HOMOGENIZATION OF DIFFUSION PROCESSES ON SCALE-FREE METRIC NETWORKS

Size: px
Start display at page:

Download "HOMOGENIZATION OF DIFFUSION PROCESSES ON SCALE-FREE METRIC NETWORKS"

Transcription

1 Elctroic Joural of Diffrtial Equatios, Vol. 26 (26), No. 282, pp. 24. ISSN: URL: or HOMOGENIZATION OF DIFFUSION PROCESSES ON SCALE-FREE METRIC NETWORKS FERNANDO A. MORALES, DANIEL E. RESTREPO Abstract. This work studis th homogizatio of diffusio procsss o scal-fr mtric graphs, usig wak variatioal formulatios. Th oscillatios of th diffusio cofficit alog th dgs of a mtric graph iduc itral sigularitis i th global systm which, togthr with th high complxity of larg tworks costitut sigificat difficultis i th dirct aalysis of th problm. At th sam tim, ths facts also suggst homogizatio as a viabl approach for modlig th global bhavior of th problm. To that d, w study th asymptotic bhavior of a squc of boudary problms dfid o a std collctio of mtric graphs. This papr prsts th wak variatioal formulatio of th problms, th covrgc aalysis of th solutios ad som umrical xprimts.. Itroductio A scal-fr twork is a larg graph with powr law dgr distributio, i.., P[dg(v) = k] k γ whr γ is a fixd positiv costat. Equivaltly, th probability of fidig a vrtx of dgr k, dcays as a powr-law of th dgr valu. Powr-law distributd tworks ar of oticabl itrst bcaus thy hav b frqutly obsrvd i vry diffrt filds such as th World Wid Wb, busiss tworks, uroscic, gtics, coomics, tc. Th currt rsarch o scal-fr tworks is maily focusd i thr aspcts: first, gratio modls (s [, 2]), scod, solid vidc dtctio of tworks with powr-law dgr distributio (s [25, 9, 5, 24]). Th third ad fial aspct studis th xtt to which th powr-law distributio rlats with othr structural proprtis of th twork, such as slf-orgaizatio (s [6, 9]); this is subjct of its dbat, s [6] for a comprhsiv survy o th mattr. This articl studis scal-fr tworks from a vry diffrt prspctiv. Its mai goal is to itroduc a homogizatio procss o th twork to rduc th origial ordr of complxity but prsrv th sstial faturs (s Figur ). I this way, th homogizd or upscald twork is rliabl for data aalysis whil, at th sam tim, ivolvs lowr computatioal costs ad lowr umrical istability. Additioally, th homogizatio procss drivs a atr ad mor structural pictur of th startig twork sic ucssary complxity is rplacd by th avrag asymptotic bhavior of larg data. Th phomo kow as Th Aggrgatio Problm i coomics is a xampl of how this typ of rasoig 2 Mathmatics Subjct Classificatio. 35R2, 35J5, 5C7, 5C82. Ky words ad phrass. Coupld PDE systms; homogizatio; graph thory. c 26 Txas Stat Uivrsity. Submittd Dcmbr 3, 25. Publishd Octobr 22, 26.

2 2 F. A. MORALES, D. E. RESTREPO EJDE-26/282 is implicitly applid i modlig th global bhavior of larg tworks (s [8]). Usually, homogizatio tchiqus rquir som assumptios of priodicity of th sigularitis or priodicity of th cofficits of th systm (s [6, ]), i tur this cas dmads avragig hypothss i th Csàro ss. Th rsultig twork has th dsird faturs bcaus of two charactristic proprtis of scal-fr tworks. O o had, thy rsmbl star-lik graphs (s [7]), o th othr had, thy hav a commuicatio krl carryig most of th twork traffic (s [7]). This articl, for th sak of clarity, rstricts th aalysis to th asymptotic bhavior of diffusio procsss o star-lik mtric graphs (s Dfiitio 2.2 ad Figur 2 blow). Howvr, whil most of th modls i th prxistt litratur ar cocrd with th strog forms of diffrtial quatios (s [3] for a gral survy ad [22] for th stochastic modlig of advctio-diffusio o tworks), hr w us th variatioal formulatio approach, which is a vry usful tool for upscalig aalysis. Mor spcifically, w itroduc th psudo-discrt aalogous of th classical statioary diffusio problm (K p) = f i Ω, p = o Ω, (.) whr K is th diffusio cofficit (s Dfiitio 2.6 ad Equatio (2.8) blow). Bcaus of th variatioal formulatio it will b possibl to attai a-priori stimats for a squc of solutios, a asymptotic variatioal form of th problm ad th computatio of ffctiv cofficits. Fially, from th tchiqu, it will b clar how to apply th mthod to scal-fr mtric tworks i gral. Throughout th xpositio th trms homogizd, upscald ad avragd hav th sam maig ad w us thm idistictly. This articl is orgaizd as follows, i Sctio 2 th cssary backgroud is itroducd for L 2, H -typ spacs o mtric graphs as wll as th strog form ad th wak variatioal form, togthr with its wll-posdss aalysis. Also a quick rviw of quidistributd squcs ad Wyl s Thorm is icludd to b usd mostly i th umrical xampls. I Sctio 3 w itroduc a gomtric sttig ad a squc of problms for asymptotic aalysis, a-priori stimats ar prstd ad a typ of covrgc for th solutios. I Sctio 4, udr mild hypothss of Csàro covrgc for th forcig trms, th xistc ad charactrizatio of a limitig or homogizd problm ar show. Fially, Sctio 5 is rsrvd for th umrical xampls ad Sctio 6 has th coclusios. 2. Prlimiaris 2.. Mtric Graphs ad Fuctio Spacs. W bgi this sctio by rcallig som facts for mbddigs of graphs. Dfiitio 2.. A graph G = (V, E) is said to b mbddabl i R N if it ca b draw i R N so that its dgs itrsct oly at thir ds. A graph is said to b plaar if it ca b mbddd i th pla. It is a wll-kow fact that ay simpl graph ca b mbddd i R 2 or R 3 (dpdig whthr it is plaar or ot) i a way that its dgs ar draw with straight lis; s [8] for plaar graphs ad [4] for o-plaar graphs. I th followig it will always b assumd that th graph is alrady mbddd i R 2 or R 3.

3 EJDE-26/282 HOMOGENIZATION OF DIFFUSION PROCESSES 3 K, F K (), F () v 2 K (), F () K, F v 3 K, F v K (), F () K, F v 4 K (), F () (a) (b) Figur. (a) dpicts a scal-fr twork. (b) dpicts a homogizatio of th origial twork. Dfiitio 2.2. Lt G = (V, E) b a graph mbddd i R 2 or R 3, dpdig o th cas. (i) Th graph G is said to b a mtric graph if ach dg E is assigd a positiv lgth l (, ). (ii) Th graph G is said to b locally fiit if dg(v) < + for all v V. (iii) If th graph G is mtric, th boudary of th graph is dfid by th st of vrtics of dgr o. Th st will also b domiatd as th st of boudary vrtics ad dotd by V := {v V : dg(v) = }. (2.) (iv) Giv a mtric graph w dfi its atural domai by Ω G := E it(). (2.2) Dfiitio 2.3. Lt G = (V, E) b a mtric graph, w dfi th followig associatd Hilbrt spacs (i) Th spac of squar itgrabl fuctios, or mass spac is dfid by L 2 (G) := E L 2 (), dowd with its atural ir product f, g L2 (G) := fg. E (ii) Th rgy spac of fuctios is dfid by H (G) := { f E H () : lim f(x) = lim f(x), x v, x x v, x σ for all vrtics v V ad all dgs, σ icidt o v }. (2.3a) (2.3b) (2.4a)

4 4 F. A. MORALES, D. E. RESTREPO EJDE-26/282 I th squl f(v) := lim{f(x) : x v, x }, whr E is ay dg icidt o v. W dow th spac with its atural ir product f, g H (G) := f g + f g. (2.4b) E E Hr dots th drivativ alog th dg E. (iii) Th spac H (G) is dfid by H (G) := { f H (G) : f(v) =, for all v V }, (2.5) dowd with th stadard ir product (2.4b). Rmark 2.4. Lt G b a mtric graph. (i) Not that th dfiitio of is ambiguous i Exprssio (2.4b). Such ambiguity will caus o problms sic th biliar structur of th ir product is idiffrt to th choic of dirctio (q, r) q r = ( q ) ( r). (ii) Whvr thr is d to spcify th dirctio of th drivat, w writ,v to idicat th dirctio poitig from th itrior of th dg towards th vrtx v o o of its xtrms. (iii) Notic that if th mtric graph G is coctd, th th Poicaré iquality holds, ad th ir product (f, g) f g, (2.6) E is quivalt to th stadard o (2.4b) i th spac H (G). (iv) Obsrv that th coditio of agrmt of a fuctio f H (G) o th vrtics of th graph G, dos ot cssarily imply cotiuity as a fuctio f : Ω G R. For if th dgr of a vrtx v V is ifiit ad th fuctio is cotiuous o v, th it follows that th covrgc f(v) := lim{f(x) : x v, x } is uiform for all th dgs icidt o v. Such a coditio ca ot b drivd from th orm iducd by th ir product (2.4b), although th fuctio f it() is cotiuous for all E. Dfiitio 2.5. Lt G = (V, E ) b a squc of graphs. (i) Th squc {G : N} is said to b icrasig if V V + ad E E + for all N. (ii) Giv a icrasig squc of graphs {G : N}, w dfi th limit graph G = (V, E) i th atural way i.., V := N V E := N E. I aalogy with mooto squcs of sts w adopt th otatio G := N G Strog ad wak forms of th statioary diffusio problm o graphs. Dfiitio 2.6. Lt G = (V, E) b a locally fiit mtric graph, F L 2 (G) ad h : V V R, dfi th diffusio problm F i Ω G. (2.7a) E ( K p) = E

5 EJDE-26/282 HOMOGENIZATION OF DIFFUSION PROCESSES 5 Hr, K L (Ω G ) is a ogativ diffusio cofficit. W dow th problm with ormal strss cotiuity coditios lim p(x) = p(v) for all p V V, (2.7b) x v, x ad ormal flux balac coditios h(v) + lim,v p(x) = for all v V V. (2.7c) x v, x E, icidt o v Hr,,v dots th drivativ alog th dg poitig away from th vrtx v. Fially, w dclar homogous Dirichlt boudary coditios p(v) = for all v V. (2.7d) A wak variatioal formulatio of this problm is giv by p H (G) : K p q = F q + E E v V V h(v)q(v) (2.8) for all q H (G). For th sak of compltss w prst th followig stadard rsult. Propositio 2.7. Lt G = (V, E) b a locally fiit coctd mtric graph such that V ad lt K L (Ω G ) b a diffusio cofficit such that K(x) c K > almost vrywhr i Ω G. Th Problm (2.8) is wll-posd. Proof. Clarly th fuctioals o th right-had sid of (2.8) ar liar ad cotiuous, as wll as th biliar form b(p, q) := E K p q of th lft-had sid. Additioally, K p 2 c K p 2 c p 2 H () = c p 2 H (G). E E E Th first iquality abov holds du to th coditios o K. Th scod iquality hods du to th Dirichlt homogous boudary coditios ad th coctdss of th graph G, which prmits th Poicaré iquality o th spac H (G) as discussd i Rmark 2.4-(iii). Thrfor, by th Lax-Milgram Thorm, Problm (2.8) is wll-posd Equidistributd squcs ad Wyl s Thorm. Th brif rviw of quidistributd squcs ad Wyl s thorm of this sctio will b applid, almost xclusivly i th umrical xampls blow, s Sctio 5. For a complt xpositio o quidistributd squcs ad Wyl s Thorm s [23]. Dfiitio 2.8. A squc {θ : N} is calld quidistributd o a itrval [a, b] if for ach subitrval [c, d] [a, b] it holds that #{i : θ i [c, d], i } lim = d c b a. (2.9) Thorm 2.9 (Wyl s Thorm). Lt { θ : N } b a squc o [a, b], th followig coditios ar quivalt: (i) Th squc {θ : N} is quidistributd i [a, b]. (ii) For vry Rima itgrabl fuctio f : [a, b] C lim i= f(θ i ) = b a b a f(θ) dθ.

6 6 F. A. MORALES, D. E. RESTREPO EJDE-26/282 Dfiitio 2.. Lt Ω = B(, ) R 2 ad lt f : Ω R b such that its rstrictio to vry sphr B(, ρ) with ρ < is Rima itgrabl. Th, w dfi its agular avrag by th avrag valu of f alog th sphr (B(, ρ)), i.., m θ [f] : [, ) R, m θ [f](t) := 2π 2π 3. Squc of problms f ( t cos θ, t si θ) ) dθ. (2.) I this sctio w aalyz th bhavior of th solutios {p : N} of a family of wll-posd problms o a vry particular icrasig squc of graphs {G : N}, dpictd i Figur Gomtric sttig ad th -stag problm. I th followig w dot by Ω, S th uit disk ad th uit sphr i R 2 rspctivly. Th fuctio F : Ω G R is such that F Ω L 2 (Ω ) for all N, {h : N} is a squc of ral umbrs ad th diffusio cofficit K L (Ω G ) is such that K( ) c K > almost vrywhr i Ω G. Dfiitio 3.. Lt {v : } b a quidistributd squc i S ad v := R 2. (i) For ach N dfi th graph G = (V, E ) as follows: V := {v : i }, E := {v v i : i }. (3.) (ii) For th icrasig squc of graphs {G : N}, dfi th limit graph G := N G as dscribd i Dfiitio 2.5. (iii) I th followig w dot th atural domais corrspodig to G, G by Ω G ad Ω rspctivly. (iv) For ay dg E w dot by v its boudary vrtx ad θ [, 2π] th dirctio of th dg. (v) From ow o, for ach dg = v v ad f : R a fuctio, it will b udrstood that its o-dimsioal paramtrizatio, is oritd from th ctral vrtx v to th boudary vrtx v. Cosqutly th drivativ quals,v. (vi) For ay giv fuctio f : Ω G R (or f : Ω R) w dot by f : (, ) R, th ral variabl fuctio f (t) := (f )(t cos θ, t si θ ) o th dgs E (or E rspctivly). Rmark 3.2. From th followig aalysis, it will b clar that it is ot cssary to assum that th squc of vrtics {v : N} of th graph is quidistributd or that th vrtics ar i S or v that th graph is mbddd i R 2. W adopt ths assumptios, maily to facilitat a gomtric visualizatio of th sttig. For th rst of this articl it will b assumd that {G : N} is th icrasig squc of graphs, with G its limit graph, as i th Dfiitio 3. abov. Nxt, w dfi th family of wll-posd problms to b studid, for ach N, ths ar p H (G ) : K p q = F q + h q(v ), (3.2) E E for all q H (G ). W d to aalyz th asymptotic bhavior of th squc of solutios {p : N}. O of th mai challgs is that th lmts of th

7 EJDE-26/282 HOMOGENIZATION OF DIFFUSION PROCESSES 7 G 5 v G v v 6 v 4 v 4 v 3 v 3 v v v v 2 v 8 v 2 v 7 v 5 (a) (b) v 5 Figur 2. (a) dpicts th stag 5 of th graph G. (b) dpicts a mor gral stag of th graph G. squc ar ot dfid o th sam global spac. Th fact that p () may ot b zro maks it impossibl to xtd this fuctio to H (G) dirctly, howvr it will play a ctral rol i th asymptotic aalysis of th problm Estimats ad dgwis covrgc. I this sctio w obtai stimats for th squc of solutios, svral stps hav to b mad as it is ot dirct to attai thm. W start itroducig coditios to b assumd from ow o. Hypothsis 3.3. (i) Th forcig trm F is dfid i th whol domai, i.., F : Ω G R ad M := sup E F L 2 () < +. (ii) Th squc { h : N } is boudd. (iii) Th prmability cofficit satisfis that K L (Ω G ), if x ΩG K(x) = c K > ad K = K() i.., it is costat alog ach dg E. Rmark 3.4. Not that Hypothsis 3.3-(ii) stats that th balac of ormal flux o th ctral vrtx is of ordr O(), i.., it scals with th umbr of icidt dgs. Lmma 3.5. Udr Hypothsis 3.3, th followig facts hold (i) Th squc {p () : N} R is boudd. (ii) Lt E b a dg of th graph G th, th squc { p () : E } R is boudd. Morovr, thr xists M such that p () M for all E ad N such that E. (iii) Suppos that th squcs { E (t )F (t)dt : N }, { h : N } ad { E K() : N } ar covrgt, th lim p () = lim E (t )F (t)dt h E K(). (3.3a)

8 8 F. A. MORALES, D. E. RESTREPO EJDE-26/282 For ay fixd dg E, it holds lim K() p () = L() := (t )F (t)dt K() lim σ E (t )F σ(t)dt h σ E K(σ). (3.3b) Morovr, th covrgc is uiform i th followig ss: for ach ɛ > thr xists N N such that, if > N ad E, th K() p () L() < ɛ. (3.3c) Proof. (i) Lt q H (G ) b th fuctio such that q() = ad q (t) = t for all E. Tst (3.2) with q, this yilds q() p = F q + h q(). (3.4) E K E Computig ad doig som stimats w obtai #E c K p () 3 E F L 2 () + h. Hc p () M + h. c K c K This provs th first part. (ii) Lt E b a fixd dg, lt N b such that E ad lt p b th solutio to (3.2). Lt q H (G ) b as i th prvious part ad tst (3.2) to obtai K()p () q() + = K()p () = F q + σ E, σ σ E, σ σ E, σ σ K K σ p σ q σ σ F q + h q(). σ 2 p q + q() σ E, σ K σ p () I th xprssio abov, itgratio by parts was applid to ach summad σ of th lft had sid, to obtai th scod quality. Now, rcallig that E K p () = h ad that K 2 p = F for ach E, th quality abov rducs to K()p () = (t )F (t)dt K() p (). (3.5) Hc, p () p () + F L2 () 2 M + h. (3.6) c K c K c K Choosig M > larg ough, th rsult follows.

9 EJDE-26/282 HOMOGENIZATION OF DIFFUSION PROCESSES 9 (iii) Lt q H (G ) b as i th prvious part, tstig (3.2) with it yilds (3.4), which is quivalt to p () K = F q + E h q(). E Now, lttig, Equality (3.3a) follows bcaus th hypothsis K() > c K for all E, implis that E K() c K >. For th covrgc of { p () : E }, lt i (3.5) to obtai (3.3b). For th uiform covrgc obsrv that (3.5) yilds K() p () L() = K() lim K L lim σ E (t )F σ(t)dt h σ E K(σ) K()p () σ E (t )F σ(t)dt h p (). σ E K(σ) Fially, choos N N such that th right had sid of th xprssio abov is lss tha ɛ > for all > N th, th trm of th lft-had sid is also domiatd by ɛ > for all > N ad E. Rmark 3.6. It is clar that i Lmma 3.5 part (iii), it suffics to rquir th mr xistc of th limit σ E lim (t )F σ(t)dt h, σ E K(σ) to attai th sam coclusio. Howvr, th hypothss i (iii) ar cssary to idtify th asymptotic problm ad to comput th ffctiv cofficits. Thorm 3.7. Lt F, {h : N} ad K satisfy Hypothsis 3.3 as i Lmma 3.5. Th: (i) Thr xists a costat M such that p H 2 () M for all E ad N such that E. (ii) For ach E thr xists p () H () such that p p () H (). Morovr, this covrgc is uiform i th followig ss: for ach ɛ > thr xists N N such that, if > N ad E, th p p () H () < ɛ. (3.7) (iii) Th fuctio p : Ω G R giv by p := p () is wll-dfid ad it will b rfrrd to, as th limit fuctio. Proof. (i) Fix E ad lt N b such that E. Sic p is th solutio of (3.2) it follows that K() 2 p = F L 2 () for all E, i particular p H 2 () with 2 p L2 () c K F L2 () c K M. O th othr had, sic p is absolutly cotiuous, th fudamtal thorm of calculus applis, hc p (x) = p () + x 2 p (t) dt = p () + x F (t) dt for all x. Thrfor, p (x) 2 = 2 p () 2 + 2x F 2 L 2 () 2M 2 + 2M 2. Whr M is th global boud foud i Lmma 3.5-(ii) abov. Itgratig alog th dg givs p L 2 () 2(M 2 + M 2 ). Nxt, giv that p (v) = for

10 F. A. MORALES, D. E. RESTREPO EJDE-26/282 all v E, rpatig th prvious argumt yilds p L2 () 2(M 2 + M 2 ). Fially, sic 2 p L 2() c K M, th rsult follows for ay M satisfyig ( M 2 4M ) c 2 M 2. K (ii) Fix E, du to th prvious part th squc {p : E } is boudd i H 2 (), th thr xists p () H 2 () ad a subsquc { k : k N} such that as k, p k p () wakly i H 2 () ad strogly i H (). Lt ϕ H () b such that quals zro o th boudary vrtx of. Lt q b th fuctio i H (G ) such that q = ϕ ad q σ (t) = ϕ()( t) (liar affi) for all σ E {}. Tst (3.2) with this fuctio to obtai K() p q + K σ p σ q = F q + σ E, σ σ E, σ σ σ F q + h q(). Itgratig by parts th scod summad of th lft-had sid yilds K() p ϕ K 2 σ p q ϕ() K σ p () = F ϕ + σ E, σ σ E, σ σ σ F ϕ + h q(). σ E, σ Sic p is a solutio of th problm, th abov xprssio rducs to K() p ϕ + K() p ()ϕ() = F q. (3.8) Equality (3.8) holds for all N, i particular it holds for th covrgt subsquc { k : k N}; takig limit o this squc ad rcallig (3.3b), w hav K() p () ϕ = F ϕ L()ϕ(). (3.9) Th (3.9) holds for all ϕ H () vaishig at v, th boudary vrtx of. Dfi th spac H() := {ϕ H () : ϕ(v ) = } ad cosidr th problm u H() : K() u ϕ = F ϕ L()ϕ() ϕ H(). (3.) By th Lax-Milgram Thorm th problm abov is wll-posd, additioally it is clar that p () H(), thrfor it is th uiqu solutio to (3.) abov. Now, rcall that {p : E } is boudd i H 2 () ad that th prvious rasoig applis for vry strogly H ()-covrgt subsquc, thrfor its limit is th uiqu solutio to (3.). Cosqutly, by Rllich-Kodrachov, it follows that th whol squc covrgs strogly. Nxt, for th uiform covrgc tst both Statmts (3.8), (3.9) with (p p () ) ad subtract thm to obtai c K p p () 2 H () K() p p () 2 ( L() K() p () )( p () p () () )

11 EJDE-26/282 HOMOGENIZATION OF DIFFUSION PROCESSES L() K() p () p p () H (). Th abov yilds p p () H () c K L() K() p (). Now, th uiform covrgc (3.7) follows from (3.3c), which cocluds th scod part. (iii) Sic p () () = lim p () for all E, th limit fuctio p is wlldfid ad th proof is complt. 4. Homogizd problm: a Csàro avrag approach I this sctio w study th asymptotic proprtis of th global bhavior of th solutios {p : N}. It will b s that such aalysis must b do for crtai typ of Csàro avrags of th solutios. This is obsrvd by th tchiqus ad th hypothss of Lmma 3.5, which ar cssary to coclud th local covrgc of {p : E }. Additioally, th typ of stimats ad th umrical xprimts suggst this physical magitud as th most sigificat o for global bhavior aalysis ad upscalig purposs. W start itroducig som cssary hypothss. Hypothsis 4.. Suppos that F, {h : N} ad K satisfy 3.3, ad (i) Th diffusio cofficit K : Ω G (, ) has fiit rag. Morovr, if K(E) = {K i : i I} ad B i := { E : K() = K i }, th K() = #(E B i ) E B i With s i > for all i I ad such that I i= s i =. (ii) Th forcig trm F satisfis #(E B i ) F E B i K i s ik i. (4.) F i, for i I. (4.2) Whr F i L 2 (, ) ad th ss of covrgc is poitwis almost vrywhr. (iii) Th squc { h : N } is covrgt with h = lim h. Rmark 4.2. (i) Not that if (i) ad (ii) i Hypothsis 4. ar satisfid, th E F = I i= #(E B i ) ( #(E B i ) E B i F ) I s i Fi. Hc, th squc {F : E} is Csàro covrgt. (ii) A familiar cotxt for th rquird covrgc (4.2) i Hypothsis 4. is th followig. Lt F b a cotiuous ad boudd fuctio dfid o th whol disk Ω ad suppos that for ach i I, th squc of vrtics {v : N, v v B i } is quidistributd o S. Th, by Thorm 2.9, for ay fixd t (, ) it holds that #(E B i) Dfiitio 2.. E B i F (t) i= m θ[f] i., th agular avrag itroducd i

12 2 F. A. MORALES, D. E. RESTREPO EJDE-26/ Estimats ad Csàro covrgc. Lmma 4.3. Lt F, {h : N} ad K satisfy Hypothsis 4.. Th (i) Th squc { E p : N } is boudd i H 2 (, ). (ii) Th squc { } p : N #(E B i ) E B i is boudd i H 2 (, ) for all i {,..., I}. Proof. (i) Tst (3.2) with p to obtai c K p 2 L 2 () K p 2 E E F p + h p (v ) E ( ) /2 ( ) /2 F 2 L 2 () p 2 L 2 () + h p (v ). E E (4.3) Sic p (v ) = for all E, it follows that p L 2 () p L 2 () ad p H () 2 p L 2 (). Hc, dividig th abov xprssio by givs p 2 H () E ( ) /2 ( ) /2 2 F 2 L 2 () p 2 h H () + 2 p (v ) E E 2 M ( ) /2 p 2 H c K () + C. E Hr C > is a gric costat idpdt from N. I th scod li of th xprssio abov, w usd that M = sup E F L 2 () < +, { h : N} ar boudd ad that {p (v ) : N} is covrgt (thrfor boudd) as statd i Lmma 3.5-(i). Hc, th squc x := ( E p 2 H () )/2 is such that x 2 2 M c K x + C for all N, whr th costats ar all o-gativ. Th {x : N} must b boudd, but this implis p H (,) p H (,) E E p H () E ( ) /2 p 2 H (). E Fially, rcallig th stimat c K 2 p L2 (,) E E K() p L2 (,)

13 EJDE-26/282 HOMOGENIZATION OF DIFFUSION PROCESSES 3 th rsult follows. (ii) Fix i {, 2,..., I} th #(E B i ) H 2 (,) E B i p F L 2 (,) M, E #(E B i ) E p H 2 (,). O th right-had sid of th xprssio abov, th first trm is boudd bcuas of Hypothsis 4.-(iii), whil th bouddss of th scod trm was show i th prvious part. Thrfor, th rsult follows. Bfor prstig th limit problm w itroduc som cssary dfiitios ad otatio Dfiitio 4.4. Lt K satisfy 4. ad I = #K(E). Th (i) For all i I dfi w i := ( cos( 2π I i), si( 2π I i)) S, w := v = ad V := {w i : i I}. (ii) For all i I dfi th dgs σ i := w w i ad E := {σ i : i I}. (iii) Dfi th upscald graph by G := (V, E). (iv) For ay ϕ H (G) ad N dot by T ϕ H (G ), th fuctio such that ( T ϕ ) agrs with ϕ σi whvr B i. This is summarizd i th xprssio T ϕ = ( T ϕ ) I ( ) := ϕσi. E i= E B i I th squl w rfr to T ϕ as th H (G )-mbddig of ϕ. (v) I th followig, for ay i I, w adopt th otatio i := σi. Similarly, for ay giv fuctio f : Ω G R ad dg σ i E, w dot by f i : (, ) R, th ral variabl fuctio f i (t) := (f σi ) ( t cos( 2π I i), t si( 2π I i)). Thorm 4.5. Lt F, {h : N} ad K satisfy Hypothsis 4.. Th (i) Th followig problm is wll-posd. I I p H (G) : s i K i i p i q = s i Fi q i + h()q(), (4.4) σ i i= for all q H (G). I th squl, w rfr to Problm (4.4) as th upscald or th homogizd problm ad its solutio p as th upscald or th homogizd solutio idistictly. (ii) Th squc of solutios {p : N} satisfis p p i #(E B i ) H, for i I. (4.5) (,) E B i (iii) Th limit fuctio p : Ω G R satisfis p p i #(E B i ) H (,), for i I ; E B i E p I i= i= s i p i H (,).

14 4 F. A. MORALES, D. E. RESTREPO EJDE-26/282 Proof. (i) It follows immdiatly from Propositio 2.7. (ii) Lt ϕ H (G) ad lt T ϕ b its H (G )-mbddig. Not th qualitis K p T ϕ ad E = = E I i= I i= K i F T ϕ = E B i #(E B i ) I i= K i p T ϕ #(E B i ) ( #(E B i ) ( #(E B i ) E B i p ) ϕ i, E B i F From th prvious obsrvatios, tstig (3.2) with T ϕ, givs I i= = #(E B i ) I i= #(E B i ) K i ( #(E B i ) ( #(E B i ) E B i p E B i F ) ϕ i ) ϕ i. )ϕ i + h ϕ(). (4.6a) (4.6b) (4.7) By Lmma 4.3-(ii) thr xist a subsquc { k : k N} ad a collctio {ξ i : i I} H 2 (, ) such that #(E k B i ) ξ i k p k E k B i wakly i H 2 (, ) ad strogly i H (, ) for i I. O th othr had, by Hypothsis 4.-(ii) th itgrad of th right-had sid i (4.7) is covrgt for all i {,..., I}. Bcaus of Hypothsis 4.-(i) th squcs { #(E Bi) : N} ar also covrgt for all i {,..., I}. Th, usig (4.7) for th subsquc k ad lttig k givs I I s i K i ξ i ϕ i = s i F i ϕ i + hϕ(). i= i= Not that sic p k H (G k ), w hav () #(E k B i ) = #(E k B j ) E k B i p k p k (), i, j {,..., I}. E k B j (4.8) I particular ξ i () = ξ j (); cosqutly th fuctio η H (G) such that η i = ξ i is wll-dfid. Morovr, (4.8) is quivalt to I I s i K i i η i ϕ = s i Fi ϕ + h()ϕ(). σ i σ i i= i=

15 EJDE-26/282 HOMOGENIZATION OF DIFFUSION PROCESSES 5 Sic th lattr variatioal statmt holds for ay ϕ H (G) ad η H (G), from th prvious part it follows that η p. Fially, th whol squc {p : N} satisfis (4.5) bcaus, for vry subsquc {p j : j N} thr xists yt aothr subsquc {p j l : l N} satisfyig th covrgc Statmt (4.5). This cocluds th scod part. (iii) Both coclusios follow immdiatly from th prvious part ad th uiform covrgc (3.7) show i Thorm 3.7. Rmark 4.6 (Probabilistic Flxibilitis of th Rsults). Cosidr th followig two radom variabls: (i) Lt X : E (, ) b a radom variabl of fiit rag {K i : i I} ad such that E[X = K i ] = s i for i I. Notic that by th Law of Larg Numbrs, with probability o it holds E B i X() s ik i. (4.9) (ii) Lt Y : E L 2 (, ) b a radom variabl such that sup E Y () L2 () < + ad such that Y () F i, for i I. (4.) #(E B i ) E B i Thrfor, Thorm 4.5 holds, wh rplacig K by X or F by Y or wh makig both substitutios at th sam tim. 5. Exampls I this sctio w prst two typs of umrical xprimts. Th first typ ar vrificatio xampls, supportig our homogizatio coclusios for a problm whos asymptotic bhavior is kow xactly. Th scod typ ar of xploratory atur, i ordr to gai furthr isight of th phomo s upscald bhavior. Th xprimts ar xcutd i a MATLAB cod usig th Fiit Elmt Mthod (FEM); it is a adaptatio of th cod fmd.m [2]. 5.. Gral Sttig. For th sak of simplicity th vrtics of th graph ar giv by v l := (cos l, si l) S, as it is kow that {v l : l N} is quidistributd i S (s [23]). Th diffusio cofficit hits oly two possibl valus: o ad two. Two typs of cofficits will b aalyzd, K d, K p a dtrmiistic ad a probabilistic o rspctivly. Thy satisfy K d : Ω G {, 2}, K d (v l v ) := {, l mod 3, 2, l mod 3. (5.a) K p : Ω G {, 2}, E[K p = ] = 3, E[K p = 2] = 2 3. (5.b) I our xprimts th asymptotic aalysis is prformd for K p big a fixd ralizatio of a radom squc of lgth, gratd with th biomial distributio /3, 2/3. Sic #K d (E) = #K p (E) = 2, it follows that th upscald graph G has oly thr vrtics ad two dgs amly w = (, ), w 2 = (, ), w = (, ) ad σ = w w, σ 2 = w 2 w. Also, dfi th domais Ω G := { v l v : l N, K(v l v ) = }, Ω 2 G := { v l v : l N, K(v l v ) = 2 },

16 6 F. A. MORALES, D. E. RESTREPO EJDE-26/282 whr K = K d or K = K p dpdig o th probabilistic or dtrmiistic cotxt. Additioally, w dfi p := p, p 2 := p. #(E B ) #(E B 2 ) E B E B 2 I all th xampls w us th forcig trms h = for vry N. Th FEM approximatio is do with lmts pr dg with uiform grid. I ach xampl w prst two graphics for valus of chos from {, 2, 5,, 5, }, basd o optical atss. For visual purposs, i all th cass th dgs ar colord with rd if K() = or blu if K() = 2. Also, for displayig purposs, i th cass {, 2} th dgs v l v ar labld with l for idtificatio, howvr for {5,, 5, } th labls wr rmovd sic thy ovrload th imag Vrificatio for xampls. Exampl 5. (A Rima itgrabl forcig trm). W bgi our xampls with th most familiar cotxt, as discussd i Rmark 4.2. Dfi F : Ω R, F (t cos l, t si l) := π 2 si(πt) cos(l). (5.2) Sic both squcs {v l : l N, l mod 3} ad {v l : l N, l mod 3} ar quidistributd, Thorm 2.9 implis F = m θ [F Ω G ] = F 2 = m θ [F Ω 2 G ] = m θ [F ]. Hr F, F2 ar th limits dfid i Hypothsis 4.-(ii). For this cas th xact solutio of th upscald Problm (4.4) is giv by p := p σ + p σ2 H (G), with p (t) = p 2 (t) =. For th diffusio cofficit w us th dtrmiistic o, K d dfid i (5.a). Tabl summarizs th covrgc bhavior. Tabl. Covrgc of solutios to Exampl 5.: K = K d. p p L 2 ( ) p 2 p 2 L 2 ( ) p p H ( 2) p 2 p 2 H ( 2) Exampl 5.2 (Probabilistic flxibilitis for Exampl 5.). This xprimt follows th obsrvatios i Rmark 4.6. I this cas X := K p, dfid i (5.b). Lt Z : N [, ] b a radom variabl with uiform distributio ad dfi Y : Ω G R, Y (t cos l, t si l) := π 2 si(πt) cos(l) + Z(l). (5.3) It is straightforward to show that X ad Y satisfy Hypothsis 4. ad by th Law of Larg Numbrs, thy also satisfy (4.9) ad (4.) rspctivly. Thrfor, Ȳ = m θ [F Ω G ] = Ȳ2 = m θ [F Ω 2 G ] = m θ [F ] = p = p 2 =. Tabl 2 is th summary for a fixd ralizatio of X (to kp th dg colorig cosistt) ad diffrt ralizatios of Y o ach stag. Covrgc is obsrvd ad, as xpctd, it is slowr tha i th prvious cas. This would also occur for diffrt ralizatios of X ad Y simultaously.

17 EJDE-26/282 HOMOGENIZATION OF DIFFUSION PROCESSES (a) Solutio p, =. (b) Solutio p, =. Figur 3. Solutios to Exampl 5.. Diffusio cofficit K d, s (5.a). Th solutios dpictd i (a) ad (b) o th dgs v l v ar colord with rd if K d (v l v ) = (i.., l mod 3), or blu if K d (v l v ) = 2 (i.., l mod 3). Forcig trm F : Ω R, s (5.2). Tabl 2. Covrgc for solutios to For Exampl 5.2: K = K p. p p L2 ( ) p 2 p 2 L2 ( ) p p H ( 2) p 2 p 2 H ( 2) Exampl 5.3 (A o-rima itgrabl forcig trm). For our fial thortical xampl w us a o-rima Itgrabl forcig trm. Morovr, th followig fuctio is highly oscillatory isid ach subdomai Ω G ad Ω2 G, ad it ca ot b s as Rima itgrabl wh rstrictd to ay of ths sub-domais. Lt F : Ω G R b dfid by { 4π 2 si(2πt) + ( ) l 6 (l l F (t cos l, t si l) := 2π ), l mod 3, π 2 si(πt) + ( ) l 6 (l l 2π ), l mod 3. (5.4) O th o had, both squcs {v l : l N, l mod 3} ad {v l : l N, l mod 3} ar quidistributd. O th othr had, both parts of th forcig trm, th radial ad th agular, ar Csàro covrgt o ach Ω i G for i =, 2. Th Csàro avrag of th agular summad is zro o Ω i G for i =, 2. I cotrast, th radial summad ca b s as Rima itgrabl sparatly o ach Ω i G for i =, 2; thrfor, by Thorm 2.9 its Csàro avrag is giv by F = m θ [F Ω G ]

18 8 F. A. MORALES, D. E. RESTREPO EJDE-26/ (a) Solutio p 2, = 2. (b) Solutio p 5, = 5. Figur 4. Solutios of Exampl 5.2 Fixd ralizatio of diffusio cofficit K p, s (5.b). Forcig trm Y : Ω G R, s (5.3), with Z : N [, ], radom variabl ad Z uiformly. Diffrt ralizatios for Y o ach stag. Th solutios dpictd i (a) ad (b) o th dgs v l v ar colord with rd if K p (v l v ) = (E[K p = ] = 3 ), or blu colord if K p(v l v ) = 2 (E[K p = 2] = 2 3 ). ad F 2 = m θ [F Ω 2 G ]; mor xplicitly, F (t) = (2π) 2 si(2πt), F2 (t) = π 2 si(πt). (5.5) For this cas th xact solutio p = p σ + p σ2 H (, ) of th upscald Problm (4.4) is giv by p (t) = si(2πt), p 2 (t) = si(πt). (5.6) 2 W summariz th covrgc bhavior i Tabl 3. Tabl 3. Covrgd of solutios to Exampl 5.3: K = K d. p p L2 ( ) p 2 p 2 L2 ( ) p p H ( 2) p 2 p 2 H ( 2) Numrical xprimts. I this sctio w prst two xampls, brakig th hypothss rquird i th thortical aalysis discussd abov. As thr is o kow xact solutio, w follow Cauchy s covrgc critrio for th squcs

19 EJDE-26/282 HOMOGENIZATION OF DIFFUSION PROCESSES (a) Solutio p 2, = 2. (b) Solutio p 5, = 5. Figur 5. Solutios of Exampl 5.3 Diffusio cofficit K d, s (5.a). Th solutios dpictd i (a) ad (b) o th dgs v l v ar colord with rd if K d (v l v ) = (i.., l mod 3), or blu if K d (v l v ) = 2 (i.., l mod 3). Forcig trm F : Ω G R s (5.4). { p i : N} with i =, 2. Howvr, w do ot sampl oly poits but itrvals of obsrvatio ad rport th avrags of th obsrvd data. Mor spcifically ɛ i := +5 j= 4 for i =, 2, =, 2,,. p j i pj i L 2 ( i), δ i := +5 j= 4 p j i pj i H ( i), Exampl 5.4 (A locally uboudd forcig trm). For our xprimt w us a variatio of Exampl 5.3, kpig th wll-bhavd radial part but addig a uboudd agular part, which is kow to b Csàro covrgt to zro. Cosidr th forcig trm F : Ω G R dfid by { 4π 2 si(2πt) + ( ) l l, l mod 3, F (t cos l, t si l) := π 2 si(πt) + ( ) l (5.7) l, l mod 3. Clarly, sup E F L 2 () = i.., Hypothsis 3.3-(i) is ot satisfid. It is ot hard to adjust th tchiqus prstd i Sctio 4. to this cas, wh th forcig trm is Csàro covrgt without satisfyig th coditio sup E F L2 () < ; howvr, th proprtis of dgwis uiform covrgc of Sctio 3.2 ca ot b cocludd. Cosqutly, w obsrv th followig covrgc bhavior. Exampl 5.5 (A forcig trm with uboudd frqucy mods). For our last xprimt w us a variatio of Exampl 5.3, kpig it boudd, but itroducig uboudd frqucis. Cosidr th forcig trm F : Ω G R dfid by { 4π 2 si(2πt l), l mod 3, F (t cos l, t si l) := π 2 (5.8) si(πt l), l mod 3.

20 2 F. A. MORALES, D. E. RESTREPO EJDE-26/282 Tabl 4. Covrgc of solutios to Exampl 5.4: K = K d. ɛ ɛ 2 δ δ (a) Solutio p 2, = 2. (b) Solutio p, =. Figur 6. Solutios to Exampl 5.4 Diffusio cofficit K d, s (5.a). Th solutios dpictd i (a) ad (b) o th dgs v l v ar colord with rd if K d (v l v ) = (i.., l mod 3), or blu if K d (v l v ) = 2 (i.., l mod 3). Forcig trm F : Ω G R s (5.7). Clarly, F vrifis Hypothsis 3.3, cosqutly Lmma 3.5 implis dgwis uiform covrgc of th solutios, howvr Hypothsis-(ii) 4. is ot satisfid. Thrfor, w obsrv that th whol squc is ot Cauchy, although it has Cauchy subsqucs as th Tabl 5 shows. Tabl 5. Covrgc of solutios to Exampl 5.5: K = K d. ɛ ɛ 2 δ δ

21 EJDE-26/282 HOMOGENIZATION OF DIFFUSION PROCESSES 2 (a) Solutio p 5, = 5. (b) Solutio p, =. Figur 7. Solutios of Exampl 5.5. Diffusio cofficit K d, s (5.a). Th solutios dpictd i (a) ad (b) o th dgs v l v ar colord with rd if K d (v l v ) = (i.., l mod 3), or blu if K d (v l v ) = 2 (i.., l mod 3). Forcig trm F : Ω G R s (5.8). It follows that this systm has mor tha o itral quilibrium. Cosqutly, a upscald modl of a systm such as this, should cotai ucrtaity which, i this spcific cas, rmais boudd du to th proprtis of th forcig trm F Closig obsrvatios. (i) Th authors trid to fid xprimtally a rat of covrgc usig th wll-kow stimat + log p i p i α i log p i p i log p i p i log p i p 2, i =, 2. i Th samplig was mad o th itrvals 5 j + 5, for =, 2,, 5 ad. Exprimts wr ru o all th xampls xcpt for Exampl 5.5. I o of th cass was solid umrical vidc dtctd that could suggst a ordr of covrgc for th phomo. (ii) Exprimts for radom variatios of th xampls abov wr also xcutd, udr th hypothsis that radom variabls wr subjct to th Law of Larg Numbrs. As xpctd, covrgc slowr tha its corrspodig dtrmiistic vrsio was obsrvd. This is importat for its applicability to upscalig tworks drivd from gam thory, s []. 6. Coclusios ad fial discussio Th prst work yilds svral accomplishmts ad also limitatios as w poit out blow. (i) Th mthod prstd i this papr ca b asily xtdd to gral scalfr tworks i a vry simpl way. First, idtify th commuicatio krl (s [7]). Scod, for ach od i th krl, rplac its umrous icidt low-dgr ods by th upscald ods togthr with th homogizd diffusio cofficits ad forcig trms, s Figur.

22 22 F. A. MORALES, D. E. RESTREPO EJDE-26/282 (ii) Th particular scal-fr twork tratd i th papr i.., th star-lik mtric graph, ariss aturally i som importat xampls. Ths com from th thory of th stratgic twork formatio, whr th agts choos thir coctios followig utilitaria bhavior. Udr crtai coditios for th bfit-cost rlatio affctig th actors wh stablishig liks with othr agts, th asymptotic twork is star-shapd (s [2]). (iii) Th scal-fr tworks ar frqut i may ral world xampls as alrady mtiod. It follows that th mthod is applicabl to a wid rag of cass. Howvr, importat typs of tworks ca ot b tratd th sam way for homogizatio, v if thy shar som importat proprtis of commuicatio. Th small-world tworks costitut a xampl sic thy ar highly clustrd, this fatur cotradicts th powr-law dgr distributio hypothsis. S [4] for a dtaild xpositio o th mattr. (iv) Th upscalig of th diffusio phomo is do i a hybrid fashio. O th o had, th diffusio o th low-dgr ods is modld by th wak variatioal form of th diffrtial oprators dfid ovr th graph, but igorig its combiatorial structur. O th othr had, th diffusio o th commuicatio krl will still dpd o both: th diffrtial oprators ad th combiatorial structur. This is a importat achivmt, bcaus it is cosistt with th atur of availabl data for th aalysis of ral world tworks. Typically, th data for ctral (or highly coctd) agts ar mor rliabl tha data for margial (or low dgr) agts. (v) Th ctral Csàro covrgc hypothss for data bhavior, statd i Lmma 3.5-(iii), as wll as thos cotaid i Hypothsis 4., to coclud covrgc hav probabilistic-statistical atur. This is o of th mai accomplishmts of th work, bcaus th hypothss ar mild ad adjust to ralistic scarios; ulik strog hypothss of topological atur such as priodicity, cotiuity, diffrtiability or v Rima-itgrability of th forcig trms (s []). This fact is furthr illustratd i Exampl 5.3, whr good asymptotic bhavior is obsrvd for a forcig trm which is owhr cotiuous o th domai Ω G of aalysis. (vi) A importat ad dsirabl cosquc of th data hypothss adoptd, is that th mthod ca b xtdd to mor gral scarios, as mtiod i Rmark 4.6, rportd i Subsctio 5.4 ad illustratd i Exampls 5.2, 5.4 ad 5.5. Morovr, Exampl 5.5 suggsts a probabilistic upscald modl for th commuicatio krl, to b xplord i futur work. (vii) A diffrt li of futur rsarch cosists i th aalysis of th sam phomo, but usig th mixd-mixd variatioal formulatio itroducd i [2] istad of th dirct o usd i th prst aalysis. Th ky motivatio i doig so, is that th mixd-mixd formulatio is capabl of modlig mor gral xchag coditios tha thos hadld by th dirct variatioal formulatio ad by th classic mixd formulatios. This advatag ca broad i a sigificat way th spctrum of ral-world tworks that ca b succssfully modld ad upscald. (viii) Fially, th prxistt litratur typically aalyss th asymptotic bhavior of diffusio i complx tworks, startig from fully discrt modls (.g., [5, 3]). Th psudo-discrt tratmt that w hav itroducd hr, costituts mor of a complmtary tha a altrativ approach. Dpdig o th availability of data ad/or samplig, as wll as th scal of itrst for a particular problm, it is atural to cosidr a bldig of both tchiqus.

23 EJDE-26/282 HOMOGENIZATION OF DIFFUSION PROCESSES 23 Ackowldgmts. Th authors ackowldg fiacial support from th Uivrsidad Nacioal d Colombia, Sd Mdllí through th projct HERMES This articl is basd o th work i that projct. Th authors also wish to thak Profssor Ma lgorzata Pszyńska from Orgo Stat Uivrsity, for allowig us to us th cod fmd.m [2] i th implmtatio of th umrical xprimts for Sctio 5. It is a tool of rmarkabl quality, fficicy, ad vrsatility that has provd to b a dcisiv lmt i th productio ad shapig of this work. Rfrcs [] A.-L. Barabási, R. Albrt; Emrgc of scalig i radom tworks, Scic 286 (999) [2] R. Kumar, P. Raghava, S. Rajagopala, D. Sivakumar, A. Tompkis, E. Upfal; Stochastic modls for th wb graph, FOCS: IEES Symposium o Foudatios of Computr Scic (2) [3] G. Brkolaiko, P. Kuchmt; Itroductio to Quatum Graphs, Mathmatical Survys ad Moographs, Vol 86, Amrica Mathmatical Socity, Providc, RI, 23. [4] A. Body, U. Murty; Graph Thory, Graduat Txts i Mathmatics, vol. 244, Sprigr, 28. [5] S. Bortoluzzi, C. Romualdi, A. Bisogi, G. A. Dailli; Disas gs ad itraclullar proti tworks, Physiol. Gom. 5 (23) [6] D. Ciorascu, P. Doato; A Itroductio to Homogizatio, Oxford Sris i Mathmatics ad its Applicatios, Vol 7, Oxford Uivrsity Prss, NY, 999. [7] E. Estrada; Th Structur of Complx Ntworks, Thory ad Applicatios, Oxford Uivrsity Prss, Nw York, 22. [8] I. Farý; O th straight li rprstatios of plaar graphs, Acta Sci. Math. (948) [9] M. Faloutsos, P. Faloutsos, C. Faloutsos; O powr-law rlatioships of th itrt topology, Computr Commuicatio Rviw 29 (999) [] U. Horug; Homogizatio ad Porous Mdia, Vol. 6 of Itrdiscipliary Applid Mathmatics, Sprigr-Vrlag, Nw York, 997. [] M. O. Jackso; Social ad Ecoomic Ntworks, Pricto Uivrsity Prss, Pricto, NJ, 28. [2] M. O. Jackso, F. Bloch; Th formatio of tworks with trasfrs amog playrs, Joural of Ecoomic Thory 33() (27) 83. [3] M. O. Jackso, D. Lópz-Pitado; Diffusio ad cotagio i tworks with htrogous agts ad homophily, Ntwork Scic () (23) [4] M. O. Jackso, B. W. Rogrs; Th coomics of small worlds, Joural of th Europa Ecoomic Associatio 2(3) (25) [5] M. O. Jackso, L. Yariv; Diffusio o social tworks, Écoomi Publiqu () (25) 3 6. [6] E. F. Kllr; Rvisitig scal-fr tworks, BioEssay 27 (25) doi:.2/bis [7] D.-H. Kim, J. D. Noh, H. Jog; Scal-fr trs: Th skltos of complx tworks, Physical Rviw E 7 (24) doi:.3/physrve [8] D. M. Krps; Microcoomic Foudatios I, Choic ad Comptitiv Markts, Pricto Uivrsity Prss, Pricto, NJ, 23. [9] L. Li, D. Aldrso, W. Wiligr, J. Doyl; A first-pricipls approch to udrstadig th itrt s routr-lvl topology, Computr Commuicatio Rviw 34(4) (24) 3 4. [2] F. Morals, R. Showaltr; Itrfac approximatio of Darcy flow i a arrow chal, Mathmatical Mthods i th Applid Scics 35 (22) [2] M. Pszyǹska; fmd.m: Tmplat for solvig a two poit boudary valu problm, Library, mpsz/cod/tachig.html (28 25). [22] J. M. Ramírz; Populatio prsistc udr advctio-diffusio i rivr tworks, Joural of Mathmatical Biology 65(5) (2) doi:.7/s [23] E. M. Sti, R. Shakarchi; Fourir Aalysis. A Itroductio, Pricto Lcturs i Aalysis, Pricto Uivrsity Prss, Pricto, NJ, 23.

24 24 F. A. MORALES, D. E. RESTREPO EJDE-26/282 [24] P. Tsaparas, L. M. Ramírz, O. Bodridr, E. V. Kooig, I. Jorda; Global similarity ad local divrgc i huma ad mous g coxprssio tworks, BMC Evol. Biol. 6 (26) 7. doi:.86/ [25] S. Wuchty; Scal-fr bhavior i proti domai tworks, Molcular Biology ad Evolutio 8 (2) Frado A. Morals Escula d Matmáticas, Uivrsidad Nacioal d Colombia, Sd Mdllí, Colombia addrss: famoralsj@ual.du.co Dail E. Rstrpo Escula d Matmáticas, Uivrsidad Nacioal d Colombia, Sd Mdllí, Colombia addrss: darstrpomo@ual.du.co

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z Sris Expasio of Rciprocal of Gamma Fuctio. Fuctios with Itgrs as Roots Fuctio f with gativ itgrs as roots ca b dscribd as follows. f() Howvr, this ifiit product divrgs. That is, such a fuctio caot xist

More information

1985 AP Calculus BC: Section I

1985 AP Calculus BC: Section I 985 AP Calculus BC: Sctio I 9 Miuts No Calculator Nots: () I this amiatio, l dots th atural logarithm of (that is, logarithm to th bas ). () Ulss othrwis spcifid, th domai of a fuctio f is assumd to b

More information

On the approximation of the constant of Napier

On the approximation of the constant of Napier Stud. Uiv. Babş-Bolyai Math. 560, No., 609 64 O th approximatio of th costat of Napir Adri Vrscu Abstract. Startig from som oldr idas of [] ad [6], w show w facts cocrig th approximatio of th costat of

More information

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series Chatr Ifiit Sris Pag of Sctio F Itgral Tst Chatr : Ifiit Sris By th d of this sctio you will b abl to valuat imror itgrals tst a sris for covrgc by alyig th itgral tst aly th itgral tst to rov th -sris

More information

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1 DTFT Proprtis Exampl - Dtrmi th DTFT Y of y α µ, α < Lt x α µ, α < W ca thrfor writ y x x From Tabl 3., th DTFT of x is giv by ω X ω α ω Copyright, S. K. Mitra Copyright, S. K. Mitra DTFT Proprtis DTFT

More information

PURE MATHEMATICS A-LEVEL PAPER 1

PURE MATHEMATICS A-LEVEL PAPER 1 -AL P MATH PAPER HONG KONG EXAMINATIONS AUTHORITY HONG KONG ADVANCED LEVEL EXAMINATION PURE MATHEMATICS A-LEVEL PAPER 8 am am ( hours) This papr must b aswrd i Eglish This papr cosists of Sctio A ad Sctio

More information

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx MONTGOMERY COLLEGE Dpartmt of Mathmatics Rockvill Campus MATH 8 - REVIEW PROBLEMS. Stat whthr ach of th followig ca b itgratd by partial fractios (PF), itgratio by parts (PI), u-substitutio (U), or o of

More information

Statistics 3858 : Likelihood Ratio for Exponential Distribution

Statistics 3858 : Likelihood Ratio for Exponential Distribution Statistics 3858 : Liklihood Ratio for Expotial Distributio I ths two xampl th rjctio rjctio rgio is of th form {x : 2 log (Λ(x)) > c} for a appropriat costat c. For a siz α tst, usig Thorm 9.5A w obtai

More information

A Simple Proof that e is Irrational

A Simple Proof that e is Irrational Two of th most bautiful ad sigificat umbrs i mathmatics ar π ad. π (approximatly qual to 3.459) rprsts th ratio of th circumfrc of a circl to its diamtr. (approximatly qual to.788) is th bas of th atural

More information

Restricted Factorial And A Remark On The Reduced Residue Classes

Restricted Factorial And A Remark On The Reduced Residue Classes Applid Mathmatics E-Nots, 162016, 244-250 c ISSN 1607-2510 Availabl fr at mirror sits of http://www.math.thu.du.tw/ am/ Rstrictd Factorial Ad A Rmark O Th Rducd Rsidu Classs Mhdi Hassai Rcivd 26 March

More information

APPENDIX: STATISTICAL TOOLS

APPENDIX: STATISTICAL TOOLS I. Nots o radom samplig Why do you d to sampl radomly? APPENDI: STATISTICAL TOOLS I ordr to masur som valu o a populatio of orgaisms, you usually caot masur all orgaisms, so you sampl a subst of th populatio.

More information

Discrete Fourier Transform. Nuno Vasconcelos UCSD

Discrete Fourier Transform. Nuno Vasconcelos UCSD Discrt Fourir Trasform uo Vascoclos UCSD Liar Shift Ivariat (LSI) systms o of th most importat cocpts i liar systms thory is that of a LSI systm Dfiitio: a systm T that maps [ ito y[ is LSI if ad oly if

More information

NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES

NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES Digst Joural of Naomatrials ad Biostructurs Vol 4, No, March 009, p 67-76 NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES A IRANMANESH a*, O KHORMALI b, I NAJAFI KHALILSARAEE c, B SOLEIMANI

More information

H2 Mathematics Arithmetic & Geometric Series ( )

H2 Mathematics Arithmetic & Geometric Series ( ) H Mathmatics Arithmtic & Gomtric Sris (08 09) Basic Mastry Qustios Arithmtic Progrssio ad Sris. Th rth trm of a squc is 4r 7. (i) Stat th first four trms ad th 0th trm. (ii) Show that th squc is a arithmtic

More information

STIRLING'S 1 FORMULA AND ITS APPLICATION

STIRLING'S 1 FORMULA AND ITS APPLICATION MAT-KOL (Baja Luka) XXIV ()(08) 57-64 http://wwwimviblorg/dmbl/dmblhtm DOI: 075/МК80057A ISSN 0354-6969 (o) ISSN 986-588 (o) STIRLING'S FORMULA AND ITS APPLICATION Šfkt Arslaagić Sarajvo B&H Abstract:

More information

Law of large numbers

Law of large numbers Law of larg umbrs Saya Mukhrj W rvisit th law of larg umbrs ad study i som dtail two typs of law of larg umbrs ( 0 = lim S ) p ε ε > 0, Wak law of larrg umbrs [ ] S = ω : lim = p, Strog law of larg umbrs

More information

FORBIDDING RAINBOW-COLORED STARS

FORBIDDING RAINBOW-COLORED STARS FORBIDDING RAINBOW-COLORED STARS CARLOS HOPPEN, HANNO LEFMANN, KNUT ODERMANN, AND JULIANA SANCHES Abstract. W cosidr a xtrmal problm motivatd by a papr of Balogh [J. Balogh, A rmark o th umbr of dg colorigs

More information

Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT) Discrt Fourir Trasorm DFT Major: All Egirig Majors Authors: Duc guy http://umricalmthods.g.us.du umrical Mthods or STEM udrgraduats 8/3/29 http://umricalmthods.g.us.du Discrt Fourir Trasorm Rcalld th xpotial

More information

Lectures 9 IIR Systems: First Order System

Lectures 9 IIR Systems: First Order System EE3054 Sigals ad Systms Lcturs 9 IIR Systms: First Ordr Systm Yao Wag Polytchic Uivrsity Som slids icludd ar xtractd from lctur prstatios prpard by McCllla ad Schafr Lics Ifo for SPFirst Slids This work

More information

An Introduction to Asymptotic Expansions

An Introduction to Asymptotic Expansions A Itroductio to Asmptotic Expasios R. Shaar Subramaia Asmptotic xpasios ar usd i aalsis to dscrib th bhavior of a fuctio i a limitig situatio. Wh a fuctio ( x, dpds o a small paramtr, ad th solutio of

More information

Chapter (8) Estimation and Confedence Intervals Examples

Chapter (8) Estimation and Confedence Intervals Examples Chaptr (8) Estimatio ad Cofdc Itrvals Exampls Typs of stimatio: i. Poit stimatio: Exampl (1): Cosidr th sampl obsrvatios, 17,3,5,1,18,6,16,10 8 X i i1 17 3 5 118 6 16 10 116 X 14.5 8 8 8 14.5 is a poit

More information

Folding of Hyperbolic Manifolds

Folding of Hyperbolic Manifolds It. J. Cotmp. Math. Scics, Vol. 7, 0, o. 6, 79-799 Foldig of Hyprbolic Maifolds H. I. Attiya Basic Scic Dpartmt, Collg of Idustrial Educatio BANE - SUEF Uivrsity, Egypt hala_attiya005@yahoo.com Abstract

More information

Digital Signal Processing, Fall 2006

Digital Signal Processing, Fall 2006 Digital Sigal Procssig, Fall 6 Lctur 9: Th Discrt Fourir Trasfor Zhg-Hua Ta Dpartt of Elctroic Systs Aalborg Uivrsity, Dar zt@o.aau.d Digital Sigal Procssig, I, Zhg-Hua Ta, 6 Cours at a glac MM Discrt-ti

More information

10. Joint Moments and Joint Characteristic Functions

10. Joint Moments and Joint Characteristic Functions 0 Joit Momts ad Joit Charactristic Fctios Followig sctio 6 i this sctio w shall itrodc varios paramtrs to compactly rprst th iformatio cotaid i th joit pdf of two rvs Giv two rvs ad ad a fctio g x y dfi

More information

Probability & Statistics,

Probability & Statistics, Probability & Statistics, BITS Pilai K K Birla Goa Campus Dr. Jajati Kshari Sahoo Dpartmt of Mathmatics BITS Pilai, K K Birla Goa Campus Poisso Distributio Poisso Distributio: A radom variabl X is said

More information

Session : Plasmas in Equilibrium

Session : Plasmas in Equilibrium Sssio : Plasmas i Equilibrium Ioizatio ad Coductio i a High-prssur Plasma A ormal gas at T < 3000 K is a good lctrical isulator, bcaus thr ar almost o fr lctros i it. For prssurs > 0.1 atm, collisio amog

More information

Chapter 4 - The Fourier Series

Chapter 4 - The Fourier Series M. J. Robrts - 8/8/4 Chaptr 4 - Th Fourir Sris Slctd Solutios (I this solutio maual, th symbol,, is usd for priodic covolutio bcaus th prfrrd symbol which appars i th txt is ot i th fot slctio of th word

More information

On a problem of J. de Graaf connected with algebras of unbounded operators de Bruijn, N.G.

On a problem of J. de Graaf connected with algebras of unbounded operators de Bruijn, N.G. O a problm of J. d Graaf coctd with algbras of uboudd oprators d Bruij, N.G. Publishd: 01/01/1984 Documt Vrsio Publishr s PDF, also kow as Vrsio of Rcord (icluds fial pag, issu ad volum umbrs) Plas chck

More information

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling Tripl Play: From D Morga to Stirlig To Eulr to Maclauri to Stirlig Augustus D Morga (186-1871) was a sigificat Victoria Mathmaticia who mad cotributios to Mathmatics History, Mathmatical Rcratios, Mathmatical

More information

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges.

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges. Optio Chaptr Ercis. Covrgs to Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Divrgs 8 Divrgs Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Covrgs to Covrgs to 8 Proof Covrgs to π l 8 l a b Divrgt π Divrgt

More information

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1 Chatr Fiv Mor Dimsios 51 Th Sac R W ar ow rard to mov o to sacs of dimsio gratr tha thr Ths sacs ar a straightforward gralizatio of our Euclida sac of thr dimsios Lt b a ositiv itgr Th -dimsioal Euclida

More information

INTRODUCTION TO SAMPLING DISTRIBUTIONS

INTRODUCTION TO SAMPLING DISTRIBUTIONS http://wiki.stat.ucla.du/socr/id.php/socr_courss_2008_thomso_econ261 INTRODUCTION TO SAMPLING DISTRIBUTIONS By Grac Thomso INTRODUCTION TO SAMPLING DISTRIBUTIONS Itro to Samplig 2 I this chaptr w will

More information

Solution to 1223 The Evil Warden.

Solution to 1223 The Evil Warden. Solutio to 1 Th Evil Ward. This is o of thos vry rar PoWs (I caot thik of aothr cas) that o o solvd. About 10 of you submittd th basic approach, which givs a probability of 47%. I was shockd wh I foud

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by Dan Klain Vrsion 28928 Corrctions and commnts ar wlcom Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix () A A k I + A + k!

More information

International Journal of Advanced and Applied Sciences

International Journal of Advanced and Applied Sciences Itratioal Joural of Advacd ad Applid Scics x(x) xxxx Pags: xx xx Cotts lists availabl at Scic Gat Itratioal Joural of Advacd ad Applid Scics Joural hompag: http://wwwscic gatcom/ijaashtml Symmtric Fuctios

More information

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2 MATHEMATIS --RE Itgral alculus Marti Huard Witr 9 Rviw Erciss. Evaluat usig th dfiitio of th dfiit itgral as a Rima Sum. Dos th aswr rprst a ara? a ( d b ( d c ( ( d d ( d. Fid f ( usig th Fudamtal Thorm

More information

The Interplay between l-max, l-min, p-max and p-min Stable Distributions

The Interplay between l-max, l-min, p-max and p-min Stable Distributions DOI: 0.545/mjis.05.4006 Th Itrplay btw lma lmi pma ad pmi Stabl Distributios S Ravi ad TS Mavitha Dpartmt of Studis i Statistics Uivrsity of Mysor Maasagagotri Mysuru 570006 Idia. Email:ravi@statistics.uimysor.ac.i

More information

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple 5/24/5 A PROOF OF THE CONTINUED FRACTION EXPANSION OF / Thomas J Oslr INTRODUCTION This ar givs aothr roof for th rmarkabl siml cotiud fractio = 3 5 / Hr is ay ositiv umbr W us th otatio x= [ a; a, a2,

More information

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net Taylor s Thorm & Lagrag Error Bouds Actual Error This is th ral amout o rror, ot th rror boud (worst cas scario). It is th dirc btw th actual () ad th polyomial. Stps:. Plug -valu ito () to gt a valu.

More information

Chapter Taylor Theorem Revisited

Chapter Taylor Theorem Revisited Captr 0.07 Taylor Torm Rvisitd Atr radig tis captr, you sould b abl to. udrstad t basics o Taylor s torm,. writ trascdtal ad trigoomtric uctios as Taylor s polyomial,. us Taylor s torm to id t valus o

More information

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia Part B: Trasform Mthods Chaptr 3: Discrt-Tim Fourir Trasform (DTFT) 3. Discrt Tim Fourir Trasform (DTFT) 3. Proprtis of DTFT 3.3 Discrt Fourir Trasform (DFT) 3.4 Paddig with Zros ad frqucy Rsolutio 3.5

More information

ln x = n e = 20 (nearest integer)

ln x = n e = 20 (nearest integer) H JC Prlim Solutios 6 a + b y a + b / / dy a b 3/ d dy a b at, d Giv quatio of ormal at is y dy ad y wh. d a b () (,) is o th curv a+ b () y.9958 Qustio Solvig () ad (), w hav a, b. Qustio d.77 d d d.77

More information

Journal of Modern Applied Statistical Methods

Journal of Modern Applied Statistical Methods Joural of Modr Applid Statistical Mthods Volum Issu Articl 6 --03 O Som Proprtis of a Htrogous Trasfr Fuctio Ivolvig Symmtric Saturatd Liar (SATLINS) with Hyprbolic Tagt (TANH) Trasfr Fuctios Christophr

More information

NET/JRF, GATE, IIT JAM, JEST, TIFR

NET/JRF, GATE, IIT JAM, JEST, TIFR Istitut for NET/JRF, GATE, IIT JAM, JEST, TIFR ad GRE i PHYSICAL SCIENCES Mathmatical Physics JEST-6 Q. Giv th coditio φ, th solutio of th quatio ψ φ φ is giv by k. kφ kφ lφ kφ lφ (a) ψ (b) ψ kφ (c) ψ

More information

COMPUTING FOLRIER AND LAPLACE TRANSFORMS. Sven-Ake Gustafson. be a real-valued func'cion, defined for nonnegative arguments.

COMPUTING FOLRIER AND LAPLACE TRANSFORMS. Sven-Ake Gustafson. be a real-valued func'cion, defined for nonnegative arguments. 77 COMPUTNG FOLRER AND LAPLACE TRANSFORMS BY MEANS OF PmER SERES EVALU\TON Sv-Ak Gustafso 1. NOTATONS AND ASSUMPTONS Lt f b a ral-valud fuc'cio, dfid for ogativ argumts. W shall discuss som aspcts of th

More information

Ideal crystal : Regulary ordered point masses connected via harmonic springs

Ideal crystal : Regulary ordered point masses connected via harmonic springs Statistical thrmodyamics of crystals Mooatomic crystal Idal crystal : Rgulary ordrd poit masss coctd via harmoic sprigs Itratomic itractios Rprstd by th lattic forc-costat quivalt atom positios miima o

More information

Chapter 11.00C Physical Problem for Fast Fourier Transform Civil Engineering

Chapter 11.00C Physical Problem for Fast Fourier Transform Civil Engineering haptr. Physical Problm for Fast Fourir Trasform ivil Egirig Itroductio I this chaptr, applicatios of FFT algorithms [-5] for solvig ral-lif problms such as computig th dyamical (displacmt rspos [6-7] of

More information

Blackbody Radiation. All bodies at a temperature T emit and absorb thermal electromagnetic radiation. How is blackbody radiation absorbed and emitted?

Blackbody Radiation. All bodies at a temperature T emit and absorb thermal electromagnetic radiation. How is blackbody radiation absorbed and emitted? All bodis at a tmpratur T mit ad absorb thrmal lctromagtic radiatio Blackbody radiatio I thrmal quilibrium, th powr mittd quals th powr absorbd How is blackbody radiatio absorbd ad mittd? 1 2 A blackbody

More information

Figure 2-18 Thevenin Equivalent Circuit of a Noisy Resistor

Figure 2-18 Thevenin Equivalent Circuit of a Noisy Resistor .8 NOISE.8. Th Nyquist Nois Thorm W ow wat to tur our atttio to ois. W will start with th basic dfiitio of ois as usd i radar thory ad th discuss ois figur. Th typ of ois of itrst i radar thory is trmd

More information

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 12

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 12 REVIEW Lctur 11: Numrical Fluid Mchaics Sprig 2015 Lctur 12 Fiit Diffrcs basd Polyomial approximatios Obtai polyomial (i gral u-qually spacd), th diffrtiat as dd Nwto s itrpolatig polyomial formulas Triagular

More information

Problem Value Score Earned No/Wrong Rec -3 Total

Problem Value Score Earned No/Wrong Rec -3 Total GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING ECE6 Fall Quiz # Writt Eam Novmr, NAME: Solutio Kys GT Usram: LAST FIRST.g., gtiit Rcitatio Sctio: Circl t dat & tim w your Rcitatio

More information

2617 Mark Scheme June 2005 Mark Scheme 2617 June 2005

2617 Mark Scheme June 2005 Mark Scheme 2617 June 2005 Mark Schm 67 Ju 5 GENERAL INSTRUCTIONS Marks i th mark schm ar plicitly dsigatd as M, A, B, E or G. M marks ("mthod" ar for a attmpt to us a corrct mthod (ot mrly for statig th mthod. A marks ("accuracy"

More information

UNIVERSALITY LIMITS INVOLVING ORTHOGONAL POLYNOMIALS ON AN ARC OF THE UNIT CIRCLE

UNIVERSALITY LIMITS INVOLVING ORTHOGONAL POLYNOMIALS ON AN ARC OF THE UNIT CIRCLE UNIVERSALITY LIMITS INVOLVING ORTHOGONAL POLYNOMIALS ON AN ARC OF THE UNIT CIRCLE DORON S. LUBINSKY AND VY NGUYEN A. W stablish uivrsality limits for masurs o a subarc of th uit circl. Assum that µ is

More information

Derivation of a Predictor of Combination #1 and the MSE for a Predictor of a Position in Two Stage Sampling with Response Error.

Derivation of a Predictor of Combination #1 and the MSE for a Predictor of a Position in Two Stage Sampling with Response Error. Drivatio of a Prdictor of Cobiatio # ad th SE for a Prdictor of a Positio i Two Stag Saplig with Rspos Error troductio Ed Stak W driv th prdictor ad its SE of a prdictor for a rado fuctio corrspodig to

More information

A Note on Quantile Coupling Inequalities and Their Applications

A Note on Quantile Coupling Inequalities and Their Applications A Not o Quatil Couplig Iqualitis ad Thir Applicatios Harriso H. Zhou Dpartmt of Statistics, Yal Uivrsity, Nw Hav, CT 06520, USA. E-mail:huibi.zhou@yal.du Ju 2, 2006 Abstract A rlatioship btw th larg dviatio

More information

Calculus & analytic geometry

Calculus & analytic geometry Calculus & aalytic gomtry B Sc MATHEMATICS Admissio owards IV SEMESTER CORE COURSE UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION CALICUT UNIVERSITYPO, MALAPPURAM, KERALA, INDIA 67 65 5 School of Distac

More information

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120 Tim : hr. Tst Papr 8 D 4//5 Bch - R Marks : SINGLE CORRECT CHOICE TYPE [4, ]. If th compl umbr z sisfis th coditio z 3, th th last valu of z is qual to : z (A) 5/3 (B) 8/3 (C) /3 (D) o of ths 5 4. Th itgral,

More information

Empirical Study in Finite Correlation Coefficient in Two Phase Estimation

Empirical Study in Finite Correlation Coefficient in Two Phase Estimation M. Khoshvisa Griffith Uivrsity Griffith Busiss School Australia F. Kaymarm Massachustts Istitut of Tchology Dpartmt of Mchaical girig USA H. P. Sigh R. Sigh Vikram Uivrsity Dpartmt of Mathmatics ad Statistics

More information

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform Discrt Fourir Trasform Dfiitio - T simplst rlatio btw a lt- squc x dfid for ω ad its DTFT X ( ) is ω obtaid by uiformly sampli X ( ) o t ω-axis btw ω < at ω From t dfiitio of t DTFT w tus av X X( ω ) ω

More information

Linear Algebra Existence of the determinant. Expansion according to a row.

Linear Algebra Existence of the determinant. Expansion according to a row. Lir Algbr 2270 1 Existc of th dtrmit. Expsio ccordig to row. W dfi th dtrmit for 1 1 mtrics s dt([]) = (1) It is sy chck tht it stisfis D1)-D3). For y othr w dfi th dtrmit s follows. Assumig th dtrmit

More information

t i Extreme value statistics Problems of extrapolating to values we have no data about unusually large or small ~100 years (data) ~500 years (design)

t i Extreme value statistics Problems of extrapolating to values we have no data about unusually large or small ~100 years (data) ~500 years (design) Extrm valu statistics Problms of xtrapolatig to valus w hav o data about uusually larg or small t i ~00 yars (data h( t i { h( }? max t i wids v( t i ~500 yars (dsig Qustio: Ca this b do at all? How log

More information

ECE594I Notes set 6: Thermal Noise

ECE594I Notes set 6: Thermal Noise C594I ots, M. odwll, copyrightd C594I Nots st 6: Thrmal Nois Mark odwll Uivrsity of Califoria, ata Barbara rodwll@c.ucsb.du 805-893-344, 805-893-36 fax frcs ad Citatios: C594I ots, M. odwll, copyrightd

More information

SOME IDENTITIES FOR THE GENERALIZED POLY-GENOCCHI POLYNOMIALS WITH THE PARAMETERS A, B AND C

SOME IDENTITIES FOR THE GENERALIZED POLY-GENOCCHI POLYNOMIALS WITH THE PARAMETERS A, B AND C Joural of Mathatical Aalysis ISSN: 2217-3412, URL: www.ilirias.co/ja Volu 8 Issu 1 2017, Pags 156-163 SOME IDENTITIES FOR THE GENERALIZED POLY-GENOCCHI POLYNOMIALS WITH THE PARAMETERS A, B AND C BURAK

More information

Ordinary Differential Equations

Ordinary Differential Equations Basi Nomlatur MAE 0 all 005 Egirig Aalsis Ltur Nots o: Ordiar Diffrtial Equatios Author: Profssor Albrt Y. Tog Tpist: Sakurako Takahashi Cosidr a gral O. D. E. with t as th idpdt variabl, ad th dpdt variabl.

More information

Class #24 Monday, April 16, φ φ φ

Class #24 Monday, April 16, φ φ φ lass #4 Moday, April 6, 08 haptr 3: Partial Diffrtial Equatios (PDE s First of all, this sctio is vry, vry difficult. But it s also supr cool. PDE s thr is mor tha o idpdt variabl. Exampl: φ φ φ φ = 0

More information

Gaps in samples of geometric random variables

Gaps in samples of geometric random variables Discrt Mathmatics 37 7 871 89 Not Gaps i sampls of gomtric radom variabls William M.Y. Goh a, Pawl Hitczko b,1 a Dpartmt of Mathmatics, Drxl Uivrsity, Philadlphia, PA 1914, USA b Dpartmts of Mathmatics

More information

Bipolar Junction Transistors

Bipolar Junction Transistors ipolar Juctio Trasistors ipolar juctio trasistors (JT) ar activ 3-trmial dvics with aras of applicatios: amplifirs, switch tc. high-powr circuits high-spd logic circuits for high-spd computrs. JT structur:

More information

Time regularity of solutions to linear equations with Lévy noise in infinite dimensions

Time regularity of solutions to linear equations with Lévy noise in infinite dimensions Tim rgularity of solutios to liar quatios with Lévy ois i ifiit dimsios S. Pszat Faculty of Applid Mathmatics, AG Uivrsity of Scic ad Tchology, Kraków, Polad, E-mail adrss: apszat@cyf-kr.du.pl. J. Zabczyk

More information

CDS 101: Lecture 5.1 Reachability and State Space Feedback

CDS 101: Lecture 5.1 Reachability and State Space Feedback CDS, Lctur 5. CDS : Lctur 5. Rachability ad Stat Spac Fdback Richard M. Murray 7 Octobr 3 Goals: Di rachability o a cotrol systm Giv tsts or rachability o liar systms ad apply to ampls Dscrib th dsig o

More information

Cramér-Rao Inequality: Let f(x; θ) be a probability density function with continuous parameter

Cramér-Rao Inequality: Let f(x; θ) be a probability density function with continuous parameter WHEN THE CRAMÉR-RAO INEQUALITY PROVIDES NO INFORMATION STEVEN J. MILLER Abstract. W invstigat a on-paramtr family of probability dnsitis (rlatd to th Parto distribution, which dscribs many natural phnomna)

More information

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES. 1. Statement of results

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES. 1. Statement of results BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES DONALD M. DAVIS Abstract. If p is a prim and n a positiv intgr, lt ν p (n dnot th xponnt of p in n, and u p (n n/p νp(n th unit part of n. If α

More information

Hadamard Exponential Hankel Matrix, Its Eigenvalues and Some Norms

Hadamard Exponential Hankel Matrix, Its Eigenvalues and Some Norms Math Sci Ltt Vol No 8-87 (0) adamard Exotial al Matrix, Its Eigvalus ad Som Norms İ ad M bula Mathmatical Scics Lttrs Itratioal Joural @ 0 NSP Natural Scics Publishig Cor Dartmt of Mathmatics, aculty of

More information

arxiv: v1 [math.fa] 18 Feb 2016

arxiv: v1 [math.fa] 18 Feb 2016 SPECTRAL PROPERTIES OF WEIGHTE COMPOSITION OPERATORS ON THE BLOCH AN IRICHLET SPACES arxiv:60.05805v [math.fa] 8 Fb 06 TE EKLUN, MIKAEL LINSTRÖM, AN PAWE L MLECZKO Abstract. Th spctra of ivrtibl wightd

More information

They must have different numbers of electrons orbiting their nuclei. They must have the same number of neutrons in their nuclei.

They must have different numbers of electrons orbiting their nuclei. They must have the same number of neutrons in their nuclei. 37 1 How may utros ar i a uclus of th uclid l? 20 37 54 2 crtai lmt has svral isotops. Which statmt about ths isotops is corrct? Thy must hav diffrt umbrs of lctros orbitig thir ucli. Thy must hav th sam

More information

Further Results on Pair Sum Graphs

Further Results on Pair Sum Graphs Applid Mathmatis, 0,, 67-75 http://dx.doi.org/0.46/am.0.04 Publishd Oli Marh 0 (http://www.sirp.org/joural/am) Furthr Rsults o Pair Sum Graphs Raja Poraj, Jyaraj Vijaya Xavir Parthipa, Rukhmoi Kala Dpartmt

More information

Motivation. We talk today for a more flexible approach for modeling the conditional probabilities.

Motivation. We talk today for a more flexible approach for modeling the conditional probabilities. Baysia Ntworks Motivatio Th coditioal idpdc assuptio ad by aïv Bays classifirs ay s too rigid spcially for classificatio probls i which th attributs ar sowhat corrlatd. W talk today for a or flibl approach

More information

Iterative Methods of Order Four for Solving Nonlinear Equations

Iterative Methods of Order Four for Solving Nonlinear Equations Itrativ Mods of Ordr Four for Solvig Noliar Equatios V.B. Kumar,Vatti, Shouri Domii ad Mouia,V Dpartmt of Egirig Mamatis, Formr Studt of Chmial Egirig Adhra Uivrsity Collg of Egirig A, Adhra Uivrsity Visakhapatam

More information

EFFECT OF P-NORMS ON THE ACCURACY ORDER OF NUMERICAL SOLUTION ERRORS IN CFD

EFFECT OF P-NORMS ON THE ACCURACY ORDER OF NUMERICAL SOLUTION ERRORS IN CFD rocdigs of NIT 00 opyright 00 by ABM 3 th Brazilia ogrss of Thrmal Scics ad girig Dcmbr 05-0, 00, brladia, MG, Brazil T O -NORMS ON TH ARAY ORDR O NMRIAL SOLTION RRORS IN D arlos Hriqu Marchi, marchi@ufpr.br

More information

A Propagating Wave Packet Group Velocity Dispersion

A Propagating Wave Packet Group Velocity Dispersion Lctur 8 Phys 375 A Propagating Wav Packt Group Vlocity Disprsion Ovrviw and Motivation: In th last lctur w lookd at a localizd solution t) to th 1D fr-particl Schrödingr quation (SE) that corrsponds to

More information

Mixed Mode Oscillations as a Mechanism for Pseudo-Plateau Bursting

Mixed Mode Oscillations as a Mechanism for Pseudo-Plateau Bursting Mixd Mod Oscillatios as a Mchaism for Psudo-Platau Burstig Richard Brtram Dpartmt of Mathmatics Florida Stat Uivrsity Tallahass, FL Collaborators ad Support Thodor Vo Marti Wchslbrgr Joël Tabak Uivrsity

More information

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013 18.782 Introduction to Arithmtic Gomtry Fall 2013 Lctur #20 11/14/2013 20.1 Dgr thorm for morphisms of curvs Lt us rstat th thorm givn at th nd of th last lctur, which w will now prov. Thorm 20.1. Lt φ:

More information

Numerov-Cooley Method : 1-D Schr. Eq. Last time: Rydberg, Klein, Rees Method and Long-Range Model G(v), B(v) rotation-vibration constants.

Numerov-Cooley Method : 1-D Schr. Eq. Last time: Rydberg, Klein, Rees Method and Long-Range Model G(v), B(v) rotation-vibration constants. Numrov-Cooly Mthod : 1-D Schr. Eq. Last tim: Rydbrg, Kli, Rs Mthod ad Log-Rag Modl G(v), B(v) rotatio-vibratio costats 9-1 V J (x) pottial rgy curv x = R R Ev,J, v,j, all cocivabl xprimts wp( x, t) = ai

More information

BOUNDS FOR THE COMPONENTWISE DISTANCE TO THE NEAREST SINGULAR MATRIX

BOUNDS FOR THE COMPONENTWISE DISTANCE TO THE NEAREST SINGULAR MATRIX SIAM J. Matrix Aal. Appl. (SIMAX), 8():83 03, 997 BOUNDS FOR THE COMPONENTWISE DISTANCE TO THE NEAREST SINGULAR MATRIX S. M. RUMP Abstract. Th ormwis distac of a matrix A to th arst sigular matrix is wll

More information

CDS 101: Lecture 5.1 Reachability and State Space Feedback

CDS 101: Lecture 5.1 Reachability and State Space Feedback CDS, Lctur 5. CDS : Lctur 5. Rachability ad Stat Spac Fdback Richard M. Murray ad Hido Mabuchi 5 Octobr 4 Goals: Di rachability o a cotrol systm Giv tsts or rachability o liar systms ad apply to ampls

More information

A Review of Complex Arithmetic

A Review of Complex Arithmetic /0/005 Rviw of omplx Arithmti.do /9 A Rviw of omplx Arithmti A omplx valu has both a ral ad imagiary ompot: { } ad Im{ } a R b so that w a xprss this omplx valu as: whr. a + b Just as a ral valu a b xprssd

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordiary Diffrtial Equatio Aftr radig thi chaptr, you hould b abl to:. dfi a ordiary diffrtial quatio,. diffrtiat btw a ordiary ad partial diffrtial quatio, ad. Solv liar ordiary diffrtial quatio with fid

More information

6. Comparison of NLMS-OCF with Existing Algorithms

6. Comparison of NLMS-OCF with Existing Algorithms 6. Compariso of NLMS-OCF with Eistig Algorithms I Chaptrs 5 w drivd th NLMS-OCF algorithm, aalyzd th covrgc ad trackig bhavior of NLMS-OCF, ad dvlopd a fast vrsio of th NLMS-OCF algorithm. W also mtiod

More information

Physics 2D Lecture Slides Lecture 14: Feb 3 rd 2004

Physics 2D Lecture Slides Lecture 14: Feb 3 rd 2004 Bria Wcht, th TA is back! Pl. giv all rgrad rqusts to him Quiz 4 is This Friday Physics D Lctur Slids Lctur 14: Fb 3 rd 004 Vivk Sharma UCSD Physics Whr ar th lctros isid th atom? Early Thought: Plum puddig

More information

Australian Journal of Basic and Applied Sciences, 4(9): , 2010 ISSN

Australian Journal of Basic and Applied Sciences, 4(9): , 2010 ISSN Australia Joural of Basic ad Applid Scics, 4(9): 4-43, ISSN 99-878 Th Caoical Product of th Diffrtial Equatio with O Turig Poit ad Sigular Poit A Dabbaghia, R Darzi, 3 ANaty ad 4 A Jodayr Akbarfa, Islaic

More information

1973 AP Calculus BC: Section I

1973 AP Calculus BC: Section I 97 AP Calculus BC: Scio I 9 Mius No Calculaor No: I his amiaio, l dos h aural logarihm of (ha is, logarihm o h bas ).. If f ( ) =, h f ( ) = ( ). ( ) + d = 7 6. If f( ) = +, h h s of valus for which f

More information

Outline. Ionizing Radiation. Introduction. Ionizing radiation

Outline. Ionizing Radiation. Introduction. Ionizing radiation Outli Ioizig Radiatio Chaptr F.A. Attix, Itroductio to Radiological Physics ad Radiatio Dosimtry Radiological physics ad radiatio dosimtry Typs ad sourcs of ioizig radiatio Dscriptio of ioizig radiatio

More information

Normal Form for Systems with Linear Part N 3(n)

Normal Form for Systems with Linear Part N 3(n) Applid Mathmatics 64-647 http://dxdoiorg/46/am7 Publishd Oli ovmbr (http://wwwscirporg/joural/am) ormal Form or Systms with Liar Part () Grac Gachigua * David Maloza Johaa Sigy Dpartmt o Mathmatics Collg

More information

UNIT 2: MATHEMATICAL ENVIRONMENT

UNIT 2: MATHEMATICAL ENVIRONMENT UNIT : MATHEMATICAL ENVIRONMENT. Itroductio This uit itroducs som basic mathmatical cocpts ad rlats thm to th otatio usd i th cours. Wh ou hav workd through this uit ou should: apprciat that a mathmatical

More information

Chapter 3 Fourier Series Representation of Periodic Signals

Chapter 3 Fourier Series Representation of Periodic Signals Chptr Fourir Sris Rprsttio of Priodic Sigls If ritrry sigl x(t or x[] is xprssd s lir comitio of som sic sigls th rspos of LI systm coms th sum of th idividul rsposs of thos sic sigls Such sic sigl must:

More information

+ x. x 2x. 12. dx. 24. dx + 1)

+ x. x 2x. 12. dx. 24. dx + 1) INTEGRATION of FUNCTION of ONE VARIABLE INDEFINITE INTEGRAL Fidig th idfiit itgrals Rductio to basic itgrals, usig th rul f ( ) f ( ) d =... ( ). ( )d. d. d ( ). d. d. d 7. d 8. d 9. d. d. d. d 9. d 9.

More information

LINEAR DELAY DIFFERENTIAL EQUATION WITH A POSITIVE AND A NEGATIVE TERM

LINEAR DELAY DIFFERENTIAL EQUATION WITH A POSITIVE AND A NEGATIVE TERM Elctronic Journal of Diffrntial Equations, Vol. 2003(2003), No. 92, pp. 1 6. ISSN: 1072-6691. URL: http://jd.math.swt.du or http://jd.math.unt.du ftp jd.math.swt.du (login: ftp) LINEAR DELAY DIFFERENTIAL

More information

An Introduction to Asymptotic Expansions

An Introduction to Asymptotic Expansions A Itroductio to Asmptotic Expasios R. Shaar Subramaia Dpartmt o Chmical ad Biomolcular Egirig Clarso Uivrsit Asmptotic xpasios ar usd i aalsis to dscrib th bhavior o a uctio i a limitig situatio. Wh a

More information

ELECTRONIC APPENDIX TO: ELASTIC-PLASTIC CONTACT OF A ROUGH SURFACE WITH WEIERSTRASS PROFILE. Yan-Fei Gao and A. F. Bower

ELECTRONIC APPENDIX TO: ELASTIC-PLASTIC CONTACT OF A ROUGH SURFACE WITH WEIERSTRASS PROFILE. Yan-Fei Gao and A. F. Bower ELECTRONIC APPENDIX TO: ELASTIC-PLASTIC CONTACT OF A ROUGH SURFACE WITH WEIERSTRASS PROFILE Ya-Fi Gao ad A. F. Bowr Divisio of Egirig, Brow Uivrsity, Providc, RI 9, USA Appdix A: Approximat xprssios for

More information

Washington State University

Washington State University he 3 Ktics ad Ractor Dsig Sprg, 00 Washgto Stat Uivrsity Dpartmt of hmical Egrg Richard L. Zollars Exam # You will hav o hour (60 muts) to complt this xam which cosists of four (4) problms. You may us

More information