A Note on Quantile Coupling Inequalities and Their Applications

Size: px
Start display at page:

Download "A Note on Quantile Coupling Inequalities and Their Applications"

Transcription

1 A Not o Quatil Couplig Iqualitis ad Thir Applicatios Harriso H. Zhou Dpartmt of Statistics, Yal Uivrsity, Nw Hav, CT 06520, USA. huibi.zhou@yal.du Ju 2, 2006 Abstract A rlatioship btw th larg dviatio ad quatil couplig is studid. W apply this rlatioship to th couplig of th sum of i.i.d. symmtric radom variabls with a ormal radom variabl, improvig th classical quatil couplig iqualitis (th ky part i th clbratd KMT costructios) with a rat = p for radom variabls with cotiuous distributios, or th sam rat modulo costats for th gral cas. Applicatios to th asymptotic quivalc thory ad oparamtric fuctio stimatio ar discussd. Kywords: Quatil Couplig; Larg dviatio; KMT/Hugaria costructio; Asymptotic quivalc; Fuctio stimatio RUNNING TITLE: Quatil Couplig Iqualitis.

2 Itroductio Th KMT/Hugaria costructio i Komlós, Major, ad Tusády (975) is cosidrd o of th most importat statistics ad probability rsults of th last forty yars. It has b widly applid i may aras of statistics ad probability (cf. Shorack ad Wllr (986)). Th quatil couplig of th sum of i.i.d. Broulli(=2) with a ormal radom variabl lis at th hart of KMT/Hugaria costructio for mpirical procss. I this papr, w study th couplig of th sum of i.i.d. symmtric radom variabls with a ormal radom variabl, ad improv th classical quatil couplig bouds with a rat = p for radom variabls whos distributios ar absolutly cotiuous with rspct to a Lbsgu masur, or th sam rat modulo costats for th gral cas. This papr ca b rgardd as a gralizatio of Cartr ad Pollard (2004), which studid th couplig of Biomial(; =2) ad a ormal radom variabl ad improvd th classical quatil couplig bouds (calld Tusády s Lmma) with a rat = p modulo costats. Th KMT costructio playd a ky rol i th progrss of th asymptotic quivalc thory i th last dcad. Nussbaum (996), a brakthrough of asymptotic quivalc thory, stablishd th asymptotic quivalc of dsity stimatio ad Gaussia whit ois udr a Höldr smoothss coditio. A major stp toward th proof of this quivalc rsult is th fuctioal KMT costructio for mpirical procss by Koltchiskii (994), whr lyig at th hart of th costructio is Tusády s Lmma. Th impact of this rsult is that a asymptotically optimal rsult i o of ths oparamtric modls automatically yilds a aaous rsults i th othr modl. Startig from Dooho ad Johsto (995), Bsov smoothss costrait bcam a stadard assumptio i th oparamtric stimatio. Rctly, Brow, Cartr, Low ad Zhag (2004) xtdd th rsult of Nussbaum (996) udr a sharp Bsov smoothss costrait via th improvd Tusády s iquality by Cartr ad Pollard (2004). This asymptotic quivalc rsult is cosidrd a importat progrss i this ara. It is might b worthwhil to mtio that th classical Tusády s iquality may ot b su cit to stablish asymptotic quivalc udr th coditios statd i th papr of Brow, cartr, Low ad Zhag (2004). Gral quatil couplig iqualitis (s Sakhako (984) ad Komlós, Major, ad Tusády (975)) ld to a xtsio of asymptotic quivalc thory i Nussbaum (996) to gral oparamtric stimatio modls (s Grama ad Nussbaum (998, 2002a, 2002b)). Amog thos modls a importat o is th spctral dsity stimatio modl. I Zhou (2004) or Golubv, Nussbaum ad Zhou (2005), w applid a sharp quatil couplig boud btw a Bta ad a ormal radom variabl (a spcial cas of gral rsults i this papr) to stablish th asymptotic quivalc of th spctral dsity stimatio ad Gaussia whit 2

3 ois udr a Bsov smoothss costrait. O possibly itrstig applicatio of our rsult is couplig a mdia statistic with a ormal radom variabl. W obtai a sharp quatil couplig iquality which also improvs th classical quatil couplig bouds with a rat = p udr crtai smoothss coditios for th distributio fuctio (s sctio 5). It icluds th Cauchy distributio as a spcial cas. This couplig rsult may b of idpdt itrst bcaus of th fudamtal rol of mdia i statistics. Th papr is orgaizd as follows. I sctio 2, w list basic rsults for th quatil couplig of th sum of i.i.d. symmtric radom variabl. I sctio 3, w giv a gral assumptio to obtai a quatil couplig iquality with a improvd rat = p, which immdiatly implis a sharp quatil couplig rsult for th sum of i.i.d. symmtric radom variabl with cotiuous distributio. Sctio 4 givs a gral assumptio to obtai a quatil couplig iquality with a improvd rat modulo costats. Som applicatios of th couplig rsults ar discussd i sctio 5. 2 Basic Rsults Th quatil couplig of th sum of i.i.d. Broulli(=2) (or Biomial(; =2)) with a ormal radom variabl is a ky stp i KMT/Hugaria couplig of th mpirical distributio with a Browia bridg i Komlós, Major, ad Tusády (975). Th tight quatil couplig boud for Biomial(; =2) i Tusády (977) is formulatd as follows: thr is a radom variabl X distributd Biomial(; =2) ad a Y = =2 + p Z=2 distributd N(=2; =4) such that jx Y j C + C jxj2 ; wh jxj "p for som C; " > 0. S Massart (2004) for possibl xplicit valus of C ad ", although w do t d thm i stablishig asymptotic quivalc rsults. Th proof of this boud was rst sktchd i Komlós, Major, ad Tusády (975) ad dtaild i svral paprs,.g., Maso ad va Zwt (987), Brtagoll ad Massart (989), Dudly (2000), Major (2000), Maso (200), Lawlr ad Trujillo Frrras (2005), tc. Cartr ad Pollard (2004) improvd that classical quatil bouds for Biomial(; =2) with a rat = p modulo costats. Mor spci cally, thy showd that for th couplig btw a X distributd Biomial(; =2) ad a Y = =2 + p Z=2 distributd 3

4 N(=2; =4), for som C; " > 0. jx Y j C + C jxj3 ; wh jxj "p 2 Th couplig bouds for gral radom variabls ad th dtaild proofs ca b foud i Sakhako (984, 996). I this sctio, w xtd th rsult of Cartr ad Pollard (2004) to gral symmtric radom variabls, i.., sharps th boud i Sakhako (984, 996) (or Komlós, Major, ad Tusády (975)) for th sum of symmtric radom variabls. Th followig propositio is th classical quatil couplig rsult (cf. Sakhako (996) or Lmma i Komlós, Major, ad Tusády (975)). Lmma 2 i Propositio Lt X, X 2,..., X b i.i.d. radom variabls such that EX = 0, EX 2 = P, E xp ft jx jg < for som t > 0. Lt S = p i= X i, ad Z b a stadard ormal radom variabl. Th for vry, thr is a radom variabl S with L S = L (S ) such that S Z C p + C p S 2 for S " p, whr C ; " > 0 do ot dpd o. I may practical situatios, th radom variabls ar symmtric. W hav a improvmt o th classical quatil couplig rsult with a rat = p for radom variabls with cotiuous distributios. Thorm I additio to th assumptios i Propositio suppos that EX 3 = 0 ad th charactristic fuctio v (t) satis s lim sup jtj! jv (t)j <. Th for vry, thr is a radom variabl S with L S = L (S ) such that for S Z C + C S 3 S p ", whr C; " > 0 do ot dpd o. If th absolutly cotiuous compot of th radom variabl X is ozro, th assumptio lim sup jtj! jv (t)j < i Thorm is satis d. Without that assumptio for th charactristic fuctio v (t), w hav a improvmt o th classical quatil couplig boud with a rat = p modulo costats. 4

5 Thorm 2 I additio to th assumptios i Propositio suppos that EX 3 = 0. Th for vry, thr is a radom variabl S with L S = L (S ) such that for S Z p C + C S 3 S p ", whr C; " > 0 do ot dpd o. Th assumptios of Thorm 2 ar satis d for X =Broulli(=2) =2. Thorm 2 is th a atural xtsio of Cartr ad Pollard (2004). 3 Quatil Couplig for Cotiuous cas I this sctio, w giv a gral assumptio to obtai a quatil couplig iquality with a improvd rat. W th apply this iquality to th sum of idpdt radom variabls with vaishig third momt to obtai Thorm which icluds th couplig of th sum of symmtric radom variabls as a spcial cas. A basic iquality for Mill s ratio will b dd to driv th quatil couplig iquality. Lmma For x > 0, w hav ' (x) _ (x) > mi x; 2 p x + 2 p Th followig thorm givs th rlatioship btw th xistc of a crtai typ of larg dviatio rsult ad a sharp quatil couplig iquality. That typ of larg dviatio is oft calld Ptrov xpasio. Actually, th xpasio w us i this papr is v mor prcis tha that of Ptrov (s Rmark 2). Mayb it is bttr to call it Saulis xpasio (s pag 249 i Ptrov (975)). Thorm is just a immdiat cosquc of th followig thorm ad Propositio 2. I this papr, w us a otatio O (x), which mas a valu btw som C > 0. Cx ad Cx for Thorm 3 Lt Z b a stadard ormal radom variabl. Lt S b a radom variabl with a distributio fuctio G (x) = P (S x). Assum that thr is a positiv that for all, P (S < x) = ( x) xp O x 4 + ; P (S < x) = (x) xp O x 4 + ; 5 " such

6 whr G (x) = G (x), ad (x) = (x), ad O ( x 4 + ) is uiform o th itrval x 2 [0; " p ]. Ad th xpasio abov holds wh < is rplacd by. Th for vry, thr is a radom variabl S with L S = L (S ) such that for S Z C + C S 3 S p ", whr C ; " > 0 do ot dpd o. () Rmark Th d itio of distributio fuctio hr is di rt from that i Ptrov (975), or Major (2000), or Maso (200), tc. Thy d G (x) = P (S < x). But w us th mor stadard d itio G (x) = P (S x). Rmark 2 Lt a (; x) = =2 x 3 + =2 x + =2. Th Ptrov xpasio is rplacig O ( x 4 + ) i th Thorm by O (a (; x)) (s Thorm i Chaptr VIII of Ptrov (975), or Thorm A i Komlós, Major, ad Tusády (975)). But th corrspodig couplig iquality will b S Z C p + C p 2 S (s Sakhako (984, 996)). Th dviatio trm O ( x 4 + ) improvs O (a (; x)) with a rat = p for x i a costat lvl, so is th corrspodig quatil couplig iquality. Th followig is a dtaild proof of Thorm 3. It is a modi catio of th proof for th classical cas, which was sktchd i Komlós, Major, ad Tusády (975). whr Proof: D such that L S bcaus th drivatio for S = G (Z) (2) G (x) = if fu; G (u) xg ; = L (S ). Without loss of grality, w assum that 0 S " p, C " p S 0 is similar. Th quatio () is quivalt to + + S 3 S Z C S 3 6

7 i.., S C + S 3 (Z) S + C + S 3. D G S = P (S < x). From th d itio of S i (2) w hav G S (Z) G S, th w d oly to show S C G S + G S S 3 S + C + S 3. i.. x C x3 )! (x) G (x ) G (x) (x) (x) x + C ( + x3 )! (x) wh 0 x " p. From th assumptio i th thorm, w kow max G (x) (x) ; G (x ) (x) C x 4 + for som C > 0. Thus it is ough to show thr is C > 0 such that x C ( + x3 )! C x 4 + (3) (x) x + C ( + x3 )! (x) W oly show th rst part of th iquality abov du to th symmtry of th quatio. It is asy to s that th rst part of th quatio abov is satis d udr th coditio x C + jxj3 0 (w will s latr th valu of C 2 ca b spci d as 8 p 2C). It implis x C = for su citly larg udr a assumptio that C " 2, which holds choosig su citly small ". Th for 0 x C = ad su citly larg, w 7

8 hav x C x3 )! (x) = 2 x C ( + x3 )! (0) + 2 x C x C + x3 + x3 whr th last iquality follows from th fact ( + y) y=2 for 0 y. Writ x C 2 + x3 = C + x3 x (0). Sic C ( + x3 ) 2 ad ' (x) 9 p 2 implis C + x3 x (0), for 0 x 2, th itrmdiat valu thorm C + x3 x 9 p 2 9 p 2 C 2 + x3 C 8 p 2 x 4 + which is mor tha C ( x 4 + ) wh C 8 p 2C. Thus th quatio (3) is stab- lishd i th cas of x C + jxj Now w cosidr th cas x C + jxj3 0. Th itrmdiat valu thorm tlls 2 C us thr is a umbr btw x ad x ( + 4 x3 ) such that x C ( + x3 )! (x) C x 4 ( + x3 )! (x) = C 4 + x3 ' () (). From th lmma (), w hav C x 4 ( + x3 )! (x) C 4 + x3 C x x3 + p 2 2 C 4 + x3 x p 2 2 C x4 + C. 8

9 wh C 6C. Puttig all togthr, w stablish (3) ad prov th thorm. I som applicatios, it is mor covit to us th followig corollary. Th boud ivolvs oly th ormal radom variabl. I Zhou (2004), w usd th couplig of Bta distributio with a ormal to stablish asymptotic quivalc of Gaussia variac rgrssio ad Gaussia whit ois with a drift, ad w foud that it was much asir to us th followig boud i momts calculatios. Corollary Udr th assumptio of Thorm 3, for vry thr is a radom variabl S with L S = L (S ) such that S Z C + jzj3 ; wh jzj " p for som C; " > 0. Proof: Obviously th iquality () still holds, wh S p " for 0 < " ". Lt s choos " small ough such that C" 2 < =2. WhS p ", w hav from (), which implis by th triagl iquality, i.., so w hav for som C > 0. S S S Z C + C Z C + S 2, C jzj + S 2 S 2C + 2 jzj, (4) 3 2C + 2 jzj C + jzj3 Wh S = " p > 0 for ay " with 0 < " ", w kow Z 0 from th d itio of quatil couplig, ad from (4) w hav Z " p I th d itio of quatil couplig, w s that S is a icrasig fuctio of Z. So w hav S p ", wh Z " 2C. Similarly w may show S ", wh p Z " + 2C. Thus w hav S p 2C ", wh jzj " p. (5) 2C. 9

10 Lt " 2 = " =2. W hav " 2 p < " p from (5), so w hav jzj "2 p 2C jzj " p for > 2C " 2 2=3, th w kow 2C S p o " S Z C + jzj3 p 2=3 2C ; wh jzj " 2 ad >. " 2 Thus w hav S Z C + jzj3 ; wh jzj " 2 p. A applicatio of Thorm 3 ad Corollary is th couplig of th sum of idpdt radom variabls with a ormal radom variabl. Assum that thos radom variabls hav it xpotial momt ad vaishig third momt (.g. symmtric radom variabl). Th followig is th Saulis xpasio (S pag 249 i Ptrov (975), or pag 88 i Saulis ad Statulvicius (99)), which givs a sharp approximatio to th tail probability of th sum of thos radom variabls. Th proof of th this rsult ca also b drivd basd o similar argumts i Sctio 8.2 i Ptrov (975). Propositio 2 Lt X ; X 2 ;..., X b i.i.d. radom variabls for which EX = 0; EX 2 = ; EX 3 = 0; E xp (a jx j) < for som a > 0; ad lim sup xp E (itx ) < : jtj! D S = p P i= X i. Th thir xists positiv costats C ad such that i th itrval 0 x. P S < x = ( x) xp C x 4 + C P (S < x) = ( x) xp C x 4 C Not that th xpasio abov holds for Y i = X i. This implis th xpasio abov holds wh < is rplacd by. This propositio ad Thorm 3 immdiatly imply th followig corollary ad Thorm. 0

11 Corollary 2 Udr th assumptio i Propositio 2, for vry, thr is a radom variabl S with L S = L S such that for S Z mi C + C S 3 C ; + C jzj3 S " p or jzj " p, whr C; " > 0 do ot dpd o. 4 Quatil Couplig for Gral Cas I this sctio, w giv a gral assumptio to obtai a quatil couplig iquality with a improvd rat modulo costats. O applicatio of th rsult is sharpig classical quatil couplig iquality with a rat modulo costats for th sum of idpdt symmtric radom variabls. So this rsult is a gralizatio of Cartr ad Pollard (2004), whr thy cosidrd couplig for Biomial(; =2). Th followig thorm ad Lmma 2 imply Thorm 2. Thorm 4 Lt Z b a stadard ormal radom variabl. Lt S b a radom variabl with a distributio fuctio G (x). Assum that thr is a positiv " such that for all, P (S < x) = ( x) xp O x 4 + =2 ; P (S < x) = (x) xp O x 4 + =2 ; whr G (x) = G (x), ad (x) = (x), ad O x 4 + =2 is uiform o th itrval x 2 [0; " p ] with " > 0. Ad th xpasio abov holds wh < is rplacd by. Th for vry, thr is a radom variabl S with L S = L (S ) such that for S Z C p + C S 3 S p ", whr C ; " > 0 do ot dpd o. Th proof of Thorm 4 is similar to that of Thorm 3, so w skip th proof. Similar to th proof of Corollary, w hav Corollary 3 Udr th assumptio of Thorm 4, for vry thr is a radom variabl S with L S = L (S ) such that S whr C; " > 0 do ot dpd o. Z p C + C jzj3 ; wh jzj " p

12 A applicatio of Thorm 4 ad Corollary 3 is th couplig of th sum of idpdt radom variabls with a ormal radom variabl. Assum that thos radom variabls hav it xpotial momt ad vaishig third momt (.g. symmtric radom variabl). A approximatio to th tail probability of th sum of thos radom variabls is giv i th followig lmma. Th proof of th approximatio is basd o similar argumts i Sctio 8.2 i Ptrov (975). It is a xtsio of Thorm i Cartr ad Pollard (2004). Lmma 2 Lt X ; X 2 ;..., X b i.i.d. radom variabls for which EX = 0; EX 2 = ; EX 3 = 0; E xp (a jx j) < for som a > 0: Th thir xists positiv costats " such that i th itrval 0 x ", whr P (S < x) = ( x) xp O x 4 + =2 (6) P (S < x) = (x) xp O x 4 + =2 (7) S = p X X i, ad th xpasio abov holds wh < is rplacd by. Proof: From Thorm 2 of Sctio 8.2 i Ptrov (975), w kow P (S < x) = ( x) xp C x 4 + C (x + ) =2 (Our otatio is di rt from that of Ptrov. Our x hr is thir z = x= p ). Udr th assumptio of EX 3 = 0, w ca rplac th trms + O (z) of quatios (2.37) ad (2.38) i Sctio 8.2 i Ptrov (975) by + O (z 2 ). I th sam sctio, from quatio (2.35) w ca rplac th trm + O (z) of quatio (2.40) by + C= p. W kp vrythig ls i th proof Thorm 2 of Sctio 8.2 i Ptrov (975). Th w stablish th followig approximatio of th tail probability P (S < x) = ( x) xp C x 4 + C x 2 = + =2 Not that x 2 = ( x 4 + ) 2 2 argumt for quatio (7) is similar. Th xpasio holds if rplacig X i by wh < is rplacd by. i= x 4 + =2. Th w obtai quatio (6). Th 2 X i. This implis th xpasio abov holds

13 Rmark 3 I Lmma 2, w assum that thos radom variabls ar idtically distributd, but it ca b xtdd to o-idtically cas similar to Thorm 2 of Sctio 8.2 i Ptrov (975). Thorm 4 ad Lmma 2 imply th followig corollary (or basically Thorm 2). It xtds Thorm 2 of Cartr ad Pollard (2004). Corollary 4 Udr th assumptio i Lmma 2, for vry, thr is a radom variabl S with L S = L (S ) such that for S Cp Z mi + C S 3 C ; p + C jzj3 S p p " or jzj ", whr C; " > 0 do ot dpd o. 5 Som Exampls I this sctio, w discuss som applicatios of rsults i prvious sctios to asymptotic quivalc thory ad oparamtric fuctio stimatio. Exampl : Asymptotic quivalc of dsity stimatio ad Gaussia whit ois: E : y(); :::; y(); i.i.d. with dsity f o [0; ] F : dy t = f =2 (t) dt + 2 =2 dw t Th asymptotic quivalc rsult abov was stablishd i Brow, Low, Cartr ad Zhag ( 2004) udr a Bsov smoothss costrait. Th ky ida of that papr is applyig th classical KMT costructio. W th d a couplig for Biomial radom variabl ad a ormal radom variabl. Lt X ; X 2 ;..., X b i.i.d. Broulli(=2). Th Corollary 4 tlls us for vry thr is a radom variabl S with L S = L S such that S Cp Z mi + C S 3 C ; p + C jzj3 for S p p " or jzj ", whr C; " > 0 do ot dpd o (s also Cartr ad Pollard (2004)). This rsult was usd i th KMT costructio to stablish th asymptotic quivalc udr th Bsov smoothss coditio, compact i Bsov balls of B =2 2;2 ad B =2 4;4. If o applis th classical Tusády s iquality, a strogr smoothss coditio would b dd to stablish th asymptotic quivalc. 3

14 ois: Exampl 2: Asymptotic quivalc of spctral dsity stimatio ad Gaussia whit E : y(); :::; y(); a statioary ctrd Gaussia squc with spctral dsity f F : dy t = f (t) dt + 2 =2 =2 dw t whr f has support o [ ; ]. This asymptotic quivalc btw Gaussia spctral dsity, Gaussia variac rgrssio ad Gaussia whit ois i Golubv, Nussbaum ad Zhou( 2005) udr a Bsov smoothss costrait. I that papr, w usd a dyadic KMTtyp costructio, but di rt from th classical KMT costructio. I th KMT papr, thy usd a complicat coditioal quatil couplig for highr rsolutios. It is asy to obsrv that L(XjX + Y ) = L((X + Y )B ) for two idpdt ad idtically distributd radom variabls X ad Y with law 2, th w ca avoid th coditioal quatil couplig by cosidrig th couplig for a Bta radom variabl. Th followig couplig iquality is th usd. Lt Z b a stadard ormal radom variabl. For vry, thr is a mappig T : R 7! R such that th radom variabl B = T (Z) has th Bta (=2; =2) law ad (=2 B =2 ) 2 Z Cp mi + C jb 2 =2j 3 ; C + C jzj3 for jb =2j ", whr C; " > 0 do ot dpd o (cf. Zhou (2004)). Exampl 3: Quatil couplig of Mdia statistics. Lt X ; X 2 ; : : : ; X i.i.d. with dsity f (x). For simplicity, lt = 2k + with som itgr k, ad assum that f (0) > 0, f(0) = 0, ad f 2 C 3. Lt Z b a stadard ormal radom variabl. For vry, thr is a mappig T : R 7! R such that th radom variabl X md = T (Z) has dsity f (x) ad p 4f (0) X md Z C + jzj3 ; wh jzj " p whr C; " > 0 do ot dpd o. Dtails ad mor gral discussios will b prstd i Brow, Cai ad Zhou (workig papr). I this papr, w apply this quatil couplig boud to oparamtric locatio modl with Cauchy ois ad cosidr wavlt rgrssio. Dooho ad Yu (2000) cosidrd a similar problm, but miimax proprty is uclar for thir procdur. I wavlt rgrssio sttig, Hall ad Patil (996) studid oparamtric locatio modls ad achivd th optimal miimax rat, but udr a assumptio of th xistc of it forth momt. W do t d ay momt coditio, ad th ois ca b gral ad ukow, but achiv optimal miimax rat of covrgc. Without th 4

15 assumptio of f(0) = 0 or f 2 C 3, w may still obtai couplig bouds, but may ot as b tight as th boud abov. Th tightss of th uppr boud a cts th th udrlyig smoothss coditio w d i drivig asymptotic proprtis. Rfrcs [] Brtagoll, J. ad Massart, P. (989). Hugaria costructios from th oasymptotic viw poit, A. Probab. 7 () [2] Brow, L.D., Cai, T. T., Zhou, H. H.. Robust Noparamtric Wavlt Estimatio. I prparatio. [3] Brow, L.D., Cartr, A.V., Low, M.G. ad Zhag, C. (2004). Equivalc thory for dsity stimatio, Poisso procsss ad Gaussia whit ois with drift. A. Statist. 32, [4] Cartr, A. V. ad Pollard, D. (2004). Tusády s iquality rvisitd. A. Statist. 32, [5] Dooho, D. L. ad Johsto, I. M. (995). Adapt to ukow smoothss via wavlt shrikag. J. Amr. Stat. Assoc. 90, [6] Dooho, D. L. ad Yu, T. P.-Y. (2000). Noliar Pyramid Trasforms Basd o Mdia-Itrpolatio. SIAM Joural of Math. Aal., 3(5), [7] Dudly, R. M. (2000). Nots o mpirical procsss. Lctur ots for a cours giv at Aarhus Uiv., August 999. [8] Golubv, G. K., Nussbaum, M. ad Zhou, H. H., Asymptotic quivalc of spctral dsity stimatio ad Gaussia whit ois. Availabl at Submittd. [9] Grama, I. ad Nussbaum, M. (998). Asymptotic quivalc for oparamtric gralizd liar modls. Probab. Thory Rlat. Filds [0] Grama, I ad Nussbaum, M. (2002). Asymptotic quivalc for oparamtric rgrssio. Mathmatical Mthods of Statistics, (), -36. [] P. Hall ad P. Patil (996). O th choic of smoothig paramtr, thrshold ad trucatio i oparamtric rgrssio by wavlt mthods, J. Roy. Statist. Soc. Sr. B, 58,

16 [2] Komlös, J., Major, P. ad Tusády, G. (975). A approximatio of partial sums of idpdt rv s ad th sampl df. I Z. Wahrsch. vrw. Gbit [3] Komlös, J., Major, P. ad Tusády, G. (976). A approximatio of partial sums of idpdt rv s ad th sampl df. II Z. Wahrsch. vrw. Gbit [4] Lawr, G, F. ad Trujillo Frrras, J. A.. Radom walk loop soup. Availabl at [5] Major, P. (2000). Th approximatio of th ormalizd mpirical ditributio fuctio by a Browia bridg. Tchical rport, Mathmatical Istitut of th Hugaria Acadmy of Scics. Nots availabl from [6] Maso, D. M. (200). Nots o th KMT Browia bridg approximatio to th uiform mpirical procss. I Asymptotic Mthods i Probability ad Statistics with Applicatios (N. Balakrisha, I. A. Ibragimov ad V. B. Nvzorov, ds.) Birkhäusr, Bosto. [7] Massart, P. (2002). Tusády s lmma, 24 yars latr. A. Ist. H. Poicaré Probab. Statist [8] Nussbaum, M. (996). Asymptotic quivalc of dsity stimatio ad Gaussia whit ois. A. Statist. 24, [9] Ptrov, V. V. (975). Sums of Idpdt Radom Variabls. Sprigr-Vrlag. (Elish traslatio from 972 Russia ditio). [20] Sakhako, A. (984). Th rat of covrgc i th ivariac pricipl for oidtically distributd variabls with xpotial momts. Limit thorms for sums of radom variabls. Trudy Ist. Matm., Sibirsk. Otdl. AN SSSR (i Russia). [2] Sakhako, A. I. (996). Estimats for th Accuracy of Couplig i th Ctral Limit Thorm. Sibria Mathmatical Joural, Vol. 37. No 4. [22] Saulis, L ad Statulvicius, V.A. (99). Limit thorms for larg dviatios. Kluwr Acadmic Publishrs. [23] Zhou, H. H. (2004). Miimax Estimatio with Thrsholdig ad Asymptotic Equivalc for Gaussia Variac Rgrssio. Ph.D. Dissrtatio. Corll Uivrsity, Ithaca, NY. 6

On the approximation of the constant of Napier

On the approximation of the constant of Napier Stud. Uiv. Babş-Bolyai Math. 560, No., 609 64 O th approximatio of th costat of Napir Adri Vrscu Abstract. Startig from som oldr idas of [] ad [6], w show w facts cocrig th approximatio of th costat of

More information

Statistics 3858 : Likelihood Ratio for Exponential Distribution

Statistics 3858 : Likelihood Ratio for Exponential Distribution Statistics 3858 : Liklihood Ratio for Expotial Distributio I ths two xampl th rjctio rjctio rgio is of th form {x : 2 log (Λ(x)) > c} for a appropriat costat c. For a siz α tst, usig Thorm 9.5A w obtai

More information

The Interplay between l-max, l-min, p-max and p-min Stable Distributions

The Interplay between l-max, l-min, p-max and p-min Stable Distributions DOI: 0.545/mjis.05.4006 Th Itrplay btw lma lmi pma ad pmi Stabl Distributios S Ravi ad TS Mavitha Dpartmt of Studis i Statistics Uivrsity of Mysor Maasagagotri Mysuru 570006 Idia. Email:ravi@statistics.uimysor.ac.i

More information

Restricted Factorial And A Remark On The Reduced Residue Classes

Restricted Factorial And A Remark On The Reduced Residue Classes Applid Mathmatics E-Nots, 162016, 244-250 c ISSN 1607-2510 Availabl fr at mirror sits of http://www.math.thu.du.tw/ am/ Rstrictd Factorial Ad A Rmark O Th Rducd Rsidu Classs Mhdi Hassai Rcivd 26 March

More information

Law of large numbers

Law of large numbers Law of larg umbrs Saya Mukhrj W rvisit th law of larg umbrs ad study i som dtail two typs of law of larg umbrs ( 0 = lim S ) p ε ε > 0, Wak law of larrg umbrs [ ] S = ω : lim = p, Strog law of larg umbrs

More information

Chapter (8) Estimation and Confedence Intervals Examples

Chapter (8) Estimation and Confedence Intervals Examples Chaptr (8) Estimatio ad Cofdc Itrvals Exampls Typs of stimatio: i. Poit stimatio: Exampl (1): Cosidr th sampl obsrvatios, 17,3,5,1,18,6,16,10 8 X i i1 17 3 5 118 6 16 10 116 X 14.5 8 8 8 14.5 is a poit

More information

PURE MATHEMATICS A-LEVEL PAPER 1

PURE MATHEMATICS A-LEVEL PAPER 1 -AL P MATH PAPER HONG KONG EXAMINATIONS AUTHORITY HONG KONG ADVANCED LEVEL EXAMINATION PURE MATHEMATICS A-LEVEL PAPER 8 am am ( hours) This papr must b aswrd i Eglish This papr cosists of Sctio A ad Sctio

More information

A Simple Proof that e is Irrational

A Simple Proof that e is Irrational Two of th most bautiful ad sigificat umbrs i mathmatics ar π ad. π (approximatly qual to 3.459) rprsts th ratio of th circumfrc of a circl to its diamtr. (approximatly qual to.788) is th bas of th atural

More information

Technical Support Document Bias of the Minimum Statistic

Technical Support Document Bias of the Minimum Statistic Tchical Support Documt Bias o th Miimum Stattic Itroductio Th papr pla how to driv th bias o th miimum stattic i a radom sampl o siz rom dtributios with a shit paramtr (also kow as thrshold paramtr. Ths

More information

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z Sris Expasio of Rciprocal of Gamma Fuctio. Fuctios with Itgrs as Roots Fuctio f with gativ itgrs as roots ca b dscribd as follows. f() Howvr, this ifiit product divrgs. That is, such a fuctio caot xist

More information

Probability & Statistics,

Probability & Statistics, Probability & Statistics, BITS Pilai K K Birla Goa Campus Dr. Jajati Kshari Sahoo Dpartmt of Mathmatics BITS Pilai, K K Birla Goa Campus Poisso Distributio Poisso Distributio: A radom variabl X is said

More information

International Journal of Advanced and Applied Sciences

International Journal of Advanced and Applied Sciences Itratioal Joural of Advacd ad Applid Scics x(x) xxxx Pags: xx xx Cotts lists availabl at Scic Gat Itratioal Joural of Advacd ad Applid Scics Joural hompag: http://wwwscic gatcom/ijaashtml Symmtric Fuctios

More information

APPENDIX: STATISTICAL TOOLS

APPENDIX: STATISTICAL TOOLS I. Nots o radom samplig Why do you d to sampl radomly? APPENDI: STATISTICAL TOOLS I ordr to masur som valu o a populatio of orgaisms, you usually caot masur all orgaisms, so you sampl a subst of th populatio.

More information

1985 AP Calculus BC: Section I

1985 AP Calculus BC: Section I 985 AP Calculus BC: Sctio I 9 Miuts No Calculator Nots: () I this amiatio, l dots th atural logarithm of (that is, logarithm to th bas ). () Ulss othrwis spcifid, th domai of a fuctio f is assumd to b

More information

Session : Plasmas in Equilibrium

Session : Plasmas in Equilibrium Sssio : Plasmas i Equilibrium Ioizatio ad Coductio i a High-prssur Plasma A ormal gas at T < 3000 K is a good lctrical isulator, bcaus thr ar almost o fr lctros i it. For prssurs > 0.1 atm, collisio amog

More information

NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES

NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES Digst Joural of Naomatrials ad Biostructurs Vol 4, No, March 009, p 67-76 NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES A IRANMANESH a*, O KHORMALI b, I NAJAFI KHALILSARAEE c, B SOLEIMANI

More information

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net Taylor s Thorm & Lagrag Error Bouds Actual Error This is th ral amout o rror, ot th rror boud (worst cas scario). It is th dirc btw th actual () ad th polyomial. Stps:. Plug -valu ito () to gt a valu.

More information

Supplement to Applications of Distance Correlation to Time Series

Supplement to Applications of Distance Correlation to Time Series arxiv: arxiv:606.0548 Supplmt to Applicatios of Distac Corrlatio to Tim Sris RICHARD A. DAVIS,* MUNEYA MATSUI,** THOMAS MIKOSCH 3, ad PHYLLIS WAN, Dpartmt of Statistics, Columbia Uivrsity, 55 Amstrdam

More information

Solution to 1223 The Evil Warden.

Solution to 1223 The Evil Warden. Solutio to 1 Th Evil Ward. This is o of thos vry rar PoWs (I caot thik of aothr cas) that o o solvd. About 10 of you submittd th basic approach, which givs a probability of 47%. I was shockd wh I foud

More information

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series Chatr Ifiit Sris Pag of Sctio F Itgral Tst Chatr : Ifiit Sris By th d of this sctio you will b abl to valuat imror itgrals tst a sris for covrgc by alyig th itgral tst aly th itgral tst to rov th -sris

More information

Character sums over generalized Lehmer numbers

Character sums over generalized Lehmer numbers Ma t al. Joural of Iualitis ad Applicatios 206 206:270 DOI 0.86/s3660-06-23-y R E S E A R C H Op Accss Charactr sums ovr gralizd Lhmr umbrs Yuakui Ma, Hui Ch 2, Zhzh Qi 2 ad Tiapig Zhag 2* * Corrspodc:

More information

Bayesian Estimations in Insurance Theory and Practice

Bayesian Estimations in Insurance Theory and Practice Advacs i Mathmatical ad Computatioal Mthods Baysia Estimatios i Isurac Thory ad Practic VIERA PACÁKOVÁ Dpartmt o Mathmatics ad Quatitativ Mthods Uivrsity o Pardubic Studtská 95, 53 0 Pardubic CZECH REPUBLIC

More information

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling Tripl Play: From D Morga to Stirlig To Eulr to Maclauri to Stirlig Augustus D Morga (186-1871) was a sigificat Victoria Mathmaticia who mad cotributios to Mathmatics History, Mathmatical Rcratios, Mathmatical

More information

2617 Mark Scheme June 2005 Mark Scheme 2617 June 2005

2617 Mark Scheme June 2005 Mark Scheme 2617 June 2005 Mark Schm 67 Ju 5 GENERAL INSTRUCTIONS Marks i th mark schm ar plicitly dsigatd as M, A, B, E or G. M marks ("mthod" ar for a attmpt to us a corrct mthod (ot mrly for statig th mthod. A marks ("accuracy"

More information

Blackbody Radiation. All bodies at a temperature T emit and absorb thermal electromagnetic radiation. How is blackbody radiation absorbed and emitted?

Blackbody Radiation. All bodies at a temperature T emit and absorb thermal electromagnetic radiation. How is blackbody radiation absorbed and emitted? All bodis at a tmpratur T mit ad absorb thrmal lctromagtic radiatio Blackbody radiatio I thrmal quilibrium, th powr mittd quals th powr absorbd How is blackbody radiatio absorbd ad mittd? 1 2 A blackbody

More information

ECE594I Notes set 6: Thermal Noise

ECE594I Notes set 6: Thermal Noise C594I ots, M. odwll, copyrightd C594I Nots st 6: Thrmal Nois Mark odwll Uivrsity of Califoria, ata Barbara rodwll@c.ucsb.du 805-893-344, 805-893-36 fax frcs ad Citatios: C594I ots, M. odwll, copyrightd

More information

STIRLING'S 1 FORMULA AND ITS APPLICATION

STIRLING'S 1 FORMULA AND ITS APPLICATION MAT-KOL (Baja Luka) XXIV ()(08) 57-64 http://wwwimviblorg/dmbl/dmblhtm DOI: 075/МК80057A ISSN 0354-6969 (o) ISSN 986-588 (o) STIRLING'S FORMULA AND ITS APPLICATION Šfkt Arslaagić Sarajvo B&H Abstract:

More information

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx MONTGOMERY COLLEGE Dpartmt of Mathmatics Rockvill Campus MATH 8 - REVIEW PROBLEMS. Stat whthr ach of th followig ca b itgratd by partial fractios (PF), itgratio by parts (PI), u-substitutio (U), or o of

More information

ln x = n e = 20 (nearest integer)

ln x = n e = 20 (nearest integer) H JC Prlim Solutios 6 a + b y a + b / / dy a b 3/ d dy a b at, d Giv quatio of ormal at is y dy ad y wh. d a b () (,) is o th curv a+ b () y.9958 Qustio Solvig () ad (), w hav a, b. Qustio d.77 d d d.77

More information

Journal of Modern Applied Statistical Methods

Journal of Modern Applied Statistical Methods Joural of Modr Applid Statistical Mthods Volum Issu Articl 6 --03 O Som Proprtis of a Htrogous Trasfr Fuctio Ivolvig Symmtric Saturatd Liar (SATLINS) with Hyprbolic Tagt (TANH) Trasfr Fuctios Christophr

More information

Hadamard Exponential Hankel Matrix, Its Eigenvalues and Some Norms

Hadamard Exponential Hankel Matrix, Its Eigenvalues and Some Norms Math Sci Ltt Vol No 8-87 (0) adamard Exotial al Matrix, Its Eigvalus ad Som Norms İ ad M bula Mathmatical Scics Lttrs Itratioal Joural @ 0 NSP Natural Scics Publishig Cor Dartmt of Mathmatics, aculty of

More information

10. Joint Moments and Joint Characteristic Functions

10. Joint Moments and Joint Characteristic Functions 0 Joit Momts ad Joit Charactristic Fctios Followig sctio 6 i this sctio w shall itrodc varios paramtrs to compactly rprst th iformatio cotaid i th joit pdf of two rvs Giv two rvs ad ad a fctio g x y dfi

More information

Empirical Study in Finite Correlation Coefficient in Two Phase Estimation

Empirical Study in Finite Correlation Coefficient in Two Phase Estimation M. Khoshvisa Griffith Uivrsity Griffith Busiss School Australia F. Kaymarm Massachustts Istitut of Tchology Dpartmt of Mchaical girig USA H. P. Sigh R. Sigh Vikram Uivrsity Dpartmt of Mathmatics ad Statistics

More information

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1 DTFT Proprtis Exampl - Dtrmi th DTFT Y of y α µ, α < Lt x α µ, α < W ca thrfor writ y x x From Tabl 3., th DTFT of x is giv by ω X ω α ω Copyright, S. K. Mitra Copyright, S. K. Mitra DTFT Proprtis DTFT

More information

Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT) Discrt Fourir Trasorm DFT Major: All Egirig Majors Authors: Duc guy http://umricalmthods.g.us.du umrical Mthods or STEM udrgraduats 8/3/29 http://umricalmthods.g.us.du Discrt Fourir Trasorm Rcalld th xpotial

More information

SOME IDENTITIES FOR THE GENERALIZED POLY-GENOCCHI POLYNOMIALS WITH THE PARAMETERS A, B AND C

SOME IDENTITIES FOR THE GENERALIZED POLY-GENOCCHI POLYNOMIALS WITH THE PARAMETERS A, B AND C Joural of Mathatical Aalysis ISSN: 2217-3412, URL: www.ilirias.co/ja Volu 8 Issu 1 2017, Pags 156-163 SOME IDENTITIES FOR THE GENERALIZED POLY-GENOCCHI POLYNOMIALS WITH THE PARAMETERS A, B AND C BURAK

More information

INTRODUCTION TO SAMPLING DISTRIBUTIONS

INTRODUCTION TO SAMPLING DISTRIBUTIONS http://wiki.stat.ucla.du/socr/id.php/socr_courss_2008_thomso_econ261 INTRODUCTION TO SAMPLING DISTRIBUTIONS By Grac Thomso INTRODUCTION TO SAMPLING DISTRIBUTIONS Itro to Samplig 2 I this chaptr w will

More information

Folding of Hyperbolic Manifolds

Folding of Hyperbolic Manifolds It. J. Cotmp. Math. Scics, Vol. 7, 0, o. 6, 79-799 Foldig of Hyprbolic Maifolds H. I. Attiya Basic Scic Dpartmt, Collg of Idustrial Educatio BANE - SUEF Uivrsity, Egypt hala_attiya005@yahoo.com Abstract

More information

CDS 101: Lecture 5.1 Reachability and State Space Feedback

CDS 101: Lecture 5.1 Reachability and State Space Feedback CDS, Lctur 5. CDS : Lctur 5. Rachability ad Stat Spac Fdback Richard M. Murray 7 Octobr 3 Goals: Di rachability o a cotrol systm Giv tsts or rachability o liar systms ad apply to ampls Dscrib th dsig o

More information

ω (argument or phase)

ω (argument or phase) Imagiary uit: i ( i Complx umbr: z x+ i y Cartsia coordiats: x (ral part y (imagiary part Complx cougat: z x i y Absolut valu: r z x + y Polar coordiats: r (absolut valu or modulus ω (argumt or phas x

More information

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges.

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges. Optio Chaptr Ercis. Covrgs to Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Divrgs 8 Divrgs Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Covrgs to Covrgs to 8 Proof Covrgs to π l 8 l a b Divrgt π Divrgt

More information

UNIVERSALITY LIMITS INVOLVING ORTHOGONAL POLYNOMIALS ON AN ARC OF THE UNIT CIRCLE

UNIVERSALITY LIMITS INVOLVING ORTHOGONAL POLYNOMIALS ON AN ARC OF THE UNIT CIRCLE UNIVERSALITY LIMITS INVOLVING ORTHOGONAL POLYNOMIALS ON AN ARC OF THE UNIT CIRCLE DORON S. LUBINSKY AND VY NGUYEN A. W stablish uivrsality limits for masurs o a subarc of th uit circl. Assum that µ is

More information

Performance Rating of the Type 1 Half Logistic Gompertz Distribution: An Analytical Approach

Performance Rating of the Type 1 Half Logistic Gompertz Distribution: An Analytical Approach Amrica Joural of Mathmatics ad Statistics 27, 7(3): 93-98 DOI:.5923/j.ajms.2773. Prformac Ratig of th Typ Half Logistic Gomprtz Distributio: A Aalytical Approach Ogud A. A. *, Osghal O. I., Audu A. T.

More information

Chapter Taylor Theorem Revisited

Chapter Taylor Theorem Revisited Captr 0.07 Taylor Torm Rvisitd Atr radig tis captr, you sould b abl to. udrstad t basics o Taylor s torm,. writ trascdtal ad trigoomtric uctios as Taylor s polyomial,. us Taylor s torm to id t valus o

More information

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120 Tim : hr. Tst Papr 8 D 4//5 Bch - R Marks : SINGLE CORRECT CHOICE TYPE [4, ]. If th compl umbr z sisfis th coditio z 3, th th last valu of z is qual to : z (A) 5/3 (B) 8/3 (C) /3 (D) o of ths 5 4. Th itgral,

More information

Deift/Zhou Steepest descent, Part I

Deift/Zhou Steepest descent, Part I Lctur 9 Dift/Zhou Stpst dscnt, Part I W now focus on th cas of orthogonal polynomials for th wight w(x) = NV (x), V (x) = t x2 2 + x4 4. Sinc th wight dpnds on th paramtr N N w will writ π n,n, a n,n,

More information

Bipolar Junction Transistors

Bipolar Junction Transistors ipolar Juctio Trasistors ipolar juctio trasistors (JT) ar activ 3-trmial dvics with aras of applicatios: amplifirs, switch tc. high-powr circuits high-spd logic circuits for high-spd computrs. JT structur:

More information

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 12

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 12 REVIEW Lctur 11: Numrical Fluid Mchaics Sprig 2015 Lctur 12 Fiit Diffrcs basd Polyomial approximatios Obtai polyomial (i gral u-qually spacd), th diffrtiat as dd Nwto s itrpolatig polyomial formulas Triagular

More information

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1 Chatr Fiv Mor Dimsios 51 Th Sac R W ar ow rard to mov o to sacs of dimsio gratr tha thr Ths sacs ar a straightforward gralizatio of our Euclida sac of thr dimsios Lt b a ositiv itgr Th -dimsioal Euclida

More information

Hardy-Littlewood Conjecture and Exceptional real Zero. JinHua Fei. ChangLing Company of Electronic Technology Baoji Shannxi P.R.

Hardy-Littlewood Conjecture and Exceptional real Zero. JinHua Fei. ChangLing Company of Electronic Technology Baoji Shannxi P.R. Hardy-Littlwood Conjctur and Excptional ral Zro JinHua Fi ChangLing Company of Elctronic Tchnology Baoji Shannxi P.R.China E-mail: fijinhuayoujian@msn.com Abstract. In this papr, w assum that Hardy-Littlwood

More information

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple 5/24/5 A PROOF OF THE CONTINUED FRACTION EXPANSION OF / Thomas J Oslr INTRODUCTION This ar givs aothr roof for th rmarkabl siml cotiud fractio = 3 5 / Hr is ay ositiv umbr W us th otatio x= [ a; a, a2,

More information

FORBIDDING RAINBOW-COLORED STARS

FORBIDDING RAINBOW-COLORED STARS FORBIDDING RAINBOW-COLORED STARS CARLOS HOPPEN, HANNO LEFMANN, KNUT ODERMANN, AND JULIANA SANCHES Abstract. W cosidr a xtrmal problm motivatd by a papr of Balogh [J. Balogh, A rmark o th umbr of dg colorigs

More information

Discrete Fourier Transform. Nuno Vasconcelos UCSD

Discrete Fourier Transform. Nuno Vasconcelos UCSD Discrt Fourir Trasform uo Vascoclos UCSD Liar Shift Ivariat (LSI) systms o of th most importat cocpts i liar systms thory is that of a LSI systm Dfiitio: a systm T that maps [ ito y[ is LSI if ad oly if

More information

Time regularity of solutions to linear equations with Lévy noise in infinite dimensions

Time regularity of solutions to linear equations with Lévy noise in infinite dimensions Tim rgularity of solutios to liar quatios with Lévy ois i ifiit dimsios S. Pszat Faculty of Applid Mathmatics, AG Uivrsity of Scic ad Tchology, Kraków, Polad, E-mail adrss: apszat@cyf-kr.du.pl. J. Zabczyk

More information

BOUNDS FOR THE COMPONENTWISE DISTANCE TO THE NEAREST SINGULAR MATRIX

BOUNDS FOR THE COMPONENTWISE DISTANCE TO THE NEAREST SINGULAR MATRIX SIAM J. Matrix Aal. Appl. (SIMAX), 8():83 03, 997 BOUNDS FOR THE COMPONENTWISE DISTANCE TO THE NEAREST SINGULAR MATRIX S. M. RUMP Abstract. Th ormwis distac of a matrix A to th arst sigular matrix is wll

More information

Outline. Ionizing Radiation. Introduction. Ionizing radiation

Outline. Ionizing Radiation. Introduction. Ionizing radiation Outli Ioizig Radiatio Chaptr F.A. Attix, Itroductio to Radiological Physics ad Radiatio Dosimtry Radiological physics ad radiatio dosimtry Typs ad sourcs of ioizig radiatio Dscriptio of ioizig radiatio

More information

CDS 101: Lecture 5.1 Reachability and State Space Feedback

CDS 101: Lecture 5.1 Reachability and State Space Feedback CDS, Lctur 5. CDS : Lctur 5. Rachability ad Stat Spac Fdback Richard M. Murray ad Hido Mabuchi 5 Octobr 4 Goals: Di rachability o a cotrol systm Giv tsts or rachability o liar systms ad apply to ampls

More information

Week 10. f2 j=2 2 j k ; j; k 2 Zg is an orthonormal basis for L 2 (R). This function is called mother wavelet, which can be often constructed

Week 10. f2 j=2 2 j k ; j; k 2 Zg is an orthonormal basis for L 2 (R). This function is called mother wavelet, which can be often constructed Wee 0 A Itroductio to Wavelet regressio. De itio: Wavelet is a fuctio such that f j= j ; j; Zg is a orthoormal basis for L (R). This fuctio is called mother wavelet, which ca be ofte costructed from father

More information

New Sixteenth-Order Derivative-Free Methods for Solving Nonlinear Equations

New Sixteenth-Order Derivative-Free Methods for Solving Nonlinear Equations Amrica Joural o Computatioal ad Applid Mathmatics 0 (: -8 DOI: 0.59/j.ajcam.000.08 Nw Sixtth-Ordr Drivativ-Fr Mthods or Solvig Noliar Equatios R. Thukral Padé Rsarch Ctr 9 Daswood Hill Lds Wst Yorkshir

More information

Construction of asymmetric orthogonal arrays of strength three via a replacement method

Construction of asymmetric orthogonal arrays of strength three via a replacement method isid/ms/26/2 Fbruary, 26 http://www.isid.ac.in/ statmath/indx.php?modul=prprint Construction of asymmtric orthogonal arrays of strngth thr via a rplacmnt mthod Tian-fang Zhang, Qiaoling Dng and Alok Dy

More information

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES. 1. Statement of results

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES. 1. Statement of results BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES DONALD M. DAVIS Abstract. If p is a prim and n a positiv intgr, lt ν p (n dnot th xponnt of p in n, and u p (n n/p νp(n th unit part of n. If α

More information

Figure 2-18 Thevenin Equivalent Circuit of a Noisy Resistor

Figure 2-18 Thevenin Equivalent Circuit of a Noisy Resistor .8 NOISE.8. Th Nyquist Nois Thorm W ow wat to tur our atttio to ois. W will start with th basic dfiitio of ois as usd i radar thory ad th discuss ois figur. Th typ of ois of itrst i radar thory is trmd

More information

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels LUR 3 illig th bads Occupacy o Availabl rgy Lvls W hav dtrmid ad a dsity o stats. W also d a way o dtrmiig i a stat is illd or ot at a giv tmpratur. h distributio o th rgis o a larg umbr o particls ad

More information

Digital Signal Processing, Fall 2006

Digital Signal Processing, Fall 2006 Digital Sigal Procssig, Fall 6 Lctur 9: Th Discrt Fourir Trasfor Zhg-Hua Ta Dpartt of Elctroic Systs Aalborg Uivrsity, Dar zt@o.aau.d Digital Sigal Procssig, I, Zhg-Hua Ta, 6 Cours at a glac MM Discrt-ti

More information

Frequency Measurement in Noise

Frequency Measurement in Noise Frqucy Masurmt i ois Porat Sctio 6.5 /4 Frqucy Mas. i ois Problm Wat to o look at th ct o ois o usig th DFT to masur th rqucy o a siusoid. Cosidr sigl complx siusoid cas: j y +, ssum Complx Whit ois Gaussia,

More information

A RANK STATISTIC FOR NON-PARAMETRIC K-SAMPLE AND CHANGE POINT PROBLEMS

A RANK STATISTIC FOR NON-PARAMETRIC K-SAMPLE AND CHANGE POINT PROBLEMS J. Japa Statist. Soc. Vol. 41 No. 1 2011 67 73 A RANK STATISTIC FOR NON-PARAMETRIC K-SAMPLE AND CHANGE POINT PROBLEMS Yoichi Nishiyama* We cosider k-sample ad chage poit problems for idepedet data i a

More information

Limiting value of higher Mahler measure

Limiting value of higher Mahler measure Limiting valu of highr Mahlr masur Arunabha Biswas a, Chris Monico a, a Dpartmnt of Mathmatics & Statistics, Txas Tch Univrsity, Lubbock, TX 7949, USA Abstract W considr th k-highr Mahlr masur m k P )

More information

Reliability of time dependent stress-strength system for various distributions

Reliability of time dependent stress-strength system for various distributions IOS Joural of Mathmatcs (IOS-JM ISSN: 78-578. Volum 3, Issu 6 (Sp-Oct., PP -7 www.osrjourals.org lablty of tm dpdt strss-strgth systm for varous dstrbutos N.Swath, T.S.Uma Mahswar,, Dpartmt of Mathmatcs,

More information

Iterative Methods of Order Four for Solving Nonlinear Equations

Iterative Methods of Order Four for Solving Nonlinear Equations Itrativ Mods of Ordr Four for Solvig Noliar Equatios V.B. Kumar,Vatti, Shouri Domii ad Mouia,V Dpartmt of Egirig Mamatis, Formr Studt of Chmial Egirig Adhra Uivrsity Collg of Egirig A, Adhra Uivrsity Visakhapatam

More information

Instability of large solitary water waves

Instability of large solitary water waves Istability of larg solitary watr wavs Zhiwu Li Mathmatics Dpartmt Uivrsity of Missouri Columbia, MO 65 USA Abstract W cosir th liariz istability of D irrotatioal solitary watr wavs. Th maxima of rgy a

More information

NET/JRF, GATE, IIT JAM, JEST, TIFR

NET/JRF, GATE, IIT JAM, JEST, TIFR Istitut for NET/JRF, GATE, IIT JAM, JEST, TIFR ad GRE i PHYSICAL SCIENCES Mathmatical Physics JEST-6 Q. Giv th coditio φ, th solutio of th quatio ψ φ φ is giv by k. kφ kφ lφ kφ lφ (a) ψ (b) ψ kφ (c) ψ

More information

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2 MATHEMATIS --RE Itgral alculus Marti Huard Witr 9 Rviw Erciss. Evaluat usig th dfiitio of th dfiit itgral as a Rima Sum. Dos th aswr rprst a ara? a ( d b ( d c ( ( d d ( d. Fid f ( usig th Fudamtal Thorm

More information

UNIT 2: MATHEMATICAL ENVIRONMENT

UNIT 2: MATHEMATICAL ENVIRONMENT UNIT : MATHEMATICAL ENVIRONMENT. Itroductio This uit itroducs som basic mathmatical cocpts ad rlats thm to th otatio usd i th cours. Wh ou hav workd through this uit ou should: apprciat that a mathmatical

More information

Theoretical analysis of cross-validation for estimating the risk of the k-nearest Neighbor classifier

Theoretical analysis of cross-validation for estimating the risk of the k-nearest Neighbor classifier Thortical aalysis of cross-validatio for stimatig th ris of th -Narst Nighbor classifir Alai Cliss, Trista Mary-Huard To cit this vrsio: Alai Cliss, Trista Mary-Huard. Thortical aalysis of cross-validatio

More information

Supplemental Material for "Automated Estimation of Vector Error Correction Models"

Supplemental Material for Automated Estimation of Vector Error Correction Models Supplmtal Matrial for "Automatd Estimatio of Vctor Error Corrctio Modls" ipg Liao Ptr C. B. Pillips y Tis Vrsio: Sptmbr 23 Abstract Tis supplmt icluds two sctios. Sctio cotais t proofs of som auxiliary

More information

Bayesian Test for Lifetime Performance Index of Exponential Distribution under Symmetric Entropy Loss Function

Bayesian Test for Lifetime Performance Index of Exponential Distribution under Symmetric Entropy Loss Function Mathmatics ttrs 08; 4(): 0-4 http://www.scicpublishiggroup.com/j/ml doi: 0.648/j.ml.08040.5 ISSN: 575-503X (Prit); ISSN: 575-5056 (Oli) aysia Tst for iftim Prformac Idx of Expotial Distributio udr Symmtric

More information

ONLINE SUPPLEMENT Optimal Markdown Pricing and Inventory Allocation for Retail Chains with Inventory Dependent Demand

ONLINE SUPPLEMENT Optimal Markdown Pricing and Inventory Allocation for Retail Chains with Inventory Dependent Demand Submittd to Maufacturig & Srvic Opratios Maagmt mauscript MSOM 5-4R2 ONLINE SUPPLEMENT Optimal Markdow Pricig ad Ivtory Allocatio for Rtail Chais with Ivtory Dpdt Dmad Stph A Smith Dpartmt of Opratios

More information

Linear Algebra Existence of the determinant. Expansion according to a row.

Linear Algebra Existence of the determinant. Expansion according to a row. Lir Algbr 2270 1 Existc of th dtrmit. Expsio ccordig to row. W dfi th dtrmit for 1 1 mtrics s dt([]) = (1) It is sy chck tht it stisfis D1)-D3). For y othr w dfi th dtrmit s follows. Assumig th dtrmit

More information

Lectures 9 IIR Systems: First Order System

Lectures 9 IIR Systems: First Order System EE3054 Sigals ad Systms Lcturs 9 IIR Systms: First Ordr Systm Yao Wag Polytchic Uivrsity Som slids icludd ar xtractd from lctur prstatios prpard by McCllla ad Schafr Lics Ifo for SPFirst Slids This work

More information

Minimax Rényi Redundancy

Minimax Rényi Redundancy Miimax Réyi Rdudacy Smih Yagli Pricto Uivrsity Yücl Altuğ Natra, Ic Srgio Vrdú Pricto Uivrsity Abstract Th rdudacy for uivrsal losslss comprssio i Campbll s sttig is charactrizd as a miimax Réyi divrgc,

More information

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES DONALD M. DAVIS Abstract. If p is a prim (implicit in notation and n a positiv intgr, lt ν(n dnot th xponnt of p in n, and U(n n/p ν(n, th unit

More information

COMPUTING FOLRIER AND LAPLACE TRANSFORMS. Sven-Ake Gustafson. be a real-valued func'cion, defined for nonnegative arguments.

COMPUTING FOLRIER AND LAPLACE TRANSFORMS. Sven-Ake Gustafson. be a real-valued func'cion, defined for nonnegative arguments. 77 COMPUTNG FOLRER AND LAPLACE TRANSFORMS BY MEANS OF PmER SERES EVALU\TON Sv-Ak Gustafso 1. NOTATONS AND ASSUMPTONS Lt f b a ral-valud fuc'cio, dfid for ogativ argumts. W shall discuss som aspcts of th

More information

An Introduction to Asymptotic Expansions

An Introduction to Asymptotic Expansions A Itroductio to Asmptotic Expasios R. Shaar Subramaia Asmptotic xpasios ar usd i aalsis to dscrib th bhavior of a fuctio i a limitig situatio. Wh a fuctio ( x, dpds o a small paramtr, ad th solutio of

More information

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n 07 - SEQUENCES AND SERIES Pag ( Aswrs at h d of all qustios ) ( ) If = a, y = b, z = c, whr a, b, c ar i A.P. ad = 0 = 0 = 0 l a l

More information

Data Assimilation 1. Alan O Neill National Centre for Earth Observation UK

Data Assimilation 1. Alan O Neill National Centre for Earth Observation UK Data Assimilation 1 Alan O Nill National Cntr for Earth Obsrvation UK Plan Motivation & basic idas Univariat (scalar) data assimilation Multivariat (vctor) data assimilation 3d-Variational Mthod (& optimal

More information

Week 6. Intuition: Let p (x, y) be the joint density of (X, Y ) and p (x) be the marginal density of X. Then. h dy =

Week 6. Intuition: Let p (x, y) be the joint density of (X, Y ) and p (x) be the marginal density of X. Then. h dy = Week 6 Lecture Kerel regressio ad miimax rates Model: Observe Y i = f (X i ) + ξ i were ξ i, i =,,,, iid wit Eξ i = 0 We ofte assume X i are iid or X i = i/ Nadaraya Watso estimator Let w i (x) = K ( X

More information

Minimax Rényi Redundancy

Minimax Rényi Redundancy 07 IEEE Itratioal Symposium o Iformatio Thory ISIT Miimax Réyi Rdudacy Smih Yagli Pricto Uivrsity Yücl Altuğ Natra, Ic Srgio Vrdú Pricto Uivrsity Abstract Th rdudacy for uivrsal losslss comprssio i Campbll

More information

Theoretical Analysis of Cross-Validation for Estimating the Risk of the k-nearest Neighbor Classifier

Theoretical Analysis of Cross-Validation for Estimating the Risk of the k-nearest Neighbor Classifier Joural of Machi Larig Rsarch 18 018 1-54 Submittd 09/15; Rvisd 07/18; Publishd 11/18 Thortical Aalysis of Cross-Validatio for Estimatig th Ris of th -Narst Nighbor Classifir Alai Cliss Laboratoir d Mathématiqus

More information

A GENERALIZED RAMANUJAN-NAGELL EQUATION RELATED TO CERTAIN STRONGLY REGULAR GRAPHS

A GENERALIZED RAMANUJAN-NAGELL EQUATION RELATED TO CERTAIN STRONGLY REGULAR GRAPHS #A35 INTEGERS 4 (204) A GENERALIZED RAMANUJAN-NAGELL EQUATION RELATED TO CERTAIN STRONGLY REGULAR GRAPHS B d Wgr Faculty of Mathmatics ad Computr Scic, Eidhov Uivrsity of Tchology, Eidhov, Th Nthrlads

More information

Problem Value Score Earned No/Wrong Rec -3 Total

Problem Value Score Earned No/Wrong Rec -3 Total GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING ECE6 Fall Quiz # Writt Eam Novmr, NAME: Solutio Kys GT Usram: LAST FIRST.g., gtiit Rcitatio Sctio: Circl t dat & tim w your Rcitatio

More information

Periodic Structures. Filter Design by the Image Parameter Method

Periodic Structures. Filter Design by the Image Parameter Method Prioic Structurs a Filtr sig y th mag Paramtr Mtho ECE53: Microwav Circuit sig Pozar Chaptr 8, Sctios 8. & 8. Josh Ottos /4/ Microwav Filtrs (Chaptr Eight) microwav filtr is a two-port twork us to cotrol

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 21 11/27/2013

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 21 11/27/2013 MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 21 11/27/2013 Fuctioal Law of Large Numbers. Costructio of the Wieer Measure Cotet. 1. Additioal techical results o weak covergece

More information

A Prey-Predator Model with an Alternative Food for the Predator, Harvesting of Both the Species and with A Gestation Period for Interaction

A Prey-Predator Model with an Alternative Food for the Predator, Harvesting of Both the Species and with A Gestation Period for Interaction Int. J. Opn Problms Compt. Math., Vol., o., Jun 008 A Pry-Prdator Modl with an Altrnativ Food for th Prdator, Harvsting of Both th Spcis and with A Gstation Priod for Intraction K. L. arayan and. CH. P.

More information

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA NE APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA Mirca I CÎRNU Ph Dp o Mathmatics III Faculty o Applid Scincs Univrsity Polithnica o Bucharst Cirnumirca @yahoocom Abstract In a rcnt papr [] 5 th indinit intgrals

More information

arxiv: v1 [math.fa] 18 Feb 2016

arxiv: v1 [math.fa] 18 Feb 2016 SPECTRAL PROPERTIES OF WEIGHTE COMPOSITION OPERATORS ON THE BLOCH AN IRICHLET SPACES arxiv:60.05805v [math.fa] 8 Fb 06 TE EKLUN, MIKAEL LINSTRÖM, AN PAWE L MLECZKO Abstract. Th spctra of ivrtibl wightd

More information

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform Discrt Fourir Trasform Dfiitio - T simplst rlatio btw a lt- squc x dfid for ω ad its DTFT X ( ) is ω obtaid by uiformly sampli X ( ) o t ω-axis btw ω < at ω From t dfiitio of t DTFT w tus av X X( ω ) ω

More information

Recursive Implementation of Anisotropic Filters

Recursive Implementation of Anisotropic Filters Rcursiv Implmtatio of Aisotropic Filtrs Zu Yu Dpartmt of Computr Scic, Uivrsit of Tas at Austi Abstract Gaussia filtr is widl usd for imag smoothig but it is wll kow that this tp of filtrs blur th imag

More information

On a problem of J. de Graaf connected with algebras of unbounded operators de Bruijn, N.G.

On a problem of J. de Graaf connected with algebras of unbounded operators de Bruijn, N.G. O a problm of J. d Graaf coctd with algbras of uboudd oprators d Bruij, N.G. Publishd: 01/01/1984 Documt Vrsio Publishr s PDF, also kow as Vrsio of Rcord (icluds fial pag, issu ad volum umbrs) Plas chck

More information

Asymptotic Behaviors for Critical Branching Processes with Immigration

Asymptotic Behaviors for Critical Branching Processes with Immigration Acta Mathmatica Siica, Eglih Sri Apr., 9, Vol. 35, No. 4, pp. 537 549 Publihd oli: March 5, 9 http://doi.org/.7/4-9-744-6 http://www.actamath.com Acta Mathmatica Siica, Eglih Sri Sprigr-Vrlag GmbH Grmay

More information

Quantile coupling inequalities and their applications

Quantile coupling inequalities and their applications Probability Surveys Vol. 9 202) 439 479 ISSN: 549-5787 DOI: 0.24/2-PS98 Quatile couplig iequalities ad their applicatios David M. Maso Statistics Program Uiversity of Delaware Newark, DE 976 e-mail: davidm@udel.edu

More information