School of Electrical Engineering and Computer Science Washington State University Math Revew CptS 223 dvanced Data Structures Larry Holder School of Electrcal Engneerng and Computer Scence Washngton State Unversty 1 Why do we need math n a data structures course? nalyzng data structures

More information

Feature Selection in Multi-instance Learning

Feature Selection in Multi-instance Learning The Nnth Internatonal Symposum on Operatons Research and Its Applcatons (ISORA 10) Chengdu-Juzhagou, Chna, August 19 23, 2010 Copyrght 2010 ORSC & APORC, pp. 462 469 Feature Selecton n Mult-nstance Learnng

More information

Support Vector Machines

Support Vector Machines Separatng boundary, defned by w Support Vector Machnes CISC 5800 Professor Danel Leeds Separatng hyperplane splts class 0 and class 1 Plane s defned by lne w perpendcular to plan Is data pont x n class

More information

Artificial Intelligence Bayesian Networks

Artificial Intelligence Bayesian Networks Artfcal Intellgence Bayesan Networks Adapted from sldes by Tm Fnn and Mare desjardns. Some materal borrowed from Lse Getoor. 1 Outlne Bayesan networks Network structure Condtonal probablty tables Condtonal

More information

The Feynman path integral

The Feynman path integral The Feynman path ntegral Aprl 3, 205 Hesenberg and Schrödnger pctures The Schrödnger wave functon places the tme dependence of a physcal system n the state, ψ, t, where the state s a vector n Hlbert space

More information

ALGORITHM FOR THE CALCULATION OF THE TWO VARIABLES CUBIC SPLINE FUNCTION

ALGORITHM FOR THE CALCULATION OF THE TWO VARIABLES CUBIC SPLINE FUNCTION ANALELE ŞTIINŢIFICE ALE UNIVERSITĂŢII AL.I. CUZA DIN IAŞI (S.N.) MATEMATICĂ, Tomul LIX, 013, f.1 DOI: 10.478/v10157-01-00-y ALGORITHM FOR THE CALCULATION OF THE TWO VARIABLES CUBIC SPLINE FUNCTION BY ION

More information

ECE 6504: Advanced Topics in Machine Learning Probabilistic Graphical Models and Large-Scale Learning

ECE 6504: Advanced Topics in Machine Learning Probabilistic Graphical Models and Large-Scale Learning ECE 6504: Advanced Topics in Machine Learning Probabilistic Graphical Models and Large-Scale Learning Topics Markov Random Fields: Representation Conditional Random Fields Log-Linear Models Readings: KF

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 5 Lecture 7 Specal Relatvty (Chapter 7) What We Dd Last Tme Worked on relatvstc knematcs Essental tool for epermental physcs Basc technques are easy: Defne all 4 vectors Calculate c-o-m

More information

Chapter 6 Support vector machine. Séparateurs à vaste marge

Chapter 6 Support vector machine. Séparateurs à vaste marge Chapter 6 Support vector machne Séparateurs à vaste marge Méthode de classfcaton bnare par apprentssage Introdute par Vladmr Vapnk en 1995 Repose sur l exstence d un classfcateur lnéare Apprentssage supervsé

More information

For now, let us focus on a specific model of neurons. These are simplified from reality but can achieve remarkable results.

For now, let us focus on a specific model of neurons. These are simplified from reality but can achieve remarkable results. Neural Networks : Dervaton compled by Alvn Wan from Professor Jtendra Malk s lecture Ths type of computaton s called deep learnng and s the most popular method for many problems, such as computer vson

More information

Evaluation for sets of classes

Evaluation for sets of classes Evaluaton for Tet Categorzaton Classfcaton accuracy: usual n ML, the proporton of correct decsons, Not approprate f the populaton rate of the class s low Precson, Recall and F 1 Better measures 21 Evaluaton

More information

The conjugate prior to a Bernoulli is. A) Bernoulli B) Gaussian C) Beta D) none of the above

The conjugate prior to a Bernoulli is. A) Bernoulli B) Gaussian C) Beta D) none of the above The conjugate pror to a Bernoull s A) Bernoull B) Gaussan C) Beta D) none of the above The conjugate pror to a Gaussan s A) Bernoull B) Gaussan C) Beta D) none of the above MAP estmates A) argmax θ p(θ

More information

ADVANCED MACHINE LEARNING ADVANCED MACHINE LEARNING

ADVANCED MACHINE LEARNING ADVANCED MACHINE LEARNING 1 ADVANCED ACHINE LEARNING ADVANCED ACHINE LEARNING Non-lnear regresson technques 2 ADVANCED ACHINE LEARNING Regresson: Prncple N ap N-dm. nput x to a contnuous output y. Learn a functon of the type: N

More information

The General Nonlinear Constrained Optimization Problem

The General Nonlinear Constrained Optimization Problem St back, relax, and enjoy the rde of your lfe as we explore the condtons that enable us to clmb to the top of a concave functon or descend to the bottom of a convex functon whle constraned wthn a closed

More information

18-660: Numerical Methods for Engineering Design and Optimization

18-660: Numerical Methods for Engineering Design and Optimization 8-66: Numercal Methods for Engneerng Desgn and Optmzaton n L Department of EE arnege Mellon Unversty Pttsburgh, PA 53 Slde Overve lassfcaton Support vector machne Regularzaton Slde lassfcaton Predct categorcal

More information