THE SUMMATION NOTATION Ʃ

Size: px
Start display at page:

Transcription

1 Sngle Subscrpt otaton THE SUMMATIO OTATIO Ʃ Most of the calculatons we perform n statstcs are repettve operatons on lsts of numbers. For example, we compute the sum of a set of numbers, or the sum of the squares of the numbers, n many statstcal formulas. We need an effcent notaton for talkng about such operatons n the abstract. Sngle Subscrpt otaton Sngle Subscrpt otaton Lst ame Subscrpt The symbol s the lst name, or the name of the varable represented by the numbers on the lst. The symbol s a subscrpt, or poston ndcator. It ndcates whch number n the lst, startng from the top, you are referrng to. 4 Sngle Subscrpt otaton Sngle Subscrpt otaton 4 Sngle subscrpt notaton extends naturally to a stuaton where there are two or more lsts. For example suppose a course has 4 students, and they take two exams. The frst exam could be gven the varable name, the second Y, as n the table below. Chow s score on the second exam s observaton Y

2 Sngle Subscrpt otaton Student Y Smth 87 8 Chow Benedett 8 90 Abdul 9 97 Double Subscrpt otaton Usng dfferent varable names to stand for each lst works well when there are only a few lsts, but t can be awkward for at least two reasons. In some cases the number of lsts can become large. Ths arses qute frequently n some branches of psychology. When general theoretcal results are beng developed, we often wsh to express the noton of some operaton beng performed over all of the lsts. It s dffcult to express such deas effcently when each lst s represented by a dfferent letter, and the lst of letters s n prncple unlmted n sze. 7 8 Double Subscrpt otaton j Double Subscrpt otaton The frst subscrpt refers to the row that the partcular value s n, the second subscrpt refers to the column. 9 0 Double Subscrpt otaton Test your understandng by dentfyng n the table below. 4 4 Sngle Summaton otaton Many statstcal formulas nvolve repettve summng operatons. Consequently, we need a general notaton for expressng such operatons. We shall begn wth some smple examples, and work through to some that are more complex and challengng.

3 Sngle Summaton otaton Many summaton expressons nvolve just a sngle summaton operator. They have the followng general form stop value summaton ndex start value Rules of Summaton Evaluaton. The summaton operator governs everythng to ts rght, up to a natural break pont n the expresson.. Begn by settng the summaton ndex equal to the start value. Then evaluate the algebrac expresson governed by the summaton sgn.. Increase the value of the ndex by. Evaluate the expresson governed by the summaton sgn agan, and add the result to the prevous value. 4. Keep repeatng step untl the expresson has been evaluated and added for the stop value. At that pont the evaluaton s complete, and you stop. 4 Evaluatng a Smple Summaton Expresson Suppose our lst has just numbers, and they are,,,,. Evaluate Answer: = 7 Evaluatng a Smple Summaton Expresson Order of evaluaton can be crucal. Suppose our lst s stll,,,,. Evaluate Answer: ( ) = 7 = 89 The Algebra of Summatons Many facts about the way lsts of numbers behave can be derved usng some basc rules of summaton algebra. These rules are smple yet powerful. The frst constant rule The second constant rule The dstrbutve rule The Frst Constant Rule The frst rule s based on a fact that you frst learned when you were around 8 years old: multplcaton s smply repeated addton. That s, to compute tmes, you compute ++. Another way of vewng ths fact s that, f you add a constant a certan number of tmes, you have multpled the constant by the number of tmes t was added. 7 8

4 The Frst Constant Rule Symbolcally, we can express the rule as: y x a = ( y x + ) a The Frst Constant Rule (Smplfed Verson) Symbolcally, we can express the rule as: a = a 9 0 The Frst Constant Rule (Applcaton ote) The symbol a refers to any expresson, no matter how complcated, that does not vary as a functon of, the summaton ndex! Do not be msled by the form n whch the rule s expressed. Expand and evaluate the sum: Soluton: ( ) = = ( ) Express the sum usng summaton notaton: Soluton: + = Express the sum usng summaton notaton: n 4 8 Soluton: n = n 4 4

5 Evaluate (a) (b) Soluton (a) k 4 ( + ) = ( + ) + ( + ) + ( + ) + ( + ) (b) k = j= k = k ( + ) j j= a ( ) ( ) = = a = a + a + a + a 4 j Use the summaton propertes to 40 4 evaluate (a) (b) (c) ( ) Soluton (a) 40 = 40() = 00 Soluton Exercse Evaluate the followng: (b) (c) ( + ) = = = ( ) = = 4(4 + )( 4 + ) = 4() = Exercse Smplfy the followng: ( ) j The Second Constant Rule The second rule of summaton algebra, lke the frst, derves from a prncple we learned very early n our educatonal careers. When we were frst learnng algebra, we dscovered that a common multple could be factored out of addtve expressons. For example, x + y = ( x + y) 9 0

6 The Second Constant Rule The rule states that Agan, the rule appears to be sayng less than t actually s. At frst glance, t appears to be a rule about multplcaton. You can move a factorable constant outsde of a summaton operator. However, the term a could also stand for a fracton, and so the rule also apples to factorable dvsors n the summaton expresson. a = a The Second Constant Rule (s) Apply the Second Constant Rule to the followng: y The Dstrbutve Rule of Summaton Algebra The thrd rule of summaton algebra relates to a another fact that we learned early n our mathematcs educaton --- when numbers are added or subtracted, the orderng of addton and/or subtracton doesn't matter. For example ( + ) + ( + 4) = ( ) The Dstrbutve Rule of Summaton Algebra So, n summaton notaton, we have ( + ) = + Y Y Snce ether term could be negatve, we also have ( ) = Y Y 4 Defnton: The Sample Mean and Devaton Scores The sample mean of scores s defned as ther arthmetc average, = The orgnal scores are called raw scores. The devaton scores correspondng to the raw scores are defned as dx =

THE SUMMATION NOTATION Ʃ

THE SUMMATION NOTATION Ʃ Single Subscript Notation Most of the calculations we perform in statistics are repetitive operations on lists of numbers. For example, we compute the sum of a set of numbers,

Section 8.3 Polar Form of Complex Numbers

80 Chapter 8 Secton 8 Polar Form of Complex Numbers From prevous classes, you may have encountered magnary numbers the square roots of negatve numbers and, more generally, complex numbers whch are the

Complex Numbers. x = B B 2 4AC 2A. or x = x = 2 ± 4 4 (1) (5) 2 (1)

Complex Numbers If you have not yet encountered complex numbers, you wll soon do so n the process of solvng quadratc equatons. The general quadratc equaton Ax + Bx + C 0 has solutons x B + B 4AC A For

Section 3.6 Complex Zeros

04 Chapter Secton 6 Comple Zeros When fndng the zeros of polynomals, at some pont you're faced wth the problem Whle there are clearly no real numbers that are solutons to ths equaton, leavng thngs there

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

Formulas for the Determinant

page 224 224 CHAPTER 3 Determnants e t te t e 2t 38 A = e t 2te t e 2t e t te t 2e 2t 39 If 123 A = 345, 456 compute the matrx product A adj(a) What can you conclude about det(a)? For Problems 40 43, use

Expected Value and Variance

MATH 38 Expected Value and Varance Dr. Neal, WKU We now shall dscuss how to fnd the average and standard devaton of a random varable X. Expected Value Defnton. The expected value (or average value, or

From Biot-Savart Law to Divergence of B (1)

From Bot-Savart Law to Dvergence of B (1) Let s prove that Bot-Savart gves us B (r ) = 0 for an arbtrary current densty. Frst take the dvergence of both sdes of Bot-Savart. The dervatve s wth respect to

Lecture 12: Discrete Laplacian

Lecture 12: Dscrete Laplacan Scrbe: Tanye Lu Our goal s to come up wth a dscrete verson of Laplacan operator for trangulated surfaces, so that we can use t n practce to solve related problems We are mostly

8.6 The Complex Number System

8.6 The Complex Number System Earler n the chapter, we mentoned that we cannot have a negatve under a square root, snce the square of any postve or negatve number s always postve. In ths secton we want

Difference Equations

Dfference Equatons c Jan Vrbk 1 Bascs Suppose a sequence of numbers, say a 0,a 1,a,a 3,... s defned by a certan general relatonshp between, say, three consecutve values of the sequence, e.g. a + +3a +1

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1

C/CS/Phy9 Problem Set 3 Solutons Out: Oct, 8 Suppose you have two qubts n some arbtrary entangled state ψ You apply the teleportaton protocol to each of the qubts separately What s the resultng state obtaned

The Geometry of Logit and Probit

The Geometry of Logt and Probt Ths short note s meant as a supplement to Chapters and 3 of Spatal Models of Parlamentary Votng and the notaton and reference to fgures n the text below s to those two chapters.

For now, let us focus on a specific model of neurons. These are simplified from reality but can achieve remarkable results.

Neural Networks : Dervaton compled by Alvn Wan from Professor Jtendra Malk s lecture Ths type of computaton s called deep learnng and s the most popular method for many problems, such as computer vson

Exercises. 18 Algorithms

18 Algorthms Exercses 0.1. In each of the followng stuatons, ndcate whether f = O(g), or f = Ω(g), or both (n whch case f = Θ(g)). f(n) g(n) (a) n 100 n 200 (b) n 1/2 n 2/3 (c) 100n + log n n + (log n)

1 GSW Iterative Techniques for y = Ax

1 for y = A I m gong to cheat here. here are a lot of teratve technques that can be used to solve the general case of a set of smultaneous equatons (wrtten n the matr form as y = A), but ths chapter sn

12 MATH 101A: ALGEBRA I, PART C: MULTILINEAR ALGEBRA. 4. Tensor product

12 MATH 101A: ALGEBRA I, PART C: MULTILINEAR ALGEBRA Here s an outlne of what I dd: (1) categorcal defnton (2) constructon (3) lst of basc propertes (4) dstrbutve property (5) rght exactness (6) localzaton

COMPLEX NUMBERS AND QUADRATIC EQUATIONS INTRODUCTION We know that x 0 for all x R e the square of a real number (whether postve, negatve or ero) s non-negatve Hence the equatons x, x, x + 7 0 etc are not

MA 323 Geometric Modelling Course Notes: Day 13 Bezier Curves & Bernstein Polynomials

MA 323 Geometrc Modellng Course Notes: Day 13 Bezer Curves & Bernsten Polynomals Davd L. Fnn Over the past few days, we have looked at de Casteljau s algorthm for generatng a polynomal curve, and we have

Open Systems: Chemical Potential and Partial Molar Quantities Chemical Potential

Open Systems: Chemcal Potental and Partal Molar Quanttes Chemcal Potental For closed systems, we have derved the followng relatonshps: du = TdS pdv dh = TdS + Vdp da = SdT pdv dg = VdP SdT For open systems,

and problem sheet 2

-8 and 5-5 problem sheet Solutons to the followng seven exercses and optonal bonus problem are to be submtted through gradescope by :0PM on Wednesday th September 08. There are also some practce problems,

Foundations of Arithmetic

Foundatons of Arthmetc Notaton We shall denote the sum and product of numbers n the usual notaton as a 2 + a 2 + a 3 + + a = a, a 1 a 2 a 3 a = a The notaton a b means a dvdes b,.e. ac = b where c s an

CHAPTER 4. Vector Spaces

man 2007/2/16 page 234 CHAPTER 4 Vector Spaces To crtcze mathematcs for ts abstracton s to mss the pont entrel. Abstracton s what makes mathematcs work. Ian Stewart The man am of ths tet s to stud lnear

9 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations

Physcs 171/271 - Chapter 9R -Davd Klenfeld - Fall 2005 9 Dervaton of Rate Equatons from Sngle-Cell Conductance (Hodgkn-Huxley-lke) Equatons We consder a network of many neurons, each of whch obeys a set

x = , so that calculated

Stat 4, secton Sngle Factor ANOVA notes by Tm Plachowsk n chapter 8 we conducted hypothess tests n whch we compared a sngle sample s mean or proporton to some hypotheszed value Chapter 9 expanded ths to

Statistical Inference. 2.3 Summary Statistics Measures of Center and Spread. parameters ( population characteristics )

Ismor Fscher, 8//008 Stat 54 / -8.3 Summary Statstcs Measures of Center and Spread Dstrbuton of dscrete contnuous POPULATION Random Varable, numercal True center =??? True spread =???? parameters ( populaton

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X

Statstcs 1: Probablty Theory II 37 3 EPECTATION OF SEVERAL RANDOM VARIABLES As n Probablty Theory I, the nterest n most stuatons les not on the actual dstrbuton of a random vector, but rather on a number

Week 5: Neural Networks

Week 5: Neural Networks Instructor: Sergey Levne Neural Networks Summary In the prevous lecture, we saw how we can construct neural networks by extendng logstc regresson. Neural networks consst of multple

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4)

I. Classcal Assumptons Econ7 Appled Econometrcs Topc 3: Classcal Model (Studenmund, Chapter 4) We have defned OLS and studed some algebrac propertes of OLS. In ths topc we wll study statstcal propertes

COS 521: Advanced Algorithms Game Theory and Linear Programming

COS 521: Advanced Algorthms Game Theory and Lnear Programmng Moses Charkar February 27, 2013 In these notes, we ntroduce some basc concepts n game theory and lnear programmng (LP). We show a connecton

The KMO Method for Solving Non-homogenous, m th Order Differential Equations

The KMO Method for Solvng Non-homogenous, m th Order Dfferental Equatons Davd Krohn Danel Marño-Johnson John Paul Ouyang March 14, 2013 Abstract Ths paper shows a smple tabular procedure for fndng the

Discussion of Extensions of the Gauss-Markov Theorem to the Case of Stochastic Regression Coefficients Ed Stanek

Dscusson of Extensons of the Gauss-arkov Theorem to the Case of Stochastc Regresson Coeffcents Ed Stanek Introducton Pfeffermann (984 dscusses extensons to the Gauss-arkov Theorem n settngs where regresson

Dynamic Programming. Preview. Dynamic Programming. Dynamic Programming. Dynamic Programming (Example: Fibonacci Sequence)

/24/27 Prevew Fbonacc Sequence Longest Common Subsequence Dynamc programmng s a method for solvng complex problems by breakng them down nto smpler sub-problems. It s applcable to problems exhbtng the propertes

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

Note on EM-training of IBM-model 1

Note on EM-tranng of IBM-model INF58 Language Technologcal Applcatons, Fall The sldes on ths subject (nf58 6.pdf) ncludng the example seem nsuffcent to gve a good grasp of what s gong on. Hence here are

Polynomials. 1 More properties of polynomials

Polynomals 1 More propertes of polynomals Recall that, for R a commutatve rng wth unty (as wth all rngs n ths course unless otherwse noted), we defne R[x] to be the set of expressons n =0 a x, where a

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM An elastc wave s a deformaton of the body that travels throughout the body n all drectons. We can examne the deformaton over a perod of tme by fxng our look

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

MEM 255 Introduction to Control Systems Review: Basics of Linear Algebra

MEM 255 Introducton to Control Systems Revew: Bascs of Lnear Algebra Harry G. Kwatny Department of Mechancal Engneerng & Mechancs Drexel Unversty Outlne Vectors Matrces MATLAB Advanced Topcs Vectors A

Problem Set 9 Solutions

Desgn and Analyss of Algorthms May 4, 2015 Massachusetts Insttute of Technology 6.046J/18.410J Profs. Erk Demane, Srn Devadas, and Nancy Lynch Problem Set 9 Solutons Problem Set 9 Solutons Ths problem

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law:

CE304, Sprng 2004 Lecture 4 Introducton to Vapor/Lqud Equlbrum, part 2 Raoult s Law: The smplest model that allows us do VLE calculatons s obtaned when we assume that the vapor phase s an deal gas, and

Math1110 (Spring 2009) Prelim 3 - Solutions

Math 1110 (Sprng 2009) Solutons to Prelm 3 (04/21/2009) 1 Queston 1. (16 ponts) Short answer. Math1110 (Sprng 2009) Prelm 3 - Solutons x a 1 (a) (4 ponts) Please evaluate lm, where a and b are postve numbers.

8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS

SECTION 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS 493 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS All the vector spaces you have studed thus far n the text are real vector spaces because the scalars

Linear Regression Analysis: Terminology and Notation

ECON 35* -- Secton : Basc Concepts of Regresson Analyss (Page ) Lnear Regresson Analyss: Termnology and Notaton Consder the generc verson of the smple (two-varable) lnear regresson model. It s represented

Week 2. This week, we covered operations on sets and cardinality.

Week 2 Ths week, we covered operatons on sets and cardnalty. Defnton 0.1 (Correspondence). A correspondence between two sets A and B s a set S contaned n A B = {(a, b) a A, b B}. A correspondence from

princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 3: Large deviations bounds and applications Lecturer: Sanjeev Arora

prnceton unv. F 13 cos 521: Advanced Algorthm Desgn Lecture 3: Large devatons bounds and applcatons Lecturer: Sanjeev Arora Scrbe: Today s topc s devaton bounds: what s the probablty that a random varable

Density matrix. c α (t)φ α (q)

Densty matrx Note: ths s supplementary materal. I strongly recommend that you read t for your own nterest. I beleve t wll help wth understandng the quantum ensembles, but t s not necessary to know t n

Module 9. Lecture 6. Duality in Assignment Problems

Module 9 1 Lecture 6 Dualty n Assgnment Problems In ths lecture we attempt to answer few other mportant questons posed n earler lecture for (AP) and see how some of them can be explaned through the concept

PRIMES 2015 reading project: Problem set #3

PRIMES 2015 readng project: Problem set #3 page 1 PRIMES 2015 readng project: Problem set #3 posted 31 May 2015, to be submtted around 15 June 2015 Darj Grnberg The purpose of ths problem set s to replace

Grover s Algorithm + Quantum Zeno Effect + Vaidman

Grover s Algorthm + Quantum Zeno Effect + Vadman CS 294-2 Bomb 10/12/04 Fall 2004 Lecture 11 Grover s algorthm Recall that Grover s algorthm for searchng over a space of sze wors as follows: consder the

CHAPTER-5 INFORMATION MEASURE OF FUZZY MATRIX AND FUZZY BINARY RELATION

CAPTER- INFORMATION MEASURE OF FUZZY MATRI AN FUZZY BINARY RELATION Introducton The basc concept of the fuzz matr theor s ver smple and can be appled to socal and natural stuatons A branch of fuzz matr

The Order Relation and Trace Inequalities for. Hermitian Operators

Internatonal Mathematcal Forum, Vol 3, 08, no, 507-57 HIKARI Ltd, wwwm-hkarcom https://doorg/0988/mf088055 The Order Relaton and Trace Inequaltes for Hermtan Operators Y Huang School of Informaton Scence

1 Convex Optimization

Convex Optmzaton We wll consder convex optmzaton problems. Namely, mnmzaton problems where the objectve s convex (we assume no constrants for now). Such problems often arse n machne learnng. For example,

8 Derivation of Network Rate Equations from Single- Cell Conductance Equations

Physcs 178/278 - Davd Klenfeld - Wnter 2015 8 Dervaton of Network Rate Equatons from Sngle- Cell Conductance Equatons We consder a network of many neurons, each of whch obeys a set of conductancebased,

Unversty of Nebraska - Lncoln DgtalCommons@Unversty of Nebraska - Lncoln MAT Exam Expostory Papers Math n the Mddle Insttute Partnershp 008 The Square Root of Tffany Lothrop Unversty of Nebraska-Lncoln

Unit 5: Quadratic Equations & Functions

Date Perod Unt 5: Quadratc Equatons & Functons DAY TOPIC 1 Modelng Data wth Quadratc Functons Factorng Quadratc Epressons 3 Solvng Quadratc Equatons 4 Comple Numbers Smplfcaton, Addton/Subtracton & Multplcaton

Supplementary Notes for Chapter 9 Mixture Thermodynamics

Supplementary Notes for Chapter 9 Mxture Thermodynamcs Key ponts Nne major topcs of Chapter 9 are revewed below: 1. Notaton and operatonal equatons for mxtures 2. PVTN EOSs for mxtures 3. General effects

Mathematics Intersection of Lines

a place of mnd F A C U L T Y O F E D U C A T I O N Department of Currculum and Pedagog Mathematcs Intersecton of Lnes Scence and Mathematcs Educaton Research Group Supported b UBC Teachng and Learnng Enhancement

Linear Feature Engineering 11

Lnear Feature Engneerng 11 2 Least-Squares 2.1 Smple least-squares Consder the followng dataset. We have a bunch of nputs x and correspondng outputs y. The partcular values n ths dataset are x y 0.23 0.19

Some basic inequalities. Definition. Let V be a vector space over the complex numbers. An inner product is given by a function, V V C

Some basc nequaltes Defnton. Let V be a vector space over the complex numbers. An nner product s gven by a functon, V V C (x, y) x, y satsfyng the followng propertes (for all x V, y V and c C) (1) x +

Workshop: Approximating energies and wave functions Quantum aspects of physical chemistry

Workshop: Approxmatng energes and wave functons Quantum aspects of physcal chemstry http://quantum.bu.edu/pltl/6/6.pdf Last updated Thursday, November 7, 25 7:9:5-5: Copyrght 25 Dan Dll (dan@bu.edu) Department

The exponential map of GL(N)

The exponental map of GLN arxv:hep-th/9604049v 9 Apr 996 Alexander Laufer Department of physcs Unversty of Konstanz P.O. 5560 M 678 78434 KONSTANZ Aprl 9, 996 Abstract A fnte expanson of the exponental

Economics 130. Lecture 4 Simple Linear Regression Continued

Economcs 130 Lecture 4 Contnued Readngs for Week 4 Text, Chapter and 3. We contnue wth addressng our second ssue + add n how we evaluate these relatonshps: Where do we get data to do ths analyss? How do

Definition. Measures of Dispersion. Measures of Dispersion. Definition. The Range. Measures of Dispersion 3/24/2014

Measures of Dsperson Defenton Range Interquartle Range Varance and Standard Devaton Defnton Measures of dsperson are descrptve statstcs that descrbe how smlar a set of scores are to each other The more

More metrics on cartesian products

More metrcs on cartesan products If (X, d ) are metrc spaces for 1 n, then n Secton II4 of the lecture notes we defned three metrcs on X whose underlyng topologes are the product topology The purpose of

A how to guide to second quantization method.

Phys. 67 (Graduate Quantum Mechancs Sprng 2009 Prof. Pu K. Lam. Verson 3 (4/3/2009 A how to gude to second quantzaton method. -> Second quantzaton s a mathematcal notaton desgned to handle dentcal partcle

Math 261 Exercise sheet 2

Math 261 Exercse sheet 2 http://staff.aub.edu.lb/~nm116/teachng/2017/math261/ndex.html Verson: September 25, 2017 Answers are due for Monday 25 September, 11AM. The use of calculators s allowed. Exercse

11 Tail Inequalities Markov s Inequality. Lecture 11: Tail Inequalities [Fa 13]

Algorthms Lecture 11: Tal Inequaltes [Fa 13] If you hold a cat by the tal you learn thngs you cannot learn any other way. Mark Twan 11 Tal Inequaltes The smple recursve structure of skp lsts made t relatvely

Solutions to Homework 7, Mathematics 1. 1 x. (arccos x) (arccos x) 1

Solutons to Homework 7, Mathematcs 1 Problem 1: a Prove that arccos 1 1 for 1, 1. b* Startng from the defnton of the dervatve, prove that arccos + 1, arccos 1. Hnt: For arccos arccos π + 1, the defnton

The Expectation-Maximization Algorithm

The Expectaton-Maxmaton Algorthm Charles Elan elan@cs.ucsd.edu November 16, 2007 Ths chapter explans the EM algorthm at multple levels of generalty. Secton 1 gves the standard hgh-level verson of the algorthm.

Lecture 21: Numerical methods for pricing American type derivatives

Lecture 21: Numercal methods for prcng Amercan type dervatves Xaoguang Wang STAT 598W Aprl 10th, 2014 (STAT 598W) Lecture 21 1 / 26 Outlne 1 Fnte Dfference Method Explct Method Penalty Method (STAT 598W)

Notes on Frequency Estimation in Data Streams

Notes on Frequency Estmaton n Data Streams In (one of) the data streamng model(s), the data s a sequence of arrvals a 1, a 2,..., a m of the form a j = (, v) where s the dentty of the tem and belongs to

Frequency dependence of the permittivity

Frequency dependence of the permttvty February 7, 016 In materals, the delectrc constant and permeablty are actually frequency dependent. Ths does not affect our results for sngle frequency modes, but

1 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations

Physcs 171/271 -Davd Klenfeld - Fall 2005 (revsed Wnter 2011) 1 Dervaton of Rate Equatons from Sngle-Cell Conductance (Hodgkn-Huxley-lke) Equatons We consder a network of many neurons, each of whch obeys

9. Complex Numbers. 1. Numbers revisited. 2. Imaginary number i: General form of complex numbers. 3. Manipulation of complex numbers

9. Comple Numbers. Numbers revsted. Imagnar number : General form of comple numbers 3. Manpulaton of comple numbers 4. The Argand dagram 5. The polar form for comple numbers 9.. Numbers revsted We saw

CHAPTER 14 GENERAL PERTURBATION THEORY

CHAPTER 4 GENERAL PERTURBATION THEORY 4 Introducton A partcle n orbt around a pont mass or a sphercally symmetrc mass dstrbuton s movng n a gravtatonal potental of the form GM / r In ths potental t moves

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system

Transfer Functons Convenent representaton of a lnear, dynamc model. A transfer functon (TF) relates one nput and one output: x t X s y t system Y s The followng termnology s used: x y nput output forcng

Bernoulli Numbers and Polynomials

Bernoull Numbers and Polynomals T. Muthukumar tmk@tk.ac.n 17 Jun 2014 The sum of frst n natural numbers 1, 2, 3,..., n s n n(n + 1 S 1 (n := m = = n2 2 2 + n 2. Ths formula can be derved by notng that

8.1 Arc Length. What is the length of a curve? How can we approximate it? We could do it following the pattern we ve used before

.1 Arc Length hat s the length of a curve? How can we approxmate t? e could do t followng the pattern we ve used before Use a sequence of ncreasngly short segments to approxmate the curve: As the segments

Department of Electrical & Electronic Engineeing Imperial College London. E4.20 Digital IC Design. Median Filter Project Specification

Desgn Project Specfcaton Medan Flter Department of Electrcal & Electronc Engneeng Imperal College London E4.20 Dgtal IC Desgn Medan Flter Project Specfcaton A medan flter s used to remove nose from a sampled

1 (1 + ( )) = 1 8 ( ) = (c) Carrying out the Taylor expansion, in this case, the series truncates at second order:

68A Solutons to Exercses March 05 (a) Usng a Taylor expanson, and notng that n 0 for all n >, ( + ) ( + ( ) + ) We can t nvert / because there s no Taylor expanson around 0 Lets try to calculate the nverse

E Tail Inequalities. E.1 Markov s Inequality. Non-Lecture E: Tail Inequalities

Algorthms Non-Lecture E: Tal Inequaltes If you hold a cat by the tal you learn thngs you cannot learn any other way. Mar Twan E Tal Inequaltes The smple recursve structure of sp lsts made t relatvely easy

Economics 101. Lecture 4 - Equilibrium and Efficiency

Economcs 0 Lecture 4 - Equlbrum and Effcency Intro As dscussed n the prevous lecture, we wll now move from an envronment where we looed at consumers mang decsons n solaton to analyzng economes full of

Analytical Chemistry Calibration Curve Handout

I. Quck-and Drty Excel Tutoral Analytcal Chemstry Calbraton Curve Handout For those of you wth lttle experence wth Excel, I ve provded some key technques that should help you use the program both for problem

Errors for Linear Systems

Errors for Lnear Systems When we solve a lnear system Ax b we often do not know A and b exactly, but have only approxmatons Â and ˆb avalable. Then the best thng we can do s to solve Âˆx ˆb exactly whch

Integrals and Invariants of Euler-Lagrange Equations

Lecture 16 Integrals and Invarants of Euler-Lagrange Equatons ME 256 at the Indan Insttute of Scence, Bengaluru Varatonal Methods and Structural Optmzaton G. K. Ananthasuresh Professor, Mechancal Engneerng,

a b a In case b 0, a being divisible by b is the same as to say that

Secton 6.2 Dvsblty among the ntegers An nteger a ε s dvsble by b ε f there s an nteger c ε such that a = bc. Note that s dvsble by any nteger b, snce = b. On the other hand, a s dvsble by only f a = :

P A = (P P + P )A = P (I P T (P P ))A = P (A P T (P P )A) Hence if we let E = P T (P P A), We have that

Backward Error Analyss for House holder Reectors We want to show that multplcaton by householder reectors s backward stable. In partcular we wsh to show fl(p A) = P (A) = P (A + E where P = I 2vv T s the

Edge Isoperimetric Inequalities

November 7, 2005 Ross M. Rchardson Edge Isopermetrc Inequaltes 1 Four Questons Recall that n the last lecture we looked at the problem of sopermetrc nequaltes n the hypercube, Q n. Our noton of boundary

MMA and GCMMA two methods for nonlinear optimization

MMA and GCMMA two methods for nonlnear optmzaton Krster Svanberg Optmzaton and Systems Theory, KTH, Stockholm, Sweden. krlle@math.kth.se Ths note descrbes the algorthms used n the author s 2007 mplementatons

9 Characteristic classes

THEODORE VORONOV DIFFERENTIAL GEOMETRY. Sprng 2009 [under constructon] 9 Characterstc classes 9.1 The frst Chern class of a lne bundle Consder a complex vector bundle E B of rank p. We shall construct

CSC 411 / CSC D11 / CSC C11

18 Boostng s a general strategy for learnng classfers by combnng smpler ones. The dea of boostng s to take a weak classfer that s, any classfer that wll do at least slghtly better than chance and use t

= z 20 z n. (k 20) + 4 z k = 4

Problem Set #7 solutons 7.2.. (a Fnd the coeffcent of z k n (z + z 5 + z 6 + z 7 + 5, k 20. We use the known seres expanson ( n+l ( z l l z n below: (z + z 5 + z 6 + z 7 + 5 (z 5 ( + z + z 2 + z + 5 5

Quantum Mechanics for Scientists and Engineers. David Miller

Quantum Mechancs for Scentsts and Engneers Davd Mller Types of lnear operators Types of lnear operators Blnear expanson of operators Blnear expanson of lnear operators We know that we can expand functons

The Jacobsthal and Jacobsthal-Lucas Numbers via Square Roots of Matrices

Internatonal Mathematcal Forum, Vol 11, 2016, no 11, 513-520 HIKARI Ltd, wwwm-hkarcom http://dxdoorg/1012988/mf20166442 The Jacobsthal and Jacobsthal-Lucas Numbers va Square Roots of Matrces Saadet Arslan

j) = 1 (note sigma notation) ii. Continuous random variable (e.g. Normal distribution) 1. density function: f ( x) 0 and f ( x) dx = 1

Random varables Measure of central tendences and varablty (means and varances) Jont densty functons and ndependence Measures of assocaton (covarance and correlaton) Interestng result Condtonal dstrbutons

arxiv: v1 [math.ho] 18 May 2008

Recurrence Formulas for Fbonacc Sums Adlson J. V. Brandão, João L. Martns 2 arxv:0805.2707v [math.ho] 8 May 2008 Abstract. In ths artcle we present a new recurrence formula for a fnte sum nvolvng the Fbonacc

Physics 5153 Classical Mechanics. Principle of Virtual Work-1

P. Guterrez 1 Introducton Physcs 5153 Classcal Mechancs Prncple of Vrtual Work The frst varatonal prncple we encounter n mechancs s the prncple of vrtual work. It establshes the equlbrum condton of a mechancal