UNIVERSALITY LIMITS INVOLVING ORTHOGONAL POLYNOMIALS ON AN ARC OF THE UNIT CIRCLE

Size: px
Start display at page:

Download "UNIVERSALITY LIMITS INVOLVING ORTHOGONAL POLYNOMIALS ON AN ARC OF THE UNIT CIRCLE"

Transcription

1 UNIVERSALITY LIMITS INVOLVING ORTHOGONAL POLYNOMIALS ON AN ARC OF THE UNIT CIRCLE DORON S. LUBINSKY AND VY NGUYEN A. W stablish uivrsality limits for masurs o a subarc of th uit circl. Assum that µ is a rgular masur o such a arc, i th ss of Stahl, Totik, ad Ullma, ad is absolutly cotiuous i a op arc cotaiig som poit z 0 iθ 0. Assum, morovr, that µ is positiv ad cotiuous at z 0. Th uivrsality for µ holds at z 0, i th ss that th rproducig krl K z, t for µ satisfis K lim z 0 xp πis, z0 xp πi t K z 0, z 0 iπ S s t T θ 0, uiformly for s, t i compact substs of th pla, whr S z is th sic krl, ad T/π is th quilibrium dsity for th arc. si πz πz. I R I th thory of radom Hrmitia matrics, arisig from scattrig thory i physics, uivrsality limits play a importat rol. Thy ca b rducd to scalig limits for rproducig krls ivolvig orthogoal polyomials, which maks th aalysis fasibl. This has b compltd i a vry wid array of sttigs [], [3], [4], [8], [9], [0], [], [3], [4], [5], [0], [3]. I a rct papr, Eli Lvi ad th first author stablishd uivrsality limits for masurs o th uit circl [9]. I this papr, w cosidr istad subarcs of th uit circl. Our aalysis dpds havily o th work of Loid Goliskii, who providd a dtaild xpositio for Szgő-Brsti thory for such arcs, ad dducd asymptotics of orthogoal polyomials ad thir Christoffl fuctios [6], [7]. I tur, Goliskii s work dpdd havily o work of Akhizr []. Lt α 0, π ad lt our arc b { } α iθ : θ [α, π α]. Lt µ b a fiit positiv Borl masur o α or quivaltly o [α, π α] with ifiitly may poits i its support. Th w may dfi orthoormal Dat: Jauary 8, 03. Rsarch of first author supportd by NSF grat DMS008 ad US-Isral BSF grat ; Scod author supportd by Gorgia Tch 0 Rsarch Expric Program for Udrgraduats

2 DORON S. LUBINSKY AND VY NGUYEN polyomials φ z κ z +..., κ > 0, 0,,,... satisfyig th orthoormality coditios π π α α φ z φ m zdµ θ δ m, whr z iθ. W shall usually assum that µ is rgular i th ss of Stahl, Totik ad Ullma [], so that. lim κ/ cos α. Hr cos α is th logarithmic capacity of α. A simpl suffi cit coditio for rgularity is that µ > 0 a.. i [α, π α, but thr ar pur jump ad pur sigularly cotiuous masurs that ar rgular. Th th rproducig krl for µ is. K z, u φ j z φ j u. j0 To stat our rsults, w d som auxiliary fuctios: for θ [α, π α], w dfi λ θ [0, π] by th quatio.3 cos λ θ cos θ cos α. Obsrv that λ is a strictly icrasig cotiuous fuctio of θ, that maps [α, π α] oto [0, π]. W also lt si θ.4 T θ. cos α cos θ T θ / π is th dsity of th quilibrium masur for α i th ss of pottial thory. Fially, w d th sic krl: si πz.5 S z πz. Our mai rsult is: Thorm. Lt α 0, π, ad lt µ b a fiit positiv Borl masur o [α, π α] that is rgular. Lt J α, π α b compact, ad b such that µ is absolutly cotiuous i a op st cotaiig J. Assum morovr, that µ is positiv ad cotiuous at ach poit of J. Th uiformly for θ 0 J ad s, t i compact substs of th complx pla C, w hav K m iθ 0+ πs m, iθ 0 + π t m lim m K m iθ 0, iθ 0 iπ S s t T θ 0.

3 UNIVERSALITY LIMITS 3.6 Rmarks a I th cas α 0+, w s that T θ ad th right-had sid of.6 rducs to iπ S s t, which is th rsult of Lvi ad Lubisky [9]. b If J cosists of just a sigl poit θ 0, th th hypothsis is that µ is absolutly cotiuous i som ighborhood θ 0 ε, θ 0 + ε of θ 0, whil µ θ 0 > 0 ad µ is cotiuous at θ 0. c As i [9], [3], th mai ida i this papr is a localizatio pricipl, ad a compariso iquality. d As i [], this limit has implicatios for th spacig of th zros of th rproducig krl. It is kow that for a, th zros of K, a li o th uit circl [8, Thm..., p. 9]. Corollary. Assum th hypothss of Thorm., ad lt θ 0 J. For k, lt iθ k dot th kth closst zro of K iθ 0, to θ 0, with θ k > θ 0, whil iθ k dots th kth closst zro to θ 0, with θ k < θ 0. Th for larg ough, θ ±k xists, th zro iθ ±k is simpl, ad.7 lim θ ±k θ 0 ±πk T θ 0. This rsult should b compard to th clock thorms i [], [9], th stimats i [6], ad arlir work of Frud [5, p. 66]. W ca also dduc asymptotics for drivativs of th rproducig krl: w lt K j,k z, z φ j m z φ k m z. m0 Corollary.3 Assum th hypothss of Thorm., ad lt θ 0 J, z 0 iθ 0. For j, k 0,.8 lim z j k 0 K j,k z 0, z 0 j+k K z 0, z 0 [ + T θ0 j+k+ ] T θ0 j+k+. T θ 0 j + k + I th squl C, C, C,... dot costats idpdt of, z, u, θ, s, t. Th sam symbol dos ot cssarily dot th sam costat i diffrt occurrcs. W shall writ C C α or C C α to rspctivly dot dpdc o, or idpdc of, th paramtr α. [x] dots th gratst

4 4 DORON S. LUBINSKY AND VY NGUYEN itgr x. For squcs {c }, {d } of o-zro ral umbrs, w writ c d if thr xist positiv costats C, C idpdt of such that C c /d C. Giv masurs µ, µ #, w us K, K # to dot thir rspctiv rproducig krls. Similarly suprscripts, # ar usd to distiguish othr quatitis associatd with thm. W dot th th Christoffl fuctio for th masur µ by.9 Ω iθ /K iθ, iθ mi dgp π π α α P it dµ t / P Th papr is orgaisd as follows. I Sctio, w prov som of th rsults for a spcial wight cosidrd by Loid Goliskii i [6]. I Sctio 3, w prov Thorm. ad Corollaris. ad.3.. A S W A I this sctio, w cosidr th masur dµ θ W θ dθ, whr si α. W θ, θ [α, π α]. si θ cos α cos θ This is th spcial cas Ω of th wights cosidrd by Loid Goliskii [6, p. 37]. Goliskii [6, p. 44] providd a dtaild drivatio of xplicit formula for th corrspodig orthoormal polyomials {φ }: for,. φ iθ A θ i θ λθ + B θ i θ +λθ whr λ θ [0, π] is dtrmid by.3. Morovr, A θ { iλθ si α i θ + si α } g iθ.3 i si ; θ B θ { iλθ si α i θ + si α } g+ iθ.4 i si ; θ ad all w shall d to kow about g ± is that [6, p. 4, 35, 38] thy ar cotiuous ad.5 g ± iθ si θ/ si α/. Not that i [6], w chos Ω ad ρ Ω iθ siα/. W shall assum si θ/ that. holds v for 0 as this maks o diffrc to our asymptotics. W prov iθ.

5 UNIVERSALITY LIMITS 5 Thorm. Lt dµ θ W θ dθ b giv by., ad lt K m dot its mth rproducig krl. Th uiformly for s, t i compact substs of th complx pla, K m iθ 0+ πs m, iθ 0 + π t m lim m K m iθ 0, iθ 0 iπ S s t T θ 0. W bgi with ral s, t: Lmma. Lt θ 0 α, π α, s, t R, ad for m, dfi θ θ m, φ φ m by.6 θ θ 0 + πs m ; φ θ 0 + πt m. a Uiformly for s, t i compact substs of th ral li,.7 lim m m λ θ λ φ T θ 0 π s t. b Uiformly for s, t i compact substs of th ral li, lim m m K m iθ, iφ.8 c.9.0 A θ 0 iπ T θ 0 S + B θ 0 iπ +T θ 0 S A θ 0 si θ 0 si α B θ 0 si θ 0 si α s t s t T θ 0 ; + T θ 0. T θ 0 + T θ 0 d Uiformly for s i compact substs of th ral li,. lim m m K m iθ, iθ si θ 0 si α. ad. lim m m K m iθ, iθ W θ T θ 0. Uiformly for θ 0 i compact substs of α, π α, ad s, t i compact substs of C, K m iθ, iφ.3 lim m K m iθ 0, iθ 0 iπ S s t T θ 0..

6 6 DORON S. LUBINSKY AND VY NGUYEN Proof a Now by th dfiitio.3 of λ, cos α [cos λ θ cos λ φ] cos θ cos φ. Hc cos α λ θ λ φ λ θ + λ φ si si θ φ θ + φ si si. 4 4 Sic λ is cotiuous i α, π α, ad θ, φ θ 0 as m, w dduc that.4 cos α m [λ θ λ φ] si λ θ 0 θ φ m si θ o π s t si θ 0 + o. Fially, cos α si λ θ 0 cos α cos λ θ 0 cos α θ cos 0. Substitutig this ito.4 givs th rsult. b From.,.5 m K m iθ, iφ m [A θ i θ λθ + B θ i θ +λθ] m 0 [A φ i φ λφ + B φ i φ +λφ] Σ + Σ + Σ 3 + Σ 4,

7 UNIVERSALITY LIMITS 7 whr ths four sums ar spcifid blow: firstly by cotiuity of A, Σ m m 0 A θ A φ i λθ+λφ m A θ 0 i λθ+λφ + o m 0 A θ 0 m im λθ+λφ i A θ 0 i m λθ+λφ S λθ+λφ + o m π S A θ 0 iπ T θ 0 s t S T θ 0 π λ θ + λ φ + o λ θ + λ φ + o, by.7 ad th cotiuity of S at 0, whr S 0. Similarly, Nxt, Σ 4 m m 0 B θ B φ i +λθ λφ B θ 0 iπ +T θ 0 S Σ 3 m Hr as m, m 0 A θ 0 B θ 0 m s t A θ B φ i λθ λφ m 0 A θ 0 B θ 0 m θ φ + T θ 0 + o. i λθ λφ + o im λθ λφ i λθ λφ + o. λ θ λ φ λ θ 0 + o ad λ θ 0 π, 0, so th domiator i λθ λφ i Σ 3 is boudd away from 0. Thus Σ 3 o, ad similarly, Σ 4 o.

8 8 DORON S. LUBINSKY AND VY NGUYEN Combiig th abov asymptotics for Σ j, j,, 3, 4, givs th rsult. c Now iλθ 0 si α θ i 0 + si α si α + cos α cos θ0 λ θ si α cos α [ cos θ 0 cos λ θ 0 + si θ ] 0 si λ θ 0 cos θ 0 si θ 0 cos α θ cos 0, by dfiitio.3 of λ θ 0. W cotiu this as si θ 0 T θ 0. Th.9 follows from.3 ad.5..0 is similar. d This follows by sttig φ θ i.8 ad usig.9 ad.0. From.8 to., K m iθ, iφ K m iθ 0, iθ 0 T θ 0 iπ T θ 0 S lim m + This ca b cotiud as [ iπ T θ 0 π T θ 0 π + T θ 0 iπ +T θ 0 S iπ iπ T θ 0 π T θ 0 iπ cos iπ iπ + si π + cos π s t T θ 0 s t + T θ 0. T θ0 si π T θ0 ] T θ0 si π + T θ0 cos π T θ 0 { iπ T θ0 si π T θ 0 { iπ T θ0 + si π s t [ T θ 0 cos π s t T θ 0 π s t si π s t T θ 0 iπ S s t T θ 0. Proof of Thorm. } iπ T θ 0 } iπ T θ 0 π s t + i si π s t ]

9 UNIVERSALITY LIMITS 9 W alrady hav th rsult for ral s, t. For m, lt K m iθ 0+ πs m, iθ 0 + π t m.6 f m s, t K m iθ 0, iθ 0. This is a polyomial i iπs/m ad iπt/m. W shall show that {f m } is uiformly boudd for s, t i compact substs of C: that is, giv r > 0, thr xists C such that.7 sup sup m s, t r f m s, t C. Thus {f m } is a ormal family. I as much as th limit.3 holds for ral s, t, ad th right-had sid of.3 is a tir fuctio of s, t, it th follows from th pricipl of aalytic cotiuatio that th limit holds uiformly for s, t i compact substs of th pla. To prov.7, alog stadard lis, w ot first from.5 that for θ, φ α, π α, K m iθ, iφ m A θ + B θ A φ + B φ. Lt J b a compact subitrval of α, π α, ad J { iθ : θ J }. Th last iquality, ad cotiuity of A, B o J shows that sup z,u J m K m z, u C. Lt G dot th Gr s fuctio for C\J with pol at. From th Brsti-Walsh iquality [7, p. 56], it follows that for all z, u C, m K m z, u C mgz+gu. Morovr, G z 0 for z J, ad bcaus J is a "smooth" arc, G z iu C u, for z J ad u, whr J is ay compact subitrval of th itrior of J. It follows that for m m 0 r, K m iθ 0+ πs m, iθ 0 + π t m C C s + t C Cr. m S Lmmas 6. ad 6. i [9, pp ] for mor dtails. Fially, by., K m iθ 0, iθ 0 Cm. So w hav.7 ad th rsult.

10 0 DORON S. LUBINSKY AND VY NGUYEN 3. P T. W bgi with asymptotics for Christoffl fuctios: Lmma 3. Lt µ b a rgular masur o [α, π α]. Assum that µ is absolutly cotiuous i a op st cotaiig a compact st J α, π α, ad at ach poit of J, µ is positiv ad cotiuous. Lt A > 0. Th uiformly for a [ A, A], ad θ J, 3. lim Ω xp i θ + a µ θ /T θ. Morovr, uiformly for 0 A, θ J, ad a [ A, A], 3. Ω xp i θ + a. Rmarks a W mphasiz that w ar assumig that µ is cotiuous i J wh rgardd as a fuctio dfid o [α, π α]. b Asymptotics for Christoffl fuctios associatd with spcial masurs o th arc wr stablishd by Goliskii [7]. Totik [3], [4] stablishd asymptotics a.. o mor gral arcs ad curvs, that iclud 3. i th cas a 0. c It follows from Totik s rsults ad that abov, that π T θ is th dsity of th quilibrium masur i th ss of pottial thory for th arc. Proof W alrady kow this rsult for th spcial wight W θ dθ of th prvious sctio. Th xtsio to th gral cas is xactly th sam as for th whol uit circl i [9, pp , proof of Thorm 3.], so w omit th dtails. Nxt, w d a compariso iquality: Lmma 3. Lt r > 0 ad µ, µ b masurs o [α, π α], with µ rµ. Th for all ral θ, φ, K r K iθ, iφ /K iθ, iθ K iφ, iφ / [ K iθ, iθ K iθ, iθ ] / 3.3 rk iθ, iθ. Proof Lt µ # rµ, so that µ µ #. I [9, Thorm 4., pag 55-3], w showd

11 that UNIVERSALITY LIMITS K K # iθ, iφ /K iθ, iθ K iφ, iφ / [ K iθ, iθ K# iθ, iθ ] / K iθ, iθ. It is asily s from th dfiitio of th orthoormal polyomials ad rproducig krl that Th th rsult follows. K # z, w r K z, w. Proof of Thorm. Lt ε 0, ad θ 0 J. By cotiuity of µ ad W at θ 0, w ca choos δ > 0 such that for θ θ 0 δ Lt ε µ θ µ θ 0 ε ; ε W θ W θ 0 ε. c ε µ θ 0 W θ 0 ad dfi two w masurs µ ad µ # o [α, π α] by dµ # θ W θ dθ; dµ θ W θ dθ i θ θ 0 < δ; dµ θ W θ dθ + c dµ θ i [α, π α] \ θ 0 δ, θ 0 + δ. Th µ µ # ad cµ µ i [α, π α]. Morovr, by our asymptotics for Christoffl fuctios i Lmma 3., uiformly for s i a boudd ral itrval, K iθ 0 +πs/, iθ 0+πs/ lim K iθ 0 +πs/, iθ 0+πs/ µ θ 0 W θ 0 c ε ; K lim K # iθ 0 +πs/, iθ 0+πs/ iθ 0 +πs/, iθ 0+πs/. Morovr, uiformly for s i a boudd itrval, K iθ0+πs/, iθ 0+πs/ K # iθ0+πs/, iθ 0+πs/ iθ0+πs/, iθ 0+πs/. K

12 DORON S. LUBINSKY AND VY NGUYEN Th Lmma 3. applid to µ # ad µ givs, with r, ad θ θ 0 +πs/, φ θ 0 + πt/, K # K iθ, iφ /K # iθ, iθ K # iφ, iφ / [ K # K iθ, iθ ] / iθ, iθ K # iθ, iθ 0 as ; ad Lmma 3. applid to µ ad µ with r c givs, K c K iθ, iφ /K iθ, iθ K iφ, iφ / [ K iθ, iθ K iθ, iθ ck iθ, iθ [ C ε ] / C [3ε] /. ] / Hr C is idpdt of s, t, a, b,, ε. Combiig ths last two iqualitis givs, for larg ough, ck K # iθ, iφ / Cε /, ad rcallig th dfiitio of c, ad th fact that K O, also µ θ 0 W θ 0 K K # iθ, iφ / Cε /. Hr th lft-had sid is idpdt of ε, so w dduc lim sup µ θ 0 W θ 0 K K # iθ0+πs/, iθ 0+πt/ / 0. Usig Lmma 3. o K iθ 0, iθ 0 ad K # iθ 0, iθ 0 oc mor, ad Thorm., w obtai K iθ 0 +πs/, iθ 0+πt/ lim K iθ 0, iθ 0 K # lim iθ 0 +πs/, iθ 0+πt/ K # iθ 0, iθ 0 iπ S s t T θ 0. Th limit holds uiformly for s, t i a ral itrval. W still hav to stablish it for complx s, t. To do this, w ca procd as i th proof of Thorm.: lt f m b dfid by.6. W agai d to show th uiform bouddss.7. But i som itrval J cotaiig θ 0, w hav µ C, ad cosqutly, i a slightly smallr itrval J, K m iθ, iφ Cm, θ, φ J, m.

13 UNIVERSALITY LIMITS 3 W ca ow mimic th proof giv i Thorm. to show th uiform bouddss.7, ad th apply ormality ad aalytic cotiuatio. Proof of Corollary. This is a asy cosquc of Hurwitz s thorm: th fuctio iπs S st θ 0 has simpl zros wh ad oly wh st θ 0 is a itgr. It follows from th uiform covrgc i Thorm., ad Hurwitz Thorm, that for larg ough, K iθ 0 +πs/, iθ 0 has a simpl zro s±k, with lim s ±kt θ 0 ±k. Morovr, ths ar th oly zros of K iθ 0 +πs/, iθ 0 i a boudd ighborhood of 0. Now obsrv that θ ±k θ 0 + πs ±k /, so θ ±k θ 0 πs ±k ±πk T θ 0 + o. Proof of Corollary.3 W bgi with th idtity This asily yilds S x si πx πx 0 iπxy + iπxy dy. iπ S s t T θ 0 [ ] iπs+yt θ0 iπt+yt θ0 + iπs yt θ0 iπt yt θ 0 dy. 0 W ow us th Maclauri sris for th xpotial fuctio o ach trm i th last li, ad th itgrat with rspct to y. O multiplyig ad dividig by a suitabl powr of, w obtai iπ S s t T θ 0 iπs j iπt k j0 k0 j! k! T θ 0 j + k + [ + T θ0 j+k+ ] + T θ0 j+k Nxt, th asymptotic i Thorm. ca also b rcast i th form K z 0 + πis, z0 + πi t 3.5 lim iπ S s t T θ 0, K z 0, z 0

14 4 DORON S. LUBINSKY AND VY NGUYEN uiformly for s, t i compact sts. To stablish this, o uss that πis/ + πis + O, togthr with bouds such as K,0 z, z C, uiformly for z z 0 C /, for ay giv C > 0. This lattr stimat may asily b dducd from Cauchy s stimats for drivativs, ad th fact that K z, z C 3 for z z 0 C / - as i th proof of Thorm., this follows from th Brsti-Walsh growth lmma for polyomials. Fially, w ot that Taylor sris xpasio givs, z0 K z 0 + πis K z 0, z 0 j,k0 K j,k + πi t z 0, z 0 πis j πit k K z 0, z 0 j+k. j! k! z j k 0 This, th Taylor sris 3.4, ad th uiform covrgc 3.5 giv th rsult. R [] N. I. Akhizr, O Polyomials Orthogoal o a Circular Arc, Dokl. Akad. Nauk SSSR, 30960, [i Russia]; Sovit Math. Dokl., 960, [] J. Baik, T. Krichrbaur, K. T-R. McLaughli, P.D. Millr, Uiform Asymptotics for Polyomials Orthogoal with rspct to a Gral Class of Discrt Wights ad Uivrsality Rsults for Associatd Esmbls, Pricto Aals of Mathmatics Studis, 006. [3] P. Dift, Orthogoal Polyomials ad Radom Matrics: A Rima-Hilbrt Approach, Courat Istitut Lctur Nots, Vol. 3, Nw York Uivrsity Prs, Nw York, 999. [4] P. Dift, T. Krichrbaur, K. T-R. McLaughli, S. Vakids ad X. Zhou, Uiform Asymptotics for Polyomials Orthogoal with rspct to Varyig Expotial Wights ad Applicatios to Uivrsality Qustios i Radom Matrix Thory, Commuicatios i Pur ad Applid Maths., 5999, [5] G. Frud, Orthogoal Polyomials, Akadmiai Kiado, Budapst, 97. [6] L. Goliskii, Akhizr s Orthogoal Polyomials ad Brsti-Szgő mthod for a circular arc, J. Approx. Thory, 95998, [7] L. Goliskii, Th Christoff l Fuctio for Orthogoal Polyomials o a Circular Arc, J. Approx. Thory, 0999, [8] A.B. Kuijlaars ad M. Valss, Uivrsality for Eigvalu Corrlatios from th Modifid Jacobi Uitary Esmbl, Itratioal Maths. Rsarch Notics, 3000, [9] Eli Lvi ad D.S. Lubisky, Uivrsality Limits Ivolvig Orthogoal Polyomials o th Uit Circl, Computatioal Mthods ad Fuctio Thory, 7007, [0] Eli Lvi ad D.S. Lubisky, Uivrsality Limits i th bulk for Varyig Masurs, Advacs i Mathmatics, 9008,

15 UNIVERSALITY LIMITS 5 [] Eli Lvi ad D.S. Lubisky, Applicatios of Uivrsality Limits to Zros ad Rproducig Krls of Orthogoal Polyomials, Joural of Approximatio Thory, 50008, [] D.S. Lubisky, A Nw Approach to Uivrsality Limits at th Edg of th Spctrum, Cotmporary Mathmatics, , [3] D.S. Lubisky, A Nw Approach to Uivrsality Limits ivolvig Orthogoal Polyomials, Aals of Mathmatics, 70009, [4] D.S. Lubisky, Bulk Uivrsality Holds i Masur for Compactly Supportd Masurs,J. d Aalys d Mathmatiqu, 60, [5] A. Martiz-Fiklshti, K. T.-R. McLaughli, ad E. B. Saff, Szgö orthogoal polyomials with rspct to a aalytic wight: caoical rprstatio ad strog asymptotics, Costructiv Approximatio 4006, [6] G. Mastroiai, V. Totik, Uiform spacig of zros of orthogoal polyomials, Costr. Approx. 3 00, 8 9. [7] T. Rasford, Pottial Thory i th Complx Pla, Cambridg Uivrsity Prss, Cambridg, 995. [8] B. Simo, Orthogoal Polyomials o th Uit Circl, Parts ad, Amrica Mathmatical Socity, Providc, 005. [9] B. Simo, Fi structur of th zros of orthogoal polyomials, I. A tal of two picturs, Elctroic Trasactios o Numrical Aalysis 5 006, [0] B. Simo, Two Extsios of Lubisky s Uivrsality Thorm, J. d Aalys Mathmatiqu, , [] H. Stahl ad V. Totik, Gral Orthogoal Polyomials, Cambridg Uivrsity Prss, Cambridg, 99. [] V. Totik, Asymptotics for Christoff l Fuctios for Gral Masurs o th Ral Li, J. d Aalys Math., 8000, [3] V. Totik, Uivrsality ad fi zro spacig o gral sts, Arkiv för Matmatik, 47009, [4] V. Totik, Christoff l fuctios o curvs ad domais, Tras. Amr. Math. Soc , S M, G I T, A, GA ,

On the approximation of the constant of Napier

On the approximation of the constant of Napier Stud. Uiv. Babş-Bolyai Math. 560, No., 609 64 O th approximatio of th costat of Napir Adri Vrscu Abstract. Startig from som oldr idas of [] ad [6], w show w facts cocrig th approximatio of th costat of

More information

PURE MATHEMATICS A-LEVEL PAPER 1

PURE MATHEMATICS A-LEVEL PAPER 1 -AL P MATH PAPER HONG KONG EXAMINATIONS AUTHORITY HONG KONG ADVANCED LEVEL EXAMINATION PURE MATHEMATICS A-LEVEL PAPER 8 am am ( hours) This papr must b aswrd i Eglish This papr cosists of Sctio A ad Sctio

More information

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z Sris Expasio of Rciprocal of Gamma Fuctio. Fuctios with Itgrs as Roots Fuctio f with gativ itgrs as roots ca b dscribd as follows. f() Howvr, this ifiit product divrgs. That is, such a fuctio caot xist

More information

Restricted Factorial And A Remark On The Reduced Residue Classes

Restricted Factorial And A Remark On The Reduced Residue Classes Applid Mathmatics E-Nots, 162016, 244-250 c ISSN 1607-2510 Availabl fr at mirror sits of http://www.math.thu.du.tw/ am/ Rstrictd Factorial Ad A Rmark O Th Rducd Rsidu Classs Mhdi Hassai Rcivd 26 March

More information

1985 AP Calculus BC: Section I

1985 AP Calculus BC: Section I 985 AP Calculus BC: Sctio I 9 Miuts No Calculator Nots: () I this amiatio, l dots th atural logarithm of (that is, logarithm to th bas ). () Ulss othrwis spcifid, th domai of a fuctio f is assumd to b

More information

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series Chatr Ifiit Sris Pag of Sctio F Itgral Tst Chatr : Ifiit Sris By th d of this sctio you will b abl to valuat imror itgrals tst a sris for covrgc by alyig th itgral tst aly th itgral tst to rov th -sris

More information

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net Taylor s Thorm & Lagrag Error Bouds Actual Error This is th ral amout o rror, ot th rror boud (worst cas scario). It is th dirc btw th actual () ad th polyomial. Stps:. Plug -valu ito () to gt a valu.

More information

STIRLING'S 1 FORMULA AND ITS APPLICATION

STIRLING'S 1 FORMULA AND ITS APPLICATION MAT-KOL (Baja Luka) XXIV ()(08) 57-64 http://wwwimviblorg/dmbl/dmblhtm DOI: 075/МК80057A ISSN 0354-6969 (o) ISSN 986-588 (o) STIRLING'S FORMULA AND ITS APPLICATION Šfkt Arslaagić Sarajvo B&H Abstract:

More information

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1 DTFT Proprtis Exampl - Dtrmi th DTFT Y of y α µ, α < Lt x α µ, α < W ca thrfor writ y x x From Tabl 3., th DTFT of x is giv by ω X ω α ω Copyright, S. K. Mitra Copyright, S. K. Mitra DTFT Proprtis DTFT

More information

Statistics 3858 : Likelihood Ratio for Exponential Distribution

Statistics 3858 : Likelihood Ratio for Exponential Distribution Statistics 3858 : Liklihood Ratio for Expotial Distributio I ths two xampl th rjctio rjctio rgio is of th form {x : 2 log (Λ(x)) > c} for a appropriat costat c. For a siz α tst, usig Thorm 9.5A w obtai

More information

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx MONTGOMERY COLLEGE Dpartmt of Mathmatics Rockvill Campus MATH 8 - REVIEW PROBLEMS. Stat whthr ach of th followig ca b itgratd by partial fractios (PF), itgratio by parts (PI), u-substitutio (U), or o of

More information

Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT) Discrt Fourir Trasorm DFT Major: All Egirig Majors Authors: Duc guy http://umricalmthods.g.us.du umrical Mthods or STEM udrgraduats 8/3/29 http://umricalmthods.g.us.du Discrt Fourir Trasorm Rcalld th xpotial

More information

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges.

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges. Optio Chaptr Ercis. Covrgs to Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Divrgs 8 Divrgs Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Covrgs to Covrgs to 8 Proof Covrgs to π l 8 l a b Divrgt π Divrgt

More information

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling Tripl Play: From D Morga to Stirlig To Eulr to Maclauri to Stirlig Augustus D Morga (186-1871) was a sigificat Victoria Mathmaticia who mad cotributios to Mathmatics History, Mathmatical Rcratios, Mathmatical

More information

Law of large numbers

Law of large numbers Law of larg umbrs Saya Mukhrj W rvisit th law of larg umbrs ad study i som dtail two typs of law of larg umbrs ( 0 = lim S ) p ε ε > 0, Wak law of larrg umbrs [ ] S = ω : lim = p, Strog law of larg umbrs

More information

H2 Mathematics Arithmetic & Geometric Series ( )

H2 Mathematics Arithmetic & Geometric Series ( ) H Mathmatics Arithmtic & Gomtric Sris (08 09) Basic Mastry Qustios Arithmtic Progrssio ad Sris. Th rth trm of a squc is 4r 7. (i) Stat th first four trms ad th 0th trm. (ii) Show that th squc is a arithmtic

More information

A Simple Proof that e is Irrational

A Simple Proof that e is Irrational Two of th most bautiful ad sigificat umbrs i mathmatics ar π ad. π (approximatly qual to 3.459) rprsts th ratio of th circumfrc of a circl to its diamtr. (approximatly qual to.788) is th bas of th atural

More information

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120 Tim : hr. Tst Papr 8 D 4//5 Bch - R Marks : SINGLE CORRECT CHOICE TYPE [4, ]. If th compl umbr z sisfis th coditio z 3, th th last valu of z is qual to : z (A) 5/3 (B) 8/3 (C) /3 (D) o of ths 5 4. Th itgral,

More information

Session : Plasmas in Equilibrium

Session : Plasmas in Equilibrium Sssio : Plasmas i Equilibrium Ioizatio ad Coductio i a High-prssur Plasma A ormal gas at T < 3000 K is a good lctrical isulator, bcaus thr ar almost o fr lctros i it. For prssurs > 0.1 atm, collisio amog

More information

NET/JRF, GATE, IIT JAM, JEST, TIFR

NET/JRF, GATE, IIT JAM, JEST, TIFR Istitut for NET/JRF, GATE, IIT JAM, JEST, TIFR ad GRE i PHYSICAL SCIENCES Mathmatical Physics JEST-6 Q. Giv th coditio φ, th solutio of th quatio ψ φ φ is giv by k. kφ kφ lφ kφ lφ (a) ψ (b) ψ kφ (c) ψ

More information

Deift/Zhou Steepest descent, Part I

Deift/Zhou Steepest descent, Part I Lctur 9 Dift/Zhou Stpst dscnt, Part I W now focus on th cas of orthogonal polynomials for th wight w(x) = NV (x), V (x) = t x2 2 + x4 4. Sinc th wight dpnds on th paramtr N N w will writ π n,n, a n,n,

More information

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple 5/24/5 A PROOF OF THE CONTINUED FRACTION EXPANSION OF / Thomas J Oslr INTRODUCTION This ar givs aothr roof for th rmarkabl siml cotiud fractio = 3 5 / Hr is ay ositiv umbr W us th otatio x= [ a; a, a2,

More information

Chapter Taylor Theorem Revisited

Chapter Taylor Theorem Revisited Captr 0.07 Taylor Torm Rvisitd Atr radig tis captr, you sould b abl to. udrstad t basics o Taylor s torm,. writ trascdtal ad trigoomtric uctios as Taylor s polyomial,. us Taylor s torm to id t valus o

More information

A Note on Quantile Coupling Inequalities and Their Applications

A Note on Quantile Coupling Inequalities and Their Applications A Not o Quatil Couplig Iqualitis ad Thir Applicatios Harriso H. Zhou Dpartmt of Statistics, Yal Uivrsity, Nw Hav, CT 06520, USA. E-mail:huibi.zhou@yal.du Ju 2, 2006 Abstract A rlatioship btw th larg dviatio

More information

Linear Algebra Existence of the determinant. Expansion according to a row.

Linear Algebra Existence of the determinant. Expansion according to a row. Lir Algbr 2270 1 Existc of th dtrmit. Expsio ccordig to row. W dfi th dtrmit for 1 1 mtrics s dt([]) = (1) It is sy chck tht it stisfis D1)-D3). For y othr w dfi th dtrmit s follows. Assumig th dtrmit

More information

APPENDIX: STATISTICAL TOOLS

APPENDIX: STATISTICAL TOOLS I. Nots o radom samplig Why do you d to sampl radomly? APPENDI: STATISTICAL TOOLS I ordr to masur som valu o a populatio of orgaisms, you usually caot masur all orgaisms, so you sampl a subst of th populatio.

More information

10. Joint Moments and Joint Characteristic Functions

10. Joint Moments and Joint Characteristic Functions 0 Joit Momts ad Joit Charactristic Fctios Followig sctio 6 i this sctio w shall itrodc varios paramtrs to compactly rprst th iformatio cotaid i th joit pdf of two rvs Giv two rvs ad ad a fctio g x y dfi

More information

SOME IDENTITIES FOR THE GENERALIZED POLY-GENOCCHI POLYNOMIALS WITH THE PARAMETERS A, B AND C

SOME IDENTITIES FOR THE GENERALIZED POLY-GENOCCHI POLYNOMIALS WITH THE PARAMETERS A, B AND C Joural of Mathatical Aalysis ISSN: 2217-3412, URL: www.ilirias.co/ja Volu 8 Issu 1 2017, Pags 156-163 SOME IDENTITIES FOR THE GENERALIZED POLY-GENOCCHI POLYNOMIALS WITH THE PARAMETERS A, B AND C BURAK

More information

An Introduction to Asymptotic Expansions

An Introduction to Asymptotic Expansions A Itroductio to Asmptotic Expasios R. Shaar Subramaia Asmptotic xpasios ar usd i aalsis to dscrib th bhavior of a fuctio i a limitig situatio. Wh a fuctio ( x, dpds o a small paramtr, ad th solutio of

More information

Hadamard Exponential Hankel Matrix, Its Eigenvalues and Some Norms

Hadamard Exponential Hankel Matrix, Its Eigenvalues and Some Norms Math Sci Ltt Vol No 8-87 (0) adamard Exotial al Matrix, Its Eigvalus ad Som Norms İ ad M bula Mathmatical Scics Lttrs Itratioal Joural @ 0 NSP Natural Scics Publishig Cor Dartmt of Mathmatics, aculty of

More information

Solution to 1223 The Evil Warden.

Solution to 1223 The Evil Warden. Solutio to 1 Th Evil Ward. This is o of thos vry rar PoWs (I caot thik of aothr cas) that o o solvd. About 10 of you submittd th basic approach, which givs a probability of 47%. I was shockd wh I foud

More information

Cramér-Rao Inequality: Let f(x; θ) be a probability density function with continuous parameter

Cramér-Rao Inequality: Let f(x; θ) be a probability density function with continuous parameter WHEN THE CRAMÉR-RAO INEQUALITY PROVIDES NO INFORMATION STEVEN J. MILLER Abstract. W invstigat a on-paramtr family of probability dnsitis (rlatd to th Parto distribution, which dscribs many natural phnomna)

More information

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n 07 - SEQUENCES AND SERIES Pag ( Aswrs at h d of all qustios ) ( ) If = a, y = b, z = c, whr a, b, c ar i A.P. ad = 0 = 0 = 0 l a l

More information

Discrete Fourier Transform. Nuno Vasconcelos UCSD

Discrete Fourier Transform. Nuno Vasconcelos UCSD Discrt Fourir Trasform uo Vascoclos UCSD Liar Shift Ivariat (LSI) systms o of th most importat cocpts i liar systms thory is that of a LSI systm Dfiitio: a systm T that maps [ ito y[ is LSI if ad oly if

More information

Technical Support Document Bias of the Minimum Statistic

Technical Support Document Bias of the Minimum Statistic Tchical Support Documt Bias o th Miimum Stattic Itroductio Th papr pla how to driv th bias o th miimum stattic i a radom sampl o siz rom dtributios with a shit paramtr (also kow as thrshold paramtr. Ths

More information

Probability & Statistics,

Probability & Statistics, Probability & Statistics, BITS Pilai K K Birla Goa Campus Dr. Jajati Kshari Sahoo Dpartmt of Mathmatics BITS Pilai, K K Birla Goa Campus Poisso Distributio Poisso Distributio: A radom variabl X is said

More information

Borel transform a tool for symmetry-breaking phenomena?

Borel transform a tool for symmetry-breaking phenomena? Borl trasform a tool for symmtry-braig phoma? M Zirbaur SFB/TR, Gdas Spt, 9 Itroductio: spotaous symmtry braig, ordr paramtr, collctiv fild mthods Borl trasform for itractig frmios ampl: frromagtic ordr

More information

Lectures 9 IIR Systems: First Order System

Lectures 9 IIR Systems: First Order System EE3054 Sigals ad Systms Lcturs 9 IIR Systms: First Ordr Systm Yao Wag Polytchic Uivrsity Som slids icludd ar xtractd from lctur prstatios prpard by McCllla ad Schafr Lics Ifo for SPFirst Slids This work

More information

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2 MATHEMATIS --RE Itgral alculus Marti Huard Witr 9 Rviw Erciss. Evaluat usig th dfiitio of th dfiit itgral as a Rima Sum. Dos th aswr rprst a ara? a ( d b ( d c ( ( d d ( d. Fid f ( usig th Fudamtal Thorm

More information

Gaps in samples of geometric random variables

Gaps in samples of geometric random variables Discrt Mathmatics 37 7 871 89 Not Gaps i sampls of gomtric radom variabls William M.Y. Goh a, Pawl Hitczko b,1 a Dpartmt of Mathmatics, Drxl Uivrsity, Philadlphia, PA 1914, USA b Dpartmts of Mathmatics

More information

Digital Signal Processing, Fall 2006

Digital Signal Processing, Fall 2006 Digital Sigal Procssig, Fall 6 Lctur 9: Th Discrt Fourir Trasfor Zhg-Hua Ta Dpartt of Elctroic Systs Aalborg Uivrsity, Dar zt@o.aau.d Digital Sigal Procssig, I, Zhg-Hua Ta, 6 Cours at a glac MM Discrt-ti

More information

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform Discrt Fourir Trasform Dfiitio - T simplst rlatio btw a lt- squc x dfid for ω ad its DTFT X ( ) is ω obtaid by uiformly sampli X ( ) o t ω-axis btw ω < at ω From t dfiitio of t DTFT w tus av X X( ω ) ω

More information

International Journal of Advanced and Applied Sciences

International Journal of Advanced and Applied Sciences Itratioal Joural of Advacd ad Applid Scics x(x) xxxx Pags: xx xx Cotts lists availabl at Scic Gat Itratioal Joural of Advacd ad Applid Scics Joural hompag: http://wwwscic gatcom/ijaashtml Symmtric Fuctios

More information

Journal of Modern Applied Statistical Methods

Journal of Modern Applied Statistical Methods Joural of Modr Applid Statistical Mthods Volum Issu Articl 6 --03 O Som Proprtis of a Htrogous Trasfr Fuctio Ivolvig Symmtric Saturatd Liar (SATLINS) with Hyprbolic Tagt (TANH) Trasfr Fuctios Christophr

More information

On a problem of J. de Graaf connected with algebras of unbounded operators de Bruijn, N.G.

On a problem of J. de Graaf connected with algebras of unbounded operators de Bruijn, N.G. O a problm of J. d Graaf coctd with algbras of uboudd oprators d Bruij, N.G. Publishd: 01/01/1984 Documt Vrsio Publishr s PDF, also kow as Vrsio of Rcord (icluds fial pag, issu ad volum umbrs) Plas chck

More information

Empirical Study in Finite Correlation Coefficient in Two Phase Estimation

Empirical Study in Finite Correlation Coefficient in Two Phase Estimation M. Khoshvisa Griffith Uivrsity Griffith Busiss School Australia F. Kaymarm Massachustts Istitut of Tchology Dpartmt of Mchaical girig USA H. P. Sigh R. Sigh Vikram Uivrsity Dpartmt of Mathmatics ad Statistics

More information

Blackbody Radiation. All bodies at a temperature T emit and absorb thermal electromagnetic radiation. How is blackbody radiation absorbed and emitted?

Blackbody Radiation. All bodies at a temperature T emit and absorb thermal electromagnetic radiation. How is blackbody radiation absorbed and emitted? All bodis at a tmpratur T mit ad absorb thrmal lctromagtic radiatio Blackbody radiatio I thrmal quilibrium, th powr mittd quals th powr absorbd How is blackbody radiatio absorbd ad mittd? 1 2 A blackbody

More information

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1 Chatr Fiv Mor Dimsios 51 Th Sac R W ar ow rard to mov o to sacs of dimsio gratr tha thr Ths sacs ar a straightforward gralizatio of our Euclida sac of thr dimsios Lt b a ositiv itgr Th -dimsioal Euclida

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by Dan Klain Vrsion 28928 Corrctions and commnts ar wlcom Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix () A A k I + A + k!

More information

Folding of Hyperbolic Manifolds

Folding of Hyperbolic Manifolds It. J. Cotmp. Math. Scics, Vol. 7, 0, o. 6, 79-799 Foldig of Hyprbolic Maifolds H. I. Attiya Basic Scic Dpartmt, Collg of Idustrial Educatio BANE - SUEF Uivrsity, Egypt hala_attiya005@yahoo.com Abstract

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

Marcinkiwiecz-Zygmund Type Inequalities for all Arcs of the Circle

Marcinkiwiecz-Zygmund Type Inequalities for all Arcs of the Circle Marcikiwiecz-ygmud Type Iequalities for all Arcs of the Circle C.K. Kobidarajah ad D. S. Lubisky Mathematics Departmet, Easter Uiversity, Chekalady, Sri Laka; Mathematics Departmet, Georgia Istitute of

More information

15/03/1439. Lectures on Signals & systems Engineering

15/03/1439. Lectures on Signals & systems Engineering Lcturs o Sigals & syms Egirig Dsigd ad Prd by Dr. Ayma Elshawy Elsfy Dpt. of Syms & Computr Eg. Al-Azhar Uivrsity Email : aymalshawy@yahoo.com A sigal ca b rprd as a liar combiatio of basic sigals. Th

More information

New Sixteenth-Order Derivative-Free Methods for Solving Nonlinear Equations

New Sixteenth-Order Derivative-Free Methods for Solving Nonlinear Equations Amrica Joural o Computatioal ad Applid Mathmatics 0 (: -8 DOI: 0.59/j.ajcam.000.08 Nw Sixtth-Ordr Drivativ-Fr Mthods or Solvig Noliar Equatios R. Thukral Padé Rsarch Ctr 9 Daswood Hill Lds Wst Yorkshir

More information

Problem Value Score Earned No/Wrong Rec -3 Total

Problem Value Score Earned No/Wrong Rec -3 Total GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING ECE6 Fall Quiz # Writt Eam Novmr, NAME: Solutio Kys GT Usram: LAST FIRST.g., gtiit Rcitatio Sctio: Circl t dat & tim w your Rcitatio

More information

FORBIDDING RAINBOW-COLORED STARS

FORBIDDING RAINBOW-COLORED STARS FORBIDDING RAINBOW-COLORED STARS CARLOS HOPPEN, HANNO LEFMANN, KNUT ODERMANN, AND JULIANA SANCHES Abstract. W cosidr a xtrmal problm motivatd by a papr of Balogh [J. Balogh, A rmark o th umbr of dg colorigs

More information

Limiting value of higher Mahler measure

Limiting value of higher Mahler measure Limiting valu of highr Mahlr masur Arunabha Biswas a, Chris Monico a, a Dpartmnt of Mathmatics & Statistics, Txas Tch Univrsity, Lubbock, TX 7949, USA Abstract W considr th k-highr Mahlr masur m k P )

More information

Calculus & analytic geometry

Calculus & analytic geometry Calculus & aalytic gomtry B Sc MATHEMATICS Admissio owards IV SEMESTER CORE COURSE UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION CALICUT UNIVERSITYPO, MALAPPURAM, KERALA, INDIA 67 65 5 School of Distac

More information

CDS 101: Lecture 5.1 Reachability and State Space Feedback

CDS 101: Lecture 5.1 Reachability and State Space Feedback CDS, Lctur 5. CDS : Lctur 5. Rachability ad Stat Spac Fdback Richard M. Murray 7 Octobr 3 Goals: Di rachability o a cotrol systm Giv tsts or rachability o liar systms ad apply to ampls Dscrib th dsig o

More information

Orthogonal Dirichlet Polynomials with Arctangent Density

Orthogonal Dirichlet Polynomials with Arctangent Density Orthogoal Dirichlet Polyomials with Arctaget Desity Doro S. Lubisky School of Mathematics, Georgia Istitute of Techology, Atlata, GA 3033-060 USA. Abstract Let { j } j= be a strictly icreasig sequece of

More information

cycle that does not cross any edges (including its own), then it has at least

cycle that does not cross any edges (including its own), then it has at least W prov th following thorm: Thorm If a K n is drawn in th plan in such a way that it has a hamiltonian cycl that dos not cross any dgs (including its own, thn it has at last n ( 4 48 π + O(n crossings Th

More information

BOUNDS FOR THE COMPONENTWISE DISTANCE TO THE NEAREST SINGULAR MATRIX

BOUNDS FOR THE COMPONENTWISE DISTANCE TO THE NEAREST SINGULAR MATRIX SIAM J. Matrix Aal. Appl. (SIMAX), 8():83 03, 997 BOUNDS FOR THE COMPONENTWISE DISTANCE TO THE NEAREST SINGULAR MATRIX S. M. RUMP Abstract. Th ormwis distac of a matrix A to th arst sigular matrix is wll

More information

CDS 101: Lecture 5.1 Reachability and State Space Feedback

CDS 101: Lecture 5.1 Reachability and State Space Feedback CDS, Lctur 5. CDS : Lctur 5. Rachability ad Stat Spac Fdback Richard M. Murray ad Hido Mabuchi 5 Octobr 4 Goals: Di rachability o a cotrol systm Giv tsts or rachability o liar systms ad apply to ampls

More information

On Deterministic Finite Automata and Syntactic Monoid Size, Continued

On Deterministic Finite Automata and Syntactic Monoid Size, Continued O Dtrmiistic Fiit Automata ad Sytactic Mooid Siz, Cotiud Markus Holzr ad Barbara Köig Istitut für Iformatik, Tchisch Uivrsität Müch, Boltzmastraß 3, D-85748 Garchig bi Müch, Grmay mail: {holzr,koigb}@iformatik.tu-much.d

More information

ONLINE SUPPLEMENT Optimal Markdown Pricing and Inventory Allocation for Retail Chains with Inventory Dependent Demand

ONLINE SUPPLEMENT Optimal Markdown Pricing and Inventory Allocation for Retail Chains with Inventory Dependent Demand Submittd to Maufacturig & Srvic Opratios Maagmt mauscript MSOM 5-4R2 ONLINE SUPPLEMENT Optimal Markdow Pricig ad Ivtory Allocatio for Rtail Chais with Ivtory Dpdt Dmad Stph A Smith Dpartmt of Opratios

More information

Chapter 11.00C Physical Problem for Fast Fourier Transform Civil Engineering

Chapter 11.00C Physical Problem for Fast Fourier Transform Civil Engineering haptr. Physical Problm for Fast Fourir Trasform ivil Egirig Itroductio I this chaptr, applicatios of FFT algorithms [-5] for solvig ral-lif problms such as computig th dyamical (displacmt rspos [6-7] of

More information

Australian Journal of Basic and Applied Sciences, 4(9): , 2010 ISSN

Australian Journal of Basic and Applied Sciences, 4(9): , 2010 ISSN Australia Joural of Basic ad Applid Scics, 4(9): 4-43, ISSN 99-878 Th Caoical Product of th Diffrtial Equatio with O Turig Poit ad Sigular Poit A Dabbaghia, R Darzi, 3 ANaty ad 4 A Jodayr Akbarfa, Islaic

More information

A Review of Complex Arithmetic

A Review of Complex Arithmetic /0/005 Rviw of omplx Arithmti.do /9 A Rviw of omplx Arithmti A omplx valu has both a ral ad imagiary ompot: { } ad Im{ } a R b so that w a xprss this omplx valu as: whr. a + b Just as a ral valu a b xprssd

More information

Ordinary Differential Equations

Ordinary Differential Equations Basi Nomlatur MAE 0 all 005 Egirig Aalsis Ltur Nots o: Ordiar Diffrtial Equatios Author: Profssor Albrt Y. Tog Tpist: Sakurako Takahashi Cosidr a gral O. D. E. with t as th idpdt variabl, ad th dpdt variabl.

More information

ω (argument or phase)

ω (argument or phase) Imagiary uit: i ( i Complx umbr: z x+ i y Cartsia coordiats: x (ral part y (imagiary part Complx cougat: z x i y Absolut valu: r z x + y Polar coordiats: r (absolut valu or modulus ω (argumt or phas x

More information

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013 18.782 Introduction to Arithmtic Gomtry Fall 2013 Lctur #20 11/14/2013 20.1 Dgr thorm for morphisms of curvs Lt us rstat th thorm givn at th nd of th last lctur, which w will now prov. Thorm 20.1. Lt φ:

More information

Hardy-Littlewood Conjecture and Exceptional real Zero. JinHua Fei. ChangLing Company of Electronic Technology Baoji Shannxi P.R.

Hardy-Littlewood Conjecture and Exceptional real Zero. JinHua Fei. ChangLing Company of Electronic Technology Baoji Shannxi P.R. Hardy-Littlwood Conjctur and Excptional ral Zro JinHua Fi ChangLing Company of Elctronic Tchnology Baoji Shannxi P.R.China E-mail: fijinhuayoujian@msn.com Abstract. In this papr, w assum that Hardy-Littlwood

More information

Figure 2-18 Thevenin Equivalent Circuit of a Noisy Resistor

Figure 2-18 Thevenin Equivalent Circuit of a Noisy Resistor .8 NOISE.8. Th Nyquist Nois Thorm W ow wat to tur our atttio to ois. W will start with th basic dfiitio of ois as usd i radar thory ad th discuss ois figur. Th typ of ois of itrst i radar thory is trmd

More information

NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES

NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES Digst Joural of Naomatrials ad Biostructurs Vol 4, No, March 009, p 67-76 NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES A IRANMANESH a*, O KHORMALI b, I NAJAFI KHALILSARAEE c, B SOLEIMANI

More information

Mixed Mode Oscillations as a Mechanism for Pseudo-Plateau Bursting

Mixed Mode Oscillations as a Mechanism for Pseudo-Plateau Bursting Mixd Mod Oscillatios as a Mchaism for Psudo-Platau Burstig Richard Brtram Dpartmt of Mathmatics Florida Stat Uivrsity Tallahass, FL Collaborators ad Support Thodor Vo Marti Wchslbrgr Joël Tabak Uivrsity

More information

Analytic Continuation

Analytic Continuation Aalytic Cotiuatio The stadard example of this is give by Example Let h (z) = 1 + z + z 2 + z 3 +... kow to coverge oly for z < 1. I fact h (z) = 1/ (1 z) for such z. Yet H (z) = 1/ (1 z) is defied for

More information

The Interplay between l-max, l-min, p-max and p-min Stable Distributions

The Interplay between l-max, l-min, p-max and p-min Stable Distributions DOI: 0.545/mjis.05.4006 Th Itrplay btw lma lmi pma ad pmi Stabl Distributios S Ravi ad TS Mavitha Dpartmt of Studis i Statistics Uivrsity of Mysor Maasagagotri Mysuru 570006 Idia. Email:ravi@statistics.uimysor.ac.i

More information

LINEAR DELAY DIFFERENTIAL EQUATION WITH A POSITIVE AND A NEGATIVE TERM

LINEAR DELAY DIFFERENTIAL EQUATION WITH A POSITIVE AND A NEGATIVE TERM Elctronic Journal of Diffrntial Equations, Vol. 2003(2003), No. 92, pp. 1 6. ISSN: 1072-6691. URL: http://jd.math.swt.du or http://jd.math.unt.du ftp jd.math.swt.du (login: ftp) LINEAR DELAY DIFFERENTIAL

More information

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero.

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero. SETION 6. 57 6. Evaluation of Dfinit Intgrals Exampl 6.6 W hav usd dfinit intgrals to valuat contour intgrals. It may com as a surpris to larn that contour intgrals and rsidus can b usd to valuat crtain

More information

Iterative Methods of Order Four for Solving Nonlinear Equations

Iterative Methods of Order Four for Solving Nonlinear Equations Itrativ Mods of Ordr Four for Solvig Noliar Equatios V.B. Kumar,Vatti, Shouri Domii ad Mouia,V Dpartmt of Egirig Mamatis, Formr Studt of Chmial Egirig Adhra Uivrsity Collg of Egirig A, Adhra Uivrsity Visakhapatam

More information

An Introduction to Asymptotic Expansions

An Introduction to Asymptotic Expansions A Itroductio to Asmptotic Expasios R. Shaar Subramaia Dpartmt o Chmical ad Biomolcular Egirig Clarso Uivrsit Asmptotic xpasios ar usd i aalsis to dscrib th bhavior o a uctio i a limitig situatio. Wh a

More information

In its simplest form the prime number theorem states that π(x) x/(log x). For a more accurate version we define the logarithmic sum, ls(x) = 2 m x

In its simplest form the prime number theorem states that π(x) x/(log x). For a more accurate version we define the logarithmic sum, ls(x) = 2 m x THREE PRIMES T Hardy Littlwood circl mtod is usd to prov Viogradov s torm: vry sufficitly larg odd itgr is t sum of tr prims Toy Forbs Nots for LSBU Matmatics Study Group Fbruary Backgroud W sall closly

More information

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES. 1. Statement of results

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES. 1. Statement of results BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES DONALD M. DAVIS Abstract. If p is a prim and n a positiv intgr, lt ν p (n dnot th xponnt of p in n, and u p (n n/p νp(n th unit part of n. If α

More information

On the irreducibility of some polynomials in two variables

On the irreducibility of some polynomials in two variables ACTA ARITHMETICA LXXXII.3 (1997) On th irrducibility of som polynomials in two variabls by B. Brindza and Á. Pintér (Dbrcn) To th mmory of Paul Erdős Lt f(x) and g(y ) b polynomials with intgral cofficints

More information

Solutions to Homework 1

Solutions to Homework 1 Solutios to Homework MATH 36. Describe geometrically the sets of poits z i the complex plae defied by the followig relatios /z = z () Re(az + b) >, where a, b (2) Im(z) = c, with c (3) () = = z z = z 2.

More information

SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3

SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3 SOLVED EXAMPLES E. If f() E.,,, th f() f() h h LHL RHL, so / / Lim f() quls - (D) Dos ot ist [( h)+] [(+h) + ] f(). LHL E. RHL h h h / h / h / h / h / h / h As.[C] (D) Dos ot ist LHL RHL, so giv it dos

More information

Further Results on Pair Sum Graphs

Further Results on Pair Sum Graphs Applid Mathmatis, 0,, 67-75 http://dx.doi.org/0.46/am.0.04 Publishd Oli Marh 0 (http://www.sirp.org/joural/am) Furthr Rsults o Pair Sum Graphs Raja Poraj, Jyaraj Vijaya Xavir Parthipa, Rukhmoi Kala Dpartmt

More information

Recall that by Theorems 10.3 and 10.4 together provide us the estimate o(n2 ), S(q) q 9, q=1

Recall that by Theorems 10.3 and 10.4 together provide us the estimate o(n2 ), S(q) q 9, q=1 Chaptr 11 Th singular sris Rcall that by Thorms 10 and 104 togthr provid us th stimat 9 4 n 2 111 Rn = SnΓ 2 + on2, whr th singular sris Sn was dfind in Chaptr 10 as Sn = q=1 Sq q 9, with Sq = 1 a q gcda,q=1

More information

Chapter 4 - The Fourier Series

Chapter 4 - The Fourier Series M. J. Robrts - 8/8/4 Chaptr 4 - Th Fourir Sris Slctd Solutios (I this solutio maual, th symbol,, is usd for priodic covolutio bcaus th prfrrd symbol which appars i th txt is ot i th fot slctio of th word

More information

HOMOGENIZATION OF DIFFUSION PROCESSES ON SCALE-FREE METRIC NETWORKS

HOMOGENIZATION OF DIFFUSION PROCESSES ON SCALE-FREE METRIC NETWORKS Elctroic Joural of Diffrtial Equatios, Vol. 26 (26), No. 282, pp. 24. ISSN: 72-669. URL: http://jd.math.txstat.du or http://jd.math.ut.du HOMOGENIZATION OF DIFFUSION PROCESSES ON SCALE-FREE METRIC NETWORKS

More information

ECE594I Notes set 6: Thermal Noise

ECE594I Notes set 6: Thermal Noise C594I ots, M. odwll, copyrightd C594I Nots st 6: Thrmal Nois Mark odwll Uivrsity of Califoria, ata Barbara rodwll@c.ucsb.du 805-893-344, 805-893-36 fax frcs ad Citatios: C594I ots, M. odwll, copyrightd

More information

Chapter 10. The singular integral Introducing S(n) and J(n)

Chapter 10. The singular integral Introducing S(n) and J(n) Chaptr Th singular intgral Our aim in this chaptr is to rplac th functions S (n) and J (n) by mor convnint xprssions; ths will b calld th singular sris S(n) and th singular intgral J(n). This will b don

More information

Exercise 1. Sketch the graph of the following function. (x 2

Exercise 1. Sketch the graph of the following function. (x 2 Writtn tst: Fbruary 9th, 06 Exrcis. Sktch th graph of th following function fx = x + x, spcifying: domain, possibl asymptots, monotonicity, continuity, local and global maxima or minima, and non-drivability

More information

DFT: Discrete Fourier Transform

DFT: Discrete Fourier Transform : Discrt Fourir Trasform Cogruc (Itgr modulo m) I this sctio, all lttrs stad for itgrs. gcd m, = th gratst commo divisor of ad m Lt d = gcd(,m) All th liar combiatios r s m of ad m ar multils of d. a b

More information

Class #24 Monday, April 16, φ φ φ

Class #24 Monday, April 16, φ φ φ lass #4 Moday, April 6, 08 haptr 3: Partial Diffrtial Equatios (PDE s First of all, this sctio is vry, vry difficult. But it s also supr cool. PDE s thr is mor tha o idpdt variabl. Exampl: φ φ φ φ = 0

More information

SCALING LIMITS FOR MIXED KERNELS

SCALING LIMITS FOR MIXED KERNELS SCALING LIMITS FOR MIXED KERNELS DORON S. LUBINSKY A. Let µ ad ν be measures supported o, with correspodig orthoormal polyomials { p µ } ad {p ν } respectively. Defie the mixed kerel K µ,ν We establish

More information

Scattering Parameters. Scattering Parameters

Scattering Parameters. Scattering Parameters Motivatio cattrig Paramtrs Difficult to implmt op ad short circuit coditios i high frqucis masurmts du to parasitic s ad Cs Pottial stability problms for activ dvics wh masurd i oopratig coditios Difficult

More information

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels LUR 3 illig th bads Occupacy o Availabl rgy Lvls W hav dtrmid ad a dsity o stats. W also d a way o dtrmiig i a stat is illd or ot at a giv tmpratur. h distributio o th rgis o a larg umbr o particls ad

More information

Bipolar Junction Transistors

Bipolar Junction Transistors ipolar Juctio Trasistors ipolar juctio trasistors (JT) ar activ 3-trmial dvics with aras of applicatios: amplifirs, switch tc. high-powr circuits high-spd logic circuits for high-spd computrs. JT structur:

More information

Quasi-Classical States of the Simple Harmonic Oscillator

Quasi-Classical States of the Simple Harmonic Oscillator Quasi-Classical Stats of th Simpl Harmonic Oscillator (Draft Vrsion) Introduction: Why Look for Eignstats of th Annihilation Oprator? Excpt for th ground stat, th corrspondnc btwn th quantum nrgy ignstats

More information