Global Optimization of Truss. Structure Design INFORMS J. N. Hooker. Tallys Yunes. Slide 1

Size: px
Start display at page:

Download "Global Optimization of Truss. Structure Design INFORMS J. N. Hooker. Tallys Yunes. Slide 1"

Transcription

1 Slde 1 Global Optmzaton of Truss Structure Desgn J. N. Hooker Tallys Yunes INFORMS 2010

2 Truss Structure Desgn Select sze of each bar (possbly zero) to support the load whle mnmzng weght. Bar szes are dscrete. 10-bar cantlever truss 0 deg. freedom 2 deg. freedom Slde 2 Total 8 degrees of freedom Load

3 Truss Structure Desgn Notaton v = elongaton of bar s = force along bar h = length of bar d = node dsplacement A = cross-sectonal area of bar p = load along d.f. Slde 3

4 Truss Structure Desgn nonlnear mn } Mnmze total weght s. t. cos θ s = p, all cos θ d = v, all E Av = s, all h v v v, all d d d, all \/ h A ( A = A ) k k } Equlbrum } Compatblty } Hooke s law } Elongaton bounds } Dsplacement bounds } Logcal dsuncton Area must be one of several dscrete values A k Slde 4 Constrants can be mposed for multple loadng condtons

5 Truss Structure Desgn Introducng new varables lnearzes the problem but makes t much larger. MILP model Slde 5 mn k k k s. t. cos θ s = p, all E h cos θ d = v, all k k A v = s, all k k k v v v, all d d d, all k h A y y = 1, all k 0-1 varables ndcatng sze of bar Elongaton varable dsaggregated by bar sze Hooke s law becomes lnear

6 Soluton Approach Solve wth SIMPL, an ntegrated solver for optmzaton. SIMPL ntegrates MILP, constrant programmng, global optmzaton n a unfed approach. Slde 6

7 SIMPL Integraton Prncples Low-level ntegraton wth hgh-level modelng. Slde 7

8 SIMPL Integraton Prncples Low-level ntegraton wth hgh-level modelng. Succnct modelng wth meta-constrants. Model communcates problem structure to the solver. Slde 8

9 SIMPL Integraton Prncples Low-level ntegraton wth hgh-level modelng. Succnct modelng wth meta-constrants. Model communcates problem structure to the solver. General search-nfer-relax soluton algorthm. Enumerate problem restrctons. Branchng or logc-based Benders. Underlyng search/nference and search/relaxaton dualtes. Slde 9

10 SIMPL Integraton Prncples Low-level ntegraton wth hgh-level modelng. Succnct modelng wth meta-constrants. Model communcates problem structure to the solver. General search-nfer-relax soluton algorthm. Enumerate problem restrctons. Branchng or logc-based Benders. Underlyng search/nference and search/relaxaton dualtes Constrant-based control. Flterng, relaxaton, branchng. Slde 10

11 Classcal soluton methods CP solver Search: Branchng Inference: Fllterng Relaxaton: Doman store MILP solver Search: Branchng Inference: Cuttng planes, presolve, reduced cost varable fxng Relaxaton: LP Benders Search: Enumerate subproblems. Inference: Benders cuts Relaxaton: Master problem Slde 11

12 Classcal soluton methods Global optmzaton Search: Enumerate boxes Inference: Doman reducton, dual-based varable boundng Relaxaton: Convexfcaton SAT Search: Branchng Inference: Conflct clauses Relaxaton: Same as restrcton Local search Search: Enumerate neghborhoods. Inference: Tabu lst, etc. Relaxaton: Same as restrcton Slde 12

13 Truss Structure Desgn Integrated approach Use the orgnal model (don t ntroduce new varables) Branch by splttng the range of areas A No 0-1 or nteger varables! Generate a lnear quas-relaxaton, whch s much smaller than MILP model. Use logc cuts. Orgnal hand-coded method: Bollapragada, Ghattas, and JNH Slde 13

14 Branchng Dscrete bar szes A Value n soluton of current relaxaton

15 Branchng Slde 15 Dscrete bar szes A Value n soluton of current relaxaton A Branch by splttng nterval

16 Branchng Dscrete bar szes A Value n soluton of current relaxaton A Branch by splttng nterval Slde 16 Soluton of next relaxaton lkely to be at an endpont. Ths branchng ntellgence unavalable n 0-1 model.

17 Quas-relaxaton Gven problem { f x } mn ( ) x S { f x } mn ( ) The problem s a quas-relaxaton f x S for any x S, there s an x S wth f (x ) f (x). A quas-relaxaton need not be a vald relaxaton. But ts optmal value s a vald lower bound on the optmal value of the orgnal problem. Slde 17

18 Quas-relaxaton Consder the problem mn f ( x ) g ( x, y ) 0, all n x R, y dscrete Slde 18

19 Quas-relaxaton Consder the problem mn f ( x ) g ( x, y ) 0, all n x R, y dscrete Each g s a vector of functons Slde 19

20 Quas-relaxaton Consder the problem mn f ( x ) g ( x, y ) 0, all n x R, y dscrete Each g s a vector of functons Slde 20 Each y s a scalar varable

21 Quas-relaxaton Consder the problem mn f ( x ) Each g s a vector of functons g ( x, y ) 0, all n x R, y dscrete Each y s a scalar varable Relaxng the problem by makng y contnuous could result n a nonconvex problem. Slde 21

22 Quas-relaxaton Consder the problem mn f ( x ) Each g s a vector of functons g ( x, y ) 0, all n x R, y dscrete Each y s a scalar varable Relaxng the problem by makng y contnuous could result n a nonconvex problem. But suppose the problem becomes convex when each y s fxed to a constant. Slde 22

23 Quas-relaxaton Consder the problem mn f ( x ) Each g s a vector of functons g ( x, y ) 0, all n x R, y dscrete Each y s a scalar varable Relaxng the problem by makng y contnuous could result n a nonconvex problem. But suppose the problem becomes convex when each y s fxed to a constant. Then we may be able to wrte a convex quas-relaxaton. Slde 23

24 Quas-relaxaton Consder the problem mn f ( x ) Theorem (JNH 2005) g ( x, y ) 0, all n x R, y dscrete If each g (x,y) s semhomogeneous n x and concave n scalar y, then the followng s a quas-relaxaton: mn f ( x ) 1 L 2 U g ( x, y ) + g ( x, y ) 0, all 1 α x x α x 2 (1 α ) x x (1 α ) x x = x + x α 1 2 [0,1] Slde 24

25 Quas-relaxaton Consder the problem mn f ( x ) Theorem (JNH 2005) g ( x, y ) 0, all n x R, y dscrete If each g (x,y) s semhomogeneous n x and concave n scalar y, then the followng s a quas-relaxaton: Slde 25 mn f ( x ) 1 L 2 U g ( x, y ) + g ( x, y ) 0, all 1 α x x α x 2 (1 α ) x x (1 α ) x x = x + x α 1 2 [0,1] g ( α x, y ) α g ( x, y ) for all x, y and α [0,1] g (0, y ) = 0 for all y

26 Quas-relaxaton Consder the problem mn f ( x ) Theorem (JNH 2005) g ( x, y ) 0, all n x R, y dscrete If each g (x,y) s semhomogeneous n x and concave n scalar y, then the followng s a quas-relaxaton: mn f ( x ) 1 L 2 U g ( x, y ) + g ( x, y ) 0, all 1 α x x α x 2 (1 α ) x x (1 α ) x x = x + x α 1 2 [0,1] Slde 26 Bounds on y

27 Quas-relaxaton Consder the problem mn f ( x ) Theorem (JNH 2005) g ( x, y ) 0, all n x R, y dscrete If each g (x,y) s semhomogeneous n x and concave n scalar y, then the followng s a quas-relaxaton: Slde 27 mn f ( x ) 1 L 2 U g ( x, y ) + g ( x, y ) 0, all 1 α x x α x 2 (1 α ) x x (1 α ) x x = x + x α 1 2 [0,1] Bounds on x

28 Quas-relaxaton Why? Take any feasble soluton x, y Slde 28 mn f ( x ) 1 L 2 U g ( x, y ) + g ( x, y ) 0, all 1 α x x α x 2 (1 α ) x x (1 α ) x x = x + x α 1 2 [0,1]

29 Quas-relaxaton Why? Take any feasble soluton Choose α so that Set x, y y = α y + (1 α ) y α α = = x x, x (1 ) x 1 2 Slde 29 mn f ( x ) 1 L 2 U g ( x, y ) + g ( x, y ) 0, all 1 α x x α x 2 (1 α ) x x (1 α ) x x = x + x α 1 2 [0,1]

30 Quas-relaxaton Why? Take any feasble soluton Choose α so that Set x, y y = α y + (1 α ) y α α = = x x, x (1 ) x 1 2 Then for each component of g we have mn f ( x ) 1 α x x α x ( ) ( ) α α + = + 2 (1 α ) x x (1 α ) x g x y g x y g x y g x y 1 2 (, L ) (, U ), L (1 ), U 1 L 2 U g ( x, y ) + g ( x, y ) 0, all x = x + x L U = α g ( x, y ) + (1 α ) g ( x, y ) g ( x, α y + (1 α ) y ) = g ( x, y ) α 1 2 [0,1] homogenety concavty Slde 30

31 Quas-relaxaton mn f ( x ) g ( x, y ) 0, all n x R, y dscrete So we have a feasble soluton of the quas-relaxaton wth value that s less than or equal to (n fact equal to) that of the orgnal problem. satsfed, by constructon Slde 31 mn f ( x ) 1 L 2 U g ( x, y ) + g ( x, y ) 0, all 1 α x x α x 2 (1 α ) x x (1 α ) x x = x + x α 1 2 [0,1] satsfed, by above argument

32 Quas-relaxaton mn f ( x ) g ( x, y ) 0, all n x R, y dscrete E Av = s h has the form g(x,y) = 0 wth g semhomogenous n x and concave (lnear) n y because we can wrte t E Av s h wth x = (v,s ), y = A. = 0 Slde 32

33 Truss Structure Desgn So we have a quas-relaxaton of the truss problem: Slde 33 mn h [ A y + A (1 y )] s. t. cos θ s = p, all cos θ d = v + v, all 0 1 E ( A v 0 + A v 1 ) = s, all h v y v v y, all 0 1 v (1 y ) v v (1 y ), all d d d, all 0 y 1, all Hooke s law s lnearzed Elongaton bounds splt nto 2 sets of bounds

34 Truss Structure Desgn Logc cuts v 0 and v 1 must have same sgn n a feasble soluton. If not, we branch by addng logc cuts v 0, v 1 0, v 0, v 1 0 Slde 34

35 Truss Structure Desgn In general, we can have a metaconstrant to represent the semhomogeneous constrant g(x,y) 0. Ths tells the solver to generate a quas-relaxaton. Slde 35

36 Truss Structure Desgn In general, we can have a metaconstrant to represent the semhomogeneous constrant g(x,y) 0. Ths tells the solver to generate a quas-relaxaton. Snce a blnear constrant xy = α s always semhomogeneous, we wll use a blnear metaconstrant wth a quas-relaxaton opton. Slde 36

37 Truss Structure Desgn SIMPL model Recognzed as lnear systems Slde 37

38 Truss Structure Desgn SIMPL model Recognzed as blnear system Slde 38

39 Truss Structure Desgn SIMPL model Generate quasrelaxaton for semhomogenous functon Slde 39

40 Truss Structure Desgn SIMPL model Branch frst on volated logc cuts for quasrelaxaton Slde 40

41 Truss Structure Desgn SIMPL model Then branch on A n-doman constrant. Volated when A s not one of the dscrete bar szes. Take upper branch frst. Slde 41

42 Truss Structure Desgn 10-bar cantlever truss Slde 42 Load

43 Truss Structure Desgn Computatonal results (seconds) Hand-coded ntegrated method No. bars Loads BARON CPLEX 11 Hand coded SIMPL * * Slde 43 *plus dsplacement bounds

44 Truss Structure Desgn 25-bar problem Slde 44

45 Truss Structure Desgn 72-bar problem Slde 45

46 Truss Structure Desgn Computatonal results (seconds) Hand-coded ntegrated method No. bars Loads BARON CPLEX 11 Hand coded SIMPL , , , > 24 hr* > 24 hr* > 24 hr* > 24 hr** > 24 hr*** * no feasble soluton found ** best feasble soluton has cost 32,748 Slde 46 *** best feasble soluton has cost 32,700

47 Current Verson of SIMPL To download: Clck the lnk to SIMPL on John Hooker s webste. See readme fle for complete nstructons. Download executable and assocated fles Operatonal on GNU/Lnux only Requres subsdary solvers CPLEX Eclpse (free download) Download problem nstances Includng all reported n ths talk. Slde 47

Optimization Methods for Engineering Design. Logic-Based. John Hooker. Turkish Operational Research Society. Carnegie Mellon University

Optimization Methods for Engineering Design. Logic-Based. John Hooker. Turkish Operational Research Society. Carnegie Mellon University Logc-Based Optmzaton Methods for Engneerng Desgn John Hooker Carnege Mellon Unerst Turksh Operatonal Research Socet Ankara June 1999 Jont work wth: Srnas Bollapragada General Electrc R&D Omar Ghattas Cl

More information

An Integrated Approach to Truss Structure Design

An Integrated Approach to Truss Structure Design Slide 1 An Integrated Approach to Truss Structure Design J. N. Hooker Tallys Yunes CPAIOR Workshop on Hybrid Methods for Nonlinear Combinatorial Problems Bologna, June 2010 How to Solve Nonlinear Combinatorial

More information

A Search-Infer-and-Relax Framework for. Integrating Solution Methods. Carnegie Mellon University CPAIOR, May John Hooker

A Search-Infer-and-Relax Framework for. Integrating Solution Methods. Carnegie Mellon University CPAIOR, May John Hooker A Search-Infer-and-Rela Framework for Integratng Soluton Methods John Hooker Carnege Mellon Unversty CPAIOR, May 005 CPAIOR 005 Why ntegrate soluton methods? One-stop shoppng. One solver does t all. CPAIOR

More information

Single-Facility Scheduling over Long Time Horizons by Logic-based Benders Decomposition

Single-Facility Scheduling over Long Time Horizons by Logic-based Benders Decomposition Sngle-Faclty Schedulng over Long Tme Horzons by Logc-based Benders Decomposton Elvn Coban and J. N. Hooker Tepper School of Busness, Carnege Mellon Unversty ecoban@andrew.cmu.edu, john@hooker.tepper.cmu.edu

More information

Combining Constraint Programming and Integer Programming

Combining Constraint Programming and Integer Programming Combnng Constrant Programmng and Integer Programmng GLOBAL CONSTRAINT OPTIMIZATION COMPONENT Specal Purpose Algorthm mn c T x +(x- 0 ) x( + ()) =1 x( - ()) =1 FILTERING ALGORITHM COST-BASED FILTERING ALGORITHM

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017 U.C. Berkeley CS94: Beyond Worst-Case Analyss Handout 4s Luca Trevsan September 5, 07 Summary of Lecture 4 In whch we ntroduce semdefnte programmng and apply t to Max Cut. Semdefnte Programmng Recall that

More information

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009 College of Computer & Informaton Scence Fall 2009 Northeastern Unversty 20 October 2009 CS7880: Algorthmc Power Tools Scrbe: Jan Wen and Laura Poplawsk Lecture Outlne: Prmal-dual schema Network Desgn:

More information

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg prnceton unv. F 17 cos 521: Advanced Algorthm Desgn Lecture 7: LP Dualty Lecturer: Matt Wenberg Scrbe: LP Dualty s an extremely useful tool for analyzng structural propertes of lnear programs. Whle there

More information

MMA and GCMMA two methods for nonlinear optimization

MMA and GCMMA two methods for nonlinear optimization MMA and GCMMA two methods for nonlnear optmzaton Krster Svanberg Optmzaton and Systems Theory, KTH, Stockholm, Sweden. krlle@math.kth.se Ths note descrbes the algorthms used n the author s 2007 mplementatons

More information

A Modeling System to Combine Optimization and Constraint. Programming. INFORMS, November Carnegie Mellon University.

A Modeling System to Combine Optimization and Constraint. Programming. INFORMS, November Carnegie Mellon University. A Modelng Sstem to Combne Optmzaton and Constrant Programmng John Hooker Carnege Mellon Unverst INFORMS November 000 Based on ont work wth Ignaco Grossmann Hak-Jn Km Mara Axlo Osoro Greger Ottosson Erlendr

More information

Appendix B. The Finite Difference Scheme

Appendix B. The Finite Difference Scheme 140 APPENDIXES Appendx B. The Fnte Dfference Scheme In ths appendx we present numercal technques whch are used to approxmate solutons of system 3.1 3.3. A comprehensve treatment of theoretcal and mplementaton

More information

Assortment Optimization under MNL

Assortment Optimization under MNL Assortment Optmzaton under MNL Haotan Song Aprl 30, 2017 1 Introducton The assortment optmzaton problem ams to fnd the revenue-maxmzng assortment of products to offer when the prces of products are fxed.

More information

An Integrated OR/CP Method for Planning and Scheduling

An Integrated OR/CP Method for Planning and Scheduling An Integrated OR/CP Method for Plannng and Schedulng John Hooer Carnege Mellon Unversty IT Unversty of Copenhagen June 2005 The Problem Allocate tass to facltes. Schedule tass assgned to each faclty. Subect

More information

Feature Selection: Part 1

Feature Selection: Part 1 CSE 546: Machne Learnng Lecture 5 Feature Selecton: Part 1 Instructor: Sham Kakade 1 Regresson n the hgh dmensonal settng How do we learn when the number of features d s greater than the sample sze n?

More information

A Scheme for Integrated Optimization

A Scheme for Integrated Optimization A Scheme for Integrated Optimization John Hooker ZIB November 2009 Slide 1 Outline Overview of integrated methods A taste of the underlying theory Eamples, with results from SIMPL Proposal for SCIP/SIMPL

More information

Solutions to exam in SF1811 Optimization, Jan 14, 2015

Solutions to exam in SF1811 Optimization, Jan 14, 2015 Solutons to exam n SF8 Optmzaton, Jan 4, 25 3 3 O------O -4 \ / \ / The network: \/ where all lnks go from left to rght. /\ / \ / \ 6 O------O -5 2 4.(a) Let x = ( x 3, x 4, x 23, x 24 ) T, where the varable

More information

Yong Joon Ryang. 1. Introduction Consider the multicommodity transportation problem with convex quadratic cost function. 1 2 (x x0 ) T Q(x x 0 )

Yong Joon Ryang. 1. Introduction Consider the multicommodity transportation problem with convex quadratic cost function. 1 2 (x x0 ) T Q(x x 0 ) Kangweon-Kyungk Math. Jour. 4 1996), No. 1, pp. 7 16 AN ITERATIVE ROW-ACTION METHOD FOR MULTICOMMODITY TRANSPORTATION PROBLEMS Yong Joon Ryang Abstract. The optmzaton problems wth quadratc constrants often

More information

Kernel Methods and SVMs Extension

Kernel Methods and SVMs Extension Kernel Methods and SVMs Extenson The purpose of ths document s to revew materal covered n Machne Learnng 1 Supervsed Learnng regardng support vector machnes (SVMs). Ths document also provdes a general

More information

NP-Completeness : Proofs

NP-Completeness : Proofs NP-Completeness : Proofs Proof Methods A method to show a decson problem Π NP-complete s as follows. (1) Show Π NP. (2) Choose an NP-complete problem Π. (3) Show Π Π. A method to show an optmzaton problem

More information

Some modelling aspects for the Matlab implementation of MMA

Some modelling aspects for the Matlab implementation of MMA Some modellng aspects for the Matlab mplementaton of MMA Krster Svanberg krlle@math.kth.se Optmzaton and Systems Theory Department of Mathematcs KTH, SE 10044 Stockholm September 2004 1. Consdered optmzaton

More information

Outline and Reading. Dynamic Programming. Dynamic Programming revealed. Computing Fibonacci. The General Dynamic Programming Technique

Outline and Reading. Dynamic Programming. Dynamic Programming revealed. Computing Fibonacci. The General Dynamic Programming Technique Outlne and Readng Dynamc Programmng The General Technque ( 5.3.2) -1 Knapsac Problem ( 5.3.3) Matrx Chan-Product ( 5.3.1) Dynamc Programmng verson 1.4 1 Dynamc Programmng verson 1.4 2 Dynamc Programmng

More information

Lecture 10 Support Vector Machines II

Lecture 10 Support Vector Machines II Lecture 10 Support Vector Machnes II 22 February 2016 Taylor B. Arnold Yale Statstcs STAT 365/665 1/28 Notes: Problem 3 s posted and due ths upcomng Frday There was an early bug n the fake-test data; fxed

More information

FIRST AND SECOND ORDER NECESSARY OPTIMALITY CONDITIONS FOR DISCRETE OPTIMAL CONTROL PROBLEMS

FIRST AND SECOND ORDER NECESSARY OPTIMALITY CONDITIONS FOR DISCRETE OPTIMAL CONTROL PROBLEMS Yugoslav Journal of Operatons Research 6 (6), umber, 53-6 FIRST D SECOD ORDER ECESSRY OPTIMLITY CODITIOS FOR DISCRETE OPTIML COTROL PROBLEMS Boban MRIKOVIĆ Faculty of Mnng and Geology, Unversty of Belgrade

More information

Week 5: Neural Networks

Week 5: Neural Networks Week 5: Neural Networks Instructor: Sergey Levne Neural Networks Summary In the prevous lecture, we saw how we can construct neural networks by extendng logstc regresson. Neural networks consst of multple

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

Lecture 21: Numerical methods for pricing American type derivatives

Lecture 21: Numerical methods for pricing American type derivatives Lecture 21: Numercal methods for prcng Amercan type dervatves Xaoguang Wang STAT 598W Aprl 10th, 2014 (STAT 598W) Lecture 21 1 / 26 Outlne 1 Fnte Dfference Method Explct Method Penalty Method (STAT 598W)

More information

EEL 6266 Power System Operation and Control. Chapter 3 Economic Dispatch Using Dynamic Programming

EEL 6266 Power System Operation and Control. Chapter 3 Economic Dispatch Using Dynamic Programming EEL 6266 Power System Operaton and Control Chapter 3 Economc Dspatch Usng Dynamc Programmng Pecewse Lnear Cost Functons Common practce many utltes prefer to represent ther generator cost functons as sngle-

More information

Planning and Scheduling to Minimize Makespan & Tardiness. John Hooker Carnegie Mellon University September 2006

Planning and Scheduling to Minimize Makespan & Tardiness. John Hooker Carnegie Mellon University September 2006 Plannng and Schedulng to Mnmze Makespan & ardness John Hooker Carnege Mellon Unversty September 2006 he Problem Gven a set of tasks, each wth a deadlne 2 he Problem Gven a set of tasks, each wth a deadlne

More information

COS 521: Advanced Algorithms Game Theory and Linear Programming

COS 521: Advanced Algorithms Game Theory and Linear Programming COS 521: Advanced Algorthms Game Theory and Lnear Programmng Moses Charkar February 27, 2013 In these notes, we ntroduce some basc concepts n game theory and lnear programmng (LP). We show a connecton

More information

Xiangwen Li. March 8th and March 13th, 2001

Xiangwen Li. March 8th and March 13th, 2001 CS49I Approxaton Algorths The Vertex-Cover Proble Lecture Notes Xangwen L March 8th and March 3th, 00 Absolute Approxaton Gven an optzaton proble P, an algorth A s an approxaton algorth for P f, for an

More information

Example: (13320, 22140) =? Solution #1: The divisors of are 1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 27, 30, 36, 41,

Example: (13320, 22140) =? Solution #1: The divisors of are 1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 27, 30, 36, 41, The greatest common dvsor of two ntegers a and b (not both zero) s the largest nteger whch s a common factor of both a and b. We denote ths number by gcd(a, b), or smply (a, b) when there s no confuson

More information

Simultaneous Optimization of Berth Allocation, Quay Crane Assignment and Quay Crane Scheduling Problems in Container Terminals

Simultaneous Optimization of Berth Allocation, Quay Crane Assignment and Quay Crane Scheduling Problems in Container Terminals Smultaneous Optmzaton of Berth Allocaton, Quay Crane Assgnment and Quay Crane Schedulng Problems n Contaner Termnals Necat Aras, Yavuz Türkoğulları, Z. Caner Taşkın, Kuban Altınel Abstract In ths work,

More information

Lecture 20: November 7

Lecture 20: November 7 0-725/36-725: Convex Optmzaton Fall 205 Lecturer: Ryan Tbshran Lecture 20: November 7 Scrbes: Varsha Chnnaobreddy, Joon Sk Km, Lngyao Zhang Note: LaTeX template courtesy of UC Berkeley EECS dept. Dsclamer:

More information

Interactive Bi-Level Multi-Objective Integer. Non-linear Programming Problem

Interactive Bi-Level Multi-Objective Integer. Non-linear Programming Problem Appled Mathematcal Scences Vol 5 0 no 65 3 33 Interactve B-Level Mult-Objectve Integer Non-lnear Programmng Problem O E Emam Department of Informaton Systems aculty of Computer Scence and nformaton Helwan

More information

Finite Element Modelling of truss/cable structures

Finite Element Modelling of truss/cable structures Pet Schreurs Endhoven Unversty of echnology Department of Mechancal Engneerng Materals echnology November 3, 214 Fnte Element Modellng of truss/cable structures 1 Fnte Element Analyss of prestressed structures

More information

Lecture Notes on Linear Regression

Lecture Notes on Linear Regression Lecture Notes on Lnear Regresson Feng L fl@sdueducn Shandong Unversty, Chna Lnear Regresson Problem In regresson problem, we am at predct a contnuous target value gven an nput feature vector We assume

More information

Generalized Linear Methods

Generalized Linear Methods Generalzed Lnear Methods 1 Introducton In the Ensemble Methods the general dea s that usng a combnaton of several weak learner one could make a better learner. More formally, assume that we have a set

More information

Convexity preserving interpolation by splines of arbitrary degree

Convexity preserving interpolation by splines of arbitrary degree Computer Scence Journal of Moldova, vol.18, no.1(52), 2010 Convexty preservng nterpolaton by splnes of arbtrary degree Igor Verlan Abstract In the present paper an algorthm of C 2 nterpolaton of dscrete

More information

Solutions HW #2. minimize. Ax = b. Give the dual problem, and make the implicit equality constraints explicit. Solution.

Solutions HW #2. minimize. Ax = b. Give the dual problem, and make the implicit equality constraints explicit. Solution. Solutons HW #2 Dual of general LP. Fnd the dual functon of the LP mnmze subject to c T x Gx h Ax = b. Gve the dual problem, and make the mplct equalty constrants explct. Soluton. 1. The Lagrangan s L(x,

More information

Maximal Margin Classifier

Maximal Margin Classifier CS81B/Stat41B: Advanced Topcs n Learnng & Decson Makng Mamal Margn Classfer Lecturer: Mchael Jordan Scrbes: Jana van Greunen Corrected verson - /1/004 1 References/Recommended Readng 1.1 Webstes www.kernel-machnes.org

More information

Problem Set 9 Solutions

Problem Set 9 Solutions Desgn and Analyss of Algorthms May 4, 2015 Massachusetts Insttute of Technology 6.046J/18.410J Profs. Erk Demane, Srn Devadas, and Nancy Lynch Problem Set 9 Solutons Problem Set 9 Solutons Ths problem

More information

Incremental and Encoding Formulations for Mixed Integer Programming

Incremental and Encoding Formulations for Mixed Integer Programming Incremental and Encodng Formulatons for Mxed Integer Programmng Sercan Yıldız a, Juan Pablo Velma b,c, a Tepper School of Busness, Carnege Mellon Unversty, 5000 Forbes Ave, Pttsburgh, PA 523, Unted States

More information

Integrating Solution Methods. through Duality. US-Mexico Workshop on Optimization. Oaxaca, January John Hooker

Integrating Solution Methods. through Duality. US-Mexico Workshop on Optimization. Oaxaca, January John Hooker Integrating Solution Methods through Duality John Hooker US-Meico Workshop on Optimization Oaaca, January 2011 Zapotec Duality mask Late classical period Represents life/death, day/night, heat/cold See

More information

The Expectation-Maximization Algorithm

The Expectation-Maximization Algorithm The Expectaton-Maxmaton Algorthm Charles Elan elan@cs.ucsd.edu November 16, 2007 Ths chapter explans the EM algorthm at multple levels of generalty. Secton 1 gves the standard hgh-level verson of the algorthm.

More information

Calculation of time complexity (3%)

Calculation of time complexity (3%) Problem 1. (30%) Calculaton of tme complexty (3%) Gven n ctes, usng exhaust search to see every result takes O(n!). Calculaton of tme needed to solve the problem (2%) 40 ctes:40! dfferent tours 40 add

More information

On the Multicriteria Integer Network Flow Problem

On the Multicriteria Integer Network Flow Problem BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 5, No 2 Sofa 2005 On the Multcrtera Integer Network Flow Problem Vassl Vasslev, Marana Nkolova, Maryana Vassleva Insttute of

More information

The Minimum Universal Cost Flow in an Infeasible Flow Network

The Minimum Universal Cost Flow in an Infeasible Flow Network Journal of Scences, Islamc Republc of Iran 17(2): 175-180 (2006) Unversty of Tehran, ISSN 1016-1104 http://jscencesutacr The Mnmum Unversal Cost Flow n an Infeasble Flow Network H Saleh Fathabad * M Bagheran

More information

Hongyi Miao, College of Science, Nanjing Forestry University, Nanjing ,China. (Received 20 June 2013, accepted 11 March 2014) I)ϕ (k)

Hongyi Miao, College of Science, Nanjing Forestry University, Nanjing ,China. (Received 20 June 2013, accepted 11 March 2014) I)ϕ (k) ISSN 1749-3889 (prnt), 1749-3897 (onlne) Internatonal Journal of Nonlnear Scence Vol.17(2014) No.2,pp.188-192 Modfed Block Jacob-Davdson Method for Solvng Large Sparse Egenproblems Hongy Mao, College of

More information

Natural Language Processing and Information Retrieval

Natural Language Processing and Information Retrieval Natural Language Processng and Informaton Retreval Support Vector Machnes Alessandro Moschtt Department of nformaton and communcaton technology Unversty of Trento Emal: moschtt@ds.untn.t Summary Support

More information

Estimation: Part 2. Chapter GREG estimation

Estimation: Part 2. Chapter GREG estimation Chapter 9 Estmaton: Part 2 9. GREG estmaton In Chapter 8, we have seen that the regresson estmator s an effcent estmator when there s a lnear relatonshp between y and x. In ths chapter, we generalzed the

More information

Aggregation of Social Networks by Divisive Clustering Method

Aggregation of Social Networks by Divisive Clustering Method ggregaton of Socal Networks by Dvsve Clusterng Method mne Louat and Yves Lechaveller INRI Pars-Rocquencourt Rocquencourt, France {lzennyr.da_slva, Yves.Lechevaller, Fabrce.Ross}@nra.fr HCSD Beng October

More information

PHYS 705: Classical Mechanics. Calculus of Variations II

PHYS 705: Classical Mechanics. Calculus of Variations II 1 PHYS 705: Classcal Mechancs Calculus of Varatons II 2 Calculus of Varatons: Generalzaton (no constrant yet) Suppose now that F depends on several dependent varables : We need to fnd such that has a statonary

More information

Which Separator? Spring 1

Which Separator? Spring 1 Whch Separator? 6.034 - Sprng 1 Whch Separator? Mamze the margn to closest ponts 6.034 - Sprng Whch Separator? Mamze the margn to closest ponts 6.034 - Sprng 3 Margn of a pont " # y (w $ + b) proportonal

More information

10) Activity analysis

10) Activity analysis 3C3 Mathematcal Methods for Economsts (6 cr) 1) Actvty analyss Abolfazl Keshvar Ph.D. Aalto Unversty School of Busness Sldes orgnally by: Tmo Kuosmanen Updated by: Abolfazl Keshvar 1 Outlne Hstorcal development

More information

CS : Algorithms and Uncertainty Lecture 17 Date: October 26, 2016

CS : Algorithms and Uncertainty Lecture 17 Date: October 26, 2016 CS 29-128: Algorthms and Uncertanty Lecture 17 Date: October 26, 2016 Instructor: Nkhl Bansal Scrbe: Mchael Denns 1 Introducton In ths lecture we wll be lookng nto the secretary problem, and an nterestng

More information

Limited Dependent Variables

Limited Dependent Variables Lmted Dependent Varables. What f the left-hand sde varable s not a contnuous thng spread from mnus nfnty to plus nfnty? That s, gven a model = f (, β, ε, where a. s bounded below at zero, such as wages

More information

Lecture 12: Discrete Laplacian

Lecture 12: Discrete Laplacian Lecture 12: Dscrete Laplacan Scrbe: Tanye Lu Our goal s to come up wth a dscrete verson of Laplacan operator for trangulated surfaces, so that we can use t n practce to solve related problems We are mostly

More information

Lecture 20: Lift and Project, SDP Duality. Today we will study the Lift and Project method. Then we will prove the SDP duality theorem.

Lecture 20: Lift and Project, SDP Duality. Today we will study the Lift and Project method. Then we will prove the SDP duality theorem. prnceton u. sp 02 cos 598B: algorthms and complexty Lecture 20: Lft and Project, SDP Dualty Lecturer: Sanjeev Arora Scrbe:Yury Makarychev Today we wll study the Lft and Project method. Then we wll prove

More information

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE Analytcal soluton s usually not possble when exctaton vares arbtrarly wth tme or f the system s nonlnear. Such problems can be solved by numercal tmesteppng

More information

An Interactive Optimisation Tool for Allocation Problems

An Interactive Optimisation Tool for Allocation Problems An Interactve Optmsaton ool for Allocaton Problems Fredr Bonäs, Joam Westerlund and apo Westerlund Process Desgn Laboratory, Faculty of echnology, Åbo Aadem Unversty, uru 20500, Fnland hs paper presents

More information

Assortment Optimization under the Paired Combinatorial Logit Model

Assortment Optimization under the Paired Combinatorial Logit Model Assortment Optmzaton under the Pared Combnatoral Logt Model Heng Zhang, Paat Rusmevchentong Marshall School of Busness, Unversty of Southern Calforna, Los Angeles, CA 90089 hengz@usc.edu, rusmevc@marshall.usc.edu

More information

Appendix for Causal Interaction in Factorial Experiments: Application to Conjoint Analysis

Appendix for Causal Interaction in Factorial Experiments: Application to Conjoint Analysis A Appendx for Causal Interacton n Factoral Experments: Applcaton to Conjont Analyss Mathematcal Appendx: Proofs of Theorems A. Lemmas Below, we descrbe all the lemmas, whch are used to prove the man theorems

More information

Markov Chain Monte Carlo (MCMC), Gibbs Sampling, Metropolis Algorithms, and Simulated Annealing Bioinformatics Course Supplement

Markov Chain Monte Carlo (MCMC), Gibbs Sampling, Metropolis Algorithms, and Simulated Annealing Bioinformatics Course Supplement Markov Chan Monte Carlo MCMC, Gbbs Samplng, Metropols Algorthms, and Smulated Annealng 2001 Bonformatcs Course Supplement SNU Bontellgence Lab http://bsnuackr/ Outlne! Markov Chan Monte Carlo MCMC! Metropols-Hastngs

More information

Computing Correlated Equilibria in Multi-Player Games

Computing Correlated Equilibria in Multi-Player Games Computng Correlated Equlbra n Mult-Player Games Chrstos H. Papadmtrou Presented by Zhanxang Huang December 7th, 2005 1 The Author Dr. Chrstos H. Papadmtrou CS professor at UC Berkley (taught at Harvard,

More information

VARIATION OF CONSTANT SUM CONSTRAINT FOR INTEGER MODEL WITH NON UNIFORM VARIABLES

VARIATION OF CONSTANT SUM CONSTRAINT FOR INTEGER MODEL WITH NON UNIFORM VARIABLES VARIATION OF CONSTANT SUM CONSTRAINT FOR INTEGER MODEL WITH NON UNIFORM VARIABLES BÂRZĂ, Slvu Faculty of Mathematcs-Informatcs Spru Haret Unversty barza_slvu@yahoo.com Abstract Ths paper wants to contnue

More information

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1 P. Guterrez Physcs 5153 Classcal Mechancs D Alembert s Prncple and The Lagrangan 1 Introducton The prncple of vrtual work provdes a method of solvng problems of statc equlbrum wthout havng to consder the

More information

Module 2. Random Processes. Version 2 ECE IIT, Kharagpur

Module 2. Random Processes. Version 2 ECE IIT, Kharagpur Module Random Processes Lesson 6 Functons of Random Varables After readng ths lesson, ou wll learn about cdf of functon of a random varable. Formula for determnng the pdf of a random varable. Let, X be

More information

Math1110 (Spring 2009) Prelim 3 - Solutions

Math1110 (Spring 2009) Prelim 3 - Solutions Math 1110 (Sprng 2009) Solutons to Prelm 3 (04/21/2009) 1 Queston 1. (16 ponts) Short answer. Math1110 (Sprng 2009) Prelm 3 - Solutons x a 1 (a) (4 ponts) Please evaluate lm, where a and b are postve numbers.

More information

Complement of Type-2 Fuzzy Shortest Path Using Possibility Measure

Complement of Type-2 Fuzzy Shortest Path Using Possibility Measure Intern. J. Fuzzy Mathematcal rchve Vol. 5, No., 04, 9-7 ISSN: 30 34 (P, 30 350 (onlne Publshed on 5 November 04 www.researchmathsc.org Internatonal Journal of Complement of Type- Fuzzy Shortest Path Usng

More information

PROBLEM SET 7 GENERAL EQUILIBRIUM

PROBLEM SET 7 GENERAL EQUILIBRIUM PROBLEM SET 7 GENERAL EQUILIBRIUM Queston a Defnton: An Arrow-Debreu Compettve Equlbrum s a vector of prces {p t } and allocatons {c t, c 2 t } whch satsfes ( Gven {p t }, c t maxmzes βt ln c t subject

More information

Solving the Quadratic Eigenvalue Complementarity Problem by DC Programming

Solving the Quadratic Eigenvalue Complementarity Problem by DC Programming Solvng the Quadratc Egenvalue Complementarty Problem by DC Programmng Y-Shua Nu 1, Joaqum Júdce, Le Th Hoa An 3 and Pham Dnh Tao 4 1 Shangha JaoTong Unversty, Maths Departement and SJTU-Parstech, Chna

More information

Linear Feature Engineering 11

Linear Feature Engineering 11 Lnear Feature Engneerng 11 2 Least-Squares 2.1 Smple least-squares Consder the followng dataset. We have a bunch of nputs x and correspondng outputs y. The partcular values n ths dataset are x y 0.23 0.19

More information

Statistical Inference. 2.3 Summary Statistics Measures of Center and Spread. parameters ( population characteristics )

Statistical Inference. 2.3 Summary Statistics Measures of Center and Spread. parameters ( population characteristics ) Ismor Fscher, 8//008 Stat 54 / -8.3 Summary Statstcs Measures of Center and Spread Dstrbuton of dscrete contnuous POPULATION Random Varable, numercal True center =??? True spread =???? parameters ( populaton

More information

1 Convex Optimization

1 Convex Optimization Convex Optmzaton We wll consder convex optmzaton problems. Namely, mnmzaton problems where the objectve s convex (we assume no constrants for now). Such problems often arse n machne learnng. For example,

More information

= z 20 z n. (k 20) + 4 z k = 4

= z 20 z n. (k 20) + 4 z k = 4 Problem Set #7 solutons 7.2.. (a Fnd the coeffcent of z k n (z + z 5 + z 6 + z 7 + 5, k 20. We use the known seres expanson ( n+l ( z l l z n below: (z + z 5 + z 6 + z 7 + 5 (z 5 ( + z + z 2 + z + 5 5

More information

Combining Examinations to Accelerate Timetable Construction

Combining Examinations to Accelerate Timetable Construction Combnng Examnatons to Accelerate Tmetable Constructon Graham Kendall Jawe L School of Computer Scence, Unversty of Nottngham, UK {gxk wl}@cs.nott.ac.uk Abstract: In ths paper we propose a novel approach

More information

4 Analysis of Variance (ANOVA) 5 ANOVA. 5.1 Introduction. 5.2 Fixed Effects ANOVA

4 Analysis of Variance (ANOVA) 5 ANOVA. 5.1 Introduction. 5.2 Fixed Effects ANOVA 4 Analyss of Varance (ANOVA) 5 ANOVA 51 Introducton ANOVA ANOVA s a way to estmate and test the means of multple populatons We wll start wth one-way ANOVA If the populatons ncluded n the study are selected

More information

Lagrange Multipliers Kernel Trick

Lagrange Multipliers Kernel Trick Lagrange Multplers Kernel Trck Ncholas Ruozz Unversty of Texas at Dallas Based roughly on the sldes of Davd Sontag General Optmzaton A mathematcal detour, we ll come back to SVMs soon! subject to: f x

More information

6) Derivatives, gradients and Hessian matrices

6) Derivatives, gradients and Hessian matrices 30C00300 Mathematcal Methods for Economsts (6 cr) 6) Dervatves, gradents and Hessan matrces Smon & Blume chapters: 14, 15 Sldes by: Tmo Kuosmanen 1 Outlne Defnton of dervatve functon Dervatve notatons

More information

ExxonMobil. Juan Pablo Ruiz Ignacio E. Grossmann. Department of Chemical Engineering Center for Advanced Process Decision-making. Pittsburgh, PA 15213

ExxonMobil. Juan Pablo Ruiz Ignacio E. Grossmann. Department of Chemical Engineering Center for Advanced Process Decision-making. Pittsburgh, PA 15213 ExxonMobl Multperod Blend Schedulng Problem Juan Pablo Ruz Ignaco E. Grossmann Department of Chemcal Engneerng Center for Advanced Process Decson-makng Unversty Pttsburgh, PA 15213 1 Motvaton - Large cost

More information

The interface control domain decomposition (ICDD) method for the Stokes problem. (Received: 15 July Accepted: 13 September 2013)

The interface control domain decomposition (ICDD) method for the Stokes problem. (Received: 15 July Accepted: 13 September 2013) Journal of Coupled Systems Multscale Dynamcs Copyrght 2013 by Amercan Scentfc Publshers All rghts reserved. Prnted n the Unted States of Amerca do:10.1166/jcsmd.2013.1026 J. Coupled Syst. Multscale Dyn.

More information

An Optimization Model for Routing in Low Earth Orbit Satellite Constellations

An Optimization Model for Routing in Low Earth Orbit Satellite Constellations An Optmzaton Model for Routng n Low Earth Orbt Satellte Constellatons A. Ferrera J. Galter P. Mahey Inra Inra Inra Afonso.Ferrera@sopha.nra.fr Jerome.Galter@nra.fr Phlppe.Mahey@sma.fr G. Mateus A. Olvera

More information

e - c o m p a n i o n

e - c o m p a n i o n OPERATIONS RESEARCH http://dxdoorg/0287/opre007ec e - c o m p a n o n ONLY AVAILABLE IN ELECTRONIC FORM 202 INFORMS Electronc Companon Generalzed Quantty Competton for Multple Products and Loss of Effcency

More information

4DVAR, according to the name, is a four-dimensional variational method.

4DVAR, according to the name, is a four-dimensional variational method. 4D-Varatonal Data Assmlaton (4D-Var) 4DVAR, accordng to the name, s a four-dmensonal varatonal method. 4D-Var s actually a drect generalzaton of 3D-Var to handle observatons that are dstrbuted n tme. The

More information

Lecture 14: Bandits with Budget Constraints

Lecture 14: Bandits with Budget Constraints IEOR 8100-001: Learnng and Optmzaton for Sequental Decson Makng 03/07/16 Lecture 14: andts wth udget Constrants Instructor: Shpra Agrawal Scrbed by: Zhpeng Lu 1 Problem defnton In the regular Mult-armed

More information

Société de Calcul Mathématique SA

Société de Calcul Mathématique SA Socété de Calcul Mathématque SA Outls d'ade à la décson Tools for decson help Probablstc Studes: Normalzng the Hstograms Bernard Beauzamy December, 202 I. General constructon of the hstogram Any probablstc

More information

Learning Theory: Lecture Notes

Learning Theory: Lecture Notes Learnng Theory: Lecture Notes Lecturer: Kamalka Chaudhur Scrbe: Qush Wang October 27, 2012 1 The Agnostc PAC Model Recall that one of the constrants of the PAC model s that the data dstrbuton has to be

More information

LOW BIAS INTEGRATED PATH ESTIMATORS. James M. Calvin

LOW BIAS INTEGRATED PATH ESTIMATORS. James M. Calvin Proceedngs of the 007 Wnter Smulaton Conference S G Henderson, B Bller, M-H Hseh, J Shortle, J D Tew, and R R Barton, eds LOW BIAS INTEGRATED PATH ESTIMATORS James M Calvn Department of Computer Scence

More information

A New Extended Formulation with Valid Inequalities for the Capacitated Concentrator Location Problem

A New Extended Formulation with Valid Inequalities for the Capacitated Concentrator Location Problem A New Extended Formulaton wth Vald Inequaltes for the Capactated Concentrator Locaton Problem Massmo D Francesco Dpartmento d Matematca e Informatca, Unverstà d Caglar, 09124 Caglar, Italy Emal: mdfrance@unca.t

More information

A 2D Bounded Linear Program (H,c) 2D Linear Programming

A 2D Bounded Linear Program (H,c) 2D Linear Programming A 2D Bounded Lnear Program (H,c) h 3 v h 8 h 5 c h 4 h h 6 h 7 h 2 2D Lnear Programmng C s a polygonal regon, the ntersecton of n halfplanes. (H, c) s nfeasble, as C s empty. Feasble regon C s unbounded

More information

Global Optimization of Bilinear Generalized Disjunctive Programs

Global Optimization of Bilinear Generalized Disjunctive Programs Global Optmzaton o Blnear Generalzed Dsunctve Programs Juan Pablo Ruz Ignaco E. Grossmann Department o Chemcal Engneerng Center or Advanced Process Decson-mang Unversty Pttsburgh, PA 15213 1 Non-Convex

More information

Tornado and Luby Transform Codes. Ashish Khisti Presentation October 22, 2003

Tornado and Luby Transform Codes. Ashish Khisti Presentation October 22, 2003 Tornado and Luby Transform Codes Ashsh Khst 6.454 Presentaton October 22, 2003 Background: Erasure Channel Elas[956] studed the Erasure Channel β x x β β x 2 m x 2 k? Capacty of Noseless Erasure Channel

More information

Structural Extensions of Support Vector Machines. Mark Schmidt March 30, 2009

Structural Extensions of Support Vector Machines. Mark Schmidt March 30, 2009 Structural Extensons of Support Vector Machnes Mark Schmdt March 30, 2009 Formulaton: Bnary SVMs Multclass SVMs Structural SVMs Tranng: Subgradents Cuttng Planes Margnal Formulatons Mn-Max Formulatons

More information

6. Stochastic processes (2)

6. Stochastic processes (2) Contents Markov processes Brth-death processes Lect6.ppt S-38.45 - Introducton to Teletraffc Theory Sprng 5 Markov process Consder a contnuous-tme and dscrete-state stochastc process X(t) wth state space

More information

Incremental and Encoding Formulations for Mixed Integer Programming

Incremental and Encoding Formulations for Mixed Integer Programming Incremental and Encodng Formulatons for Mxed Integer Programmng Sercan Yıldız a, Juan Pablo Velma b,c, a Tepper School of Busness, Carnege Mellon Unversty, 5000 Forbes Ave., Pttsburgh, PA 15213, Unted

More information

Module 9. Lecture 6. Duality in Assignment Problems

Module 9. Lecture 6. Duality in Assignment Problems Module 9 1 Lecture 6 Dualty n Assgnment Problems In ths lecture we attempt to answer few other mportant questons posed n earler lecture for (AP) and see how some of them can be explaned through the concept

More information

6. Stochastic processes (2)

6. Stochastic processes (2) 6. Stochastc processes () Lect6.ppt S-38.45 - Introducton to Teletraffc Theory Sprng 5 6. Stochastc processes () Contents Markov processes Brth-death processes 6. Stochastc processes () Markov process

More information

Low-Connectivity Network Design on Series-Parallel Graphs

Low-Connectivity Network Design on Series-Parallel Graphs Low-Connectvty Network Desgn on Seres-Parallel Graphs S. Raghavan The Robert H. Smth School of Busness, Van Munchng Hall, Unversty of Maryland, College Park, Maryland 20742 Network survvablty s a crtcal

More information

Portfolios with Trading Constraints and Payout Restrictions

Portfolios with Trading Constraints and Payout Restrictions Portfolos wth Tradng Constrants and Payout Restrctons John R. Brge Northwestern Unversty (ont wor wth Chrs Donohue Xaodong Xu and Gongyun Zhao) 1 General Problem (Very) long-term nvestor (eample: unversty

More information

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 17. a ij x (k) b i. a ij x (k+1) (D + L)x (k+1) = b Ux (k)

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 17. a ij x (k) b i. a ij x (k+1) (D + L)x (k+1) = b Ux (k) STAT 309: MATHEMATICAL COMPUTATIONS I FALL 08 LECTURE 7. sor method remnder: n coordnatewse form, Jacob method s = [ b a x (k) a and Gauss Sedel method s = [ b a = = remnder: n matrx form, Jacob method

More information