Simultaneous Optimization of Berth Allocation, Quay Crane Assignment and Quay Crane Scheduling Problems in Container Terminals

Size: px
Start display at page:

Download "Simultaneous Optimization of Berth Allocation, Quay Crane Assignment and Quay Crane Scheduling Problems in Container Terminals"

Transcription

1 Smultaneous Optmzaton of Berth Allocaton, Quay Crane Assgnment and Quay Crane Schedulng Problems n Contaner Termnals Necat Aras, Yavuz Türkoğulları, Z. Caner Taşkın, Kuban Altınel Abstract In ths work, we focus on the ntegrated plannng of the followng problems faced wthn the context of seasde operatons at contaner termnals: berth allocaton, quay crane assgnment, and quay crane schedulng. Frst, we formulate a new bnary nteger lnear program for the ntegrated soluton of the berth allocaton and quay crane assgnment problems called BACAP. Then we extend t by ncorporatng the crane schedulng problem as well, whch s named BACASP. Although the model for BACAP s very effcent and even large nstances up to 60 vessels can be solved to optmalty, only small nstances for BACASP can be solved optmally. To be able to solve large nstances, we present a necessary and suffcent condton for generatng an optmal soluton of BACASP from an optmal soluton of BA- CAP usng a postprocessng algorthm. We also develop a cuttng plane algorthm for the case where ths condton s not satsfed. Ths algorthm solves BACAP repeatedly by addng cuts generated from the optmal solutons at each tral untl the aforementoned condton holds. 1 Introducton There has been a consderable growth n the share of contanerzed trade n the world s total dry cargo durng the last 30 years. Therefore, the effcent management of seaport contaner termnals has become a crucal ssue [2]. In ths work, we concentrate on the ntegrated plannng of seasde operatons, whch ncludes the berth allocaton problem (BAP), quay crane assgnment problem (CAP) and quay crane schedulng problem (CSP). Generally, BAP deals wth the determnaton of the optmal berthng tmes and postons of vessels n contaner termnals. The focus of CSP, on the other hand, s manly on the problem of determnng an optmal Necat Aras, Yavuz Türkoğulları, Caner Taşkın, Kuban Altınel Boğazç Unversty, İstanbul, Turkey e-mal: {arasn, turkogullar, caner.taskn, altnel}@boun.edu.tr 1

2 2 Aras et al. handlng sequence of vessels for the avalable cranes at the termnal. However, as can be realzed, the assgnment of the cranes to vessels has a drect effect on the processng tmes of the vessels. As a result, crane assgnment decsons can be embedded wthn ether BAP or CSP models. In ths work we formulate two new MILP formulatons ntegratng frst BAP and CAP (BACAP), and then BAP, CAP, and CSP (BACASP). Both of them consder a contnuous berth layout where vessels can berth at arbtrary postons wthn the range of the quay and dynamc vessel arrvals where vessels cannot berth before the expected arrval tme. The crane schedule found by solvng the BACASP formulaton determnes the specfc crane allocaton to vessels for every tme perod. These MILP models are the frst models solved exactly rather than heurstcally n the lterature for relatvely large nstances. 2 Model Formulaton The underlyng assumptons of our models are gven as follows. The plannng horzon s dvded nto equal-szed tme perods. The berth s dvded nto equal-szed berth sectons. Each berth secton s occuped by no more than one vessel n each tme perod. Each quay crane can be assgned to at most one vessel per tme perod. Each vessel has a mnmum and maxmum number of quay cranes that can be assgned to t. The servce of a vessel by quay cranes begns upon that vessel s berthng at the termnal, and t s not dsrupted untl the vessel departs. The number of quay cranes assgned to a vessel does not change durng ts stay at the berth, whch s referred to as a tme-nvarant assgnment [1]. Furthermore, the set of specfc cranes assgned to a vessel s kept the same. By lettng the ndex of vessels, g the ndex of crane groups, j the ndex of berth sectons, k the ndex of number of cranes, t the ndex of tme perods, c g l the ndex of the leftmost crane n group g, c g r the ndex of the rghtmost crane n group g, and C(g) the ndex set of cranes n group g, we defne the followng parameters: B= the number of berth sectons, G= the number of crane groups, N= the number of avalable quay cranes, T = the number of tme perods n the plannng horzon, V = the number of vessels, d = due tme of vessel, e = arrval tme of vessel, = lower bound on the number of cranes that can be assgned to vessel, = upper bound on the number of cranes that can be assgned to vessel, l = the length of vessel measured n terms of the number of berth sectons occuped, p = processng tme of vessel f k cranes are assgned to t, s = desred berth secton of vessel, φ 1 = cost of one unt devaton from the desred berth secton for vessel, φ 2 = cost of berthng one perod later than the arrval tme for vessel, φ 3 = cost of departng one perod later than the due tme for vessel. Let us defne a bnary varable X k jt, whch s equal to one f vessel starts berthng at secton j n tme perod t, and k quay cranes are assgned to t, and zero otherwse. Constrant (1) ensures that each vessel berths at a unque secton and tme perod, and the number of quay cranes assgned to t les between the mnmum and maxmum allowed quanttes.

3 Smultaneous Optmzaton n Contaner Termnals 3 k= T p +1, X k jt = 1 = 1,...,V. (1) t=e Constrant set (2) guarantees that each berth secton s occuped by at most one vessel n each tme perod. To put t dfferently, there should not be any overlap among the rectangles representng vessels n the two-dmensonal tme-berth secton space, whch are located between max ( e,t p + 1) and mn ( T p + 1,t) on the tme dmenson, and between max(1, j l + 1) and mn(b l + 1, j) on the berth secton dmenson. V =1 mn(, j) j =max(1, j l +1) k= mn(t p k+1,t) X k t =max(e,t p k+1) j t 1 j = 1,...,B;t = 1,...,T (2) We next dscuss how quay crane avalablty can be handled n the BACAP model. Let us denote the number of avalable quay cranes by N. Constrant set (3) ensures that n each tme perod the number of actve quay cranes s less than or equal to the avalable number of cranes: V =1 k= mn(t p +1,t) kx t =max(e,t p k+1) k jt N t = 1,...,T (3) The objectve functon (4) of our model mnmzes the total cost, whose components for each vessel are: ) the cost of devaton from the desred berth secton, ) the cost of berthng later than the arrval tme, and ) the cost of departng later than the due tme. Our nteger programmng formulaton for BACAP can be summarzed as follows: mn V =1 k= subject to constrants (1),(2),(3) T p +1 ) } + {φ 1 j s + φ 2 (t e ) + φ 3 (t + p k 1 d X k jt t=e (4) X k jt {0,1} = 1,...,V ; j = 1,...,B l + 1;k =,..., ;t = e,...,t p + 1. Recall that although the avalablty of quay cranes s consdered n constrant set (3) n BACAP, a schedule s not generated for each quay crane. To develop a mathematcal programmng formulaton for BACASP we extend the formulaton for BACAP by ncludng the constrant sets (1) (3) and defnng new varables and constrants so that feasble schedules are obtaned for quay cranes, whch do not ncur setup due to the change n the relatve order of cranes. We should remark that f quay cranes 1 and + 1 are assgned to a vessel n a tme perod, then quay crane has to be assgned to the same vessel as well snce quay cranes are located along the berth on a sngle ralway. Hence, we defne a crane group as a set of adjacent quay cranes and

4 4 Aras et al. let the bnary varable Y g t denote whether crane group g assgned to vessel starts servce n tme perod t. Constrant set (5) relates the X and Y-varables. It ensures that f k quay cranes are assgned to vessel, t must be served by a crane group g that s formed by C(g) = k cranes, where C(g) s the ndex set of cranes n group g and denotes the cardnalty of a set. Moreover, G s the total number of crane groups. X k jt G g=1 C(g) =k Y g t = 0 = 1,...,V ;k =,..., ;t = e,...,t p + 1 (5) It should be emphaszed that each crane can be a member of multple crane groups. However, each crane can operate as a member of at most one group n each tme perod. The next set of constrants (6) guarantees that ths condton holds: V G mn(t p k+1,t) Y g =1 g=1 t=max(e,t p k+1) c C(g) t 1 c = 1,...,N;t = 1,...,T (6) Even though constrants (5) and (6) make sure that each quay crane s assgned to at most one vessel n any tme perod, they do not guarantee that quay cranes are assgned to vessels n the correct sequence. In partcular, let the quay cranes be ndexed n such a way that a crane postoned closer to the begnnng of the berth has a lower ndex. Snce all cranes perform ther duty along a ral at the berth, they cannot pass each other or stated dfferently ther order cannot be changed. The next four constrant sets help to ensure preservng the crane orderng. Here, Z ct denotes the poston of crane c n tme perod t. Z ct Z (c+1)t c = 1,...,N 1;t = 1,...,T (7) Z Nt B t = 1,...,T (8) g Z g c l t + B(1 Y t ) jt k= jx k Z g cr t ( j + l 1)X k jt + B(1 Y g k= = 1,...,V ;g = 1,...,G; t = e,...,t p + 1;t t t + p 1 (9) t ) = 1,...,V ;g = 1,...,G; t = e,...,t p + 1;t t t + p 1 (10) Constrant set (7) smply states that the postons of the cranes (n terms of berth sectons) are respected by the ndex of the cranes. Ths means that the poston of crane c s always less than or equal to the poston of crane c+1 durng the plannng horzon. Constrant set (8) makes sure that the last crane (crane N) s postoned wthn the berth. By defnng c g l and c g r as the ndex of the crane that s, respectvely,

5 Smultaneous Optmzaton n Contaner Termnals 5 the leftmost and rghtmost member of crane group g, constrant set (9) guarantees that f crane group g s assgned to vessel and vessel berths at secton j, then the poston of the leftmost member of crane group g s greater than or equal to j. Smlarly, constrant set (10) ensures that f crane group g s assgned to vessel and vessel berths at secton j, then the poston of the rghtmost member of crane group g s less than or equal to j +l 1, whch s the last secton of the berth occuped by vessel. 3 Soluton As can be observed, BACASP formulaton s sgnfcantly larger than our BACAP formulaton wth whch we can solve nstances up to 60 vessels. Hence, t should be expected that only small BACASP nstances can be solved exactly usng CPLEX Ths fact has motvated us to make use of the formulaton for BACAP n solvng larger szed BACASP nstances to optmalty. By carefully analyzng the optmal solutons of BACAP and BACASP n small szed nstances, we have fgured out that an optmal soluton of BACASP can be generated from an optmal soluton of BA- CAP provded that the condton gven n Proposton 1 s satsfed. Ths condton s based on the noton of complete sequence of vessels (wth respect to ther occuped berthng postons), whch s defned as follows. Defnton 1. A vessel sequence v 1,v 2,...,v n s complete f () v 1 s the closest vessel to the begnnng of the berth, () v n s the closest vessel to the end of the berth, () v and v +1 are two consecutve vessels wth v closer to the begnnng of the berth, and (v) two consecutve vessels n ths sequence must be at the berth durng at least one tme perod. A complete sequence s sad to be proper when the sum of the number of cranes assgned to vessels n ths sequence s less than or equal to N. Otherwse, t s called an mproper complete sequence. Proposton 1. An optmal soluton of BACASP can be obtaned from an optmal soluton of BACAP by a post-processng algorthm f and only f every complete sequence of vessels s proper. The proof of ths proposton can be found n [3]. If there s at least one mproper complete sequence of vessels n an optmal soluton of BACAP, then we cannot apply the post-processng algorthm gven as Algorthm 1 to obtan an optmal soluton of BACASP from an optmal soluton of BACAP. In Algorthm 1, V A (V NA ) denotes the set of vessels to whch cranes (no cranes) are assgned yet. Clearly, V NA V A = {1,2,...,V }. Notce that the way the vessels are pcked up from V NA and added to the set V A mples that the order of the vessels forms one or more complete sequences n the set V A. It s also ensured that these complete sequences are proper. If there exsts a complete sequence where the sum of the number of cranes assgned to vessels s larger than N, then t s possble to add the cut gven n (11)

6 6 Aras et al. Algorthm 1 Post-processng algorthm Intalzaton: Let V NA {1,2,...,V } WHILE V NA Select vessel v V NA that berths n the leftmost berth secton Fnd the vessels n V A that are n the berth wth v n at least one tme perod. Among the cranes assgned to these vessels, fnd the crane c max that s n the rghtmost berth secton. IF V A = or any vessel n V A that s at the berth wth v n at least one tme perod c max 0 ENDIF Assgn cranes ndexed from c max + 1 to c max + θ v to vessel v, where θ v s the number of cranes assgned to vessel v V NA V NA \ v ENDWHILE correspondng to an mproper complete sequence nto the formulaton of BACAP, where IS refers to an mproper complete sequence and IS s the total number of vessels nvolved n that complete sequence. Note that ths cut s used to elmnate feasble solutons that nvolve IS. X k() IS 1 (11) j()t() IS The left-hand sde of (11) conssts of the sum of the X k jt varables whch are set to one for the vessels nvolved n IS. In other words, there s only one X k jt = 1 for each vessel IS. The j,k, and t ndces for whch X k jt = 1 related to vessel are denoted as j(), k(), and t() n (11). Upon the addton of ths cut, BACAP s solved agan. The addton of these cuts s repeated untl the optmal soluton of BACAP does not contan any mproper complete sequences. At that nstant, Algorthm 1 can be called to generate an optmal soluton of BACASP from the exstng optmal soluton of BACAP. Acknowledgements We gratefully acknowledge the support of IBM through a open collaboraton research award #W granted to the frst author. References 1. Berwrth, C. and Mesel, F.: A survey of berth allocaton and quay crane schedulng problems n contaner termnals. European Journal of Operatonal Research 202, (2010) 2. Stahlbock, R. and Voß, S.: Operatons research at contaner termnals: A lterature update. OR Spectrum 30, 1 52 (2008) 3. Türokoğulları, Y.B., Aras, N., Taşkın Z.C., and Altınel, İ.K.: Smultaneous Optmzaton of Berth Allocaton, Quay Crane Assgnment and Quay Crane Schedulng Problems n Contaner Termnals, Research Paper, aras

Single-Facility Scheduling over Long Time Horizons by Logic-based Benders Decomposition

Single-Facility Scheduling over Long Time Horizons by Logic-based Benders Decomposition Sngle-Faclty Schedulng over Long Tme Horzons by Logc-based Benders Decomposton Elvn Coban and J. N. Hooker Tepper School of Busness, Carnege Mellon Unversty ecoban@andrew.cmu.edu, john@hooker.tepper.cmu.edu

More information

An Interactive Optimisation Tool for Allocation Problems

An Interactive Optimisation Tool for Allocation Problems An Interactve Optmsaton ool for Allocaton Problems Fredr Bonäs, Joam Westerlund and apo Westerlund Process Desgn Laboratory, Faculty of echnology, Åbo Aadem Unversty, uru 20500, Fnland hs paper presents

More information

The Minimum Universal Cost Flow in an Infeasible Flow Network

The Minimum Universal Cost Flow in an Infeasible Flow Network Journal of Scences, Islamc Republc of Iran 17(2): 175-180 (2006) Unversty of Tehran, ISSN 1016-1104 http://jscencesutacr The Mnmum Unversal Cost Flow n an Infeasble Flow Network H Saleh Fathabad * M Bagheran

More information

Amiri s Supply Chain Model. System Engineering b Department of Mathematics and Statistics c Odette School of Business

Amiri s Supply Chain Model. System Engineering b Department of Mathematics and Statistics c Odette School of Business Amr s Supply Chan Model by S. Ashtab a,, R.J. Caron b E. Selvarajah c a Department of Industral Manufacturng System Engneerng b Department of Mathematcs Statstcs c Odette School of Busness Unversty of

More information

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009 College of Computer & Informaton Scence Fall 2009 Northeastern Unversty 20 October 2009 CS7880: Algorthmc Power Tools Scrbe: Jan Wen and Laura Poplawsk Lecture Outlne: Prmal-dual schema Network Desgn:

More information

Integrated approach in solving parallel machine scheduling and location (ScheLoc) problem

Integrated approach in solving parallel machine scheduling and location (ScheLoc) problem Internatonal Journal of Industral Engneerng Computatons 7 (2016) 573 584 Contents lsts avalable at GrowngScence Internatonal Journal of Industral Engneerng Computatons homepage: www.growngscence.com/ec

More information

Real-Time Systems. Multiprocessor scheduling. Multiprocessor scheduling. Multiprocessor scheduling

Real-Time Systems. Multiprocessor scheduling. Multiprocessor scheduling. Multiprocessor scheduling Real-Tme Systems Multprocessor schedulng Specfcaton Implementaton Verfcaton Multprocessor schedulng -- -- Global schedulng How are tasks assgned to processors? Statc assgnment The processor(s) used for

More information

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X Statstcs 1: Probablty Theory II 37 3 EPECTATION OF SEVERAL RANDOM VARIABLES As n Probablty Theory I, the nterest n most stuatons les not on the actual dstrbuton of a random vector, but rather on a number

More information

NP-Completeness : Proofs

NP-Completeness : Proofs NP-Completeness : Proofs Proof Methods A method to show a decson problem Π NP-complete s as follows. (1) Show Π NP. (2) Choose an NP-complete problem Π. (3) Show Π Π. A method to show an optmzaton problem

More information

On the Multicriteria Integer Network Flow Problem

On the Multicriteria Integer Network Flow Problem BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 5, No 2 Sofa 2005 On the Multcrtera Integer Network Flow Problem Vassl Vasslev, Marana Nkolova, Maryana Vassleva Insttute of

More information

Winter 2008 CS567 Stochastic Linear/Integer Programming Guest Lecturer: Xu, Huan

Winter 2008 CS567 Stochastic Linear/Integer Programming Guest Lecturer: Xu, Huan Wnter 2008 CS567 Stochastc Lnear/Integer Programmng Guest Lecturer: Xu, Huan Class 2: More Modelng Examples 1 Capacty Expanson Capacty expanson models optmal choces of the tmng and levels of nvestments

More information

Chapter - 2. Distribution System Power Flow Analysis

Chapter - 2. Distribution System Power Flow Analysis Chapter - 2 Dstrbuton System Power Flow Analyss CHAPTER - 2 Radal Dstrbuton System Load Flow 2.1 Introducton Load flow s an mportant tool [66] for analyzng electrcal power system network performance. Load

More information

Calculation of time complexity (3%)

Calculation of time complexity (3%) Problem 1. (30%) Calculaton of tme complexty (3%) Gven n ctes, usng exhaust search to see every result takes O(n!). Calculaton of tme needed to solve the problem (2%) 40 ctes:40! dfferent tours 40 add

More information

EEL 6266 Power System Operation and Control. Chapter 3 Economic Dispatch Using Dynamic Programming

EEL 6266 Power System Operation and Control. Chapter 3 Economic Dispatch Using Dynamic Programming EEL 6266 Power System Operaton and Control Chapter 3 Economc Dspatch Usng Dynamc Programmng Pecewse Lnear Cost Functons Common practce many utltes prefer to represent ther generator cost functons as sngle-

More information

Embedded Systems. 4. Aperiodic and Periodic Tasks

Embedded Systems. 4. Aperiodic and Periodic Tasks Embedded Systems 4. Aperodc and Perodc Tasks Lothar Thele 4-1 Contents of Course 1. Embedded Systems Introducton 2. Software Introducton 7. System Components 10. Models 3. Real-Tme Models 4. Perodc/Aperodc

More information

Module 9. Lecture 6. Duality in Assignment Problems

Module 9. Lecture 6. Duality in Assignment Problems Module 9 1 Lecture 6 Dualty n Assgnment Problems In ths lecture we attempt to answer few other mportant questons posed n earler lecture for (AP) and see how some of them can be explaned through the concept

More information

HMMT February 2016 February 20, 2016

HMMT February 2016 February 20, 2016 HMMT February 016 February 0, 016 Combnatorcs 1. For postve ntegers n, let S n be the set of ntegers x such that n dstnct lnes, no three concurrent, can dvde a plane nto x regons (for example, S = {3,

More information

Interactive Bi-Level Multi-Objective Integer. Non-linear Programming Problem

Interactive Bi-Level Multi-Objective Integer. Non-linear Programming Problem Appled Mathematcal Scences Vol 5 0 no 65 3 33 Interactve B-Level Mult-Objectve Integer Non-lnear Programmng Problem O E Emam Department of Informaton Systems aculty of Computer Scence and nformaton Helwan

More information

Problem Set 9 Solutions

Problem Set 9 Solutions Desgn and Analyss of Algorthms May 4, 2015 Massachusetts Insttute of Technology 6.046J/18.410J Profs. Erk Demane, Srn Devadas, and Nancy Lynch Problem Set 9 Solutons Problem Set 9 Solutons Ths problem

More information

Assortment Optimization under MNL

Assortment Optimization under MNL Assortment Optmzaton under MNL Haotan Song Aprl 30, 2017 1 Introducton The assortment optmzaton problem ams to fnd the revenue-maxmzng assortment of products to offer when the prces of products are fxed.

More information

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

Suggested solutions for the exam in SF2863 Systems Engineering. June 12,

Suggested solutions for the exam in SF2863 Systems Engineering. June 12, Suggested solutons for the exam n SF2863 Systems Engneerng. June 12, 2012 14.00 19.00 Examner: Per Enqvst, phone: 790 62 98 1. We can thnk of the farm as a Jackson network. The strawberry feld s modelled

More information

Notes on Frequency Estimation in Data Streams

Notes on Frequency Estimation in Data Streams Notes on Frequency Estmaton n Data Streams In (one of) the data streamng model(s), the data s a sequence of arrvals a 1, a 2,..., a m of the form a j = (, v) where s the dentty of the tem and belongs to

More information

Dynamic Programming. Preview. Dynamic Programming. Dynamic Programming. Dynamic Programming (Example: Fibonacci Sequence)

Dynamic Programming. Preview. Dynamic Programming. Dynamic Programming. Dynamic Programming (Example: Fibonacci Sequence) /24/27 Prevew Fbonacc Sequence Longest Common Subsequence Dynamc programmng s a method for solvng complex problems by breakng them down nto smpler sub-problems. It s applcable to problems exhbtng the propertes

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

Lecture 10 Support Vector Machines II

Lecture 10 Support Vector Machines II Lecture 10 Support Vector Machnes II 22 February 2016 Taylor B. Arnold Yale Statstcs STAT 365/665 1/28 Notes: Problem 3 s posted and due ths upcomng Frday There was an early bug n the fake-test data; fxed

More information

VARIATION OF CONSTANT SUM CONSTRAINT FOR INTEGER MODEL WITH NON UNIFORM VARIABLES

VARIATION OF CONSTANT SUM CONSTRAINT FOR INTEGER MODEL WITH NON UNIFORM VARIABLES VARIATION OF CONSTANT SUM CONSTRAINT FOR INTEGER MODEL WITH NON UNIFORM VARIABLES BÂRZĂ, Slvu Faculty of Mathematcs-Informatcs Spru Haret Unversty barza_slvu@yahoo.com Abstract Ths paper wants to contnue

More information

Optimal Solution to the Problem of Balanced Academic Curriculum Problem Using Tabu Search

Optimal Solution to the Problem of Balanced Academic Curriculum Problem Using Tabu Search Optmal Soluton to the Problem of Balanced Academc Currculum Problem Usng Tabu Search Lorna V. Rosas-Téllez 1, José L. Martínez-Flores 2, and Vttoro Zanella-Palacos 1 1 Engneerng Department,Unversdad Popular

More information

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

More information

MMA and GCMMA two methods for nonlinear optimization

MMA and GCMMA two methods for nonlinear optimization MMA and GCMMA two methods for nonlnear optmzaton Krster Svanberg Optmzaton and Systems Theory, KTH, Stockholm, Sweden. krlle@math.kth.se Ths note descrbes the algorthms used n the author s 2007 mplementatons

More information

ECE 534: Elements of Information Theory. Solutions to Midterm Exam (Spring 2006)

ECE 534: Elements of Information Theory. Solutions to Midterm Exam (Spring 2006) ECE 534: Elements of Informaton Theory Solutons to Mdterm Eam (Sprng 6) Problem [ pts.] A dscrete memoryless source has an alphabet of three letters,, =,, 3, wth probabltes.4,.4, and., respectvely. (a)

More information

Common loop optimizations. Example to improve locality. Why Dependence Analysis. Data Dependence in Loops. Goal is to find best schedule:

Common loop optimizations. Example to improve locality. Why Dependence Analysis. Data Dependence in Loops. Goal is to find best schedule: 15-745 Lecture 6 Data Dependence n Loops Copyrght Seth Goldsten, 2008 Based on sldes from Allen&Kennedy Lecture 6 15-745 2005-8 1 Common loop optmzatons Hostng of loop-nvarant computatons pre-compute before

More information

A LINEAR PROGRAM TO COMPARE MULTIPLE GROSS CREDIT LOSS FORECASTS. Dr. Derald E. Wentzien, Wesley College, (302) ,

A LINEAR PROGRAM TO COMPARE MULTIPLE GROSS CREDIT LOSS FORECASTS. Dr. Derald E. Wentzien, Wesley College, (302) , A LINEAR PROGRAM TO COMPARE MULTIPLE GROSS CREDIT LOSS FORECASTS Dr. Derald E. Wentzen, Wesley College, (302) 736-2574, wentzde@wesley.edu ABSTRACT A lnear programmng model s developed and used to compare

More information

An Admission Control Algorithm in Cloud Computing Systems

An Admission Control Algorithm in Cloud Computing Systems An Admsson Control Algorthm n Cloud Computng Systems Authors: Frank Yeong-Sung Ln Department of Informaton Management Natonal Tawan Unversty Tape, Tawan, R.O.C. ysln@m.ntu.edu.tw Yngje Lan Management Scence

More information

Structure and Drive Paul A. Jensen Copyright July 20, 2003

Structure and Drive Paul A. Jensen Copyright July 20, 2003 Structure and Drve Paul A. Jensen Copyrght July 20, 2003 A system s made up of several operatons wth flow passng between them. The structure of the system descrbes the flow paths from nputs to outputs.

More information

Appendix for Causal Interaction in Factorial Experiments: Application to Conjoint Analysis

Appendix for Causal Interaction in Factorial Experiments: Application to Conjoint Analysis A Appendx for Causal Interacton n Factoral Experments: Applcaton to Conjont Analyss Mathematcal Appendx: Proofs of Theorems A. Lemmas Below, we descrbe all the lemmas, whch are used to prove the man theorems

More information

Combining Constraint Programming and Integer Programming

Combining Constraint Programming and Integer Programming Combnng Constrant Programmng and Integer Programmng GLOBAL CONSTRAINT OPTIMIZATION COMPONENT Specal Purpose Algorthm mn c T x +(x- 0 ) x( + ()) =1 x( - ()) =1 FILTERING ALGORITHM COST-BASED FILTERING ALGORITHM

More information

Foundations of Arithmetic

Foundations of Arithmetic Foundatons of Arthmetc Notaton We shall denote the sum and product of numbers n the usual notaton as a 2 + a 2 + a 3 + + a = a, a 1 a 2 a 3 a = a The notaton a b means a dvdes b,.e. ac = b where c s an

More information

Hidden Markov Models

Hidden Markov Models Hdden Markov Models Namrata Vaswan, Iowa State Unversty Aprl 24, 204 Hdden Markov Model Defntons and Examples Defntons:. A hdden Markov model (HMM) refers to a set of hdden states X 0, X,..., X t,...,

More information

Economics 101. Lecture 4 - Equilibrium and Efficiency

Economics 101. Lecture 4 - Equilibrium and Efficiency Economcs 0 Lecture 4 - Equlbrum and Effcency Intro As dscussed n the prevous lecture, we wll now move from an envronment where we looed at consumers mang decsons n solaton to analyzng economes full of

More information

Example: (13320, 22140) =? Solution #1: The divisors of are 1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 27, 30, 36, 41,

Example: (13320, 22140) =? Solution #1: The divisors of are 1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 27, 30, 36, 41, The greatest common dvsor of two ntegers a and b (not both zero) s the largest nteger whch s a common factor of both a and b. We denote ths number by gcd(a, b), or smply (a, b) when there s no confuson

More information

COS 521: Advanced Algorithms Game Theory and Linear Programming

COS 521: Advanced Algorithms Game Theory and Linear Programming COS 521: Advanced Algorthms Game Theory and Lnear Programmng Moses Charkar February 27, 2013 In these notes, we ntroduce some basc concepts n game theory and lnear programmng (LP). We show a connecton

More information

ECE559VV Project Report

ECE559VV Project Report ECE559VV Project Report (Supplementary Notes Loc Xuan Bu I. MAX SUM-RATE SCHEDULING: THE UPLINK CASE We have seen (n the presentaton that, for downlnk (broadcast channels, the strategy maxmzng the sum-rate

More information

ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EQUATION

ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EQUATION Advanced Mathematcal Models & Applcatons Vol.3, No.3, 2018, pp.215-222 ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EUATION

More information

Capacity Constraints Across Nests in Assortment Optimization Under the Nested Logit Model

Capacity Constraints Across Nests in Assortment Optimization Under the Nested Logit Model Capacty Constrants Across Nests n Assortment Optmzaton Under the Nested Logt Model Jacob B. Feldman School of Operatons Research and Informaton Engneerng, Cornell Unversty, Ithaca, New York 14853, USA

More information

Some modelling aspects for the Matlab implementation of MMA

Some modelling aspects for the Matlab implementation of MMA Some modellng aspects for the Matlab mplementaton of MMA Krster Svanberg krlle@math.kth.se Optmzaton and Systems Theory Department of Mathematcs KTH, SE 10044 Stockholm September 2004 1. Consdered optmzaton

More information

SL n (F ) Equals its Own Derived Group

SL n (F ) Equals its Own Derived Group Internatonal Journal of Algebra, Vol. 2, 2008, no. 12, 585-594 SL n (F ) Equals ts Own Derved Group Jorge Macel BMCC-The Cty Unversty of New York, CUNY 199 Chambers street, New York, NY 10007, USA macel@cms.nyu.edu

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

Lecture Notes on Linear Regression

Lecture Notes on Linear Regression Lecture Notes on Lnear Regresson Feng L fl@sdueducn Shandong Unversty, Chna Lnear Regresson Problem In regresson problem, we am at predct a contnuous target value gven an nput feature vector We assume

More information

A Simple Inventory System

A Simple Inventory System A Smple Inventory System Lawrence M. Leems and Stephen K. Park, Dscrete-Event Smulaton: A Frst Course, Prentce Hall, 2006 Hu Chen Computer Scence Vrgna State Unversty Petersburg, Vrgna February 8, 2017

More information

Portfolios with Trading Constraints and Payout Restrictions

Portfolios with Trading Constraints and Payout Restrictions Portfolos wth Tradng Constrants and Payout Restrctons John R. Brge Northwestern Unversty (ont wor wth Chrs Donohue Xaodong Xu and Gongyun Zhao) 1 General Problem (Very) long-term nvestor (eample: unversty

More information

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE Analytcal soluton s usually not possble when exctaton vares arbtrarly wth tme or f the system s nonlnear. Such problems can be solved by numercal tmesteppng

More information

This is the Pre-Published Version.

This is the Pre-Published Version. Ths s the Pre-Publshed Verson. Abstract In ths paper we consder the problem of schedulng obs wth equal processng tmes on a sngle batch processng machne so as to mnmze a prmary and a secondary crtera. We

More information

The L(2, 1)-Labeling on -Product of Graphs

The L(2, 1)-Labeling on -Product of Graphs Annals of Pure and Appled Mathematcs Vol 0, No, 05, 9-39 ISSN: 79-087X (P, 79-0888(onlne Publshed on 7 Aprl 05 wwwresearchmathscorg Annals of The L(, -Labelng on -Product of Graphs P Pradhan and Kamesh

More information

Mathematical Modeling of Earthwork Optimization Problems

Mathematical Modeling of Earthwork Optimization Problems Mathematcal Modelng of Earthwork Optmzaton Problems Yang J, André Borrmann, Ernst Rank Char for Computaton n Engneerng, Technsche Unverstät München Floran Sepp, Stefan Ruzka Optmzaton Group, Department

More information

The Geometry of Logit and Probit

The Geometry of Logit and Probit The Geometry of Logt and Probt Ths short note s meant as a supplement to Chapters and 3 of Spatal Models of Parlamentary Votng and the notaton and reference to fgures n the text below s to those two chapters.

More information

Difference Equations

Difference Equations Dfference Equatons c Jan Vrbk 1 Bascs Suppose a sequence of numbers, say a 0,a 1,a,a 3,... s defned by a certan general relatonshp between, say, three consecutve values of the sequence, e.g. a + +3a +1

More information

find (x): given element x, return the canonical element of the set containing x;

find (x): given element x, return the canonical element of the set containing x; COS 43 Sprng, 009 Dsjont Set Unon Problem: Mantan a collecton of dsjont sets. Two operatons: fnd the set contanng a gven element; unte two sets nto one (destructvely). Approach: Canoncal element method:

More information

A Hybrid Differential Evolution Algorithm Game Theory for the Berth Allocation Problem

A Hybrid Differential Evolution Algorithm Game Theory for the Berth Allocation Problem A Hybrd Dfferental Evoluton Algorthm ame Theory for the Berth Allocaton Problem Nasser R. Sabar, Sang Yew Chong, and raham Kendall The Unversty of Nottngham Malaysa Campus, Jalan Broga, 43500 Semenyh,

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017 U.C. Berkeley CS94: Beyond Worst-Case Analyss Handout 4s Luca Trevsan September 5, 07 Summary of Lecture 4 In whch we ntroduce semdefnte programmng and apply t to Max Cut. Semdefnte Programmng Recall that

More information

FUZZY GOAL PROGRAMMING VS ORDINARY FUZZY PROGRAMMING APPROACH FOR MULTI OBJECTIVE PROGRAMMING PROBLEM

FUZZY GOAL PROGRAMMING VS ORDINARY FUZZY PROGRAMMING APPROACH FOR MULTI OBJECTIVE PROGRAMMING PROBLEM Internatonal Conference on Ceramcs, Bkaner, Inda Internatonal Journal of Modern Physcs: Conference Seres Vol. 22 (2013) 757 761 World Scentfc Publshng Company DOI: 10.1142/S2010194513010982 FUZZY GOAL

More information

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0 MODULE 2 Topcs: Lnear ndependence, bass and dmenson We have seen that f n a set of vectors one vector s a lnear combnaton of the remanng vectors n the set then the span of the set s unchanged f that vector

More information

Chapter Newton s Method

Chapter Newton s Method Chapter 9. Newton s Method After readng ths chapter, you should be able to:. Understand how Newton s method s dfferent from the Golden Secton Search method. Understand how Newton s method works 3. Solve

More information

Games of Threats. Elon Kohlberg Abraham Neyman. Working Paper

Games of Threats. Elon Kohlberg Abraham Neyman. Working Paper Games of Threats Elon Kohlberg Abraham Neyman Workng Paper 18-023 Games of Threats Elon Kohlberg Harvard Busness School Abraham Neyman The Hebrew Unversty of Jerusalem Workng Paper 18-023 Copyrght 2017

More information

a b a In case b 0, a being divisible by b is the same as to say that

a b a In case b 0, a being divisible by b is the same as to say that Secton 6.2 Dvsblty among the ntegers An nteger a ε s dvsble by b ε f there s an nteger c ε such that a = bc. Note that s dvsble by any nteger b, snce = b. On the other hand, a s dvsble by only f a = :

More information

Lecture 5 Decoding Binary BCH Codes

Lecture 5 Decoding Binary BCH Codes Lecture 5 Decodng Bnary BCH Codes In ths class, we wll ntroduce dfferent methods for decodng BCH codes 51 Decodng the [15, 7, 5] 2 -BCH Code Consder the [15, 7, 5] 2 -code C we ntroduced n the last lecture

More information

THE SUMMATION NOTATION Ʃ

THE SUMMATION NOTATION Ʃ Sngle Subscrpt otaton THE SUMMATIO OTATIO Ʃ Most of the calculatons we perform n statstcs are repettve operatons on lsts of numbers. For example, we compute the sum of a set of numbers, or the sum of the

More information

8. Modelling Uncertainty

8. Modelling Uncertainty 8. Modellng Uncertanty. Introducton. Generatng Values From Known Probablty Dstrbutons. Monte Carlo Smulaton 4. Chance Constraned Models 5 5. Markov Processes and Transton Probabltes 6 6. Stochastc Optmzaton

More information

CONJUGACY IN THOMPSON S GROUP F. 1. Introduction

CONJUGACY IN THOMPSON S GROUP F. 1. Introduction CONJUGACY IN THOMPSON S GROUP F NICK GILL AND IAN SHORT Abstract. We complete the program begun by Brn and Squer of charactersng conjugacy n Thompson s group F usng the standard acton of F as a group of

More information

Optimal Scheduling Algorithms to Minimize Total Flowtime on a Two-Machine Permutation Flowshop with Limited Waiting Times and Ready Times of Jobs

Optimal Scheduling Algorithms to Minimize Total Flowtime on a Two-Machine Permutation Flowshop with Limited Waiting Times and Ready Times of Jobs Optmal Schedulng Algorthms to Mnmze Total Flowtme on a Two-Machne Permutaton Flowshop wth Lmted Watng Tmes and Ready Tmes of Jobs Seong-Woo Cho Dept. Of Busness Admnstraton, Kyongg Unversty, Suwon-s, 443-760,

More information

2.3 Nilpotent endomorphisms

2.3 Nilpotent endomorphisms s a block dagonal matrx, wth A Mat dm U (C) In fact, we can assume that B = B 1 B k, wth B an ordered bass of U, and that A = [f U ] B, where f U : U U s the restrcton of f to U 40 23 Nlpotent endomorphsms

More information

Lecture 4: November 17, Part 1 Single Buffer Management

Lecture 4: November 17, Part 1 Single Buffer Management Lecturer: Ad Rosén Algorthms for the anagement of Networs Fall 2003-2004 Lecture 4: November 7, 2003 Scrbe: Guy Grebla Part Sngle Buffer anagement In the prevous lecture we taled about the Combned Input

More information

Integrals and Invariants of Euler-Lagrange Equations

Integrals and Invariants of Euler-Lagrange Equations Lecture 16 Integrals and Invarants of Euler-Lagrange Equatons ME 256 at the Indan Insttute of Scence, Bengaluru Varatonal Methods and Structural Optmzaton G. K. Ananthasuresh Professor, Mechancal Engneerng,

More information

For now, let us focus on a specific model of neurons. These are simplified from reality but can achieve remarkable results.

For now, let us focus on a specific model of neurons. These are simplified from reality but can achieve remarkable results. Neural Networks : Dervaton compled by Alvn Wan from Professor Jtendra Malk s lecture Ths type of computaton s called deep learnng and s the most popular method for many problems, such as computer vson

More information

6.854J / J Advanced Algorithms Fall 2008

6.854J / J Advanced Algorithms Fall 2008 MIT OpenCourseWare http://ocw.mt.edu 6.854J / 18.415J Advanced Algorthms Fall 2008 For nformaton about ctng these materals or our Terms of Use, vst: http://ocw.mt.edu/terms. 18.415/6.854 Advanced Algorthms

More information

Anti-van der Waerden numbers of 3-term arithmetic progressions.

Anti-van der Waerden numbers of 3-term arithmetic progressions. Ant-van der Waerden numbers of 3-term arthmetc progressons. Zhanar Berkkyzy, Alex Schulte, and Mchael Young Aprl 24, 2016 Abstract The ant-van der Waerden number, denoted by aw([n], k), s the smallest

More information

Annexes. EC.1. Cycle-base move illustration. EC.2. Problem Instances

Annexes. EC.1. Cycle-base move illustration. EC.2. Problem Instances ec Annexes Ths Annex frst llustrates a cycle-based move n the dynamc-block generaton tabu search. It then dsplays the characterstcs of the nstance sets, followed by detaled results of the parametercalbraton

More information

Technical Note: Capacity Constraints Across Nests in Assortment Optimization Under the Nested Logit Model

Technical Note: Capacity Constraints Across Nests in Assortment Optimization Under the Nested Logit Model Techncal Note: Capacty Constrants Across Nests n Assortment Optmzaton Under the Nested Logt Model Jacob B. Feldman, Huseyn Topaloglu School of Operatons Research and Informaton Engneerng, Cornell Unversty,

More information

Edge Isoperimetric Inequalities

Edge Isoperimetric Inequalities November 7, 2005 Ross M. Rchardson Edge Isopermetrc Inequaltes 1 Four Questons Recall that n the last lecture we looked at the problem of sopermetrc nequaltes n the hypercube, Q n. Our noton of boundary

More information

The internal structure of natural numbers and one method for the definition of large prime numbers

The internal structure of natural numbers and one method for the definition of large prime numbers The nternal structure of natural numbers and one method for the defnton of large prme numbers Emmanul Manousos APM Insttute for the Advancement of Physcs and Mathematcs 3 Poulou str. 53 Athens Greece Abstract

More information

BALANCING OF U-SHAPED ASSEMBLY LINE

BALANCING OF U-SHAPED ASSEMBLY LINE BALANCING OF U-SHAPED ASSEMBLY LINE Nuchsara Krengkorakot, Naln Panthong and Rapeepan Ptakaso Industral Engneerng Department, Faculty of Engneerng, Ubon Rajathanee Unversty, Thaland Emal: ennuchkr@ubu.ac.th

More information

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

More information

COMPLEX NUMBERS AND QUADRATIC EQUATIONS

COMPLEX NUMBERS AND QUADRATIC EQUATIONS COMPLEX NUMBERS AND QUADRATIC EQUATIONS INTRODUCTION We know that x 0 for all x R e the square of a real number (whether postve, negatve or ero) s non-negatve Hence the equatons x, x, x + 7 0 etc are not

More information

Planning and Scheduling to Minimize Makespan & Tardiness. John Hooker Carnegie Mellon University September 2006

Planning and Scheduling to Minimize Makespan & Tardiness. John Hooker Carnegie Mellon University September 2006 Plannng and Schedulng to Mnmze Makespan & ardness John Hooker Carnege Mellon Unversty September 2006 he Problem Gven a set of tasks, each wth a deadlne 2 he Problem Gven a set of tasks, each wth a deadlne

More information

Additional Codes using Finite Difference Method. 1 HJB Equation for Consumption-Saving Problem Without Uncertainty

Additional Codes using Finite Difference Method. 1 HJB Equation for Consumption-Saving Problem Without Uncertainty Addtonal Codes usng Fnte Dfference Method Benamn Moll 1 HJB Equaton for Consumpton-Savng Problem Wthout Uncertanty Before consderng the case wth stochastc ncome n http://www.prnceton.edu/~moll/ HACTproect/HACT_Numercal_Appendx.pdf,

More information

Tornado and Luby Transform Codes. Ashish Khisti Presentation October 22, 2003

Tornado and Luby Transform Codes. Ashish Khisti Presentation October 22, 2003 Tornado and Luby Transform Codes Ashsh Khst 6.454 Presentaton October 22, 2003 Background: Erasure Channel Elas[956] studed the Erasure Channel β x x β β x 2 m x 2 k? Capacty of Noseless Erasure Channel

More information

Kernel Methods and SVMs Extension

Kernel Methods and SVMs Extension Kernel Methods and SVMs Extenson The purpose of ths document s to revew materal covered n Machne Learnng 1 Supervsed Learnng regardng support vector machnes (SVMs). Ths document also provdes a general

More information

Online Appendix. t=1 (p t w)q t. Then the first order condition shows that

Online Appendix. t=1 (p t w)q t. Then the first order condition shows that Artcle forthcomng to ; manuscrpt no (Please, provde the manuscrpt number!) 1 Onlne Appendx Appendx E: Proofs Proof of Proposton 1 Frst we derve the equlbrum when the manufacturer does not vertcally ntegrate

More information

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg prnceton unv. F 17 cos 521: Advanced Algorthm Desgn Lecture 7: LP Dualty Lecturer: Matt Wenberg Scrbe: LP Dualty s an extremely useful tool for analyzng structural propertes of lnear programs. Whle there

More information

Dynamic Programming. Lecture 13 (5/31/2017)

Dynamic Programming. Lecture 13 (5/31/2017) Dynamc Programmng Lecture 13 (5/31/2017) - A Forest Thnnng Example - Projected yeld (m3/ha) at age 20 as functon of acton taken at age 10 Age 10 Begnnng Volume Resdual Ten-year Volume volume thnned volume

More information

Yong Joon Ryang. 1. Introduction Consider the multicommodity transportation problem with convex quadratic cost function. 1 2 (x x0 ) T Q(x x 0 )

Yong Joon Ryang. 1. Introduction Consider the multicommodity transportation problem with convex quadratic cost function. 1 2 (x x0 ) T Q(x x 0 ) Kangweon-Kyungk Math. Jour. 4 1996), No. 1, pp. 7 16 AN ITERATIVE ROW-ACTION METHOD FOR MULTICOMMODITY TRANSPORTATION PROBLEMS Yong Joon Ryang Abstract. The optmzaton problems wth quadratc constrants often

More information

Single-machine scheduling with trade-off between number of tardy jobs and compression cost

Single-machine scheduling with trade-off between number of tardy jobs and compression cost Ths s the Pre-Publshed Verson. Sngle-machne schedulng wth trade-off between number of tardy jobs and compresson cost 1, 2, Yong He 1 Department of Mathematcs, Zhejang Unversty, Hangzhou 310027, P.R. Chna

More information

FIRST AND SECOND ORDER NECESSARY OPTIMALITY CONDITIONS FOR DISCRETE OPTIMAL CONTROL PROBLEMS

FIRST AND SECOND ORDER NECESSARY OPTIMALITY CONDITIONS FOR DISCRETE OPTIMAL CONTROL PROBLEMS Yugoslav Journal of Operatons Research 6 (6), umber, 53-6 FIRST D SECOD ORDER ECESSRY OPTIMLITY CODITIOS FOR DISCRETE OPTIML COTROL PROBLEMS Boban MRIKOVIĆ Faculty of Mnng and Geology, Unversty of Belgrade

More information

An Integrated OR/CP Method for Planning and Scheduling

An Integrated OR/CP Method for Planning and Scheduling An Integrated OR/CP Method for Plannng and Schedulng John Hooer Carnege Mellon Unversty IT Unversty of Copenhagen June 2005 The Problem Allocate tass to facltes. Schedule tass assgned to each faclty. Subect

More information

VQ widely used in coding speech, image, and video

VQ widely used in coding speech, image, and video at Scalar quantzers are specal cases of vector quantzers (VQ): they are constraned to look at one sample at a tme (memoryless) VQ does not have such constrant better RD perfomance expected Source codng

More information

FINITELY-GENERATED MODULES OVER A PRINCIPAL IDEAL DOMAIN

FINITELY-GENERATED MODULES OVER A PRINCIPAL IDEAL DOMAIN FINITELY-GENERTED MODULES OVER PRINCIPL IDEL DOMIN EMMNUEL KOWLSKI Throughout ths note, s a prncpal deal doman. We recall the classfcaton theorem: Theorem 1. Let M be a fntely-generated -module. (1) There

More information

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity LINEAR REGRESSION ANALYSIS MODULE IX Lecture - 31 Multcollnearty Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur 6. Rdge regresson The OLSE s the best lnear unbased

More information

8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS

8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS SECTION 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS 493 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS All the vector spaces you have studed thus far n the text are real vector spaces because the scalars

More information

Notes prepared by Prof Mrs) M.J. Gholba Class M.Sc Part(I) Information Technology

Notes prepared by Prof Mrs) M.J. Gholba Class M.Sc Part(I) Information Technology Inverse transformatons Generaton of random observatons from gven dstrbutons Assume that random numbers,,, are readly avalable, where each tself s a random varable whch s unformly dstrbuted over the range(,).

More information

CHAPTER III Neural Networks as Associative Memory

CHAPTER III Neural Networks as Associative Memory CHAPTER III Neural Networs as Assocatve Memory Introducton One of the prmary functons of the bran s assocatve memory. We assocate the faces wth names, letters wth sounds, or we can recognze the people

More information