Let the Shape Speak - Discriminative Face Alignment using Conjugate Priors

Size: px
Start display at page:

Download "Let the Shape Speak - Discriminative Face Alignment using Conjugate Priors"

Transcription

1 Let the Shape Speak - Dscrmnatve Face Algnment usng Conjugate Prors Pedro Martns, Ru Casero, João F. Henrques, Jorge Batsta Insttute of Systems and Robotcs Unversty of Combra Portugal Brtsh Machne Vson Conference

2 Demo Vdeo 2

3 Introducton Goal: Face algnment n unseen mages. Closely related to Constraned Local Models (CLM) and Actve Shape Models (ASM), where a set of local detectors s constraned to le n the subspace spanned by a Pont Dstrbuton Model (PDM). Two step fttng approach: (1) Local search usng the local detectors (response maps for each landmark) (2) Global optmzaton strategy that fnds the PDM parameters that jontly maxmze all the detectons. Proposed Work: New Bayesan global optmzaton strategy where the pror dstrbuton encodes the transton of the PDM parameters. The pror dstrbuton s modeled usng recursve Bayesan estmaton. The mean and covarance are assumed to be unknown and treated as random varables. 3

4 Related Work - Parametrc Image Algnment Generatve / Holstc methods Actve Appearance Models (AAM) T.F.Cootes, G.J.Edwards, C.J.Taylor - ECCV 98 3D Morphable Models (3DMM) V.Blanz, T.Vetter - SIGGRAPH 99 Real Tme Combned 2D+3D Actve Appearance Models J.Xng, S.Baker, I.Matthews, T.Kanade - CVPR 2004 Dscrmnatve / Patch-Based Actve Shape Models (ASM) T.F.Cootes, G.J.Edwards, C.J.Taylor - CVIU 95 Pont Dstrbuton Model s = S (s 0 + b; q) Constraned Local Model (CLM) D.Crstnance, T.F.Cootes - BMVC 2006 Convex Quadratc Fttng (CQF) Y.Wang, S.Lucey, J.Cohn - CVPR 2008 Bayesan Constraned Local Model (BCLM) U.Paquet - CVPR 2009 Shape Parameters Pose Parameters Subspace Constraned Mean-Shfts (SCMS) J.Saragh, S.Lucey, J.Cohn - ICCV

5 The Algnment Goal Gven a shape observaton vector (y), fnd the optmal set of shape (and pose) parameters (b) that maxmze the posteror probablty Assumng: b = arg max b p(b y) / vy =1 p(b y) / p(y b)p(b) Condtonal ndependence between landmarks Close to a soluton p(y b)! p(b b k 1) Lkelhood from the local detectors Pror on how parameters change 5

6 The Lkelhood Term Convex energy functon: p(y b) / exp (y (s 0 {z } y Observed shape (y) 1 + b)) T y 1 C (y (s 0 + b)) A Dfference between the observed and the mean shape Uncertanty covarance y... 0 The lkelhood follow a Gaussan dstrbuton p(y b) / N ( y b, y ) 0 2v 2v Block dagonal 6

7 Local Landmark Detectors Lnear SVM (+) Algned Examples (-) Msalgned Examples D lnear (I(y )) = w T I(y )+b =1,...,v landmarks 7

8 Local Detectors 8

9 Local Landmark Detectors - MOSSE Flters Correlaton n Fourer Doman G = F{I} H Cosne Wndow Gaussan mn H NX j=1 (F{I j } H G j ) F 1 {H } D MOSSE (I(y )) = F 1 {F{I(y )} H } D MOSSE (I(y )) H = MOSSE Flter P N j=1 G j P N j=1 F{I j} F{I j } F{I j } Vsual object trackng usng adaptve correlaton flters D.Bolme, J.Beverdge, B.Draper, Y.Lu, CVPR

10 Local Optmzaton Strateges p (z ) Prob. z s algned yc Pxel canddate to th landmark locaton Center Weghted Peak Response (WPR) ywpr = max (p (z )) z 2 yc WPR y ASM = dag(p (ywpr ) 1) yc Local search grd Gaussan Response (GR) ygr Patches under occluson z = (x, y ) 1 X p (z )z = d c z 2 y GR y = 1 d 1 X p (z )(z d= X p (z ) z 2 yc ygr )(z Kernel Densty Estmator (KDE) KDE( +1) y T ygr ) KDE = y SCMS 1 d KDE( ) z 2 yc P z 2 yc CQF, BCLM P 1 z p (z ) N (y KDE( ) z 2 yc X p (z ) N (y p (z )(z ykde )(z z, z, 2 h j I2 ) 2 h j I2 ) ykde )T z 2 yc 10

11 KDE Demo Vdeo 11

12 MAP Global Algnment Lkelhood p(y b) / N ( y b, y ) Bayes s Theorem for Gaussan varables Posteror p(b k y) / N (b k µ, ) Mean that s functon of b Covarance ndependent of b Pror p(b k b k 1 ) / N (b k µ b, b ) p(b k y k,...,y 0 ) / N (b k µ k, k ) =( 1 b + T 1 y ) 1 µ = ( T 1 y y + 1 b µ b) Model the Covarance of b (2 nd Order Estmate) + Bayesan Fuson of Multple Detectors k = ( bk + k 1 ) 1 + T M X µ k = k T MX m=1 1 y (m) y (m) m=1 1 y (m)! 1 +( bk + k 1 ) 1 µ bk! y (m), y(m) Multple Lkelhood Observatons 12

13 The Pror Term Mean and Covarance (µ b, b ) are assumed to be unknown and modeled as random varables. Unknown p(b k b k 1 ) / N (b k µ b, b ) Bayes Theorem: Observable vector b p(µ b, b b) / p(b µ b, b ) p(µ b, b ) Jont Posteror Normal Inverse-Wshart Jont Pror Normal Inverse-Wshart Parameters Degrees of freedom Number of measurements k = k 1 + m apple k = apple k 1 + m Conjugate Pror for a Gaussan wth unknown mean and covarance s a Normal Inverse-Wshart dstrbuton Mean Scale matrx k = apple k 1 apple k 1 + m k 1 + apple k m 1 + m b k = k 1 + apple k 1m apple k 1 + m (b k 1)(b k 1 ) T m - Number of samples to update the model b - Mean of all samples 13

14 The Pror Term Usng the expectaton of margnal posteror dstrbutons as the model parameters update. Expectaton Jont Posteror Normal Inverse-Wshart Margnalzng w.r.t Multvarate p(µ b b) / Student t b µ bk = E(µ b b) = k p(µ b, b b) Margnalzng p( µ b b) /Inv-Wshart bk = E( b b) =( k n 1) 1 k w.r.t b The Pror dstrbuton s contnuously kept up to date 14

15 The Algorthm Precompute: PDM: s 0,,, = dag( 1,..., n) MOSSE Flters: Intal estmate (b 0, 0 ), (q 0, q 0 )... H =1,...,v for k=1:1:maxiteratons Warp Image to the base mesh, usng the current pose parameters Generate current shape s = S (s 0 + b k ; q k ) for =1:1:Landmarks WPR, GR or KDE Local Strategy Evaluate detectors response Fnd the lkelhood parameters y, y... end Estmate the shape/pose parameters: Update the parameters of Normal Inv-Wshart dstrbuton Expectaton of the pror shape parameters k, apple k, k, k µ bk = k, bk =( k n 1) 1 k end Evaluate the global shape parameters and the covarance µ k, k 15

16 Herarchcal Search (BASM-KDE-H) When response maps are approxmated by KDE representatons. y KDE( +1) Mean-Shft Landmark Update Pz 2 yc z p (z ) N (y KDE( ) 2 z, hj I 2 ) Pz 2 yc p (z ) N (y KDE( ) z, 2 hj I 2 ) Bandwdth schedule 2 h = (15, 10, 5, 2) Standard Search for k=1:1:maxiteratons for =1:1:v (LandMarks) Evaluate de Detectors Response Herarchcal Search for k=1:1:maxiteratons for 2 h = (15, 10, 5, 2) for =1:1:v (LandMarks) Evaluate de Detectors Response Mean-Shft Landmark Update 2 h = (15, 10, 5, 2) Mean-Shft Landmark Update 2 h j end end end Global Optmzaton end end Global Optmzaton 16

17 Evaluaton Results 1 IMM Fttng Performance 1 XM2VTS Fttng Performance 1 BoID Fttng Performance Proporton of Images 0.6 AVG ASM CQF GMM3 SCMS BCLM KDE BASM KDE BASM KDE H BASM KDE Fuson RMS Error Proporton of Images 0.6 AVG ASM CQF GMM3 SCMS BCLM KDE BASM KDE BASM KDE H BASM KDE Fuson RMS Error Proporton of Images 0.6 AVG ASM CQF GMM3 SCMS BCLM KDE BASM KDE BASM KDE H BASM KDE Fuson RMS Error Reference 7.5 RMS IMM (240 mages) XM2VTS (2360 mages) BoID (1521 mages) ASM BASM-WPR (our method) 58.4 (+8.4) 47.4 (+16.7) 77.1 (+7.1) CQF GMM (-4.6) 10.4 (-0.5) 51.7 (+4.7) BCLM-GR 48.3 (+2.9) 15.9 (+5.0) 54.2 (+7.2) BASM-GR (our method) 51.8 (+6.4) 19.7 (+8.8) 63.5 (+16.5) SCMS-KDE BCLM-KDE 57.1 (+2.5) 43.4 (+7.7) 71.9 (+2.9) BASM-KDE (our method) 65.4 (+10.8) 57.0 (+21.3) 80.3 (+11.3) BASM-KDE-H (our method) 64.0 (+9.4) 56.6 (+20.9) 79.9 (+10.9) BASM-KDE Fuson of 2 Detectors 72.5 (+17.9) 58.7 (+23.0) 88.2 (+19.2)

18 Trackng Performance FGNET Talkng Face Vdeo Sequence RMS Error Trackng Performance ASM (10.5 / 6.4) CQF (10.6 / 3.9) GMM3 (11.1 / 4.3) SCMS KDE (8.2 / 2.6) BCLM KDE (9.5 / 3.6) BASM KDE (6.4 / 1.7) BASM KDE H (6.3 / 1.5) BASM KDE Fuson (5.9 / 1.5) Frame Number RMS Error ASM CQF GMM3 SCMS-KDE BCLM-KDE BASM-KDE BASM-KDE-H BASM-KDE Fuson Mean Standard Devaton

19 Trackng Performance 19

20 Labeled Faces n the Wld (LFW) 20

21 Conclusons Bayesan formulaton for algnng faces n unseen mages. New global optmzaton strategy nfers both shape and pose parameters, n MAP sense, by explctly modelng the pror dstrbuton. The pror dstrbuton s contnuously kept up to date. Recursve Bayesan estmaton s used to treat the mean and covarance as random varables. Extensve evaluatons were performed on several standard datasets (IMM, XM2VTS, BoID, LFW and FGNET Talkng Face) aganst state-of-the-art methods whle usng the same local detectors. Acknowledgements Work supported by the Portuguese Scence Foundaton (Fundação para a Cênca e Tecnologa - FCT) under the project grant PTDC/EIA-CCO/108791/2008. Pedro Martns, Ru Casero and João F. Henrques also acknowledge the FCT through the grants SFRH/BD/45178/2008, SFRH/BD74152/2010 and SFRH/BD/75459/2010, respectvely. 21

22 Qualtatve Evaluaton - Labeled Faces n the Wld 22

FACE alignment, or nonrigid face registration, is a

FACE alignment, or nonrigid face registration, is a IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 26 Bayesan Constraned Local Models Revsted Pedro Martns, João F. Henrques, Ru Casero and Jorge Batsta Abstract Ths paper presents a novel

More information

Logistic Regression. CAP 5610: Machine Learning Instructor: Guo-Jun QI

Logistic Regression. CAP 5610: Machine Learning Instructor: Guo-Jun QI Logstc Regresson CAP 561: achne Learnng Instructor: Guo-Jun QI Bayes Classfer: A Generatve model odel the posteror dstrbuton P(Y X) Estmate class-condtonal dstrbuton P(X Y) for each Y Estmate pror dstrbuton

More information

EM and Structure Learning

EM and Structure Learning EM and Structure Learnng Le Song Machne Learnng II: Advanced Topcs CSE 8803ML, Sprng 2012 Partally observed graphcal models Mxture Models N(μ 1, Σ 1 ) Z X N N(μ 2, Σ 2 ) 2 Gaussan mxture model Consder

More information

CS 2750 Machine Learning. Lecture 5. Density estimation. CS 2750 Machine Learning. Announcements

CS 2750 Machine Learning. Lecture 5. Density estimation. CS 2750 Machine Learning. Announcements CS 750 Machne Learnng Lecture 5 Densty estmaton Mlos Hauskrecht mlos@cs.ptt.edu 539 Sennott Square CS 750 Machne Learnng Announcements Homework Due on Wednesday before the class Reports: hand n before

More information

Motion Perception Under Uncertainty. Hongjing Lu Department of Psychology University of Hong Kong

Motion Perception Under Uncertainty. Hongjing Lu Department of Psychology University of Hong Kong Moton Percepton Under Uncertanty Hongjng Lu Department of Psychology Unversty of Hong Kong Outlne Uncertanty n moton stmulus Correspondence problem Qualtatve fttng usng deal observer models Based on sgnal

More information

Subspace Constrained Mean-Shift

Subspace Constrained Mean-Shift Subspace Constraned Mean-Shft CMU-RI-TR-09-15 Jason M. Saragh, Smon Lucey, and Jeffrey F. Cohn The Robotcs Insttute Carnege Mellon Unversty 5000 Forbes Avenue Pttsburgh, PA 15213 Abstract Deformable model

More information

Probabilistic Classification: Bayes Classifiers. Lecture 6:

Probabilistic Classification: Bayes Classifiers. Lecture 6: Probablstc Classfcaton: Bayes Classfers Lecture : Classfcaton Models Sam Rowes January, Generatve model: p(x, y) = p(y)p(x y). p(y) are called class prors. p(x y) are called class condtonal feature dstrbutons.

More information

Statistical pattern recognition

Statistical pattern recognition Statstcal pattern recognton Bayes theorem Problem: decdng f a patent has a partcular condton based on a partcular test However, the test s mperfect Someone wth the condton may go undetected (false negatve

More information

xp(x µ) = 0 p(x = 0 µ) + 1 p(x = 1 µ) = µ

xp(x µ) = 0 p(x = 0 µ) + 1 p(x = 1 µ) = µ CSE 455/555 Sprng 2013 Homework 7: Parametrc Technques Jason J. Corso Computer Scence and Engneerng SUY at Buffalo jcorso@buffalo.edu Solutons by Yngbo Zhou Ths assgnment does not need to be submtted and

More information

SE 263 R. Venkatesh Babu. Mean-Shift Object Tracking

SE 263 R. Venkatesh Babu. Mean-Shift Object Tracking Mean-Shft Object Trackng Comancu, D. Ramesh, V. Meer, P. Kernel-based object trackng, PAMI, Ma 3 Non-Rgd Object Trackng Man Sldes from : Yaron Ukrantz & Bernard Sarel Mean-Shft Object Trackng General Framework:

More information

8/25/17. Data Modeling. Data Modeling. Data Modeling. Patrice Koehl Department of Biological Sciences National University of Singapore

8/25/17. Data Modeling. Data Modeling. Data Modeling. Patrice Koehl Department of Biological Sciences National University of Singapore 8/5/17 Data Modelng Patrce Koehl Department of Bologcal Scences atonal Unversty of Sngapore http://www.cs.ucdavs.edu/~koehl/teachng/bl59 koehl@cs.ucdavs.edu Data Modelng Ø Data Modelng: least squares Ø

More information

Machine learning: Density estimation

Machine learning: Density estimation CS 70 Foundatons of AI Lecture 3 Machne learnng: ensty estmaton Mlos Hauskrecht mlos@cs.ptt.edu 539 Sennott Square ata: ensty estmaton {.. n} x a vector of attrbute values Objectve: estmate the model of

More information

STATS 306B: Unsupervised Learning Spring Lecture 10 April 30

STATS 306B: Unsupervised Learning Spring Lecture 10 April 30 STATS 306B: Unsupervsed Learnng Sprng 2014 Lecture 10 Aprl 30 Lecturer: Lester Mackey Scrbe: Joey Arthur, Rakesh Achanta 10.1 Factor Analyss 10.1.1 Recap Recall the factor analyss (FA) model for lnear

More information

Learning undirected Models. Instructor: Su-In Lee University of Washington, Seattle. Mean Field Approximation

Learning undirected Models. Instructor: Su-In Lee University of Washington, Seattle. Mean Field Approximation Readngs: K&F 0.3, 0.4, 0.6, 0.7 Learnng undrected Models Lecture 8 June, 0 CSE 55, Statstcal Methods, Sprng 0 Instructor: Su-In Lee Unversty of Washngton, Seattle Mean Feld Approxmaton Is the energy functonal

More information

Feature Selection & Dynamic Tracking F&P Textbook New: Ch 11, Old: Ch 17 Guido Gerig CS 6320, Spring 2013

Feature Selection & Dynamic Tracking F&P Textbook New: Ch 11, Old: Ch 17 Guido Gerig CS 6320, Spring 2013 Feature Selecton & Dynamc Trackng F&P Textbook New: Ch 11, Old: Ch 17 Gudo Gerg CS 6320, Sprng 2013 Credts: Materal Greg Welch & Gary Bshop, UNC Chapel Hll, some sldes modfed from J.M. Frahm/ M. Pollefeys,

More information

Parametric fractional imputation for missing data analysis. Jae Kwang Kim Survey Working Group Seminar March 29, 2010

Parametric fractional imputation for missing data analysis. Jae Kwang Kim Survey Working Group Seminar March 29, 2010 Parametrc fractonal mputaton for mssng data analyss Jae Kwang Km Survey Workng Group Semnar March 29, 2010 1 Outlne Introducton Proposed method Fractonal mputaton Approxmaton Varance estmaton Multple mputaton

More information

CIS526: Machine Learning Lecture 3 (Sept 16, 2003) Linear Regression. Preparation help: Xiaoying Huang. x 1 θ 1 output... θ M x M

CIS526: Machine Learning Lecture 3 (Sept 16, 2003) Linear Regression. Preparation help: Xiaoying Huang. x 1 θ 1 output... θ M x M CIS56: achne Learnng Lecture 3 (Sept 6, 003) Preparaton help: Xaoyng Huang Lnear Regresson Lnear regresson can be represented by a functonal form: f(; θ) = θ 0 0 +θ + + θ = θ = 0 ote: 0 s a dummy attrbute

More information

Introduction to Hidden Markov Models

Introduction to Hidden Markov Models Introducton to Hdden Markov Models Alperen Degrmenc Ths document contans dervatons and algorthms for mplementng Hdden Markov Models. The content presented here s a collecton of my notes and personal nsghts

More information

Finite Mixture Models and Expectation Maximization. Most slides are from: Dr. Mario Figueiredo, Dr. Anil Jain and Dr. Rong Jin

Finite Mixture Models and Expectation Maximization. Most slides are from: Dr. Mario Figueiredo, Dr. Anil Jain and Dr. Rong Jin Fnte Mxture Models and Expectaton Maxmzaton Most sldes are from: Dr. Maro Fgueredo, Dr. Anl Jan and Dr. Rong Jn Recall: The Supervsed Learnng Problem Gven a set of n samples X {(x, y )},,,n Chapter 3 of

More information

Outline. Multivariate Parametric Methods. Multivariate Data. Basic Multivariate Statistics. Steven J Zeil

Outline. Multivariate Parametric Methods. Multivariate Data. Basic Multivariate Statistics. Steven J Zeil Outlne Multvarate Parametrc Methods Steven J Zel Old Domnon Unv. Fall 2010 1 Multvarate Data 2 Multvarate ormal Dstrbuton 3 Multvarate Classfcaton Dscrmnants Tunng Complexty Dscrete Features 4 Multvarate

More information

MATH 829: Introduction to Data Mining and Analysis The EM algorithm (part 2)

MATH 829: Introduction to Data Mining and Analysis The EM algorithm (part 2) 1/16 MATH 829: Introducton to Data Mnng and Analyss The EM algorthm (part 2) Domnque Gullot Departments of Mathematcal Scences Unversty of Delaware Aprl 20, 2016 Recall 2/16 We are gven ndependent observatons

More information

Hidden Markov Models

Hidden Markov Models CM229S: Machne Learnng for Bonformatcs Lecture 12-05/05/2016 Hdden Markov Models Lecturer: Srram Sankararaman Scrbe: Akshay Dattatray Shnde Edted by: TBD 1 Introducton For a drected graph G we can wrte

More information

Overview. Hidden Markov Models and Gaussian Mixture Models. Acoustic Modelling. Fundamental Equation of Statistical Speech Recognition

Overview. Hidden Markov Models and Gaussian Mixture Models. Acoustic Modelling. Fundamental Equation of Statistical Speech Recognition Overvew Hdden Marov Models and Gaussan Mxture Models Steve Renals and Peter Bell Automatc Speech Recognton ASR Lectures &5 8/3 January 3 HMMs and GMMs Key models and algorthms for HMM acoustc models Gaussans

More information

Composite Hypotheses testing

Composite Hypotheses testing Composte ypotheses testng In many hypothess testng problems there are many possble dstrbutons that can occur under each of the hypotheses. The output of the source s a set of parameters (ponts n a parameter

More information

Hierarchical Bayes. Peter Lenk. Stephen M Ross School of Business at the University of Michigan September 2004

Hierarchical Bayes. Peter Lenk. Stephen M Ross School of Business at the University of Michigan September 2004 Herarchcal Bayes Peter Lenk Stephen M Ross School of Busness at the Unversty of Mchgan September 2004 Outlne Bayesan Decson Theory Smple Bayes and Shrnkage Estmates Herarchcal Bayes Numercal Methods Battng

More information

Statistical analysis using matlab. HY 439 Presented by: George Fortetsanakis

Statistical analysis using matlab. HY 439 Presented by: George Fortetsanakis Statstcal analyss usng matlab HY 439 Presented by: George Fortetsanaks Roadmap Probablty dstrbutons Statstcal estmaton Fttng data to probablty dstrbutons Contnuous dstrbutons Contnuous random varable X

More information

Statistical learning

Statistical learning Statstcal learnng Model the data generaton process Learn the model parameters Crteron to optmze: Lkelhood of the dataset (maxmzaton) Maxmum Lkelhood (ML) Estmaton: Dataset X Statstcal model p(x;θ) (θ parameters)

More information

UNIVERSITY OF TORONTO Faculty of Arts and Science. December 2005 Examinations STA437H1F/STA1005HF. Duration - 3 hours

UNIVERSITY OF TORONTO Faculty of Arts and Science. December 2005 Examinations STA437H1F/STA1005HF. Duration - 3 hours UNIVERSITY OF TORONTO Faculty of Arts and Scence December 005 Examnatons STA47HF/STA005HF Duraton - hours AIDS ALLOWED: (to be suppled by the student) Non-programmable calculator One handwrtten 8.5'' x

More information

Markov Chain Monte Carlo (MCMC), Gibbs Sampling, Metropolis Algorithms, and Simulated Annealing Bioinformatics Course Supplement

Markov Chain Monte Carlo (MCMC), Gibbs Sampling, Metropolis Algorithms, and Simulated Annealing Bioinformatics Course Supplement Markov Chan Monte Carlo MCMC, Gbbs Samplng, Metropols Algorthms, and Smulated Annealng 2001 Bonformatcs Course Supplement SNU Bontellgence Lab http://bsnuackr/ Outlne! Markov Chan Monte Carlo MCMC! Metropols-Hastngs

More information

Quantifying Uncertainty

Quantifying Uncertainty Partcle Flters Quantfyng Uncertanty Sa Ravela M. I. T Last Updated: Sprng 2013 1 Quantfyng Uncertanty Partcle Flters Partcle Flters Appled to Sequental flterng problems Can also be appled to smoothng problems

More information

Natural Images, Gaussian Mixtures and Dead Leaves Supplementary Material

Natural Images, Gaussian Mixtures and Dead Leaves Supplementary Material Natural Images, Gaussan Mxtures and Dead Leaves Supplementary Materal Danel Zoran Interdscplnary Center for Neural Computaton Hebrew Unversty of Jerusalem Israel http://www.cs.huj.ac.l/ danez Yar Wess

More information

MACHINE APPLIED MACHINE LEARNING LEARNING. Gaussian Mixture Regression

MACHINE APPLIED MACHINE LEARNING LEARNING. Gaussian Mixture Regression 11 MACHINE APPLIED MACHINE LEARNING LEARNING MACHINE LEARNING Gaussan Mture Regresson 22 MACHINE APPLIED MACHINE LEARNING LEARNING Bref summary of last week s lecture 33 MACHINE APPLIED MACHINE LEARNING

More information

Scalable Multi-Class Gaussian Process Classification using Expectation Propagation

Scalable Multi-Class Gaussian Process Classification using Expectation Propagation Scalable Mult-Class Gaussan Process Classfcaton usng Expectaton Propagaton Carlos Vllacampa-Calvo and Danel Hernández Lobato Computer Scence Department Unversdad Autónoma de Madrd http://dhnzl.org, danel.hernandez@uam.es

More information

Small Area Interval Estimation

Small Area Interval Estimation .. Small Area Interval Estmaton Partha Lahr Jont Program n Survey Methodology Unversty of Maryland, College Park (Based on jont work wth Masayo Yoshmor, Former JPSM Vstng PhD Student and Research Fellow

More information

9.913 Pattern Recognition for Vision. Class IV Part I Bayesian Decision Theory Yuri Ivanov

9.913 Pattern Recognition for Vision. Class IV Part I Bayesian Decision Theory Yuri Ivanov 9.93 Class IV Part I Bayesan Decson Theory Yur Ivanov TOC Roadmap to Machne Learnng Bayesan Decson Makng Mnmum Error Rate Decsons Mnmum Rsk Decsons Mnmax Crteron Operatng Characterstcs Notaton x - scalar

More information

Gaussian process classification: a message-passing viewpoint

Gaussian process classification: a message-passing viewpoint Gaussan process classfcaton: a message-passng vewpont Flpe Rodrgues fmpr@de.uc.pt November 014 Abstract The goal of ths short paper s to provde a message-passng vewpont of the Expectaton Propagaton EP

More information

Expectation Maximization Mixture Models HMMs

Expectation Maximization Mixture Models HMMs -755 Machne Learnng for Sgnal Processng Mture Models HMMs Class 9. 2 Sep 200 Learnng Dstrbutons for Data Problem: Gven a collecton of eamples from some data, estmate ts dstrbuton Basc deas of Mamum Lelhood

More information

Hidden Markov Models

Hidden Markov Models Hdden Markov Models Namrata Vaswan, Iowa State Unversty Aprl 24, 204 Hdden Markov Model Defntons and Examples Defntons:. A hdden Markov model (HMM) refers to a set of hdden states X 0, X,..., X t,...,

More information

Efficient, General Point Cloud Registration with Kernel Feature Maps

Efficient, General Point Cloud Registration with Kernel Feature Maps Effcent, General Pont Cloud Regstraton wth Kernel Feature Maps Hanchen Xong, Sandor Szedmak, Justus Pater Insttute of Computer Scence Unversty of Innsbruck 30 May 2013 Hanchen Xong (Un.Innsbruck) 3D Regstraton

More information

Probability Theory (revisited)

Probability Theory (revisited) Probablty Theory (revsted) Summary Probablty v.s. plausblty Random varables Smulaton of Random Experments Challenge The alarm of a shop rang. Soon afterwards, a man was seen runnng n the street, persecuted

More information

Classification as a Regression Problem

Classification as a Regression Problem Target varable y C C, C,, ; Classfcaton as a Regresson Problem { }, 3 L C K To treat classfcaton as a regresson problem we should transform the target y nto numercal values; The choce of numercal class

More information

The Gaussian classifier. Nuno Vasconcelos ECE Department, UCSD

The Gaussian classifier. Nuno Vasconcelos ECE Department, UCSD he Gaussan classfer Nuno Vasconcelos ECE Department, UCSD Bayesan decson theory recall that we have state of the world X observatons g decson functon L[g,y] loss of predctng y wth g Bayes decson rule s

More information

MIMA Group. Chapter 2 Bayesian Decision Theory. School of Computer Science and Technology, Shandong University. Xin-Shun SDU

MIMA Group. Chapter 2 Bayesian Decision Theory. School of Computer Science and Technology, Shandong University. Xin-Shun SDU Group M D L M Chapter Bayesan Decson heory Xn-Shun Xu @ SDU School of Computer Scence and echnology, Shandong Unversty Bayesan Decson heory Bayesan decson theory s a statstcal approach to data mnng/pattern

More information

On an Extension of Stochastic Approximation EM Algorithm for Incomplete Data Problems. Vahid Tadayon 1

On an Extension of Stochastic Approximation EM Algorithm for Incomplete Data Problems. Vahid Tadayon 1 On an Extenson of Stochastc Approxmaton EM Algorthm for Incomplete Data Problems Vahd Tadayon Abstract: The Stochastc Approxmaton EM (SAEM algorthm, a varant stochastc approxmaton of EM, s a versatle tool

More information

Automatic Object Trajectory- Based Motion Recognition Using Gaussian Mixture Models

Automatic Object Trajectory- Based Motion Recognition Using Gaussian Mixture Models Automatc Object Trajectory- Based Moton Recognton Usng Gaussan Mxture Models Fasal I. Bashr, Ashfaq A. Khokhar, Dan Schonfeld Electrcal and Computer Engneerng, Unversty of Illnos at Chcago. Chcago, IL,

More information

Multi-dimensional Central Limit Argument

Multi-dimensional Central Limit Argument Mult-dmensonal Central Lmt Argument Outlne t as Consder d random proceses t, t,. Defne the sum process t t t t () t (); t () t are d to (), t () t 0 () t tme () t () t t t As, ( t) becomes a Gaussan random

More information

8 : Learning in Fully Observed Markov Networks. 1 Why We Need to Learn Undirected Graphical Models. 2 Structural Learning for Completely Observed MRF

8 : Learning in Fully Observed Markov Networks. 1 Why We Need to Learn Undirected Graphical Models. 2 Structural Learning for Completely Observed MRF 10-708: Probablstc Graphcal Models 10-708, Sprng 2014 8 : Learnng n Fully Observed Markov Networks Lecturer: Erc P. Xng Scrbes: Meng Song, L Zhou 1 Why We Need to Learn Undrected Graphcal Models In the

More information

The big picture. Outline

The big picture. Outline The bg pcture Vncent Claveau IRISA - CNRS, sldes from E. Kjak INSA Rennes Notatons classes: C = {ω = 1,.., C} tranng set S of sze m, composed of m ponts (x, ω ) per class ω representaton space: R d (=

More information

CS 3710: Visual Recognition Classification and Detection. Adriana Kovashka Department of Computer Science January 13, 2015

CS 3710: Visual Recognition Classification and Detection. Adriana Kovashka Department of Computer Science January 13, 2015 CS 3710: Vsual Recognton Classfcaton and Detecton Adrana Kovashka Department of Computer Scence January 13, 2015 Plan for Today Vsual recognton bascs part 2: Classfcaton and detecton Adrana s research

More information

Lecture 10 Support Vector Machines II

Lecture 10 Support Vector Machines II Lecture 10 Support Vector Machnes II 22 February 2016 Taylor B. Arnold Yale Statstcs STAT 365/665 1/28 Notes: Problem 3 s posted and due ths upcomng Frday There was an early bug n the fake-test data; fxed

More information

Maximum Likelihood Estimation (MLE)

Maximum Likelihood Estimation (MLE) Maxmum Lkelhood Estmaton (MLE) Ken Kreutz-Delgado (Nuno Vasconcelos) ECE 175A Wnter 01 UCSD Statstcal Learnng Goal: Gven a relatonshp between a feature vector x and a vector y, and d data samples (x,y

More information

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family IOSR Journal of Mathematcs IOSR-JM) ISSN: 2278-5728. Volume 3, Issue 3 Sep-Oct. 202), PP 44-48 www.osrjournals.org Usng T.O.M to Estmate Parameter of dstrbutons that have not Sngle Exponental Famly Jubran

More information

ENG 8801/ Special Topics in Computer Engineering: Pattern Recognition. Memorial University of Newfoundland Pattern Recognition

ENG 8801/ Special Topics in Computer Engineering: Pattern Recognition. Memorial University of Newfoundland Pattern Recognition EG 880/988 - Specal opcs n Computer Engneerng: Pattern Recognton Memoral Unversty of ewfoundland Pattern Recognton Lecture 7 May 3, 006 http://wwwengrmunca/~charlesr Offce Hours: uesdays hursdays 8:30-9:30

More information

C4B Machine Learning Answers II. = σ(z) (1 σ(z)) 1 1 e z. e z = σ(1 σ) (1 + e z )

C4B Machine Learning Answers II. = σ(z) (1 σ(z)) 1 1 e z. e z = σ(1 σ) (1 + e z ) C4B Machne Learnng Answers II.(a) Show that for the logstc sgmod functon dσ(z) dz = σ(z) ( σ(z)) A. Zsserman, Hlary Term 20 Start from the defnton of σ(z) Note that Then σ(z) = σ = dσ(z) dz = + e z e z

More information

Generative classification models

Generative classification models CS 675 Intro to Machne Learnng Lecture Generatve classfcaton models Mlos Hauskrecht mlos@cs.ptt.edu 539 Sennott Square Data: D { d, d,.., dn} d, Classfcaton represents a dscrete class value Goal: learn

More information

Clustering & Unsupervised Learning

Clustering & Unsupervised Learning Clusterng & Unsupervsed Learnng Ken Kreutz-Delgado (Nuno Vasconcelos) ECE 175A Wnter 2012 UCSD Statstcal Learnng Goal: Gven a relatonshp between a feature vector x and a vector y, and d data samples (x,y

More information

Meshless Surfaces. presented by Niloy J. Mitra. An Nguyen

Meshless Surfaces. presented by Niloy J. Mitra. An Nguyen Meshless Surfaces presented by Nloy J. Mtra An Nguyen Outlne Mesh-Independent Surface Interpolaton D. Levn Outlne Mesh-Independent Surface Interpolaton D. Levn Pont Set Surfaces M. Alexa, J. Behr, D. Cohen-Or,

More information

MLE and Bayesian Estimation. Jie Tang Department of Computer Science & Technology Tsinghua University 2012

MLE and Bayesian Estimation. Jie Tang Department of Computer Science & Technology Tsinghua University 2012 MLE and Bayesan Estmaton Je Tang Department of Computer Scence & Technology Tsnghua Unversty 01 1 Lnear Regresson? As the frst step, we need to decde how we re gong to represent the functon f. One example:

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Maxmum Lkelhood Estmaton INFO-2301: Quanttatve Reasonng 2 Mchael Paul and Jordan Boyd-Graber MARCH 7, 2017 INFO-2301: Quanttatve Reasonng 2 Paul and Boyd-Graber Maxmum Lkelhood Estmaton 1 of 9 Why MLE?

More information

STATISTICALLY LINEARIZED RECURSIVE LEAST SQUARES. Matthieu Geist and Olivier Pietquin. IMS Research Group Supélec, Metz, France

STATISTICALLY LINEARIZED RECURSIVE LEAST SQUARES. Matthieu Geist and Olivier Pietquin. IMS Research Group Supélec, Metz, France SAISICALLY LINEARIZED RECURSIVE LEAS SQUARES Mattheu Gest and Olver Petqun IMS Research Group Supélec, Metz, France ABSRAC hs artcle proposes a new nterpretaton of the sgmapont kalman flter SPKF for parameter

More information

LECTURE :FACTOR ANALYSIS

LECTURE :FACTOR ANALYSIS LCUR :FACOR ANALYSIS Rta Osadchy Based on Lecture Notes by A. Ng Motvaton Dstrbuton coes fro MoG Have suffcent aount of data: >>n denson Use M to ft Mture of Gaussans nu. of tranng ponts If

More information

How its computed. y outcome data λ parameters hyperparameters. where P denotes the Laplace approximation. k i k k. Andrew B Lawson 2013

How its computed. y outcome data λ parameters hyperparameters. where P denotes the Laplace approximation. k i k k. Andrew B Lawson 2013 Andrew Lawson MUSC INLA INLA s a relatvely new tool that can be used to approxmate posteror dstrbutons n Bayesan models INLA stands for ntegrated Nested Laplace Approxmaton The approxmaton has been known

More information

Problems & Techniques

Problems & Techniques Vsual Moton Estmaton Problems & Technques Prnceton Unversty COS 429 Lecture Oct. 11, 2007 Harpreet S. Sawhney hsawhney@sarnoff.com Outlne 1. Vsual moton n the Real World 2. The vsual moton estmaton problem

More information

The conjugate prior to a Bernoulli is. A) Bernoulli B) Gaussian C) Beta D) none of the above

The conjugate prior to a Bernoulli is. A) Bernoulli B) Gaussian C) Beta D) none of the above The conjugate pror to a Bernoull s A) Bernoull B) Gaussan C) Beta D) none of the above The conjugate pror to a Gaussan s A) Bernoull B) Gaussan C) Beta D) none of the above MAP estmates A) argmax θ p(θ

More information

Tracking with Kalman Filter

Tracking with Kalman Filter Trackng wth Kalman Flter Scott T. Acton Vrgna Image and Vdeo Analyss (VIVA), Charles L. Brown Department of Electrcal and Computer Engneerng Department of Bomedcal Engneerng Unversty of Vrgna, Charlottesvlle,

More information

Approximate Inference for Generic Likelihoods via Density-Preserving GMM Simplification

Approximate Inference for Generic Likelihoods via Density-Preserving GMM Simplification Appromate Inference for Generc Lkelhoods va Densty-Preservng GMM Smplfcaton Le Yu Tanyu Yang Anton B. Chan Department of Computer Scence Cty Unversty of Hong Kong {leyu6-c, tanyyang8-c}@my.ctyu.edu.hk,

More information

Hidden Markov Models & The Multivariate Gaussian (10/26/04)

Hidden Markov Models & The Multivariate Gaussian (10/26/04) CS281A/Stat241A: Statstcal Learnng Theory Hdden Markov Models & The Multvarate Gaussan (10/26/04) Lecturer: Mchael I. Jordan Scrbes: Jonathan W. Hu 1 Hdden Markov Models As a bref revew, hdden Markov models

More information

Conjugacy and the Exponential Family

Conjugacy and the Exponential Family CS281B/Stat241B: Advanced Topcs n Learnng & Decson Makng Conjugacy and the Exponental Famly Lecturer: Mchael I. Jordan Scrbes: Bran Mlch 1 Conjugacy In the prevous lecture, we saw conjugate prors for the

More information

Discriminative classifier: Logistic Regression. CS534-Machine Learning

Discriminative classifier: Logistic Regression. CS534-Machine Learning Dscrmnatve classfer: Logstc Regresson CS534-Machne Learnng 2 Logstc Regresson Gven tranng set D stc regresson learns the condtonal dstrbuton We ll assume onl to classes and a parametrc form for here s

More information

On the Dirichlet Mixture Model for Mining Protein Sequence Data

On the Dirichlet Mixture Model for Mining Protein Sequence Data On the Drchlet Mxture Model for Mnng Proten Sequence Data Xugang Ye Natonal Canter for Botechnology Informaton Bologsts need to fnd from the raw data lke ths Background Background the nformaton lke ths

More information

Regression Analysis. Regression Analysis

Regression Analysis. Regression Analysis Regresson Analyss Smple Regresson Multvarate Regresson Stepwse Regresson Replcaton and Predcton Error 1 Regresson Analyss In general, we "ft" a model by mnmzng a metrc that represents the error. n mn (y

More information

Space of ML Problems. CSE 473: Artificial Intelligence. Parameter Estimation and Bayesian Networks. Learning Topics

Space of ML Problems. CSE 473: Artificial Intelligence. Parameter Estimation and Bayesian Networks. Learning Topics /7/7 CSE 73: Artfcal Intellgence Bayesan - Learnng Deter Fox Sldes adapted from Dan Weld, Jack Breese, Dan Klen, Daphne Koller, Stuart Russell, Andrew Moore & Luke Zettlemoyer What s Beng Learned? Space

More information

Gaussian Conditional Random Field Network for Semantic Segmentation - Supplementary Material

Gaussian Conditional Random Field Network for Semantic Segmentation - Supplementary Material Gaussan Condtonal Random Feld Networ for Semantc Segmentaton - Supplementary Materal Ravtea Vemulapall, Oncel Tuzel *, Mng-Yu Lu *, and Rama Chellappa Center for Automaton Research, UMIACS, Unversty of

More information

Lecture Notes on Linear Regression

Lecture Notes on Linear Regression Lecture Notes on Lnear Regresson Feng L fl@sdueducn Shandong Unversty, Chna Lnear Regresson Problem In regresson problem, we am at predct a contnuous target value gven an nput feature vector We assume

More information

Advances in Longitudinal Methods in the Social and Behavioral Sciences. Finite Mixtures of Nonlinear Mixed-Effects Models.

Advances in Longitudinal Methods in the Social and Behavioral Sciences. Finite Mixtures of Nonlinear Mixed-Effects Models. Advances n Longtudnal Methods n the Socal and Behavoral Scences Fnte Mxtures of Nonlnear Mxed-Effects Models Jeff Harrng Department of Measurement, Statstcs and Evaluaton The Center for Integrated Latent

More information

A quantum-statistical-mechanical extension of Gaussian mixture model

A quantum-statistical-mechanical extension of Gaussian mixture model A quantum-statstcal-mechancal extenson of Gaussan mxture model Kazuyuk Tanaka, and Koj Tsuda 2 Graduate School of Informaton Scences, Tohoku Unversty, 6-3-09 Aramak-aza-aoba, Aoba-ku, Senda 980-8579, Japan

More information

1 Motivation and Introduction

1 Motivation and Introduction Instructor: Dr. Volkan Cevher EXPECTATION PROPAGATION September 30, 2008 Rce Unversty STAT 63 / ELEC 633: Graphcal Models Scrbes: Ahmad Beram Andrew Waters Matthew Nokleby Index terms: Approxmate nference,

More information

Machine Learning. Classification. Theory of Classification and Nonparametric Classifier. Representing data: Hypothesis (classifier) Eric Xing

Machine Learning. Classification. Theory of Classification and Nonparametric Classifier. Representing data: Hypothesis (classifier) Eric Xing Machne Learnng 0-70/5 70/5-78, 78, Fall 008 Theory of Classfcaton and Nonarametrc Classfer Erc ng Lecture, Setember 0, 008 Readng: Cha.,5 CB and handouts Classfcaton Reresentng data: M K Hyothess classfer

More information

P R. Lecture 4. Theory and Applications of Pattern Recognition. Dept. of Electrical and Computer Engineering /

P R. Lecture 4. Theory and Applications of Pattern Recognition. Dept. of Electrical and Computer Engineering / Theory and Applcatons of Pattern Recognton 003, Rob Polkar, Rowan Unversty, Glassboro, NJ Lecture 4 Bayes Classfcaton Rule Dept. of Electrcal and Computer Engneerng 0909.40.0 / 0909.504.04 Theory & Applcatons

More information

Predictive Analytics : QM901.1x Prof U Dinesh Kumar, IIMB. All Rights Reserved, Indian Institute of Management Bangalore

Predictive Analytics : QM901.1x Prof U Dinesh Kumar, IIMB. All Rights Reserved, Indian Institute of Management Bangalore Sesson Outlne Introducton to classfcaton problems and dscrete choce models. Introducton to Logstcs Regresson. Logstc functon and Logt functon. Maxmum Lkelhood Estmator (MLE) for estmaton of LR parameters.

More information

Robust mixture modeling using multivariate skew t distributions

Robust mixture modeling using multivariate skew t distributions Robust mxture modelng usng multvarate skew t dstrbutons Tsung-I Ln Department of Appled Mathematcs and Insttute of Statstcs Natonal Chung Hsng Unversty, Tawan August, 1 T.I. Ln (NCHU Natonal Chung Hsng

More information

p(z) = 1 a e z/a 1(z 0) yi a i x (1/a) exp y i a i x a i=1 n i=1 (y i a i x) inf 1 (y Ax) inf Ax y (1 ν) y if A (1 ν) = 0 otherwise

p(z) = 1 a e z/a 1(z 0) yi a i x (1/a) exp y i a i x a i=1 n i=1 (y i a i x) inf 1 (y Ax) inf Ax y (1 ν) y if A (1 ν) = 0 otherwise Dustn Lennon Math 582 Convex Optmzaton Problems from Boy, Chapter 7 Problem 7.1 Solve the MLE problem when the nose s exponentally strbute wth ensty p(z = 1 a e z/a 1(z 0 The MLE s gven by the followng:

More information

Support Vector Machines. Vibhav Gogate The University of Texas at dallas

Support Vector Machines. Vibhav Gogate The University of Texas at dallas Support Vector Machnes Vbhav Gogate he Unversty of exas at dallas What We have Learned So Far? 1. Decson rees. Naïve Bayes 3. Lnear Regresson 4. Logstc Regresson 5. Perceptron 6. Neural networks 7. K-Nearest

More information

Support Vector Machines

Support Vector Machines Separatng boundary, defned by w Support Vector Machnes CISC 5800 Professor Danel Leeds Separatng hyperplane splts class 0 and class 1 Plane s defned by lne w perpendcular to plan Is data pont x n class

More information

Probabilistic Graphical Models for Climate Data Analysis

Probabilistic Graphical Models for Climate Data Analysis Probablstc Graphcal Models for Clmate Data Analyss Arndam Banerjee banerjee@cs.umn.edu Dept of Computer Scence & Engneerng Unversty of Mnnesota, Twn Ctes Aug 15, 013 Clmate Data Analyss Key Challenges

More information

Lab 4: Two-level Random Intercept Model

Lab 4: Two-level Random Intercept Model BIO 656 Lab4 009 Lab 4: Two-level Random Intercept Model Data: Peak expratory flow rate (pefr) measured twce, usng two dfferent nstruments, for 17 subjects. (from Chapter 1 of Multlevel and Longtudnal

More information

The Basic Idea of EM

The Basic Idea of EM The Basc Idea of EM Janxn Wu LAMDA Group Natonal Key Lab for Novel Software Technology Nanjng Unversty, Chna wujx2001@gmal.com June 7, 2017 Contents 1 Introducton 1 2 GMM: A workng example 2 2.1 Gaussan

More information

Machine Learning for Signal Processing Linear Gaussian Models

Machine Learning for Signal Processing Linear Gaussian Models Machne Learnng for Sgnal Processng Lnear Gaussan Models Class 7. 30 Oct 204 Instructor: Bhksha Raj 755/8797 Recap: MAP stmators MAP (Mamum A Posteror: Fnd a best guess for (statstcall, gven knon = argma

More information

PROBABILITY PRIMER. Exercise Solutions

PROBABILITY PRIMER. Exercise Solutions PROBABILITY PRIMER Exercse Solutons 1 Probablty Prmer, Exercse Solutons, Prncples of Econometrcs, e EXERCISE P.1 (b) X s a random varable because attendance s not known pror to the outdoor concert. Before

More information

Classification. Representing data: Hypothesis (classifier) Lecture 2, September 14, Reading: Eric CMU,

Classification. Representing data: Hypothesis (classifier) Lecture 2, September 14, Reading: Eric CMU, Machne Learnng 10-701/15-781, 781, Fall 2011 Nonparametrc methods Erc Xng Lecture 2, September 14, 2011 Readng: 1 Classfcaton Representng data: Hypothess (classfer) 2 1 Clusterng 3 Supervsed vs. Unsupervsed

More information

Large-Margin HMM Estimation for Speech Recognition

Large-Margin HMM Estimation for Speech Recognition Large-Margn HMM Estmaton for Speech Recognton Prof. Hu Jang Department of Computer Scence and Engneerng York Unversty, Toronto, Ont. M3J 1P3, CANADA Emal: hj@cs.yorku.ca Ths s a jont work wth Chao-Jun

More information

CHAPTER 5 MINIMAX MEAN SQUARE ESTIMATION

CHAPTER 5 MINIMAX MEAN SQUARE ESTIMATION 110 CHAPTER 5 MINIMAX MEAN SQUARE ESTIMATION 5.1 INTRODUCTION The problem of parameter estmaton n lnear model s pervasve n sgnal processng and communcaton applcatons. It s often common to restrct attenton

More information

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U)

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U) Econ 413 Exam 13 H ANSWERS Settet er nndelt 9 deloppgaver, A,B,C, som alle anbefales å telle lkt for å gøre det ltt lettere å stå. Svar er gtt . Unfortunately, there s a prntng error n the hnt of

More information

Lecture 12: Classification

Lecture 12: Classification Lecture : Classfcaton g Dscrmnant functons g The optmal Bayes classfer g Quadratc classfers g Eucldean and Mahalanobs metrcs g K Nearest Neghbor Classfers Intellgent Sensor Systems Rcardo Guterrez-Osuna

More information

Radar Trackers. Study Guide. All chapters, problems, examples and page numbers refer to Applied Optimal Estimation, A. Gelb, Ed.

Radar Trackers. Study Guide. All chapters, problems, examples and page numbers refer to Applied Optimal Estimation, A. Gelb, Ed. Radar rackers Study Gude All chapters, problems, examples and page numbers refer to Appled Optmal Estmaton, A. Gelb, Ed. Chapter Example.0- Problem Statement wo sensors Each has a sngle nose measurement

More information

First Year Examination Department of Statistics, University of Florida

First Year Examination Department of Statistics, University of Florida Frst Year Examnaton Department of Statstcs, Unversty of Florda May 7, 010, 8:00 am - 1:00 noon Instructons: 1. You have four hours to answer questons n ths examnaton.. You must show your work to receve

More information

Clustering & (Ken Kreutz-Delgado) UCSD

Clustering & (Ken Kreutz-Delgado) UCSD Clusterng & Unsupervsed Learnng Nuno Vasconcelos (Ken Kreutz-Delgado) UCSD Statstcal Learnng Goal: Gven a relatonshp between a feature vector x and a vector y, and d data samples (x,y ), fnd an approxmatng

More information

Basic Statistical Analysis and Yield Calculations

Basic Statistical Analysis and Yield Calculations October 17, 007 Basc Statstcal Analyss and Yeld Calculatons Dr. José Ernesto Rayas Sánchez 1 Outlne Sources of desgn-performance uncertanty Desgn and development processes Desgn for manufacturablty A general

More information

Why Bayesian? 3. Bayes and Normal Models. State of nature: class. Decision rule. Rev. Thomas Bayes ( ) Bayes Theorem (yes, the famous one)

Why Bayesian? 3. Bayes and Normal Models. State of nature: class. Decision rule. Rev. Thomas Bayes ( ) Bayes Theorem (yes, the famous one) Why Bayesan? 3. Bayes and Normal Models Alex M. Martnez alex@ece.osu.edu Handouts Handoutsfor forece ECE874 874Sp Sp007 If all our research (n PR was to dsappear and you could only save one theory, whch

More information

Lagrange Multipliers Kernel Trick

Lagrange Multipliers Kernel Trick Lagrange Multplers Kernel Trck Ncholas Ruozz Unversty of Texas at Dallas Based roughly on the sldes of Davd Sontag General Optmzaton A mathematcal detour, we ll come back to SVMs soon! subject to: f x

More information