Combining Constraint Programming and Integer Programming

Size: px
Start display at page:

Download "Combining Constraint Programming and Integer Programming"

Transcription

1 Combnng Constrant Programmng and Integer Programmng GLOBAL CONSTRAINT OPTIMIZATION COMPONENT Specal Purpose Algorthm mn c T x +(x- 0 ) x( + ()) =1 x( - ()) =1 FILTERING ALGORITHM COST-BASED FILTERING ALGORITHM CUT GENERATOR IP- Model mn Z = c x = 1 V x = 1 V S V V V V x x 1 SV S V\S x 0 and nteger 1

2 Constrant Programmng (CP) Prelmnares CP on Fnte Domans CP(FD): a programmng paradgm explotng Constrant Satsfacton technques A Constrant Satsfacton Problem (CSP) conssts of: a set of varables (V 1, V 2,,V n ) a dscrete doman (D 1,D 2,,D n ) for each varable a set of constrants on te varables: relatons among varables whch represent a subset of the Cartesan product of the domans D 1 x D 2 x... x D n Soluton of a CSP: an assgnment of values to varables consstent wth the constrants E. Tsang: : Foundatons of Constrant Satsfacton Academc Press,

3 Each varable s nvolved n many constrants Any change n the doman of a sngle varable may propagate to other varables. Constrants agents vew: durng ther lfetme, the constrants alternate ther status between suspended and woken states (trggered by events). Example: CP Prelmnares nteracton among constrants X = Y + 1 X::[1..5], Y::[1..5], Z::[1..5] Y = Z + 1 X = Z - 1 3

4 X = Y + 1 X::[1..5], Y::[1..5], Z::[1..5] Y = Z + 1 X = Z - 1 Frst propagaton of X = Y + 1 yelds X::[2..5], Y::[1..4], Z::[1..5] X = Y + 1 s then suspended 4

5 Second propagaton of Y = Z + 1 yelds X::[2..5], Y::[2..4], Z::[1..3] Y = Z + 1 s then suspended The doman of Y has changed, X = Y + 1 s then awakened X::[3..5], Y::[2..4], Z::[1..3] X = Y + 1 s then suspended 5

6 Thrd propagaton of X = Z - 1 yelds X::[] Y::[2..4] Z::[1..3] FAILURE detected 6

7 CP Prelmnares search Prunng all the nfeasble values from varable domans often has the same complexty as solvng the orgnal problem Propagaton algorthms are then ncomplete,.e., when propagaton s stopped, stll some values left n the varable domans can be nconsstent a SEARCH step s executed. P Branchng strateges defne the way of parttonng the problem P nto easer subproblems P 1, P 2,, P n. To each subproblem: apply agan propagaton. P 1 P 2 P 3 P 4 P n New branches can be pruned because of the new nformaton derved from the branchng 7

8 The search scheme varable selecton contnue on success value selecton constrant propagaton backtrack on falure const. 1 const 2 const 3 8

9 CP Prelmnares: dealng wth an obectve functon What about the obectve functon? As soon as a feasble soluton of value Z * (say) s found, a new boundng constrant s added so as to mpose that further solutons must have a better value: Z < Z * Hence, CP solves a sequence of feasblty problems, constraned to mprove the obectve functon value. However: Z s n general the sum of the values assumed by several varables the propagaton of the boundng constrant s typcally very weak 9

10 Example: (ATSP) Asymmetrc Travelng SalesmanProblem Gven a drected graph G=(V,A) wth nodes 0,1,, n-1 arc costs c Fnd a Hamltonan tour (= closed crcut passng exactly once through all nodes) of mnmum total cost 0 c 10

11 ATSP: a CP model Gven the drected graph G=(V,A), assocate to each node a varable X whose doman contans the next possble nodes n a smple path. CP standard modules nclude the followng path constrant: X 0 ::D 0, X 1 ::D 1,..., X k ::D k path([x 0,X 1,,X k ]) sayng that the assgnment of varables X 0,X 1,,X k has to defne a smple path nvolvng all nodes 0,,k. 11

12 The Asymmetrc Travellng Salesman Problem (ATSP) can then be formulated through the CP path constrant as follows: one of the nodes, say node 0, s duplcated generatng node n the constrant path([x 0,X 1,,X n ]) s mposed 0 n c 12

13 13 ATSP: an IP model A x S V S x V x V x To Subect x c Mnmze S S V V A >= >= = = = = ), ( nteger 0 (no subtours) 0 : 1 1) (outdegree 1 1) (ndegree 1 : : ), ( thesoluton n ff x ), ( = 1 0 {0,1} x

14 Comparng the CP and IP models CP- Model: X ::[v 1,v 2,,v n ] =0..n-1 path([x 0,X 1,,X n ]) C ::[c 1,c 2,,c n ]=0..n-1 C n = 0; X n = 0; C 0 + +C n-1 = Z mnmze(z) X = v path ([X 0, X 1,.., X n ]) C =c Mappng IP- Model mn Z = c x = 1 V x = 1 V S V V V V x x 1 SV S V\S x 0 and nteger x =1 lnear constr.s c ff x =1 14

15 Pure IP vs Pure CP [red,blue,green,yellow,pnk] [red,blue,green,yellow,pnk] V 1 V 2 V 3 V 4 V 5 [red,blue,green,yellow,pnk] [red,blue,green,yellow,pnk] Tght LP relaxaton, easy feasblty: IP wns Almost useless LP relaxaton, hard feasblty: CP wns 15

16 CP+IP: prelmnary results Although CP s not compettve for problems lke TSP and ATSP, the addton of an IP optmzaton component wthn the CP framework allows for the soluton of nstances of sgnfcantly larger sze (Lod et al., 2003) Pure CP gets stuck on problems wth nodes. TSP and ATSP nstances Instance pure AP AP + Lagrangean relaxaton of cuts Opt Tme Fals Opt Tme Fals Gr Fr Bays Dantzg > RY48P 14854* > K 16

Single-Facility Scheduling over Long Time Horizons by Logic-based Benders Decomposition

Single-Facility Scheduling over Long Time Horizons by Logic-based Benders Decomposition Sngle-Faclty Schedulng over Long Tme Horzons by Logc-based Benders Decomposton Elvn Coban and J. N. Hooker Tepper School of Busness, Carnege Mellon Unversty ecoban@andrew.cmu.edu, john@hooker.tepper.cmu.edu

More information

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009 College of Computer & Informaton Scence Fall 2009 Northeastern Unversty 20 October 2009 CS7880: Algorthmc Power Tools Scrbe: Jan Wen and Laura Poplawsk Lecture Outlne: Prmal-dual schema Network Desgn:

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017 U.C. Berkeley CS94: Beyond Worst-Case Analyss Handout 4s Luca Trevsan September 5, 07 Summary of Lecture 4 In whch we ntroduce semdefnte programmng and apply t to Max Cut. Semdefnte Programmng Recall that

More information

Global Optimization of Truss. Structure Design INFORMS J. N. Hooker. Tallys Yunes. Slide 1

Global Optimization of Truss. Structure Design INFORMS J. N. Hooker. Tallys Yunes. Slide 1 Slde 1 Global Optmzaton of Truss Structure Desgn J. N. Hooker Tallys Yunes INFORMS 2010 Truss Structure Desgn Select sze of each bar (possbly zero) to support the load whle mnmzng weght. Bar szes are dscrete.

More information

Some modelling aspects for the Matlab implementation of MMA

Some modelling aspects for the Matlab implementation of MMA Some modellng aspects for the Matlab mplementaton of MMA Krster Svanberg krlle@math.kth.se Optmzaton and Systems Theory Department of Mathematcs KTH, SE 10044 Stockholm September 2004 1. Consdered optmzaton

More information

NP-Completeness : Proofs

NP-Completeness : Proofs NP-Completeness : Proofs Proof Methods A method to show a decson problem Π NP-complete s as follows. (1) Show Π NP. (2) Choose an NP-complete problem Π. (3) Show Π Π. A method to show an optmzaton problem

More information

CS : Algorithms and Uncertainty Lecture 17 Date: October 26, 2016

CS : Algorithms and Uncertainty Lecture 17 Date: October 26, 2016 CS 29-128: Algorthms and Uncertanty Lecture 17 Date: October 26, 2016 Instructor: Nkhl Bansal Scrbe: Mchael Denns 1 Introducton In ths lecture we wll be lookng nto the secretary problem, and an nterestng

More information

Simultaneous Optimization of Berth Allocation, Quay Crane Assignment and Quay Crane Scheduling Problems in Container Terminals

Simultaneous Optimization of Berth Allocation, Quay Crane Assignment and Quay Crane Scheduling Problems in Container Terminals Smultaneous Optmzaton of Berth Allocaton, Quay Crane Assgnment and Quay Crane Schedulng Problems n Contaner Termnals Necat Aras, Yavuz Türkoğulları, Z. Caner Taşkın, Kuban Altınel Abstract In ths work,

More information

MMA and GCMMA two methods for nonlinear optimization

MMA and GCMMA two methods for nonlinear optimization MMA and GCMMA two methods for nonlnear optmzaton Krster Svanberg Optmzaton and Systems Theory, KTH, Stockholm, Sweden. krlle@math.kth.se Ths note descrbes the algorthms used n the author s 2007 mplementatons

More information

Lecture 20: Lift and Project, SDP Duality. Today we will study the Lift and Project method. Then we will prove the SDP duality theorem.

Lecture 20: Lift and Project, SDP Duality. Today we will study the Lift and Project method. Then we will prove the SDP duality theorem. prnceton u. sp 02 cos 598B: algorthms and complexty Lecture 20: Lft and Project, SDP Dualty Lecturer: Sanjeev Arora Scrbe:Yury Makarychev Today we wll study the Lft and Project method. Then we wll prove

More information

Module 9. Lecture 6. Duality in Assignment Problems

Module 9. Lecture 6. Duality in Assignment Problems Module 9 1 Lecture 6 Dualty n Assgnment Problems In ths lecture we attempt to answer few other mportant questons posed n earler lecture for (AP) and see how some of them can be explaned through the concept

More information

Problem Set 9 Solutions

Problem Set 9 Solutions Desgn and Analyss of Algorthms May 4, 2015 Massachusetts Insttute of Technology 6.046J/18.410J Profs. Erk Demane, Srn Devadas, and Nancy Lynch Problem Set 9 Solutons Problem Set 9 Solutons Ths problem

More information

A Search-Infer-and-Relax Framework for. Integrating Solution Methods. Carnegie Mellon University CPAIOR, May John Hooker

A Search-Infer-and-Relax Framework for. Integrating Solution Methods. Carnegie Mellon University CPAIOR, May John Hooker A Search-Infer-and-Rela Framework for Integratng Soluton Methods John Hooker Carnege Mellon Unversty CPAIOR, May 005 CPAIOR 005 Why ntegrate soluton methods? One-stop shoppng. One solver does t all. CPAIOR

More information

A Modeling System to Combine Optimization and Constraint. Programming. INFORMS, November Carnegie Mellon University.

A Modeling System to Combine Optimization and Constraint. Programming. INFORMS, November Carnegie Mellon University. A Modelng Sstem to Combne Optmzaton and Constrant Programmng John Hooker Carnege Mellon Unverst INFORMS November 000 Based on ont work wth Ignaco Grossmann Hak-Jn Km Mara Axlo Osoro Greger Ottosson Erlendr

More information

Feature Selection: Part 1

Feature Selection: Part 1 CSE 546: Machne Learnng Lecture 5 Feature Selecton: Part 1 Instructor: Sham Kakade 1 Regresson n the hgh dmensonal settng How do we learn when the number of features d s greater than the sample sze n?

More information

= z 20 z n. (k 20) + 4 z k = 4

= z 20 z n. (k 20) + 4 z k = 4 Problem Set #7 solutons 7.2.. (a Fnd the coeffcent of z k n (z + z 5 + z 6 + z 7 + 5, k 20. We use the known seres expanson ( n+l ( z l l z n below: (z + z 5 + z 6 + z 7 + 5 (z 5 ( + z + z 2 + z + 5 5

More information

Calculation of time complexity (3%)

Calculation of time complexity (3%) Problem 1. (30%) Calculaton of tme complexty (3%) Gven n ctes, usng exhaust search to see every result takes O(n!). Calculaton of tme needed to solve the problem (2%) 40 ctes:40! dfferent tours 40 add

More information

CS 331 DESIGN AND ANALYSIS OF ALGORITHMS DYNAMIC PROGRAMMING. Dr. Daisy Tang

CS 331 DESIGN AND ANALYSIS OF ALGORITHMS DYNAMIC PROGRAMMING. Dr. Daisy Tang CS DESIGN ND NLYSIS OF LGORITHMS DYNMIC PROGRMMING Dr. Dasy Tang Dynamc Programmng Idea: Problems can be dvded nto stages Soluton s a sequence o decsons and the decson at the current stage s based on the

More information

Yong Joon Ryang. 1. Introduction Consider the multicommodity transportation problem with convex quadratic cost function. 1 2 (x x0 ) T Q(x x 0 )

Yong Joon Ryang. 1. Introduction Consider the multicommodity transportation problem with convex quadratic cost function. 1 2 (x x0 ) T Q(x x 0 ) Kangweon-Kyungk Math. Jour. 4 1996), No. 1, pp. 7 16 AN ITERATIVE ROW-ACTION METHOD FOR MULTICOMMODITY TRANSPORTATION PROBLEMS Yong Joon Ryang Abstract. The optmzaton problems wth quadratc constrants often

More information

Optimization Methods for Engineering Design. Logic-Based. John Hooker. Turkish Operational Research Society. Carnegie Mellon University

Optimization Methods for Engineering Design. Logic-Based. John Hooker. Turkish Operational Research Society. Carnegie Mellon University Logc-Based Optmzaton Methods for Engneerng Desgn John Hooker Carnege Mellon Unerst Turksh Operatonal Research Socet Ankara June 1999 Jont work wth: Srnas Bollapragada General Electrc R&D Omar Ghattas Cl

More information

VARIATION OF CONSTANT SUM CONSTRAINT FOR INTEGER MODEL WITH NON UNIFORM VARIABLES

VARIATION OF CONSTANT SUM CONSTRAINT FOR INTEGER MODEL WITH NON UNIFORM VARIABLES VARIATION OF CONSTANT SUM CONSTRAINT FOR INTEGER MODEL WITH NON UNIFORM VARIABLES BÂRZĂ, Slvu Faculty of Mathematcs-Informatcs Spru Haret Unversty barza_slvu@yahoo.com Abstract Ths paper wants to contnue

More information

COS 521: Advanced Algorithms Game Theory and Linear Programming

COS 521: Advanced Algorithms Game Theory and Linear Programming COS 521: Advanced Algorthms Game Theory and Lnear Programmng Moses Charkar February 27, 2013 In these notes, we ntroduce some basc concepts n game theory and lnear programmng (LP). We show a connecton

More information

SOLVING CAPACITATED VEHICLE ROUTING PROBLEMS WITH TIME WINDOWS BY GOAL PROGRAMMING APPROACH

SOLVING CAPACITATED VEHICLE ROUTING PROBLEMS WITH TIME WINDOWS BY GOAL PROGRAMMING APPROACH Proceedngs of IICMA 2013 Research Topc, pp. xx-xx. SOLVIG CAPACITATED VEHICLE ROUTIG PROBLEMS WITH TIME WIDOWS BY GOAL PROGRAMMIG APPROACH ATMII DHORURI 1, EMIUGROHO RATA SARI 2, AD DWI LESTARI 3 1Department

More information

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

More information

Planning and Scheduling to Minimize Makespan & Tardiness. John Hooker Carnegie Mellon University September 2006

Planning and Scheduling to Minimize Makespan & Tardiness. John Hooker Carnegie Mellon University September 2006 Plannng and Schedulng to Mnmze Makespan & ardness John Hooker Carnege Mellon Unversty September 2006 he Problem Gven a set of tasks, each wth a deadlne 2 he Problem Gven a set of tasks, each wth a deadlne

More information

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg prnceton unv. F 17 cos 521: Advanced Algorthm Desgn Lecture 7: LP Dualty Lecturer: Matt Wenberg Scrbe: LP Dualty s an extremely useful tool for analyzng structural propertes of lnear programs. Whle there

More information

Common loop optimizations. Example to improve locality. Why Dependence Analysis. Data Dependence in Loops. Goal is to find best schedule:

Common loop optimizations. Example to improve locality. Why Dependence Analysis. Data Dependence in Loops. Goal is to find best schedule: 15-745 Lecture 6 Data Dependence n Loops Copyrght Seth Goldsten, 2008 Based on sldes from Allen&Kennedy Lecture 6 15-745 2005-8 1 Common loop optmzatons Hostng of loop-nvarant computatons pre-compute before

More information

Exercises. 18 Algorithms

Exercises. 18 Algorithms 18 Algorthms Exercses 0.1. In each of the followng stuatons, ndcate whether f = O(g), or f = Ω(g), or both (n whch case f = Θ(g)). f(n) g(n) (a) n 100 n 200 (b) n 1/2 n 2/3 (c) 100n + log n n + (log n)

More information

Optimal Solution to the Problem of Balanced Academic Curriculum Problem Using Tabu Search

Optimal Solution to the Problem of Balanced Academic Curriculum Problem Using Tabu Search Optmal Soluton to the Problem of Balanced Academc Currculum Problem Usng Tabu Search Lorna V. Rosas-Téllez 1, José L. Martínez-Flores 2, and Vttoro Zanella-Palacos 1 1 Engneerng Department,Unversdad Popular

More information

Computing Correlated Equilibria in Multi-Player Games

Computing Correlated Equilibria in Multi-Player Games Computng Correlated Equlbra n Mult-Player Games Chrstos H. Papadmtrou Presented by Zhanxang Huang December 7th, 2005 1 The Author Dr. Chrstos H. Papadmtrou CS professor at UC Berkley (taught at Harvard,

More information

The Minimum Universal Cost Flow in an Infeasible Flow Network

The Minimum Universal Cost Flow in an Infeasible Flow Network Journal of Scences, Islamc Republc of Iran 17(2): 175-180 (2006) Unversty of Tehran, ISSN 1016-1104 http://jscencesutacr The Mnmum Unversal Cost Flow n an Infeasble Flow Network H Saleh Fathabad * M Bagheran

More information

On the Multicriteria Integer Network Flow Problem

On the Multicriteria Integer Network Flow Problem BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 5, No 2 Sofa 2005 On the Multcrtera Integer Network Flow Problem Vassl Vasslev, Marana Nkolova, Maryana Vassleva Insttute of

More information

A 2D Bounded Linear Program (H,c) 2D Linear Programming

A 2D Bounded Linear Program (H,c) 2D Linear Programming A 2D Bounded Lnear Program (H,c) h 3 v h 8 h 5 c h 4 h h 6 h 7 h 2 2D Lnear Programmng C s a polygonal regon, the ntersecton of n halfplanes. (H, c) s nfeasble, as C s empty. Feasble regon C s unbounded

More information

Solutions HW #2. minimize. Ax = b. Give the dual problem, and make the implicit equality constraints explicit. Solution.

Solutions HW #2. minimize. Ax = b. Give the dual problem, and make the implicit equality constraints explicit. Solution. Solutons HW #2 Dual of general LP. Fnd the dual functon of the LP mnmze subject to c T x Gx h Ax = b. Gve the dual problem, and make the mplct equalty constrants explct. Soluton. 1. The Lagrangan s L(x,

More information

EEL 6266 Power System Operation and Control. Chapter 3 Economic Dispatch Using Dynamic Programming

EEL 6266 Power System Operation and Control. Chapter 3 Economic Dispatch Using Dynamic Programming EEL 6266 Power System Operaton and Control Chapter 3 Economc Dspatch Usng Dynamc Programmng Pecewse Lnear Cost Functons Common practce many utltes prefer to represent ther generator cost functons as sngle-

More information

An Integrated OR/CP Method for Planning and Scheduling

An Integrated OR/CP Method for Planning and Scheduling An Integrated OR/CP Method for Plannng and Schedulng John Hooer Carnege Mellon Unversty IT Unversty of Copenhagen June 2005 The Problem Allocate tass to facltes. Schedule tass assgned to each faclty. Subect

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

Differential Evolution Algorithm with a Modified Archiving-based Adaptive Tradeoff Model for Optimal Power Flow

Differential Evolution Algorithm with a Modified Archiving-based Adaptive Tradeoff Model for Optimal Power Flow 1 Dfferental Evoluton Algorthm wth a Modfed Archvng-based Adaptve Tradeoff Model for Optmal Power Flow 2 Outlne Search Engne Constrant Handlng Technque Test Cases and Statstcal Results 3 Roots of Dfferental

More information

Kernel Methods and SVMs Extension

Kernel Methods and SVMs Extension Kernel Methods and SVMs Extenson The purpose of ths document s to revew materal covered n Machne Learnng 1 Supervsed Learnng regardng support vector machnes (SVMs). Ths document also provdes a general

More information

Dynamic Programming. Preview. Dynamic Programming. Dynamic Programming. Dynamic Programming (Example: Fibonacci Sequence)

Dynamic Programming. Preview. Dynamic Programming. Dynamic Programming. Dynamic Programming (Example: Fibonacci Sequence) /24/27 Prevew Fbonacc Sequence Longest Common Subsequence Dynamc programmng s a method for solvng complex problems by breakng them down nto smpler sub-problems. It s applcable to problems exhbtng the propertes

More information

Xiangwen Li. March 8th and March 13th, 2001

Xiangwen Li. March 8th and March 13th, 2001 CS49I Approxaton Algorths The Vertex-Cover Proble Lecture Notes Xangwen L March 8th and March 3th, 00 Absolute Approxaton Gven an optzaton proble P, an algorth A s an approxaton algorth for P f, for an

More information

What is LP? LP is an optimization technique that allocates limited resources among competing activities in the best possible manner.

What is LP? LP is an optimization technique that allocates limited resources among competing activities in the best possible manner. (C) 998 Gerald B Sheblé, all rghts reserved Lnear Prograng Introducton Contents I. What s LP? II. LP Theor III. The Splex Method IV. Refneents to the Splex Method What s LP? LP s an optzaton technque that

More information

Example: (13320, 22140) =? Solution #1: The divisors of are 1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 27, 30, 36, 41,

Example: (13320, 22140) =? Solution #1: The divisors of are 1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 27, 30, 36, 41, The greatest common dvsor of two ntegers a and b (not both zero) s the largest nteger whch s a common factor of both a and b. We denote ths number by gcd(a, b), or smply (a, b) when there s no confuson

More information

Outline and Reading. Dynamic Programming. Dynamic Programming revealed. Computing Fibonacci. The General Dynamic Programming Technique

Outline and Reading. Dynamic Programming. Dynamic Programming revealed. Computing Fibonacci. The General Dynamic Programming Technique Outlne and Readng Dynamc Programmng The General Technque ( 5.3.2) -1 Knapsac Problem ( 5.3.3) Matrx Chan-Product ( 5.3.1) Dynamc Programmng verson 1.4 1 Dynamc Programmng verson 1.4 2 Dynamc Programmng

More information

An Admission Control Algorithm in Cloud Computing Systems

An Admission Control Algorithm in Cloud Computing Systems An Admsson Control Algorthm n Cloud Computng Systems Authors: Frank Yeong-Sung Ln Department of Informaton Management Natonal Tawan Unversty Tape, Tawan, R.O.C. ysln@m.ntu.edu.tw Yngje Lan Management Scence

More information

6.854J / J Advanced Algorithms Fall 2008

6.854J / J Advanced Algorithms Fall 2008 MIT OpenCourseWare http://ocw.mt.edu 6.854J / 18.415J Advanced Algorthms Fall 2008 For nformaton about ctng these materals or our Terms of Use, vst: http://ocw.mt.edu/terms. 18.415/6.854 Advanced Algorthms

More information

A Linear Programming Approach to the Train Timetabling Problem

A Linear Programming Approach to the Train Timetabling Problem A Lnear Programmng Aroach to the Tran Tmetablng Problem V. Cacchan, A. Carara, P. Toth DEIS, Unversty of Bologna (Italy) e-mal (vcacchan, acarara, toth @des.unbo.t) The Tran Tmetablng Problem (on a sngle

More information

Discussion 11 Summary 11/20/2018

Discussion 11 Summary 11/20/2018 Dscusson 11 Summary 11/20/2018 1 Quz 8 1. Prove for any sets A, B that A = A B ff B A. Soluton: There are two drectons we need to prove: (a) A = A B B A, (b) B A A = A B. (a) Frst, we prove A = A B B A.

More information

Math Review. CptS 223 Advanced Data Structures. Larry Holder School of Electrical Engineering and Computer Science Washington State University

Math Review. CptS 223 Advanced Data Structures. Larry Holder School of Electrical Engineering and Computer Science Washington State University Math Revew CptS 223 dvanced Data Structures Larry Holder School of Electrcal Engneerng and Computer Scence Washngton State Unversty 1 Why do we need math n a data structures course? nalyzng data structures

More information

Physics 4B. A positive value is obtained, so the current is counterclockwise around the circuit.

Physics 4B. A positive value is obtained, so the current is counterclockwise around the circuit. Physcs 4B Solutons to Chapter 7 HW Chapter 7: Questons:, 8, 0 Problems:,,, 45, 48,,, 7, 9 Queston 7- (a) no (b) yes (c) all te Queston 7-8 0 μc Queston 7-0, c;, a;, d; 4, b Problem 7- (a) Let be the current

More information

Polynomial Regression Models

Polynomial Regression Models LINEAR REGRESSION ANALYSIS MODULE XII Lecture - 6 Polynomal Regresson Models Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur Test of sgnfcance To test the sgnfcance

More information

Chapter 8 SCALAR QUANTIZATION

Chapter 8 SCALAR QUANTIZATION Outlne Chapter 8 SCALAR QUANTIZATION Yeuan-Kuen Lee [ CU, CSIE ] 8.1 Overvew 8. Introducton 8.4 Unform Quantzer 8.5 Adaptve Quantzaton 8.6 Nonunform Quantzaton 8.7 Entropy-Coded Quantzaton Ch 8 Scalar

More information

THE SUMMATION NOTATION Ʃ

THE SUMMATION NOTATION Ʃ Sngle Subscrpt otaton THE SUMMATIO OTATIO Ʃ Most of the calculatons we perform n statstcs are repettve operatons on lsts of numbers. For example, we compute the sum of a set of numbers, or the sum of the

More information

Greedy can also beat pure dynamic programming

Greedy can also beat pure dynamic programming Electronc Colloquum on Computatonal Complexty, Report No. 49 (208) Greedy can also beat pure dynamc programmng Stasys Jukna Hannes Sewert Insttut für Informatk, Goethe Unverstät Frankfurt am Man, Germany

More information

Modelling and Constraint Hardness Characterisation of the Unique-Path OSPF Weight Setting Problem

Modelling and Constraint Hardness Characterisation of the Unique-Path OSPF Weight Setting Problem Modellng and Constrant Hardness Charactersaton of the Unque-Path OSPF Weght Settng Problem Changyong Zhang and Robert Rodose IC-Parc, Imperal College London, London SW7 2AZ, Unted Kngdom {cz, r.rodose}@cparc.mperal.ac.u

More information

CS-433: Simulation and Modeling Modeling and Probability Review

CS-433: Simulation and Modeling Modeling and Probability Review CS-433: Smulaton and Modelng Modelng and Probablty Revew Exercse 1. (Probablty of Smple Events) Exercse 1.1 The owner of a camera shop receves a shpment of fve cameras from a camera manufacturer. Unknown

More information

Report on Image warping

Report on Image warping Report on Image warpng Xuan Ne, Dec. 20, 2004 Ths document summarzed the algorthms of our mage warpng soluton for further study, and there s a detaled descrpton about the mplementaton of these algorthms.

More information

Interactive Bi-Level Multi-Objective Integer. Non-linear Programming Problem

Interactive Bi-Level Multi-Objective Integer. Non-linear Programming Problem Appled Mathematcal Scences Vol 5 0 no 65 3 33 Interactve B-Level Mult-Objectve Integer Non-lnear Programmng Problem O E Emam Department of Informaton Systems aculty of Computer Scence and nformaton Helwan

More information

An Algebraic Approach to Constraint Satisfaction Problems

An Algebraic Approach to Constraint Satisfaction Problems An Algebrac Approach to Constrant Satsfacton Problems Igor Rvn Wolfram Research, Inc. Champagn, Illnos 61826 Ramn Zabh Computer Scence Department Stanford Unversty Stanford, Calforna 94305 Abstract A constrant

More information

Resource Allocation with a Budget Constraint for Computing Independent Tasks in the Cloud

Resource Allocation with a Budget Constraint for Computing Independent Tasks in the Cloud Resource Allocaton wth a Budget Constrant for Computng Independent Tasks n the Cloud Wemng Sh and Bo Hong School of Electrcal and Computer Engneerng Georga Insttute of Technology, USA 2nd IEEE Internatonal

More information

Solving Fuzzy Linear Programming Problem With Fuzzy Relational Equation Constraint

Solving Fuzzy Linear Programming Problem With Fuzzy Relational Equation Constraint Intern. J. Fuzz Maeatcal Archve Vol., 0, -0 ISSN: 0 (P, 0 0 (onlne Publshed on 0 Septeber 0 www.researchasc.org Internatonal Journal of Solvng Fuzz Lnear Prograng Proble W Fuzz Relatonal Equaton Constrant

More information

Lecture 3: Probability Distributions

Lecture 3: Probability Distributions Lecture 3: Probablty Dstrbutons Random Varables Let us begn by defnng a sample space as a set of outcomes from an experment. We denote ths by S. A random varable s a functon whch maps outcomes nto the

More information

Asymmetric Traveling Salesman Path and Directed Latency Problems

Asymmetric Traveling Salesman Path and Directed Latency Problems Asymmetrc Travelng Salesman Path and Drected Latency Problems Zachary Frggstad Mohammad R. Salavatpour Zoya Svtkna February 28, 202 Abstract We study ntegralty gaps and approxmablty of three closely related

More information

Which Separator? Spring 1

Which Separator? Spring 1 Whch Separator? 6.034 - Sprng 1 Whch Separator? Mamze the margn to closest ponts 6.034 - Sprng Whch Separator? Mamze the margn to closest ponts 6.034 - Sprng 3 Margn of a pont " # y (w $ + b) proportonal

More information

Lecture 17: Lee-Sidford Barrier

Lecture 17: Lee-Sidford Barrier CSE 599: Interplay between Convex Optmzaton and Geometry Wnter 2018 Lecturer: Yn Tat Lee Lecture 17: Lee-Sdford Barrer Dsclamer: Please tell me any mstake you notced. In ths lecture, we talk about the

More information

Lecture 10: Euler s Equations for Multivariable

Lecture 10: Euler s Equations for Multivariable Lecture 0: Euler s Equatons for Multvarable Problems Let s say we re tryng to mnmze an ntegral of the form: {,,,,,, ; } J f y y y y y y d We can start by wrtng each of the y s as we dd before: y (, ) (

More information

A Bayes Algorithm for the Multitask Pattern Recognition Problem Direct Approach

A Bayes Algorithm for the Multitask Pattern Recognition Problem Direct Approach A Bayes Algorthm for the Multtask Pattern Recognton Problem Drect Approach Edward Puchala Wroclaw Unversty of Technology, Char of Systems and Computer etworks, Wybrzeze Wyspanskego 7, 50-370 Wroclaw, Poland

More information

The Study of Teaching-learning-based Optimization Algorithm

The Study of Teaching-learning-based Optimization Algorithm Advanced Scence and Technology Letters Vol. (AST 06), pp.05- http://dx.do.org/0.57/astl.06. The Study of Teachng-learnng-based Optmzaton Algorthm u Sun, Yan fu, Lele Kong, Haolang Q,, Helongang Insttute

More information

Lecture 10 Support Vector Machines II

Lecture 10 Support Vector Machines II Lecture 10 Support Vector Machnes II 22 February 2016 Taylor B. Arnold Yale Statstcs STAT 365/665 1/28 Notes: Problem 3 s posted and due ths upcomng Frday There was an early bug n the fake-test data; fxed

More information

Tornado and Luby Transform Codes. Ashish Khisti Presentation October 22, 2003

Tornado and Luby Transform Codes. Ashish Khisti Presentation October 22, 2003 Tornado and Luby Transform Codes Ashsh Khst 6.454 Presentaton October 22, 2003 Background: Erasure Channel Elas[956] studed the Erasure Channel β x x β β x 2 m x 2 k? Capacty of Noseless Erasure Channel

More information

Additional Codes using Finite Difference Method. 1 HJB Equation for Consumption-Saving Problem Without Uncertainty

Additional Codes using Finite Difference Method. 1 HJB Equation for Consumption-Saving Problem Without Uncertainty Addtonal Codes usng Fnte Dfference Method Benamn Moll 1 HJB Equaton for Consumpton-Savng Problem Wthout Uncertanty Before consderng the case wth stochastc ncome n http://www.prnceton.edu/~moll/ HACTproect/HACT_Numercal_Appendx.pdf,

More information

Operations Research Letters. Simpler analysis of LP extreme points for traveling salesman and survivable network design problems

Operations Research Letters. Simpler analysis of LP extreme points for traveling salesman and survivable network design problems Operatons Research Letters 38 (010) 156 160 Contents lsts avalable at ScenceDrect Operatons Research Letters journal homepage: www.elsever.com/locate/orl Smpler analyss of LP extreme ponts for travelng

More information

Assortment Optimization under MNL

Assortment Optimization under MNL Assortment Optmzaton under MNL Haotan Song Aprl 30, 2017 1 Introducton The assortment optmzaton problem ams to fnd the revenue-maxmzng assortment of products to offer when the prces of products are fxed.

More information

Prof. Dr. I. Nasser Phys 630, T Aug-15 One_dimensional_Ising_Model

Prof. Dr. I. Nasser Phys 630, T Aug-15 One_dimensional_Ising_Model EXACT OE-DIMESIOAL ISIG MODEL The one-dmensonal Isng model conssts of a chan of spns, each spn nteractng only wth ts two nearest neghbors. The smple Isng problem n one dmenson can be solved drectly n several

More information

Fundamental loop-current method using virtual voltage sources technique for special cases

Fundamental loop-current method using virtual voltage sources technique for special cases Fundamental loop-current method usng vrtual voltage sources technque for specal cases George E. Chatzaraks, 1 Marna D. Tortorel 1 and Anastasos D. Tzolas 1 Electrcal and Electroncs Engneerng Departments,

More information

Optimal Dispatch in Electricity Markets

Optimal Dispatch in Electricity Markets QUANTITATIVE FINANCE RESEARCH CENTRE QUANTITATIVE FINANCE RESEARCH CENTRE Research Paper 06 October 007 Optmal Dspatch n Electrcty Markets Vladmr Kazakov and Anatoly M Tsrln ISSN 1441-8010 www.qfrc.uts.edu.au

More information

Expected Value and Variance

Expected Value and Variance MATH 38 Expected Value and Varance Dr. Neal, WKU We now shall dscuss how to fnd the average and standard devaton of a random varable X. Expected Value Defnton. The expected value (or average value, or

More information

Min Cut, Fast Cut, Polynomial Identities

Min Cut, Fast Cut, Polynomial Identities Randomzed Algorthms, Summer 016 Mn Cut, Fast Cut, Polynomal Identtes Instructor: Thomas Kesselhem and Kurt Mehlhorn 1 Mn Cuts n Graphs Lecture (5 pages) Throughout ths secton, G = (V, E) s a mult-graph.

More information

Dynamic Programming! CSE 417: Algorithms and Computational Complexity!

Dynamic Programming! CSE 417: Algorithms and Computational Complexity! Dynamc Programmng CSE 417: Algorthms and Computatonal Complexty Wnter 2009 W. L. Ruzzo Dynamc Programmng, I:" Fbonacc & Stamps Outlne: General Prncples Easy Examples Fbonacc, Lckng Stamps Meater examples

More information

Incremental and Encoding Formulations for Mixed Integer Programming

Incremental and Encoding Formulations for Mixed Integer Programming Incremental and Encodng Formulatons for Mxed Integer Programmng Sercan Yıldız a, Juan Pablo Velma b,c, a Tepper School of Busness, Carnege Mellon Unversty, 5000 Forbes Ave, Pttsburgh, PA 523, Unted States

More information

For now, let us focus on a specific model of neurons. These are simplified from reality but can achieve remarkable results.

For now, let us focus on a specific model of neurons. These are simplified from reality but can achieve remarkable results. Neural Networks : Dervaton compled by Alvn Wan from Professor Jtendra Malk s lecture Ths type of computaton s called deep learnng and s the most popular method for many problems, such as computer vson

More information

Probabilistic & Unsupervised Learning

Probabilistic & Unsupervised Learning Probablstc & Unsupervsed Learnng Convex Algorthms n Approxmate Inference Yee Whye Teh ywteh@gatsby.ucl.ac.uk Gatsby Computatonal Neuroscence Unt Unversty College London Term 1, Autumn 2008 Convexty A convex

More information

CSci 6974 and ECSE 6966 Math. Tech. for Vision, Graphics and Robotics Lecture 21, April 17, 2006 Estimating A Plane Homography

CSci 6974 and ECSE 6966 Math. Tech. for Vision, Graphics and Robotics Lecture 21, April 17, 2006 Estimating A Plane Homography CSc 6974 and ECSE 6966 Math. Tech. for Vson, Graphcs and Robotcs Lecture 21, Aprl 17, 2006 Estmatng A Plane Homography Overvew We contnue wth a dscusson of the major ssues, usng estmaton of plane projectve

More information

Algorithmica 2001 Springer-Verlag New York Inc.

Algorithmica 2001 Springer-Verlag New York Inc. Algorthmca (2001) 29: 595 609 DOI: 10.1007/s004530010075 Algorthmca 2001 Sprnger-Verlag New York Inc. Effcent Algorthms for Integer Programs wth Two Varables per Constrant 1 R. Bar-Yehuda 2 and D. Rawtz

More information

Learning Theory: Lecture Notes

Learning Theory: Lecture Notes Learnng Theory: Lecture Notes Lecturer: Kamalka Chaudhur Scrbe: Qush Wang October 27, 2012 1 The Agnostc PAC Model Recall that one of the constrants of the PAC model s that the data dstrbuton has to be

More information

Maximal Margin Classifier

Maximal Margin Classifier CS81B/Stat41B: Advanced Topcs n Learnng & Decson Makng Mamal Margn Classfer Lecturer: Mchael Jordan Scrbes: Jana van Greunen Corrected verson - /1/004 1 References/Recommended Readng 1.1 Webstes www.kernel-machnes.org

More information

Lecture 12: Discrete Laplacian

Lecture 12: Discrete Laplacian Lecture 12: Dscrete Laplacan Scrbe: Tanye Lu Our goal s to come up wth a dscrete verson of Laplacan operator for trangulated surfaces, so that we can use t n practce to solve related problems We are mostly

More information

Incremental and Encoding Formulations for Mixed Integer Programming

Incremental and Encoding Formulations for Mixed Integer Programming Incremental and Encodng Formulatons for Mxed Integer Programmng Sercan Yıldız a, Juan Pablo Velma b,c, a Tepper School of Busness, Carnege Mellon Unversty, 5000 Forbes Ave., Pttsburgh, PA 15213, Unted

More information

Effective Power Optimization combining Placement, Sizing, and Multi-Vt techniques

Effective Power Optimization combining Placement, Sizing, and Multi-Vt techniques Effectve Power Optmzaton combnng Placement, Szng, and Mult-Vt technques Tao Luo, Davd Newmark*, and Davd Z Pan Department of Electrcal and Computer Engneerng, Unversty of Texas at Austn *Advanced Mcro

More information

Asymptotically Optimal Algorithms for Job Shop Scheduling and Packet Routing

Asymptotically Optimal Algorithms for Job Shop Scheduling and Packet Routing Journal of Algorthms 33, 296318 Ž 1999. Artcle ID agm.1999.1047, avalable onlne at http:www.dealbrary.com on Asymptotcally Optmal Algorthms for Job Shop Schedulng and Packet Routng Dmtrs Bertsmas Sloan

More information

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE Analytcal soluton s usually not possble when exctaton vares arbtrarly wth tme or f the system s nonlnear. Such problems can be solved by numercal tmesteppng

More information

TRANSPOSE ON VERTEX SYMMETRIC DIGRAPHS

TRANSPOSE ON VERTEX SYMMETRIC DIGRAPHS TRANSPOSE ON VERTEX SYMMETRIC DIGRAPHS Vance Faber Center for Computng Scences, Insttute for Defense Analyses Abstract. In [] (and earler n [3]), we defned several global communcaton tasks (unversal exchange,

More information

Finding Dense Subgraphs in G(n, 1/2)

Finding Dense Subgraphs in G(n, 1/2) Fndng Dense Subgraphs n Gn, 1/ Atsh Das Sarma 1, Amt Deshpande, and Rav Kannan 1 Georga Insttute of Technology,atsh@cc.gatech.edu Mcrosoft Research-Bangalore,amtdesh,annan@mcrosoft.com Abstract. Fndng

More information

Solving Nonlinear Differential Equations by a Neural Network Method

Solving Nonlinear Differential Equations by a Neural Network Method Solvng Nonlnear Dfferental Equatons by a Neural Network Method Luce P. Aarts and Peter Van der Veer Delft Unversty of Technology, Faculty of Cvlengneerng and Geoscences, Secton of Cvlengneerng Informatcs,

More information

Introduction to Algorithms

Introduction to Algorithms Introducton to Algorthms 6.046J/8.40J/SMA5503 Lecture 9 Prof. Erk Demane Shortest paths Sngle-source shortest paths Nonnegate edge weghts Djkstra s algorthm: OE + V lg V General Bellman-Ford: OVE DAG One

More information

Introduction to Algorithms

Introduction to Algorithms Introducton to Algorthms 6.046J/8.40J LECTURE 6 Shortest Paths III All-pars shortest paths Matrx-multplcaton algorthm Floyd-Warshall algorthm Johnson s algorthm Prof. Charles E. Leserson Shortest paths

More information

Lecture Randomized Load Balancing strategies and their analysis. Probability concepts include, counting, the union bound, and Chernoff bounds.

Lecture Randomized Load Balancing strategies and their analysis. Probability concepts include, counting, the union bound, and Chernoff bounds. U.C. Berkeley CS273: Parallel and Dstrbuted Theory Lecture 1 Professor Satsh Rao August 26, 2010 Lecturer: Satsh Rao Last revsed September 2, 2010 Lecture 1 1 Course Outlne We wll cover a samplng of the

More information

Case A. P k = Ni ( 2L i k 1 ) + (# big cells) 10d 2 P k.

Case A. P k = Ni ( 2L i k 1 ) + (# big cells) 10d 2 P k. THE CELLULAR METHOD In ths lecture, we ntroduce the cellular method as an approach to ncdence geometry theorems lke the Szemeréd-Trotter theorem. The method was ntroduced n the paper Combnatoral complexty

More information

NUMERICAL DIFFERENTIATION

NUMERICAL DIFFERENTIATION NUMERICAL DIFFERENTIATION 1 Introducton Dfferentaton s a method to compute the rate at whch a dependent output y changes wth respect to the change n the ndependent nput x. Ths rate of change s called the

More information

Drago{ CVETKOVI] Mirjana ^ANGALOVI] 1. INTRODUCTION

Drago{ CVETKOVI] Mirjana ^ANGALOVI] 1. INTRODUCTION Yugoslav Journal of Operatons Research 12 (2002), Number 1, 1-10 FINDING MINIMAL BRANCHINGS WITH A GIVEN NUMBER OF ARCS Drago{ CVETKOVI] Faculty of Electrcal Engneerng Unversty of Belgrade, Belgrade, Yugoslava

More information