Hongyi Miao, College of Science, Nanjing Forestry University, Nanjing ,China. (Received 20 June 2013, accepted 11 March 2014) I)ϕ (k)

Size: px
Start display at page:

Download "Hongyi Miao, College of Science, Nanjing Forestry University, Nanjing ,China. (Received 20 June 2013, accepted 11 March 2014) I)ϕ (k)"

Transcription

1 ISSN (prnt), (onlne) Internatonal Journal of Nonlnear Scence Vol.17(2014) No.2,pp Modfed Block Jacob-Davdson Method for Solvng Large Sparse Egenproblems Hongy Mao, College of Scence, Nanjng Forestry Unversty, Nanjng ,Chna (Receved 20 June 2013, accepted 11 March 2014) Abstract: The Jacob-Davdson Method s an effcent egenvalue solver whch uses an nner-outer scheme. In the outer teraton one tres to approxmate an egenpar whle n the nner teraton a lnear system has to be solved, often teratvely. The more tme-consumng computaton les n solvng the lnear system whch s called correcton equatons. To handle the nexact soluton of the correcton equatons, we use extrapolaton technque to solve the correcton equatons. Furthermore, we use a a class of precondtoners when solvng the correcton equatons wth Krylov subspace methods, such as GMRES(m). Numercal experments show that the new algorthm s effcent. Keywords:Jacob-Davdson algorthm; correcton equaton; extrapolaton technque;precondtoner 1 Introducton In many felds of scence and engneerng technology, we often need to calculate several extreme (maxmum or mnmum) or nternal egenvalues and correspondng egenvectors of large sparse symmetrc matrx. In 2000, Slejpen and Van der Vorst [6] combned correcton method of Jacob wth nner -outer teratve method of Davdson [4, 5] and proposed Jacob- Davdson method. Ths method has good stablty and can acheve a fast convergence speed of non-dagonally domnant or non-normal matrces. At present, the Jacob-Davdson method s one of the most effectve methods for solvng egenvalue problems. But when the matrx has multple egenvalues, the valdty and relablty of Jacob-Davdson method wll decrease. To overcome ths, block Jacob-Davdson method was proposed and t can calculate the multple egenvalues of matrx. Algorthm 1(Block Jacob-Davdson Method) 1 nput: matrx A, the maxmum dmenson of projecton subspace m, block sze l, column orthonormal matrx V 1 wth sze n l; 2 For k = 1, 2,, m. (1) compute V T k AV k; (2) compute l egenpars (λ (k), y (k) ), ( = 1, 2,, l) of H k. (3) compute Rtz vector (ϕ (k), y (k) ), ( = 1, 2,, l); (4) compute resdual vector r (k) Test for convergence. Stop f r (k) (5) Solve { = (A λ (k) I)ϕ (k) < T ol s satsfed., ( = 1, 2,, l). (I ϕ (k) ϕ (k)t )(A λ (k) I)((I ϕ (k) ϕ (k)t ))t (k) = r (k) ϕ (k)t t (k) = 0, ( = 1, 2,, l). Get new matrx T k = [t (k) 1,, t(k) ], where ϕ (k) = (ϕ (k) 1,, ϕ (k)). Correspondng author. E-mal address: mhy@njfu.edu.cn l Copyrght c World Academc Press, World Academc Unon IJNS /803

2 Hongy Mao: Modfed Block Jacob-Davdson Method for Solvng Large Sparse Egenproblems 189 (6) V k+1 = MGS(V k, T k )(ModfedGram Schmdt). The block Jacob Davdson algorthm s dvded nto two layers of nner and outer teraton, the outer teraton calculates egenpars of matrx and the nner teraton solves the lnear system whch s called correcton equatons. The man cost les n the nner teratons. In the Jacob-Davdson method, each teraton step requres the soluton of the correcton equaton { (I ϕ (k) ϕ (k)t )(A λ (k) I)((I ϕ (k) ϕ (k)t ))t (k) = r (k) ϕ (k)t t (k) ( = 1, 2,, l), (1) = 0, where ϕ T ϕ = I. In ths work, we propose a modfed verson of the block Jacob Davdson algorthm by ntroduce a extrapolaton parameter, whch can get egenvalues more effcently. The paper s organzed as follows. In secton 2, the Modfed Block Jacob-Davdson Method wll be gven,and the optmal parameter of ω s dscussed.then a precondtonng technque s used n GMRES(m) algorthm when solvng the correcton equaton. Whle n secton 3, numercal results are presented to llustrate the behavor of the new algorthms. 2 Modfed Block Jacob-Davdson Method Wth the approachng degree enhancement, the condton number of the coeffcent matrx equatons wll go bad, we can use the extrapolaton technque to overcome ths. If the soluton of (1) reads as, Let t (k) = Gt (k 1) + C. (2) t (k) = ω(gt (k 1) + C) + (1 ω)t (k 1) = [ωg + (1 ω)i]t (k 1) + ωc, (3) where ω 0 s a parameter. Then we get a new teratve method. Apparently, when ω = 1 the teraton formula (3) s the orgnal (2). Ths extrapolate method converges f and only f ρ(g ω ) < 1. If we only know all the egenvalues of G contaned n the nterval [a, b], then the egenvalues of G ω = ωg+(1 ω)i are located n the nterval wth the endponts of ωa+1 ω and ωb + 1 ω. Let λ(a) denote the set of egenvalues of matrx A, Then ρ(g ω ) = When 1 [a, b], we can choose ω such that ρ(g ω ) < 1 max λ = max ωλ + 1 ω max ωλ + 1 ω. λ λ(g ω) λ λ(g ω) a λ b Theorem 1 If all the egenvalues of G are real and locate n the nterval [a, b], and 1 [a, b], then the optmal parameter of ω s ω opt = 2 2 a b. And ρ(g ω opt ) 1 ω opt d, where d s the dstance from 1 to [a, b]. Proof. Functon max a λ b ωλ+1 ω has a mnmum value when ωa+1 ω = ωb+1 ω, whch results n ω opt = 2 2 a b. Snce 1 [a, b], so ether a > 1 or b < 1. For a b < 1, we have ω opt > 0 and d = 1 b. All the egenvalues of G ωopt satsfes the nequalty ω opt a + 1 ω opt λ ω opt b + 1 ω opt, so we have λ ω opt b + 1 ω opt = 1 + ω opt (b 1) = 1 ω opt d, and λ ω opt a + 1 ω opt = 1 + ω opt d. As a result, we get 1 + ω opt d ρ(g ωopt ) 1 ω opt d. Smlarly, for 1 < a b, we can obtan the same results. The proof s completed. We often use Krylov subspace methods to solve the correcton equaton (1). Restarted GMRES method s well known and wdely used whch s lsted below. Algorthm 2 (GMRES(m)) IJNS homepage:

3 190 Internatonal Journal of Nonlnear Scence, Vol.17(2014), No.2, pp Compute r 0 = b Ax 0, β = r 0 2 and v 1 = r0 β 2 Generate the Arnold bass and the matrx H m by usng the Arnold algorthm startng wth v 1 3 Compute y m whch mnmzes βe 1 H m y 2 and x m = x 0 + V m y m 4 If satsfed then stop, else set x 0 := x m and Go To 1 We can use precondtonng technque when solvng the correcton equaton wth GMRES(m). The am of precondtonng s to accelerate the convergence speed by makng the egenvalues of matrx A located n the complex plane as cluster as possble. There are many technques to construct precondtoners, such as ncomplete LU decomposton, ncomplete Cholesky decomposton and so on. Incomplete LU decomposton method s dscussed here. The matrx A s dvded nto four blocks and the correspondng LU( decomposton ) s gven ( as follows. ) ( ) A11 A 12 L11 U11 U = 12 (4) A 21 A 22 L 21 L 22 U 22 where A 11 s a matrx wth sze d 1 d 1,A 22 s a matrx wth sze (n d 1 ) (n d 1 ). From (4),we have A 11 = L 11 U 11 (5) A 12 = L 11 U 12 (6) A 21 = L 21 U 11 (7) A 22 = L 21 U 12 +L 22 U 22 (8) Algorthm 3 Block ILU algorthm 1 For an Incomplete LU decomposton of the block matrx A 11, get L 11, U 11 2 Compute B 1, the nverse matrx of L 11, whch s stll an unt lower trangular matrx 3 U 12 = L 1 11 A 12 = B 1 A 12 4 Compute C 1, the nverse matrx of U 11, whch s stll an upper trangular matrx 5 L 21 = A 21 U 1 11 = A 21C 1 6 denote A 22 = A 22 L 21 U 12, the LU decomposton A 22 = L 22 U 22 The LU decomposton of A 22 can always be done by block calculaton, as long as a proper sze of the block s selected. Furthermore calculaton of the nverse matrx n the algorthm makes full use of the characterstcs of trangular matrx to elmnate unnecessary computaton, and thus the calculaton speed s mproved. 3 Numercal Experment In ths secton, numercal experments are mplemented by Matlab 6.5. The ntal matrx s generated randomly and ts column vectors are orthonormal. To be convenent, the block Jacob-Davdson method s denoted as BJD and modfed Jacob-Davdson method s denoted as MBJD.The block Jacob-Davdson method wth ILU decomposton precondtoner when solvng correctng equaton s denoted as ILUBJD. Example 1 Consder matrx A whch s of order , where the matrx B s of order B I I B I A =, I I B where B = The computed three bggest egenvalues together wth CPU tmes by (Modfed) block Jacob-Davdson Method are lsted n the Table 1. The Tolerances for the two methods are The results show that the modfed block Jacob- Davdson method can accelerate the convergence speed by usng extrapolaton technque. IJNS emal for contrbuton: edtor@nonlnearscence.org.uk

4 Hongy Mao: Modfed Block Jacob-Davdson Method for Solvng Large Sparse Egenproblems 191 Table 1: The results for the bggest three egenvalues of A Algorthm egenvalues CPU tme (s) BJD MBJD Example 2 Consder matrx A whch s of order , where the matrx B s of order B I A = I B I, I B where B = Table 2: The results for the bggest four egenvalues of A Algorthm egenvalues CPU tme (s) BJD ILUBJD The computed four bggest egenvalues together wth CPU tmes by block Jacob-Davdson Method wth ILU precondtoner are lsted n the Table 2. The Tolerances for the two methods are The results show that the block Jacob-Davdson method wth ILU decomposton precondtoner when solvng the correcton equaton can accelerate the convergence speed. Acknowledgments The authors would lke to thank the referees for ther valuable comments and suggestons whch mprove the manuscrpt greatly. References [1] A. A. Nftyevl and R.F.Efendev. Varable doman egenvalue problems for the laplace operator wth densty. Internatonal Journal of Nonlnear Scence, 16(2013): IJNS homepage:

5 192 Internatonal Journal of Nonlnear Scence, Vol.17(2014), No.2, pp [2] R. Sngh and J.Kumar. Computaton of Egenvalues of Sngular Sturm-Louvlle Problems usng Modfed Adoman Decomposton Method. Internatonal Journal of Nonlnear Scence, 15(2013): [3] G. L. Sleljpen and H.A.Van Der Vorst. A Jacob-Davdson method for lnear egenvalue problems. SIAM Revew, 42(2000): [4] M.Crouzex, B.Phlppe and M.Sadkane, The Davdson method. SIAM Journal on Scentfc Computng, 15(1994): [5] E.R.Davdson. The teratve calculaton of a few of the lowest egenvalue and correspondng egenvectors of large real-symmetrc matrces. Journal of Computatonal Physcs, 17(1975): [6] G. L. Sleljpen and H.A.Van Der Vorst. A Jacob-Davdson style QR and QZ algorthms for the partal reducton of matrx pencls. SIAM Journal on Scentfc Computng, 20(1998): IJNS emal for contrbuton: edtor@nonlnearscence.org.uk

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

More information

Inexact Newton Methods for Inverse Eigenvalue Problems

Inexact Newton Methods for Inverse Eigenvalue Problems Inexact Newton Methods for Inverse Egenvalue Problems Zheng-jan Ba Abstract In ths paper, we survey some of the latest development n usng nexact Newton-lke methods for solvng nverse egenvalue problems.

More information

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 16

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 16 STAT 39: MATHEMATICAL COMPUTATIONS I FALL 218 LECTURE 16 1 why teratve methods f we have a lnear system Ax = b where A s very, very large but s ether sparse or structured (eg, banded, Toepltz, banded plus

More information

Singular Value Decomposition: Theory and Applications

Singular Value Decomposition: Theory and Applications Sngular Value Decomposton: Theory and Applcatons Danel Khashab Sprng 2015 Last Update: March 2, 2015 1 Introducton A = UDV where columns of U and V are orthonormal and matrx D s dagonal wth postve real

More information

Developing an Improved Shift-and-Invert Arnoldi Method

Developing an Improved Shift-and-Invert Arnoldi Method Avalable at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 93-9466 Vol. 5, Issue (June 00) pp. 67-80 (Prevously, Vol. 5, No. ) Applcatons and Appled Mathematcs: An Internatonal Journal (AAM) Developng an

More information

Yong Joon Ryang. 1. Introduction Consider the multicommodity transportation problem with convex quadratic cost function. 1 2 (x x0 ) T Q(x x 0 )

Yong Joon Ryang. 1. Introduction Consider the multicommodity transportation problem with convex quadratic cost function. 1 2 (x x0 ) T Q(x x 0 ) Kangweon-Kyungk Math. Jour. 4 1996), No. 1, pp. 7 16 AN ITERATIVE ROW-ACTION METHOD FOR MULTICOMMODITY TRANSPORTATION PROBLEMS Yong Joon Ryang Abstract. The optmzaton problems wth quadratc constrants often

More information

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 17. a ij x (k) b i. a ij x (k+1) (D + L)x (k+1) = b Ux (k)

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 17. a ij x (k) b i. a ij x (k+1) (D + L)x (k+1) = b Ux (k) STAT 309: MATHEMATICAL COMPUTATIONS I FALL 08 LECTURE 7. sor method remnder: n coordnatewse form, Jacob method s = [ b a x (k) a and Gauss Sedel method s = [ b a = = remnder: n matrx form, Jacob method

More information

A Hybrid Variational Iteration Method for Blasius Equation

A Hybrid Variational Iteration Method for Blasius Equation Avalable at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 1932-9466 Vol. 10, Issue 1 (June 2015), pp. 223-229 Applcatons and Appled Mathematcs: An Internatonal Journal (AAM) A Hybrd Varatonal Iteraton Method

More information

A new Approach for Solving Linear Ordinary Differential Equations

A new Approach for Solving Linear Ordinary Differential Equations , ISSN 974-57X (Onlne), ISSN 974-5718 (Prnt), Vol. ; Issue No. 1; Year 14, Copyrght 13-14 by CESER PUBLICATIONS A new Approach for Solvng Lnear Ordnary Dfferental Equatons Fawz Abdelwahd Department of

More information

Vector Norms. Chapter 7 Iterative Techniques in Matrix Algebra. Cauchy-Bunyakovsky-Schwarz Inequality for Sums. Distances. Convergence.

Vector Norms. Chapter 7 Iterative Techniques in Matrix Algebra. Cauchy-Bunyakovsky-Schwarz Inequality for Sums. Distances. Convergence. Vector Norms Chapter 7 Iteratve Technques n Matrx Algebra Per-Olof Persson persson@berkeley.edu Department of Mathematcs Unversty of Calforna, Berkeley Math 128B Numercal Analyss Defnton A vector norm

More information

Deriving the X-Z Identity from Auxiliary Space Method

Deriving the X-Z Identity from Auxiliary Space Method Dervng the X-Z Identty from Auxlary Space Method Long Chen Department of Mathematcs, Unversty of Calforna at Irvne, Irvne, CA 92697 chenlong@math.uc.edu 1 Iteratve Methods In ths paper we dscuss teratve

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

MMA and GCMMA two methods for nonlinear optimization

MMA and GCMMA two methods for nonlinear optimization MMA and GCMMA two methods for nonlnear optmzaton Krster Svanberg Optmzaton and Systems Theory, KTH, Stockholm, Sweden. krlle@math.kth.se Ths note descrbes the algorthms used n the author s 2007 mplementatons

More information

ρ some λ THE INVERSE POWER METHOD (or INVERSE ITERATION) , for , or (more usually) to

ρ some λ THE INVERSE POWER METHOD (or INVERSE ITERATION) , for , or (more usually) to THE INVERSE POWER METHOD (or INVERSE ITERATION) -- applcaton of the Power method to A some fxed constant ρ (whch s called a shft), x λ ρ If the egenpars of A are { ( λ, x ) } ( ), or (more usually) to,

More information

The Study of Teaching-learning-based Optimization Algorithm

The Study of Teaching-learning-based Optimization Algorithm Advanced Scence and Technology Letters Vol. (AST 06), pp.05- http://dx.do.org/0.57/astl.06. The Study of Teachng-learnng-based Optmzaton Algorthm u Sun, Yan fu, Lele Kong, Haolang Q,, Helongang Insttute

More information

Errors for Linear Systems

Errors for Linear Systems Errors for Lnear Systems When we solve a lnear system Ax b we often do not know A and b exactly, but have only approxmatons  and ˆb avalable. Then the best thng we can do s to solve ˆx ˆb exactly whch

More information

Norms, Condition Numbers, Eigenvalues and Eigenvectors

Norms, Condition Numbers, Eigenvalues and Eigenvectors Norms, Condton Numbers, Egenvalues and Egenvectors 1 Norms A norm s a measure of the sze of a matrx or a vector For vectors the common norms are: N a 2 = ( x 2 1/2 the Eucldean Norm (1a b 1 = =1 N x (1b

More information

Finding The Rightmost Eigenvalues of Large Sparse Non-Symmetric Parameterized Eigenvalue Problem

Finding The Rightmost Eigenvalues of Large Sparse Non-Symmetric Parameterized Eigenvalue Problem Fndng he Rghtmost Egenvalues of Large Sparse Non-Symmetrc Parameterzed Egenvalue Problem Mnghao Wu AMSC Program mwu@math.umd.edu Advsor: Professor Howard Elman Department of Computer Scences elman@cs.umd.edu

More information

Dynamic Programming. Preview. Dynamic Programming. Dynamic Programming. Dynamic Programming (Example: Fibonacci Sequence)

Dynamic Programming. Preview. Dynamic Programming. Dynamic Programming. Dynamic Programming (Example: Fibonacci Sequence) /24/27 Prevew Fbonacc Sequence Longest Common Subsequence Dynamc programmng s a method for solvng complex problems by breakng them down nto smpler sub-problems. It s applcable to problems exhbtng the propertes

More information

Some Comments on Accelerating Convergence of Iterative Sequences Using Direct Inversion of the Iterative Subspace (DIIS)

Some Comments on Accelerating Convergence of Iterative Sequences Using Direct Inversion of the Iterative Subspace (DIIS) Some Comments on Acceleratng Convergence of Iteratve Sequences Usng Drect Inverson of the Iteratve Subspace (DIIS) C. Davd Sherrll School of Chemstry and Bochemstry Georga Insttute of Technology May 1998

More information

A New Refinement of Jacobi Method for Solution of Linear System Equations AX=b

A New Refinement of Jacobi Method for Solution of Linear System Equations AX=b Int J Contemp Math Scences, Vol 3, 28, no 17, 819-827 A New Refnement of Jacob Method for Soluton of Lnear System Equatons AX=b F Naem Dafchah Department of Mathematcs, Faculty of Scences Unversty of Gulan,

More information

The FEAST Algorithm for Sparse Symmetric Eigenvalue Problems

The FEAST Algorithm for Sparse Symmetric Eigenvalue Problems The FEAST Algorthm for Sparse Symmetrc Egenvalue Problems Susanne Bradley Department of Computer Scence, Unversty of Brtsh Columba Abstract The FEAST algorthm s a method for computng extreme or nteror

More information

COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS

COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS Avalable onlne at http://sck.org J. Math. Comput. Sc. 3 (3), No., 6-3 ISSN: 97-537 COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS

More information

The lower and upper bounds on Perron root of nonnegative irreducible matrices

The lower and upper bounds on Perron root of nonnegative irreducible matrices Journal of Computatonal Appled Mathematcs 217 (2008) 259 267 wwwelsevercom/locate/cam The lower upper bounds on Perron root of nonnegatve rreducble matrces Guang-Xn Huang a,, Feng Yn b,keguo a a College

More information

Lecture 3. Ax x i a i. i i

Lecture 3. Ax x i a i. i i 18.409 The Behavor of Algorthms n Practce 2/14/2 Lecturer: Dan Spelman Lecture 3 Scrbe: Arvnd Sankar 1 Largest sngular value In order to bound the condton number, we need an upper bound on the largest

More information

Solving Fractional Nonlinear Fredholm Integro-differential Equations via Hybrid of Rationalized Haar Functions

Solving Fractional Nonlinear Fredholm Integro-differential Equations via Hybrid of Rationalized Haar Functions ISSN 746-7659 England UK Journal of Informaton and Computng Scence Vol. 9 No. 3 4 pp. 69-8 Solvng Fractonal Nonlnear Fredholm Integro-dfferental Equatons va Hybrd of Ratonalzed Haar Functons Yadollah Ordokhan

More information

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0 MODULE 2 Topcs: Lnear ndependence, bass and dmenson We have seen that f n a set of vectors one vector s a lnear combnaton of the remanng vectors n the set then the span of the set s unchanged f that vector

More information

= = = (a) Use the MATLAB command rref to solve the system. (b) Let A be the coefficient matrix and B be the right-hand side of the system.

= = = (a) Use the MATLAB command rref to solve the system. (b) Let A be the coefficient matrix and B be the right-hand side of the system. Chapter Matlab Exercses Chapter Matlab Exercses. Consder the lnear system of Example n Secton.. x x x y z y y z (a) Use the MATLAB command rref to solve the system. (b) Let A be the coeffcent matrx and

More information

Chapter 12. Ordinary Differential Equation Boundary Value (BV) Problems

Chapter 12. Ordinary Differential Equation Boundary Value (BV) Problems Chapter. Ordnar Dfferental Equaton Boundar Value (BV) Problems In ths chapter we wll learn how to solve ODE boundar value problem. BV ODE s usuall gven wth x beng the ndependent space varable. p( x) q(

More information

Overlapping additive and multiplicative Schwarz iterations for H -matrices

Overlapping additive and multiplicative Schwarz iterations for H -matrices Lnear Algebra and ts Applcatons 393 (2004) 91 105 www.elsever.com/locate/laa Overlappng addtve and multplcatve Schwarz teratons for H -matrces Rafael Bru a,1, Francsco Pedroche a, Danel B. Szyld b,,2 a

More information

829. An adaptive method for inertia force identification in cantilever under moving mass

829. An adaptive method for inertia force identification in cantilever under moving mass 89. An adaptve method for nerta force dentfcaton n cantlever under movng mass Qang Chen 1, Mnzhuo Wang, Hao Yan 3, Haonan Ye 4, Guola Yang 5 1,, 3, 4 Department of Control and System Engneerng, Nanng Unversty,

More information

Feb 14: Spatial analysis of data fields

Feb 14: Spatial analysis of data fields Feb 4: Spatal analyss of data felds Mappng rregularly sampled data onto a regular grd Many analyss technques for geophyscal data requre the data be located at regular ntervals n space and/or tme. hs s

More information

EFFICIENT DOMAIN DECOMPOSITION METHOD FOR ACOUSTIC SCATTERING IN MULTI-LAYERED MEDIA

EFFICIENT DOMAIN DECOMPOSITION METHOD FOR ACOUSTIC SCATTERING IN MULTI-LAYERED MEDIA European Conference on Computatonal Flud Dynamcs ECCOMAS CFD 2006 P. Wesselng, E. Oñate and J. Péraux (Eds) c TU Delft, The Netherlands, 2006 EFFICIENT DOMAIN DECOMPOSITION METHOD FOR ACOUSTIC SCATTERING

More information

1 GSW Iterative Techniques for y = Ax

1 GSW Iterative Techniques for y = Ax 1 for y = A I m gong to cheat here. here are a lot of teratve technques that can be used to solve the general case of a set of smultaneous equatons (wrtten n the matr form as y = A), but ths chapter sn

More information

NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS

NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS IJRRAS 8 (3 September 011 www.arpapress.com/volumes/vol8issue3/ijrras_8_3_08.pdf NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS H.O. Bakodah Dept. of Mathematc

More information

Appendix B. The Finite Difference Scheme

Appendix B. The Finite Difference Scheme 140 APPENDIXES Appendx B. The Fnte Dfference Scheme In ths appendx we present numercal technques whch are used to approxmate solutons of system 3.1 3.3. A comprehensve treatment of theoretcal and mplementaton

More information

DFT with Planewaves pseudopotential accuracy (LDA, PBE) Fast time to solution 1 step in minutes (not hours!!!) to be useful for MD

DFT with Planewaves pseudopotential accuracy (LDA, PBE) Fast time to solution 1 step in minutes (not hours!!!) to be useful for MD LLNL-PRES-673679 Ths work was performed under the auspces of the U.S. Department of Energy by under contract DE-AC52-07NA27344. Lawrence Lvermore Natonal Securty, LLC Sequoa, IBM BGQ, 1,572,864 cores O(N)

More information

FUZZY GOAL PROGRAMMING VS ORDINARY FUZZY PROGRAMMING APPROACH FOR MULTI OBJECTIVE PROGRAMMING PROBLEM

FUZZY GOAL PROGRAMMING VS ORDINARY FUZZY PROGRAMMING APPROACH FOR MULTI OBJECTIVE PROGRAMMING PROBLEM Internatonal Conference on Ceramcs, Bkaner, Inda Internatonal Journal of Modern Physcs: Conference Seres Vol. 22 (2013) 757 761 World Scentfc Publshng Company DOI: 10.1142/S2010194513010982 FUZZY GOAL

More information

A MODIFIED METHOD FOR SOLVING SYSTEM OF NONLINEAR EQUATIONS

A MODIFIED METHOD FOR SOLVING SYSTEM OF NONLINEAR EQUATIONS Journal of Mathematcs and Statstcs 9 (1): 4-8, 1 ISSN 1549-644 1 Scence Publcatons do:1.844/jmssp.1.4.8 Publshed Onlne 9 (1) 1 (http://www.thescpub.com/jmss.toc) A MODIFIED METHOD FOR SOLVING SYSTEM OF

More information

for Linear Systems With Strictly Diagonally Dominant Matrix

for Linear Systems With Strictly Diagonally Dominant Matrix MATHEMATICS OF COMPUTATION, VOLUME 35, NUMBER 152 OCTOBER 1980, PAGES 1269-1273 On an Accelerated Overrelaxaton Iteratve Method for Lnear Systems Wth Strctly Dagonally Domnant Matrx By M. Madalena Martns*

More information

Numerical Properties of the LLL Algorithm

Numerical Properties of the LLL Algorithm Numercal Propertes of the LLL Algorthm Frankln T. Luk a and Sanzheng Qao b a Department of Mathematcs, Hong Kong Baptst Unversty, Kowloon Tong, Hong Kong b Dept. of Computng and Software, McMaster Unv.,

More information

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 13

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 13 CME 30: NUMERICAL LINEAR ALGEBRA FALL 005/06 LECTURE 13 GENE H GOLUB 1 Iteratve Methods Very large problems (naturally sparse, from applcatons): teratve methods Structured matrces (even sometmes dense,

More information

One-sided finite-difference approximations suitable for use with Richardson extrapolation

One-sided finite-difference approximations suitable for use with Richardson extrapolation Journal of Computatonal Physcs 219 (2006) 13 20 Short note One-sded fnte-dfference approxmatons sutable for use wth Rchardson extrapolaton Kumar Rahul, S.N. Bhattacharyya * Department of Mechancal Engneerng,

More information

Nonlinear Overlapping Domain Decomposition Methods

Nonlinear Overlapping Domain Decomposition Methods Nonlnear Overlappng Doman Decomposton Methods Xao-Chuan Ca 1 Department of Computer Scence, Unversty of Colorado at Boulder, Boulder, CO 80309, ca@cs.colorado.edu Summary. We dscuss some overlappng doman

More information

Number of cases Number of factors Number of covariates Number of levels of factor i. Value of the dependent variable for case k

Number of cases Number of factors Number of covariates Number of levels of factor i. Value of the dependent variable for case k ANOVA Model and Matrx Computatons Notaton The followng notaton s used throughout ths chapter unless otherwse stated: N F CN Y Z j w W Number of cases Number of factors Number of covarates Number of levels

More information

Global Sensitivity. Tuesday 20 th February, 2018

Global Sensitivity. Tuesday 20 th February, 2018 Global Senstvty Tuesday 2 th February, 28 ) Local Senstvty Most senstvty analyses [] are based on local estmates of senstvty, typcally by expandng the response n a Taylor seres about some specfc values

More information

Lecture 21: Numerical methods for pricing American type derivatives

Lecture 21: Numerical methods for pricing American type derivatives Lecture 21: Numercal methods for prcng Amercan type dervatves Xaoguang Wang STAT 598W Aprl 10th, 2014 (STAT 598W) Lecture 21 1 / 26 Outlne 1 Fnte Dfference Method Explct Method Penalty Method (STAT 598W)

More information

The Order Relation and Trace Inequalities for. Hermitian Operators

The Order Relation and Trace Inequalities for. Hermitian Operators Internatonal Mathematcal Forum, Vol 3, 08, no, 507-57 HIKARI Ltd, wwwm-hkarcom https://doorg/0988/mf088055 The Order Relaton and Trace Inequaltes for Hermtan Operators Y Huang School of Informaton Scence

More information

ON COMPUTING MAXIMUM/MINIMUM SINGULAR VALUES OF A GENERALIZED TENSOR SUM

ON COMPUTING MAXIMUM/MINIMUM SINGULAR VALUES OF A GENERALIZED TENSOR SUM Electronc Transactons on Numercal Analyss. Volume 43, pp. 244 254, 215. Copyrght c 215, Kent State Unversty. ISSN 168 9613. ETNA Kent State Unversty ON COMPUTING MAXIMUM/MINIMUM SINGULAR VALUES OF A GENERALIZED

More information

8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS

8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS SECTION 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS 493 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS All the vector spaces you have studed thus far n the text are real vector spaces because the scalars

More information

A FORMULA FOR COMPUTING INTEGER POWERS FOR ONE TYPE OF TRIDIAGONAL MATRIX

A FORMULA FOR COMPUTING INTEGER POWERS FOR ONE TYPE OF TRIDIAGONAL MATRIX Hacettepe Journal of Mathematcs and Statstcs Volume 393 0 35 33 FORMUL FOR COMPUTING INTEGER POWERS FOR ONE TYPE OF TRIDIGONL MTRIX H Kıyak I Gürses F Yılmaz and D Bozkurt Receved :08 :009 : ccepted 5

More information

Preconditioning techniques in Chebyshev collocation method for elliptic equations

Preconditioning techniques in Chebyshev collocation method for elliptic equations Precondtonng technques n Chebyshev collocaton method for ellptc equatons Zh-We Fang Je Shen Ha-We Sun (n memory of late Professor Benyu Guo Abstract When one approxmates ellptc equatons by the spectral

More information

Linear Feature Engineering 11

Linear Feature Engineering 11 Lnear Feature Engneerng 11 2 Least-Squares 2.1 Smple least-squares Consder the followng dataset. We have a bunch of nputs x and correspondng outputs y. The partcular values n ths dataset are x y 0.23 0.19

More information

Matrix Approximation via Sampling, Subspace Embedding. 1 Solving Linear Systems Using SVD

Matrix Approximation via Sampling, Subspace Embedding. 1 Solving Linear Systems Using SVD Matrx Approxmaton va Samplng, Subspace Embeddng Lecturer: Anup Rao Scrbe: Rashth Sharma, Peng Zhang 0/01/016 1 Solvng Lnear Systems Usng SVD Two applcatons of SVD have been covered so far. Today we loo

More information

On the Interval Zoro Symmetric Single-step Procedure for Simultaneous Finding of Polynomial Zeros

On the Interval Zoro Symmetric Single-step Procedure for Simultaneous Finding of Polynomial Zeros Appled Mathematcal Scences, Vol. 5, 2011, no. 75, 3693-3706 On the Interval Zoro Symmetrc Sngle-step Procedure for Smultaneous Fndng of Polynomal Zeros S. F. M. Rusl, M. Mons, M. A. Hassan and W. J. Leong

More information

Nahid Emad. Abstract. the Explicitly Restarted Block Arnoldi method. Some restarting strategies for MERAM are given.

Nahid Emad. Abstract. the Explicitly Restarted Block Arnoldi method. Some restarting strategies for MERAM are given. A Generalzaton of Explctly Restarted Block Arnold Method Nahd Emad Abstract The Multple Explctly Restarted Arnold s a technque based upon a multple use of Explctly Restarted Arnold method to accelerate

More information

The Two-scale Finite Element Errors Analysis for One Class of Thermoelastic Problem in Periodic Composites

The Two-scale Finite Element Errors Analysis for One Class of Thermoelastic Problem in Periodic Composites 7 Asa-Pacfc Engneerng Technology Conference (APETC 7) ISBN: 978--6595-443- The Two-scale Fnte Element Errors Analyss for One Class of Thermoelastc Problem n Perodc Compostes Xaoun Deng Mngxang Deng ABSTRACT

More information

4DVAR, according to the name, is a four-dimensional variational method.

4DVAR, according to the name, is a four-dimensional variational method. 4D-Varatonal Data Assmlaton (4D-Var) 4DVAR, accordng to the name, s a four-dmensonal varatonal method. 4D-Var s actually a drect generalzaton of 3D-Var to handle observatons that are dstrbuted n tme. The

More information

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE Analytcal soluton s usually not possble when exctaton vares arbtrarly wth tme or f the system s nonlnear. Such problems can be solved by numercal tmesteppng

More information

Convexity preserving interpolation by splines of arbitrary degree

Convexity preserving interpolation by splines of arbitrary degree Computer Scence Journal of Moldova, vol.18, no.1(52), 2010 Convexty preservng nterpolaton by splnes of arbtrary degree Igor Verlan Abstract In the present paper an algorthm of C 2 nterpolaton of dscrete

More information

The Minimum Universal Cost Flow in an Infeasible Flow Network

The Minimum Universal Cost Flow in an Infeasible Flow Network Journal of Scences, Islamc Republc of Iran 17(2): 175-180 (2006) Unversty of Tehran, ISSN 1016-1104 http://jscencesutacr The Mnmum Unversal Cost Flow n an Infeasble Flow Network H Saleh Fathabad * M Bagheran

More information

Quantum Mechanics I - Session 4

Quantum Mechanics I - Session 4 Quantum Mechancs I - Sesson 4 Aprl 3, 05 Contents Operators Change of Bass 4 3 Egenvectors and Egenvalues 5 3. Denton....................................... 5 3. Rotaton n D....................................

More information

p 1 c 2 + p 2 c 2 + p 3 c p m c 2

p 1 c 2 + p 2 c 2 + p 3 c p m c 2 Where to put a faclty? Gven locatons p 1,..., p m n R n of m houses, want to choose a locaton c n R n for the fre staton. Want c to be as close as possble to all the house. We know how to measure dstance

More information

6.3.4 Modified Euler s method of integration

6.3.4 Modified Euler s method of integration 6.3.4 Modfed Euler s method of ntegraton Before dscussng the applcaton of Euler s method for solvng the swng equatons, let us frst revew the basc Euler s method of numercal ntegraton. Let the general from

More information

Non-linear Canonical Correlation Analysis Using a RBF Network

Non-linear Canonical Correlation Analysis Using a RBF Network ESANN' proceedngs - European Smposum on Artfcal Neural Networks Bruges (Belgum), 4-6 Aprl, d-sde publ., ISBN -97--, pp. 57-5 Non-lnear Canoncal Correlaton Analss Usng a RBF Network Sukhbnder Kumar, Elane

More information

Lecture Notes on Linear Regression

Lecture Notes on Linear Regression Lecture Notes on Lnear Regresson Feng L fl@sdueducn Shandong Unversty, Chna Lnear Regresson Problem In regresson problem, we am at predct a contnuous target value gven an nput feature vector We assume

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017 U.C. Berkeley CS94: Beyond Worst-Case Analyss Handout 4s Luca Trevsan September 5, 07 Summary of Lecture 4 In whch we ntroduce semdefnte programmng and apply t to Max Cut. Semdefnte Programmng Recall that

More information

Consistency & Convergence

Consistency & Convergence /9/007 CHE 374 Computatonal Methods n Engneerng Ordnary Dfferental Equatons Consstency, Convergence, Stablty, Stffness and Adaptve and Implct Methods ODE s n MATLAB, etc Consstency & Convergence Consstency

More information

CSCE 790S Background Results

CSCE 790S Background Results CSCE 790S Background Results Stephen A. Fenner September 8, 011 Abstract These results are background to the course CSCE 790S/CSCE 790B, Quantum Computaton and Informaton (Sprng 007 and Fall 011). Each

More information

New Method for Solving Poisson Equation. on Irregular Domains

New Method for Solving Poisson Equation. on Irregular Domains Appled Mathematcal Scences Vol. 6 01 no. 8 369 380 New Method for Solvng Posson Equaton on Irregular Domans J. Izadan and N. Karamooz Department of Mathematcs Facult of Scences Mashhad BranchIslamc Azad

More information

A PROBABILITY-DRIVEN SEARCH ALGORITHM FOR SOLVING MULTI-OBJECTIVE OPTIMIZATION PROBLEMS

A PROBABILITY-DRIVEN SEARCH ALGORITHM FOR SOLVING MULTI-OBJECTIVE OPTIMIZATION PROBLEMS HCMC Unversty of Pedagogy Thong Nguyen Huu et al. A PROBABILITY-DRIVEN SEARCH ALGORITHM FOR SOLVING MULTI-OBJECTIVE OPTIMIZATION PROBLEMS Thong Nguyen Huu and Hao Tran Van Department of mathematcs-nformaton,

More information

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009 College of Computer & Informaton Scence Fall 2009 Northeastern Unversty 20 October 2009 CS7880: Algorthmc Power Tools Scrbe: Jan Wen and Laura Poplawsk Lecture Outlne: Prmal-dual schema Network Desgn:

More information

SIO 224. m(r) =(ρ(r),k s (r),µ(r))

SIO 224. m(r) =(ρ(r),k s (r),µ(r)) SIO 224 1. A bref look at resoluton analyss Here s some background for the Masters and Gubbns resoluton paper. Global Earth models are usually found teratvely by assumng a startng model and fndng small

More information

The Exact Formulation of the Inverse of the Tridiagonal Matrix for Solving the 1D Poisson Equation with the Finite Difference Method

The Exact Formulation of the Inverse of the Tridiagonal Matrix for Solving the 1D Poisson Equation with the Finite Difference Method Journal of Electromagnetc Analyss and Applcatons, 04, 6, 0-08 Publshed Onlne September 04 n ScRes. http://www.scrp.org/journal/jemaa http://dx.do.org/0.46/jemaa.04.6000 The Exact Formulaton of the Inverse

More information

Perfect Fluid Cosmological Model in the Frame Work Lyra s Manifold

Perfect Fluid Cosmological Model in the Frame Work Lyra s Manifold Prespacetme Journal December 06 Volume 7 Issue 6 pp. 095-099 Pund, A. M. & Avachar, G.., Perfect Flud Cosmologcal Model n the Frame Work Lyra s Manfold Perfect Flud Cosmologcal Model n the Frame Work Lyra

More information

form, and they present results of tests comparng the new algorthms wth other methods. Recently, Olschowka & Neumaer [7] ntroduced another dea for choo

form, and they present results of tests comparng the new algorthms wth other methods. Recently, Olschowka & Neumaer [7] ntroduced another dea for choo Scalng and structural condton numbers Arnold Neumaer Insttut fur Mathematk, Unverstat Wen Strudlhofgasse 4, A-1090 Wen, Austra emal: neum@cma.unve.ac.at revsed, August 1996 Abstract. We ntroduce structural

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

CS4495/6495 Introduction to Computer Vision. 3C-L3 Calibrating cameras

CS4495/6495 Introduction to Computer Vision. 3C-L3 Calibrating cameras CS4495/6495 Introducton to Computer Vson 3C-L3 Calbratng cameras Fnally (last tme): Camera parameters Projecton equaton the cumulatve effect of all parameters: M (3x4) f s x ' 1 0 0 0 c R 0 I T 3 3 3 x1

More information

Fixed point method and its improvement for the system of Volterra-Fredholm integral equations of the second kind

Fixed point method and its improvement for the system of Volterra-Fredholm integral equations of the second kind MATEMATIKA, 217, Volume 33, Number 2, 191 26 c Penerbt UTM Press. All rghts reserved Fxed pont method and ts mprovement for the system of Volterra-Fredholm ntegral equatons of the second knd 1 Talaat I.

More information

General viscosity iterative method for a sequence of quasi-nonexpansive mappings

General viscosity iterative method for a sequence of quasi-nonexpansive mappings Avalable onlne at www.tjnsa.com J. Nonlnear Sc. Appl. 9 (2016), 5672 5682 Research Artcle General vscosty teratve method for a sequence of quas-nonexpansve mappngs Cuje Zhang, Ynan Wang College of Scence,

More information

On an Extension of Stochastic Approximation EM Algorithm for Incomplete Data Problems. Vahid Tadayon 1

On an Extension of Stochastic Approximation EM Algorithm for Incomplete Data Problems. Vahid Tadayon 1 On an Extenson of Stochastc Approxmaton EM Algorthm for Incomplete Data Problems Vahd Tadayon Abstract: The Stochastc Approxmaton EM (SAEM algorthm, a varant stochastc approxmaton of EM, s a versatle tool

More information

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 8 Luca Trevisan February 17, 2016

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 8 Luca Trevisan February 17, 2016 U.C. Berkeley CS94: Spectral Methods and Expanders Handout 8 Luca Trevsan February 7, 06 Lecture 8: Spectral Algorthms Wrap-up In whch we talk about even more generalzatons of Cheeger s nequaltes, and

More information

Comparison of Wiener Filter solution by SVD with decompositions QR and QLP

Comparison of Wiener Filter solution by SVD with decompositions QR and QLP Proceedngs of the 6th WSEAS Int Conf on Artfcal Intellgence, Knowledge Engneerng and Data Bases, Corfu Island, Greece, February 6-9, 007 7 Comparson of Wener Flter soluton by SVD wth decompostons QR and

More information

EEL 6266 Power System Operation and Control. Chapter 3 Economic Dispatch Using Dynamic Programming

EEL 6266 Power System Operation and Control. Chapter 3 Economic Dispatch Using Dynamic Programming EEL 6266 Power System Operaton and Control Chapter 3 Economc Dspatch Usng Dynamc Programmng Pecewse Lnear Cost Functons Common practce many utltes prefer to represent ther generator cost functons as sngle-

More information

PRECONDITIONING TECHNIQUES IN CHEBYSHEV COLLOCATION METHOD FOR ELLIPTIC EQUATIONS

PRECONDITIONING TECHNIQUES IN CHEBYSHEV COLLOCATION METHOD FOR ELLIPTIC EQUATIONS ITERATIOAL JOURAL OF UMERICAL AALYSIS AD MODELIG Volume 15 umber 1-2 Pages 277 287 c 2018 Insttute for Scentfc Computng and Informaton PRECODITIOIG TECHIQUES I CHEBYSHEV COLLOCATIO METHOD FOR ELLIPTIC

More information

Solution of Linear System of Equations and Matrix Inversion Gauss Seidel Iteration Method

Solution of Linear System of Equations and Matrix Inversion Gauss Seidel Iteration Method Soluton of Lnear System of Equatons and Matr Inverson Gauss Sedel Iteraton Method It s another well-known teratve method for solvng a system of lnear equatons of the form a + a22 + + ann = b a2 + a222

More information

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system Transfer Functons Convenent representaton of a lnear, dynamc model. A transfer functon (TF) relates one nput and one output: x t X s y t system Y s The followng termnology s used: x y nput output forcng

More information

Min Cut, Fast Cut, Polynomial Identities

Min Cut, Fast Cut, Polynomial Identities Randomzed Algorthms, Summer 016 Mn Cut, Fast Cut, Polynomal Identtes Instructor: Thomas Kesselhem and Kurt Mehlhorn 1 Mn Cuts n Graphs Lecture (5 pages) Throughout ths secton, G = (V, E) s a mult-graph.

More information

Implicit Integration Henyey Method

Implicit Integration Henyey Method Implct Integraton Henyey Method In realstc stellar evoluton codes nstead of a drect ntegraton usng for example the Runge-Kutta method one employs an teratve mplct technque. Ths s because the structure

More information

Relaxation Methods for Iterative Solution to Linear Systems of Equations

Relaxation Methods for Iterative Solution to Linear Systems of Equations Relaxaton Methods for Iteratve Soluton to Lnear Systems of Equatons Gerald Recktenwald Portland State Unversty Mechancal Engneerng Department gerry@pdx.edu Overvew Techncal topcs Basc Concepts Statonary

More information

Finite Element Modelling of truss/cable structures

Finite Element Modelling of truss/cable structures Pet Schreurs Endhoven Unversty of echnology Department of Mechancal Engneerng Materals echnology November 3, 214 Fnte Element Modellng of truss/cable structures 1 Fnte Element Analyss of prestressed structures

More information

Kernel Methods and SVMs Extension

Kernel Methods and SVMs Extension Kernel Methods and SVMs Extenson The purpose of ths document s to revew materal covered n Machne Learnng 1 Supervsed Learnng regardng support vector machnes (SVMs). Ths document also provdes a general

More information

On a direct solver for linear least squares problems

On a direct solver for linear least squares problems ISSN 2066-6594 Ann. Acad. Rom. Sc. Ser. Math. Appl. Vol. 8, No. 2/2016 On a drect solver for lnear least squares problems Constantn Popa Abstract The Null Space (NS) algorthm s a drect solver for lnear

More information

Solving Nonlinear Differential Equations by a Neural Network Method

Solving Nonlinear Differential Equations by a Neural Network Method Solvng Nonlnear Dfferental Equatons by a Neural Network Method Luce P. Aarts and Peter Van der Veer Delft Unversty of Technology, Faculty of Cvlengneerng and Geoscences, Secton of Cvlengneerng Informatcs,

More information

SOLVING NON-LINEAR SYSTEMS BY NEWTON s METHOD USING SPREADSHEET EXCEL Tay Kim Gaik Universiti Tun Hussein Onn Malaysia

SOLVING NON-LINEAR SYSTEMS BY NEWTON s METHOD USING SPREADSHEET EXCEL Tay Kim Gaik Universiti Tun Hussein Onn Malaysia SOLVING NON-LINEAR SYSTEMS BY NEWTON s METHOD USING SPREADSHEET EXCEL Tay Km Gak Unverst Tun Hussen Onn Malaysa Kek Se Long Unverst Tun Hussen Onn Malaysa Rosmla Abdul-Kahar

More information

Report on Image warping

Report on Image warping Report on Image warpng Xuan Ne, Dec. 20, 2004 Ths document summarzed the algorthms of our mage warpng soluton for further study, and there s a detaled descrpton about the mplementaton of these algorthms.

More information

The Analytical Solution of a System of Nonlinear Differential Equations

The Analytical Solution of a System of Nonlinear Differential Equations Int. Journal of Math. Analyss, Vol. 1, 007, no. 10, 451-46 The Analytcal Soluton of a System of Nonlnear Dfferental Equatons Yunhu L a, Fazhan Geng b and Mnggen Cu b1 a Dept. of Math., Harbn Unversty Harbn,

More information

The Synchronous 8th-Order Differential Attack on 12 Rounds of the Block Cipher HyRAL

The Synchronous 8th-Order Differential Attack on 12 Rounds of the Block Cipher HyRAL The Synchronous 8th-Order Dfferental Attack on 12 Rounds of the Block Cpher HyRAL Yasutaka Igarash, Sej Fukushma, and Tomohro Hachno Kagoshma Unversty, Kagoshma, Japan Emal: {garash, fukushma, hachno}@eee.kagoshma-u.ac.jp

More information

Comparison of the Population Variance Estimators. of 2-Parameter Exponential Distribution Based on. Multiple Criteria Decision Making Method

Comparison of the Population Variance Estimators. of 2-Parameter Exponential Distribution Based on. Multiple Criteria Decision Making Method Appled Mathematcal Scences, Vol. 7, 0, no. 47, 07-0 HIARI Ltd, www.m-hkar.com Comparson of the Populaton Varance Estmators of -Parameter Exponental Dstrbuton Based on Multple Crtera Decson Makng Method

More information