arxiv: v1 [math.fa] 18 Feb 2016

Size: px
Start display at page:

Download "arxiv: v1 [math.fa] 18 Feb 2016"

Transcription

1 SPECTRAL PROPERTIES OF WEIGHTE COMPOSITION OPERATORS ON THE BLOCH AN IRICHLET SPACES arxiv: v [math.fa] 8 Fb 06 TE EKLUN, MIKAEL LINSTRÖM, AN PAWE L MLECZKO Abstract. Th spctra of ivrtibl wightd compositio oprators uc ϕ o th Bloch ad irichlt spacs ar studid. I th Bloch cas w obtai a complt dscriptio of th spctrum wh ϕ is a parabolic or lliptic automorphism of th uit disc. I th cas of a hyprbolic automorphism ϕ, xact xprssios for th spctral radii of ivrtibl wightd compositio oprators actig o th Bloch ad irichlt spacs ar drivd.. Itroductio Th spac of aalytic fuctios o th op uit disk i th complx pla C is dotd by H). Evry aalytic slfmap ϕ: of th uit disc iducs a compositio oprator C ϕ f = f ϕ o H). Ths oprators hav b studid for may dcads startig from th paprs of Littlwood, Hardy ad Risz i th bgiig of th 0th ctury. For gral iformatio of compositio oprators o classical spacs of aalytic fuctios th radr is rfrrd to th xcllt moographs by Cow ad MacClur [4] ad Shapiro [0]. I rct yars this wll-rcogizd thory has rcivd w stimulus from th mor gral situatio of liar wightd compositio oprators uc ϕ f) = uf ϕ), whr u H). Th mai objctiv wh studyig th oprators uc ϕ is to rlat oprator thortic proprtis of uc ϕ to fuctio thortic proprtis of th iducig symbols ϕ ad u. This papr is dvotd to th study of spctral proprtis of ivrtibl wightd compositio oprators actig o th Bloch ad irichlt spacs, dfid i th prlimiaris sctio blow. Th mai rfrcs ar th paprs [3] by Chaldar, Gallardo-Gutiérrz ad Partigto, ad [6] by Hyväri t al. I [6] th spctrum of wightd compositio oprators with automorphic symbols was xtsivly studid o spacs of aalytic fuctios satisfyig crtai gral coditios itroducd i [6, Sctio.]. This class cotais for xampl th wightd Brgma spacs ad Hardy spacs. Howvr, th Bloch ad irichlt spacs ar ot i this class sic th boudd aalytic fuctios ar ot cotaid i th multiplirs of ths spacs. A w approach is thus dd, ad foud partly i [3, Sctio 3], whr th spctra of ivrtibl wightd compositio oprators iducd by parabolic ad lliptic automorphisms o th irichlt spac ar compltly dscribd ad th hyprbolic cas is lft as a op problm.

2 EKLUN, LINSTRÖM, AN MLECZKO Th papr is orgaizd as follows. I Sctio 3 w study th multiplirs of th Bloch spac, ad obtai rsults similar to thos i [3, Sctio ]. Sctio 4 is dvotd to th spctral thory of ivrtibl wightd compositio opratorsuc ϕ actig othbloch spac. Iparticular, wgiv adscriptio of th spctrum wh ϕ is a parabolic or lliptic automorphism of. I th cas of hyprbolic ϕ, th spctral radius is computd ad w obtai a iclusio of th spctrum i a aulus. Fially, i Sctio 5 w improv th rct stimats [3, Thorm 3.3] by Chaldar, Gallardo-Gutiérrz ad Partigto of th spctrum of a ivrtibl wightd compositio oprator o th irichlt spac wh ϕ is a hyprbolic automorphism of.. Prlimiaris W bgi by rcallig som Baach spacs of aalytic fuctios o th uit disc. Th Bloch spac B is th st of fuctios f H) such that sup z ) f z) < +, ad is quippd with th orm f B = f0) +sup z ) f z), f B. Th irichlt spac cosists of fuctios f H) such that f A, whr th Brgma spac A is th st of aalytic fuctios o such that f A = fz) daz) < +, with ormalizd Lbsgu masur da ) o. Th irichlt orm is dfid as f = f0) + f z) daz), f. Othr spacs of aalytic fuctios o th uit disc usd i this papr ar th disc algbra A), cosistig of fuctios cotiuous o th closd uit disc, th wightd Baach spacs of aalytic fuctios { } Hv s = f H) : f H vs = supv s z) fz) < +, whr 0 < s < ad v s z) = z ) s is th stadard wight, ad th spac H of boudd aalytic fuctios o with suprmum orm. Th spctrum ad spctral radius of a oprator T : X X o a spac X ardotd rspctivly by σ X T) ad r X T). A good rfrc for oprator thory i fuctio spacs is th moograph [3] by Zhu. Wh dalig with compositio oprators it is customary to dot th -th itrat of a slfmap ϕ of by ϕ, that is ϕ := ϕ ϕ ϕ }{{} tims with ϕ 0 rprstig th idtity map, ad it is asy to chck that uc ϕ ) fz) = uz)uϕz)) uϕ z))fϕ z)), f H), z.

3 3 This ca also b statd as uc ϕ ) = u ) C ϕ, whr u 0) := ad u ) := j=0 u ϕ j H), N. It turs out that th spctral aalysis of ivrtibl wightd compositio opratorsuc ϕ stroglydpdsothtypofthcssarily) automorphic symbol ϕ. Rcall that a otrivial automorphism ϕ of is calld lliptic if it has a uiqu fixd poit i, parabolic if ϕ has joy Wolf fixd poit a i with ϕ a) =, ad hyprbolic if ϕ has joy Wolf fixd poit a th so-calld attractiv fixd poit) with 0 < ϕ a) < ad a rpulsiv fixd poit b with ϕ b) = /ϕ a) s [4, Sctio.3.]). Wh computig th spctrum, w will mak us of th formula.) lim ϕ 0) ) = ϕ a), which is valid for parabolic ad hyprbolic automorphisms ϕ of with joy Wolf poit a, s [4, pp. 5 5]. 3. Multiplir spacs I this sctio w cosidr th multiplir spacs MX) := {u H) : M u : X X is boudd} X ad MX,ϕ) := {u H) : uc ϕ : X X is boudd} X, whr X is ithr th Bloch spac B or th irichlt spac, ad th multiplicatio oprator is dfid i th obvious way M u f = uf. Th mai rsults of this sctio ar Thorm 3., whr w charactriz thos ϕ for whichmb,ϕ) = B,adThorm3.3whrwshowthatMB,ϕ) = MB) whvr ϕ is a fiit Blaschk product. Th irichlt spac vrsios of th mtiod rsults ar giv i [3, Thorms..3]. Th multiplir spac M) was charactrizd by Stgga i [] as th st of fuctios u H such that th multiplicatio oprator M u : A is boudd u z) daz) big a Carlso masur for ). For th Bloch spacitiskowfrom[9]thatawightd compositioopratoruc ϕ : B B is boudd if ad oly if th followig two coditios hold: 3.) sup z ) u z) log ϕz) < + 3.) sup z ϕz) uz)ϕ z) < +. From this follows that u MB) if ad oly if 3.3) sup z ) u z) log z < + 3.4) u H.

4 4 EKLUN, LINSTRÖM, AN MLECZKO Coditio 3.3) ca also b rlatd to a multiplicatio oprator i a similar fashio as i th irichlt cas: Lmma 3.. If th fuctio u : C is aalytic, th th multiplicatio oprator M u : B H v is boudd if ad oly if coditio 3.3) holds. Proof. If coditio 3.3) holds th M u B H v = sup M u f H v = sup f B = sup f B = = α sup f B = sup z ) u z) α f B log z ) u z) log whr w usd that vry Bloch fuctio f satisfis 3.5) sup fz) log z α f B sup z ) u z)fz) z z < +, for som positiv costat α idpdt of f. O th othr had, if th oprator M u : B H v is boudd th thr is a costat c > 0 such that for vry f B M u f) H v c f B. Wh this is applid to th Bloch fuctios f a z) := log āz for a, w obtai z ) u z) log M u f a ) H āz v c f a B c for vry z,a, sic f a B for vry a. Now choos a = z ad tak suprmum ovr z to gt 3.3). Thorm 3.. Lt ϕ b a aalytic slfmap of. Th MB,ϕ) = B if ad oly if ) ϕ < ad ) ϕ MB). Proof. Assum first that ) ad ) hold ad choos u B. Th sup z ) u z) log ϕz) u B log ϕ < +, so 3.) holds. W also hav that ϕ sup z ϕz) uz)ϕ z) sup z ) ϕ z) log z ) sup ) uz), log z which is fiit bcaus u is a Bloch fuctio s 3.5)) ad ϕ MB) rplac u with ϕ i 3.3)). Thus 3.) also holds, ad so u MB,ϕ), which shows that MB,ϕ) = B th iclusio MB,ϕ) B big trivial).

5 Assum o th othr had that MB,ϕ) = B, so that uc ϕ : B B is boudd for vry u B. This assumptio surs that if f B th f ϕ) u B for vry u B, which mas that th multiplicatio oprator M f ϕ : B B is wll dfid ad hc boudd by th Closd Graph Thorm. Thus C ϕ f = f ϕ MB) H, so that th compositio oprator C ϕ : B H is wll dfid ad boudd. Assum to rach a cotradictio that ϕ =. Choos a fuctio f B \ H such that f B =. Sic f is uboudd thr is a squc {ω } =, ω, such that fω ) > for vry N. Sic ϕ =, thr is a squc {z } = such that ϕz ) = ω for larg ough, say 0. Now choos th squc {θ } = 0 so that ω = iθ ϕz ) ad dfi f z) := f iθ z). Th f B = f B = for vry, but C ϕ f z ) = f ϕz )) = fω ) > so that C ϕ f >. This cotradicts th bouddss of C ϕ : B H, so w must hav ϕ <. It rmais to show that ϕ MB). Th bouddss of uc ϕ : B B for vry u B ad 3.) imply that sup z ) uz)ϕ z) < + for vry u B. Th oprator M ϕ : B Hv is hc wll dfid ad boudd. Accordig to Lmma 3. this is quivalt to sup z ) ϕ z) log so ϕ MB) ad th proof is complt. z < +, Thorm 3.3. Assum that ϕis afiit Blaschk product. Th MB,ϕ) = MB). Proof. If u MB) th M u : B B is boudd ad hc uc ϕ = M u C ϕ : B B is boudd, so that u MB,ϕ) ad MB) MB,ϕ). Assum o th othr had that u MB,ϕ), so that uc ϕ : B B is boudd ad u B. Sic ϕ is a fiit Blaschk product w gt from Lmma i [8] that ϕz) z N j= + ϕ j 0) =: K, ϕ j 0) whr N is th dgr of th Blaschk product. Hc sup z ) u z) log z sup z ) u z) log ϕz) + logk u B < +, which is 3.3). It rmais to show that u H, so lt S b th fiit suprmum i 3.). For vry z for which th drivativ of ϕ is ozro w hav that uz) S ϕz) z ϕ z) SK ϕ z). 5

6 6 EKLUN, LINSTRÖM, AN MLECZKO Sic ϕ is a fiit Blaschk product, th drivativ ϕ is aalytic i a op ighborhoodof thclosd uit disc, is ozroo thuit circl z = ad has oly a fiit umbr of zros lswhr. This implis that w ca choos δ > 0 so that m δ := mi δ z ϕ z) > 0, which shows that u is boudd by SK m δ o δ z < ad hc boudd o. Thus u MB), so that MB,ϕ) MB), ad hc MB,ϕ) = MB). I th xt sctios w will study th spctrum of ivrtibl wightd compositio oprators o th Bloch ad irichlt spacs. Th ivrtibility of wightd compositio oprators has b charactrizd o various spacs of fuctios by may authors, s for xampl [, 5, 6]. Th followig rsult is a cosquc of [, Corollary.3]. Thorm 3.4. Assum that X is ithr th Bloch spac B or th irichlt spac, ad lt uc ϕ : X X b a boudd wightd compositio oprator o X. Th uc ϕ is ivrtibl o X if ad oly if u MX), u is boudd away from zro o ad ϕ is a automorphism of. I such a cas th ivrs oprator of uc ϕ : X X is also a wightd compositio oprator, giv by ucϕ ) = u ϕ C ϕ. 4. Spctra o th Bloch spac I this sctio w study th spctrum of ivrtibl wightd compositio oprators o th Bloch spac. Th ivstigatio is dividd ito thr cass, to covr parabolic, hyprbolic ad lliptic automorphisms. Our approach is basd o th paprs [3] ad [6], but w idas ar still dd. Th followig lmma will b usful i th squl. Lmma 4.. If ϕ is a automorphism of, th r B C ϕ ) =. Proof. By [, Corollary ] ad [7, Lmma 6] w hav th followig stimat of th compositio oprator orm for ay automorphism ϕ of ad N: 4.) C ϕ + log + ϕ 0) + ϕ0),0), ϕ 0) whr z,w) := + z w log zw z w zw is th hyprbolic distac o. If ϕ0) = 0 th obviously r B C ϕ ) =. If o th othr had ϕ0),0) 0, th w obtai th followig stimat from 4.) for vry N: [ C ϕ ) + ϕ0),0) ϕ0),0)] ϕ0),0), ad sic lim x + +x) x = w coclud that r B C ϕ ) =.

7 4.. Th parabolic cas. W bgi by dscribig th spctrum of ivrtibl wightd compositio oprators uc ϕ o th Bloch spac iducd by parabolic automorphisms ϕ, ad for th proof w d th followig rsult. Lmma 4.. Suppos that ϕ is a parabolic automorphism of with uiqu fixd poit a, ad assum that u A) is boudd away from zro o. Th lim u ) = ua). Proof. S th proof of [6, Lmma 4.]. Thorm 4.3. Suppos that th wightd compositio oprator uc ϕ : B B is ivrtibl o th Bloch spac ad assum that th automorphism ϕ is parabolic, with uiqu fixd poit a. If u A), th σ B uc ϕ ) = { λ C : λ = ua) }. Proof. W bgi by showig that th spctrum is cotaid i th proposd circl of radius ua). Accordig to Thorm 3.4, u blogs to MB) ad is boudd away from zro o, from which follows that ua) 0. Sic r B C ϕ ) = by Lmma 4. ad uc ϕ ) = u ) C ϕ = M u) C ϕ by Thorm 3.3, w oly d to focus o th oprator orm of M u) : B B: sup sup f B sup u ) 0)f0) f B = sup = = f B sup f B M u) = sup u ) f B f B z ) u )z)fz) + sup f B sup z u ) ) z) u ϕ j z) u ϕ j) z) fz) + sup u ) sup u ϕ j j=0 j=0 z ) u ) z)f z) + sup u ) 0)f0) f B f B u ) sup u ϕ j j=0 f B u ) sup u ϕ j j=0 f B 7 sup z ) u ) z)f z) + sup z ) u ϕ j z)) ϕ jz) fz) + u ) sup ϕ j z) ) u ϕ j z))fz) + u ) sup z ) u z)fψ j z)) + u ), whr w usd that ϕ z) = ϕz) if ϕ is a automorphism of, ad z itroducd th fuctio ψ := ϕ to simplify otatio. Not that ψ is also a parabolic automorphism with fixd poit a, ad ψ j = ϕ ) j = ϕ j.

8 8 EKLUN, LINSTRÖM, AN MLECZKO Furthrmor, sup z ) u z)fψ j z)) = M u f ψ j ) H v M u B H v C ψj f B, whr th orm M u B H v is fiit sic u MB), as discussd i Lmma 3.. Now usig iquality 4.) ad th fact that u is boudd away from zro o, w obtai th followig stimat of th oprator orm of M u) : B B: M u) u ) M u B H u ϕ v C ψj + u ) j j=0 M u B H v u ) ) + ψ0),0)j + u) u ϕ j=0 j [ ] M u B H v + + ψ0),0) ) u u ). Applyig this to th spctral radius ad usig Lmmas 4. ad 4. givs r B uc ϕ ) = lim uc ϕ) limsup M u) r B C ϕ ) [ ] ) lim M u B H v + + ψ0),0) u u ) = ua). Sic ) uc ϕ = C u ϕ ϕ, by Thorm 3.4, whr ϕ is a parabolic automorphism with uiqu fixd poit a, th abov rsult also shows that r B ucϕ ) ) uϕ a)) = ua). Now if λ σ B uc ϕ ), th w also hav that λ σ B ucϕ ) ). From this follows that λ r B uc ϕ ) ua) ad λ r B ucϕ ) ) ua), so that λ = ua). Thus 4.) σ B uc ϕ ) { λ C : λ = ua) }, ad obviously r B uc ϕ ) = ua). I ordr to prov th rvrs iclusio i 4.), lt λ b a complx umbr of modulus λ = ua) = r B uc ϕ ). As i th proof of [6, Thorm 4.3] it is th, by th Spctral Mappig Thorm, ough to show that r B λ uc ϕ ) r B uc ϕ ), which is do as follows. Th squc {z } =0, dfid by z = ϕ 0), is itrpolatig for H sic ϕ is a parabolic automorphism s th commt prcdig [6, Thorm 4.3]), so by th Op Mappig Thorm thr is a

9 costat c > 0 ad a squc {f } =0 H such that for all N w hav f c ad 4.3) f ϕk z ) ) {, if k = = 0, if k. Not that B H v s for vry s > 0, sic if f B th by 3.5) f H vs α f B sup z ) s log z < +. Choos som s > 0 ad lt c s := αsup z ) s log z, so that f H vs c s f B for vry f B. Th itrpolatig squc {f } =0 satisfis f B f c for all N, which givs that λ uc ϕ ) c λ uc ϕ ) f B for all N. Furthrmor, [ λ ucϕ ) f ] z ) = cc s ) λ uc ϕ ) f H vs cc s ) z ) s [ λ uc ϕ ) f ] z ) = = k=0 k=0 )λ k[ ] uc ϕ ) k f z ) k ) λ k ) k u k) z )f ϕk z ) ) k ) ) λ u ) z ) by 4.3), so ) λ uc ϕ ) cc s ) λ u ) z ) z ) s ) = cc s ) λ z ) s u ) z ) ϕ ϕ z ) z ) ) s ) = cc s ) λ u ) z ) ϕ z ) s ϕ 0) ) s ) cc s ) λ ω ) z ) ϕ 0) ) s, 9 whr th fuctio ωz) := uz) ϕ z) s

10 0 EKLUN, LINSTRÖM, AN MLECZKO itroducd i th proof of [6, Thorm 4.3] satisfis ω ) z) = u )z) ϕ z) s. I th sam proof it was also show that lim ω )z ) ua) = = ua) ϕ a) s, ad mtiod that lim ) =. Usig th parabolic vrsio of th limit.), w s that r B λ uc ϕ ) = lim λ uc ϕ) lim cc s) ) λ ω) z ) ϕ 0) ) s = λ ua) = ua) = r B uc ϕ ). Sic r B λ uc ϕ ) r B uc ϕ ), w gt from th proof of [6, Thorm 4.3] that λ σ B uc ϕ ), which shows that σ B uc ϕ ) { λ C : λ = ua) } = { λ C : λ = ua) }, ad th proof is complt. 4.. Th hyprbolic cas. I this subsctio w ivstigat th spctrum of wightd compositio oprators uc ϕ : B B gratd by hyprbolic symbols ϕ. Th rsults i this cas ar ot complt. W obtai th spctral radius r B uc ϕ ) ad thrby a iclusio of th spctrum i a aulus, which turs out to coicid with th spctrum udr additioal assumptios o th fuctio u. Th mai rsult is giv i Thorm 4.5. Lmma 4.4. Suppos that ϕ is a hyprbolic automorphism of with fixd poits a,b, ad assum that u A) is boudd away from zro o. Th lim u ) = max{ ua), ub) }. Proof. S th proof of [6, Lmma 4.4]. Thorm 4.5. Suppos that th wightd compositio oprator uc ϕ : B B is ivrtibl o th Bloch spac ad assum that th automorphism ϕ is hyprbolic, with attractiv fixd poit a ad rpulsiv fixd poit b. If u A), th r B uc ϕ ) = max{ ua), ub) } ad σ B uc ϕ ) { λ C : mi{ ua), ub) } λ max{ ua), ub) } }. Proof. As i th proof of Thorm 4.3, u blogs to MB) ad is boudd away from zro o, so that ua),ub) 0. Sic r B C ϕ ) = by Lmma 4. ad uc ϕ ) = M u) C ϕ, it is agai ough to cosidr th oprator orm of M u) : B B. Through idtical calculatios as i th proof of

11 Thorm 4.3, obsrvig that ψ := ϕ is also a hyprbolic automorphism, w obtai th stimat [ ] M u) M u B H v + + ψ0),0) ) u u ), ad so by usig Lmmas 4. ad 4.4 o gts that r B uc ϕ ) = lim uc ϕ) limsup M u) r B C ϕ ) [ lim M u B H ] ) v + + ψ0),0) u u ) = max{ ua), ub) }. O th othr had, u ) M u) by [, Lmma ], so u ) M u) = ) ) uc ϕ Cϕ uc ϕ ) C ϕ ). Lttig td to ifiity ad obsrvig that r B Cϕ ) = by Lmma 4. sic ϕ Aut)) w s that ad thus max{ ua), ub) } r B uc ϕ ), r B uc ϕ ) = max{ ua), ub) }. Applyig th abov rsult to th ivrs oprator ) uc ϕ = C u ϕ ϕ, whr ϕ is a hyprbolic automorphism with attractiv fixd poit b ad rpulsiv fixd poit a, w gt that r B ucϕ ) ) { = max u ϕ a) ), u ϕ b) ) } = mi { ua), ub) }. Now if λ σ B uc ϕ ), th w also hav that λ σ B ucϕ ) ), so that λ r B uc ϕ ) = max { ua), ub) } ad λ r B ucϕ ) ) = mi { ua), ub) }, which shows that th spctrum is cotaid i th claimd aulus. I th cas wh ua) = ub) w ar abl to improv th prvious thorm, to giv a complt dscriptio of th spctrum. Howvr, w wr ot abl to comput th spctrum wh ua) ub). It sms lik o ds to cosidr th cass ua) < ub) ad ua) > ub) sparatly, s for xampl [6, Thorm 4.9].

12 EKLUN, LINSTRÖM, AN MLECZKO Thorm 4.6. Suppos that th wightd compositio oprator uc ϕ : B B is ivrtibl o th Bloch spac ad assum that th automorphism ϕ is hyprbolic, with attractiv fixd poit a ad rpulsiv fixd poit b. If u A) ad ua) = ub), th σ B uc ϕ ) = { λ C : λ = ua) }. Proof. By Thorm 4.5 it suffics to prov that σ B uc ϕ ) { λ C : λ = ua) }, so lt λ b a complx umbr of modulus λ = ua) = r B uc ϕ ). As i th proofofthorm4.3itisthoughtoshowthatr B λ uc ϕ ) r B uc ϕ ). This ca b do xactly as i th prviously mtiod proof sic th squc {z } =0, dfid by z = ϕ 0), is itrpolatig for H by [4, Thorm.65]. Usig th sam otatio ad prformig th sam calculatios as i th proof of Thorm 4.3, w obtai th stimat ) λ uc ϕ ) cc s ) λ ω ) z ) ϕ 0) ) s. Now sic as i [6, Thorm 4.3], this givs that lim ω )z ) = ua), ϕ a) s ) r B λ uc ϕ ) lim cc s) λ ω ) z ) ϕ 0) ) s = λ ua) ϕ a) s = ua) ϕ a) s ϕ a) s = r B uc ϕ )ϕ a) s, whr w usd th limit.) with 0 < ϕ a) <. Th iquality r B λ uc ϕ ) r B uc ϕ )ϕ a) s holds for vry s > 0 s th lattr part of th proof of Thorm 4.3) so w may tak limits as s 0 to obtai r B λ uc ϕ ) r B uc ϕ ) Th lliptic cas. W ow tur to th spctrum of ivrtibl wightd compositio oprators uc ϕ o th Bloch spac wh ϕ is a lliptic automorphismof. Thoughthmthodsof proofhrarstadard, sommior modificatios ar cssary ad w thus prst thm. Lmma 4.7. If u MB) ad u H, th u MB).

13 Proof. Th fuctio fz) := uz) is boudd by assumptio, so w oly d to show that it satisfis coditio 3.3): sup z ) f z) log which is fiit sic u MB). z = sup z ) u z) uz) log u sup z ) u z) log z 3 z, Thorm 4.8. Suppos that th wightd compositio oprator uc ϕ : B B is boudd o th Bloch spac ad assum that u A) ad that ϕ is a lliptic automorphism, with uiqu fixd poit a. Th ) ithr thr is a positiv itgr j such that ϕ j z) = z for all z, i which cas, if m is th smallst such itgr, th σ B uc ϕ ) = { λ C : λ m = u m) z) for som z }, ) or ϕ Id for vry N, i which cas, if uc ϕ : B B is ivrtibl, th σ B uc ϕ ) = { λ C : λ = ua) }. Proof. Th proof of ) is idtical to th proof of [6, Thorm 4.], bcaus as otd i [3, Sctio 3.] w ca us th rsult of Lmma 4.7 to prov that σ B uc ϕ ) { λ C : λ m = u m) z) for som z }. Th proof of ) gos as i [6, Thorm 4.4] ad it rlis o [6, Lmma 4.3], whichis also trufor thbloch spacaftr amior modificatio i thproof. Namly, it is assumd that ϕz) = µz, whr µ = πθi ad θ is irratioal, u A) ad uc ϕ is ivrtibl, ad prov that r A ucϕ ) = u0) by mthods also valid for th Bloch spac, xcpt th o showig that ) 4.4) r A ucϕ limsup u ). Hr A stads for a spac satisfyig coditios C), C) ad C3) as dfid i [6, Sctio.]. Howvr, by th sam calculatios usd to prov Thorm 4.3 w gt that M u) ad from this follows that [ M u B H v + u r B ucϕ ) rb Cϕ ) limsup ] + ψ0),0) ) u ), M u) limsup u ), whr w usd that r B Cϕ ) = by Lmma 4.. Thus 4.4) also holds for th Bloch spac, ad w ca us th proof of [6, Thorm 4.4] to obtai ).

14 4 EKLUN, LINSTRÖM, AN MLECZKO 5. Spctra o th irichlt spac Th spctra of ivrtibl wightd compositio oprators iducd by parabolic ad lliptic automorphisms o th irichlt spac wr compltly dscribd i [3]. I th hyprbolic cas ad udr sstially th sam assumptios as i Thorm 5. blow, it was also show i [3, Thorm 3.3] that r uc ϕ ) max{ ua), ub) } µ ad σ uc ϕ ) { λ C : mi{ ua), ub) }µ λ max{ ua), ub) } µ}, whr ϕ is cojugat to th automorphism ψz) = +µ)z + µ) µ)z ++µ) for 0 < µ <. I Thorm 5. w improv this rsult to obtai a xact xprssio for th spctral radius. Lmma 5.. [7, Thorm 7] If ϕ is a uivalt slfmap of, th th spctral radius r C ϕ ) =. Thorm 5.. Suppos that th wightd compositio oprator uc ϕ : is ivrtibl o th irichlt spac ad assum that th automorphism ϕ is hyprbolic, with attractiv fixd poit a ad rpulsiv fixd poit b. If u A), th r uc ϕ ) = max{ ua), ub) } ad σ uc ϕ ) { λ C : mi{ ua), ub) } λ max{ ua), ub) } }. Proof. Accordig to Thorm 3.4, u blogs to M) ad is boudd away from zro o, from which follows that ua),ub) 0. Sic r C ϕ ) = by Lmma 5., w bgi by stimatig th oprator orm of M u) : : = sup f sup f [ u ) 0)f0) + M u) = sup u ) f f [ u ) 0)f0) + u ) + sup f u ) f) z) daz) ] u ) z)fz) + u )z)f z) daz) u ) z)fz) daz) ) sup u ) z)f z) daz) f sup f u ) z)fz) daz) ) ) + + u ), ] )

15 whr w usd th subadditivity of th squar root fuctio ad th triagl iquality for th L -orm. Now sic u ) z) = u ) z) u ϕ j z) u ϕ j) z), j=0 w ca cotiu th abov stimatio as follows: M u) sup u )z) u ϕ j z) u ϕ j) z) fz) daz) f j=0 + u ) u ) sup u ϕ j j=0 + u ). f u ϕ j z)) ϕ jz) fz) daz) Aftr substitutig w = ϕ j z), th abov itgral taks th form ) u w)fψ j w)) daw) = M u f ψ j ) A M u A C ψj f, whr ψ := ϕ ad th orm M u A is fiit sic u M), s th sctio o multiplir spacs. I [7, Thorm 7], Martí ad Vukotić provd that C ψj + ψ0),0)j ) for vry j N, which combid with th rsults abov givs M u) ) ) u ) M u u ϕ A C ψj + u ) j=0 j [ Mu ] A + + ψ0),0) ) u u ). Applyig this to th spctral radius ad usig Lmmas 4.4 ad 5. givs r uc ϕ ) = lim uc ϕ) limsup M u) r C ϕ ) [ Mu ] ) lim A + + ψ0),0) u u ) = max{ ua), ub) }. O th othr had, by [, Lmma ], w hav that u ) M u) = ) ) uc ϕ Cϕ uc ϕ ) C ϕ ), 5

16 6 EKLUN, LINSTRÖM, AN MLECZKO so lttig td to ifiity ad obsrvig that r Cϕ ) = by Lmma 5. sic ϕ Aut)) w s that ad thus max{ ua), ub) } r uc ϕ ), r uc ϕ ) = max{ ua), ub) }. Thstatmt rgardig thspctrum σ uc ϕ ) ca ow bjustifid xactly as i Thorm 4.5. Rmark 5.3. As alrady otd, w wr ot abl to comput th spctrum of ivrtibl wightd compositio oprators with hyprbolic symbols ϕ, ithr for th Bloch or th irichlt spac, xcpt wh ua) = ub) i th Bloch cas. Howvr, th followig cojctur sms plausibl ad w lav it as a op problm: Suppos that th wightd compositio oprator uc ϕ : X X is ivrtibl o X, whr X is ithr th Bloch spac B or th irichlt spac, ad assum that th automorphism ϕ is hyprbolic, with attractiv fixd poit a ad rpulsiv fixd poit b. If u A), th σ X uc ϕ ) = { λ C : mi{ ua), ub) } λ max{ ua), ub) } }. Ackowldgmts Th first author is gratful for th fiacial support from th octoral Ntwork i Iformatio Tchologis ad Mathmatics at Åbo Akadmi Uivrsity. Rfrcs [] A. Alma, P. ur, M.J. Martí ad. Vukotić, Multiplicativ isomtris ad isomtric zro-divisors, Caad. J. Math. 6 00), No. 5, [] P. Bourdo, Ivrtibl wightd compositio oprators, Proc. Amr. Math. Soc. 4 03) [3] I. Chaldar, E.A. Gallardo-Gutiérrz ad J.R. Partigto, Wightd compositio oprators o th irichlt spac: bouddss ad spctral proprtis, Math. A. 05), OI 0.007/s y. [4] C. Cow ad B. MacClur, Compositio Oprators o Spacs of Aalytic Fuctios, CRC Prss, Boca Rato, 995. [5] G. Guatillak, Ivrtibl wightd compositio oprators, J. Fuct. Aal. 6 0) [6] O. Hyväri, M. Lidström, I. Nimi ad E. Saukko, Spctra of wightd compositio oprators with automorphic symbols, J. Fuct. Aal ), o. 8, [7] M.J. Martí ad. Vukotić, Norms ad spctral radii of compositio oprators actig o th irichlt spac, J. Math. Aal. Appl ) -3. [8] V. Matach, Wightd Compositio Oprators o H ad Applicatios, Complx Aal. Opr. Thory 008), o., [9] S. Oho ad R. Zhao, Wightd compositio oprators o th Bloch spac, Bull. Austral. Math. Soc., 63 00), [0] J.H. Shapiro, Compositio Oprators ad Classical Fuctio Thory, Sprigr, 993.

17 7 [].A. Stgga, Multiplirs of th irichlt spac, Illiois J. Math., 4 980), o., [] C. Xiog, Norm of compositio oprators o th Bloch spac, Bull. Austral. Math. Soc., ), [3] K. Zhu, Oprator Thory i Fuctio Spacs, AMS, 007. Td Eklud. partmt of Mathmatics, Åbo Akadmi Uivrsity. FI Åbo, Filad..mail: td.klud@abo.fi Mikal Lidström. partmt of Mathmatics, Åbo Akadmi Uivrsity. FI-0500 Åbo, Filad..mail: mikal.lidstrom@abo.fi Paw l Mlczko. Faculty of Mathmatics ad Computr Scic, Adam Mickiwicz Uivrsity i Pozań, Umultowska 87, 6-64 Pozań, Polad..mail: pml@amu.du.pl

PURE MATHEMATICS A-LEVEL PAPER 1

PURE MATHEMATICS A-LEVEL PAPER 1 -AL P MATH PAPER HONG KONG EXAMINATIONS AUTHORITY HONG KONG ADVANCED LEVEL EXAMINATION PURE MATHEMATICS A-LEVEL PAPER 8 am am ( hours) This papr must b aswrd i Eglish This papr cosists of Sctio A ad Sctio

More information

On the approximation of the constant of Napier

On the approximation of the constant of Napier Stud. Uiv. Babş-Bolyai Math. 560, No., 609 64 O th approximatio of th costat of Napir Adri Vrscu Abstract. Startig from som oldr idas of [] ad [6], w show w facts cocrig th approximatio of th costat of

More information

Restricted Factorial And A Remark On The Reduced Residue Classes

Restricted Factorial And A Remark On The Reduced Residue Classes Applid Mathmatics E-Nots, 162016, 244-250 c ISSN 1607-2510 Availabl fr at mirror sits of http://www.math.thu.du.tw/ am/ Rstrictd Factorial Ad A Rmark O Th Rducd Rsidu Classs Mhdi Hassai Rcivd 26 March

More information

A Simple Proof that e is Irrational

A Simple Proof that e is Irrational Two of th most bautiful ad sigificat umbrs i mathmatics ar π ad. π (approximatly qual to 3.459) rprsts th ratio of th circumfrc of a circl to its diamtr. (approximatly qual to.788) is th bas of th atural

More information

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z Sris Expasio of Rciprocal of Gamma Fuctio. Fuctios with Itgrs as Roots Fuctio f with gativ itgrs as roots ca b dscribd as follows. f() Howvr, this ifiit product divrgs. That is, such a fuctio caot xist

More information

NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES

NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES Digst Joural of Naomatrials ad Biostructurs Vol 4, No, March 009, p 67-76 NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES A IRANMANESH a*, O KHORMALI b, I NAJAFI KHALILSARAEE c, B SOLEIMANI

More information

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series Chatr Ifiit Sris Pag of Sctio F Itgral Tst Chatr : Ifiit Sris By th d of this sctio you will b abl to valuat imror itgrals tst a sris for covrgc by alyig th itgral tst aly th itgral tst to rov th -sris

More information

1985 AP Calculus BC: Section I

1985 AP Calculus BC: Section I 985 AP Calculus BC: Sctio I 9 Miuts No Calculator Nots: () I this amiatio, l dots th atural logarithm of (that is, logarithm to th bas ). () Ulss othrwis spcifid, th domai of a fuctio f is assumd to b

More information

Solution to 1223 The Evil Warden.

Solution to 1223 The Evil Warden. Solutio to 1 Th Evil Ward. This is o of thos vry rar PoWs (I caot thik of aothr cas) that o o solvd. About 10 of you submittd th basic approach, which givs a probability of 47%. I was shockd wh I foud

More information

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1 DTFT Proprtis Exampl - Dtrmi th DTFT Y of y α µ, α < Lt x α µ, α < W ca thrfor writ y x x From Tabl 3., th DTFT of x is giv by ω X ω α ω Copyright, S. K. Mitra Copyright, S. K. Mitra DTFT Proprtis DTFT

More information

Law of large numbers

Law of large numbers Law of larg umbrs Saya Mukhrj W rvisit th law of larg umbrs ad study i som dtail two typs of law of larg umbrs ( 0 = lim S ) p ε ε > 0, Wak law of larrg umbrs [ ] S = ω : lim = p, Strog law of larg umbrs

More information

Statistics 3858 : Likelihood Ratio for Exponential Distribution

Statistics 3858 : Likelihood Ratio for Exponential Distribution Statistics 3858 : Liklihood Ratio for Expotial Distributio I ths two xampl th rjctio rjctio rgio is of th form {x : 2 log (Λ(x)) > c} for a appropriat costat c. For a siz α tst, usig Thorm 9.5A w obtai

More information

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling Tripl Play: From D Morga to Stirlig To Eulr to Maclauri to Stirlig Augustus D Morga (186-1871) was a sigificat Victoria Mathmaticia who mad cotributios to Mathmatics History, Mathmatical Rcratios, Mathmatical

More information

Hadamard Exponential Hankel Matrix, Its Eigenvalues and Some Norms

Hadamard Exponential Hankel Matrix, Its Eigenvalues and Some Norms Math Sci Ltt Vol No 8-87 (0) adamard Exotial al Matrix, Its Eigvalus ad Som Norms İ ad M bula Mathmatical Scics Lttrs Itratioal Joural @ 0 NSP Natural Scics Publishig Cor Dartmt of Mathmatics, aculty of

More information

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple 5/24/5 A PROOF OF THE CONTINUED FRACTION EXPANSION OF / Thomas J Oslr INTRODUCTION This ar givs aothr roof for th rmarkabl siml cotiud fractio = 3 5 / Hr is ay ositiv umbr W us th otatio x= [ a; a, a2,

More information

Discrete Fourier Transform. Nuno Vasconcelos UCSD

Discrete Fourier Transform. Nuno Vasconcelos UCSD Discrt Fourir Trasform uo Vascoclos UCSD Liar Shift Ivariat (LSI) systms o of th most importat cocpts i liar systms thory is that of a LSI systm Dfiitio: a systm T that maps [ ito y[ is LSI if ad oly if

More information

International Journal of Advanced and Applied Sciences

International Journal of Advanced and Applied Sciences Itratioal Joural of Advacd ad Applid Scics x(x) xxxx Pags: xx xx Cotts lists availabl at Scic Gat Itratioal Joural of Advacd ad Applid Scics Joural hompag: http://wwwscic gatcom/ijaashtml Symmtric Fuctios

More information

Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT) Discrt Fourir Trasorm DFT Major: All Egirig Majors Authors: Duc guy http://umricalmthods.g.us.du umrical Mthods or STEM udrgraduats 8/3/29 http://umricalmthods.g.us.du Discrt Fourir Trasorm Rcalld th xpotial

More information

10. Joint Moments and Joint Characteristic Functions

10. Joint Moments and Joint Characteristic Functions 0 Joit Momts ad Joit Charactristic Fctios Followig sctio 6 i this sctio w shall itrodc varios paramtrs to compactly rprst th iformatio cotaid i th joit pdf of two rvs Giv two rvs ad ad a fctio g x y dfi

More information

On a problem of J. de Graaf connected with algebras of unbounded operators de Bruijn, N.G.

On a problem of J. de Graaf connected with algebras of unbounded operators de Bruijn, N.G. O a problm of J. d Graaf coctd with algbras of uboudd oprators d Bruij, N.G. Publishd: 01/01/1984 Documt Vrsio Publishr s PDF, also kow as Vrsio of Rcord (icluds fial pag, issu ad volum umbrs) Plas chck

More information

Folding of Hyperbolic Manifolds

Folding of Hyperbolic Manifolds It. J. Cotmp. Math. Scics, Vol. 7, 0, o. 6, 79-799 Foldig of Hyprbolic Maifolds H. I. Attiya Basic Scic Dpartmt, Collg of Idustrial Educatio BANE - SUEF Uivrsity, Egypt hala_attiya005@yahoo.com Abstract

More information

CDS 101: Lecture 5.1 Reachability and State Space Feedback

CDS 101: Lecture 5.1 Reachability and State Space Feedback CDS, Lctur 5. CDS : Lctur 5. Rachability ad Stat Spac Fdback Richard M. Murray ad Hido Mabuchi 5 Octobr 4 Goals: Di rachability o a cotrol systm Giv tsts or rachability o liar systms ad apply to ampls

More information

On Deterministic Finite Automata and Syntactic Monoid Size, Continued

On Deterministic Finite Automata and Syntactic Monoid Size, Continued O Dtrmiistic Fiit Automata ad Sytactic Mooid Siz, Cotiud Markus Holzr ad Barbara Köig Istitut für Iformatik, Tchisch Uivrsität Müch, Boltzmastraß 3, D-85748 Garchig bi Müch, Grmay mail: {holzr,koigb}@iformatik.tu-much.d

More information

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120 Tim : hr. Tst Papr 8 D 4//5 Bch - R Marks : SINGLE CORRECT CHOICE TYPE [4, ]. If th compl umbr z sisfis th coditio z 3, th th last valu of z is qual to : z (A) 5/3 (B) 8/3 (C) /3 (D) o of ths 5 4. Th itgral,

More information

H2 Mathematics Arithmetic & Geometric Series ( )

H2 Mathematics Arithmetic & Geometric Series ( ) H Mathmatics Arithmtic & Gomtric Sris (08 09) Basic Mastry Qustios Arithmtic Progrssio ad Sris. Th rth trm of a squc is 4r 7. (i) Stat th first four trms ad th 0th trm. (ii) Show that th squc is a arithmtic

More information

CDS 101: Lecture 5.1 Reachability and State Space Feedback

CDS 101: Lecture 5.1 Reachability and State Space Feedback CDS, Lctur 5. CDS : Lctur 5. Rachability ad Stat Spac Fdback Richard M. Murray 7 Octobr 3 Goals: Di rachability o a cotrol systm Giv tsts or rachability o liar systms ad apply to ampls Dscrib th dsig o

More information

The Interplay between l-max, l-min, p-max and p-min Stable Distributions

The Interplay between l-max, l-min, p-max and p-min Stable Distributions DOI: 0.545/mjis.05.4006 Th Itrplay btw lma lmi pma ad pmi Stabl Distributios S Ravi ad TS Mavitha Dpartmt of Studis i Statistics Uivrsity of Mysor Maasagagotri Mysuru 570006 Idia. Email:ravi@statistics.uimysor.ac.i

More information

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx MONTGOMERY COLLEGE Dpartmt of Mathmatics Rockvill Campus MATH 8 - REVIEW PROBLEMS. Stat whthr ach of th followig ca b itgratd by partial fractios (PF), itgratio by parts (PI), u-substitutio (U), or o of

More information

Lectures 9 IIR Systems: First Order System

Lectures 9 IIR Systems: First Order System EE3054 Sigals ad Systms Lcturs 9 IIR Systms: First Ordr Systm Yao Wag Polytchic Uivrsity Som slids icludd ar xtractd from lctur prstatios prpard by McCllla ad Schafr Lics Ifo for SPFirst Slids This work

More information

APPENDIX: STATISTICAL TOOLS

APPENDIX: STATISTICAL TOOLS I. Nots o radom samplig Why do you d to sampl radomly? APPENDI: STATISTICAL TOOLS I ordr to masur som valu o a populatio of orgaisms, you usually caot masur all orgaisms, so you sampl a subst of th populatio.

More information

SOME IDENTITIES FOR THE GENERALIZED POLY-GENOCCHI POLYNOMIALS WITH THE PARAMETERS A, B AND C

SOME IDENTITIES FOR THE GENERALIZED POLY-GENOCCHI POLYNOMIALS WITH THE PARAMETERS A, B AND C Joural of Mathatical Aalysis ISSN: 2217-3412, URL: www.ilirias.co/ja Volu 8 Issu 1 2017, Pags 156-163 SOME IDENTITIES FOR THE GENERALIZED POLY-GENOCCHI POLYNOMIALS WITH THE PARAMETERS A, B AND C BURAK

More information

Digital Signal Processing, Fall 2006

Digital Signal Processing, Fall 2006 Digital Sigal Procssig, Fall 6 Lctur 9: Th Discrt Fourir Trasfor Zhg-Hua Ta Dpartt of Elctroic Systs Aalborg Uivrsity, Dar zt@o.aau.d Digital Sigal Procssig, I, Zhg-Hua Ta, 6 Cours at a glac MM Discrt-ti

More information

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net Taylor s Thorm & Lagrag Error Bouds Actual Error This is th ral amout o rror, ot th rror boud (worst cas scario). It is th dirc btw th actual () ad th polyomial. Stps:. Plug -valu ito () to gt a valu.

More information

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES. 1. Statement of results

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES. 1. Statement of results BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES DONALD M. DAVIS Abstract. If p is a prim and n a positiv intgr, lt ν p (n dnot th xponnt of p in n, and u p (n n/p νp(n th unit part of n. If α

More information

Basic Polyhedral theory

Basic Polyhedral theory Basic Polyhdral thory Th st P = { A b} is calld a polyhdron. Lmma 1. Eithr th systm A = b, b 0, 0 has a solution or thr is a vctorπ such that π A 0, πb < 0 Thr cass, if solution in top row dos not ist

More information

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1 Chatr Fiv Mor Dimsios 51 Th Sac R W ar ow rard to mov o to sacs of dimsio gratr tha thr Ths sacs ar a straightforward gralizatio of our Euclida sac of thr dimsios Lt b a ositiv itgr Th -dimsioal Euclida

More information

Einstein Equations for Tetrad Fields

Einstein Equations for Tetrad Fields Apiron, Vol 13, No, Octobr 006 6 Einstin Equations for Ttrad Filds Ali Rıza ŞAHİN, R T L Istanbul (Turky) Evry mtric tnsor can b xprssd by th innr product of ttrad filds W prov that Einstin quations for

More information

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES DONALD M. DAVIS Abstract. If p is a prim (implicit in notation and n a positiv intgr, lt ν(n dnot th xponnt of p in n, and U(n n/p ν(n, th unit

More information

Chapter Taylor Theorem Revisited

Chapter Taylor Theorem Revisited Captr 0.07 Taylor Torm Rvisitd Atr radig tis captr, you sould b abl to. udrstad t basics o Taylor s torm,. writ trascdtal ad trigoomtric uctios as Taylor s polyomial,. us Taylor s torm to id t valus o

More information

Cramér-Rao Inequality: Let f(x; θ) be a probability density function with continuous parameter

Cramér-Rao Inequality: Let f(x; θ) be a probability density function with continuous parameter WHEN THE CRAMÉR-RAO INEQUALITY PROVIDES NO INFORMATION STEVEN J. MILLER Abstract. W invstigat a on-paramtr family of probability dnsitis (rlatd to th Parto distribution, which dscribs many natural phnomna)

More information

A GENERALIZED RAMANUJAN-NAGELL EQUATION RELATED TO CERTAIN STRONGLY REGULAR GRAPHS

A GENERALIZED RAMANUJAN-NAGELL EQUATION RELATED TO CERTAIN STRONGLY REGULAR GRAPHS #A35 INTEGERS 4 (204) A GENERALIZED RAMANUJAN-NAGELL EQUATION RELATED TO CERTAIN STRONGLY REGULAR GRAPHS B d Wgr Faculty of Mathmatics ad Computr Scic, Eidhov Uivrsity of Tchology, Eidhov, Th Nthrlads

More information

An Introduction to Asymptotic Expansions

An Introduction to Asymptotic Expansions A Itroductio to Asmptotic Expasios R. Shaar Subramaia Asmptotic xpasios ar usd i aalsis to dscrib th bhavior of a fuctio i a limitig situatio. Wh a fuctio ( x, dpds o a small paramtr, ad th solutio of

More information

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2 MATHEMATIS --RE Itgral alculus Marti Huard Witr 9 Rviw Erciss. Evaluat usig th dfiitio of th dfiit itgral as a Rima Sum. Dos th aswr rprst a ara? a ( d b ( d c ( ( d d ( d. Fid f ( usig th Fudamtal Thorm

More information

Linear Algebra Existence of the determinant. Expansion according to a row.

Linear Algebra Existence of the determinant. Expansion according to a row. Lir Algbr 2270 1 Existc of th dtrmit. Expsio ccordig to row. W dfi th dtrmit for 1 1 mtrics s dt([]) = (1) It is sy chck tht it stisfis D1)-D3). For y othr w dfi th dtrmit s follows. Assumig th dtrmit

More information

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA NE APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA Mirca I CÎRNU Ph Dp o Mathmatics III Faculty o Applid Scincs Univrsity Polithnica o Bucharst Cirnumirca @yahoocom Abstract In a rcnt papr [] 5 th indinit intgrals

More information

Figure 2-18 Thevenin Equivalent Circuit of a Noisy Resistor

Figure 2-18 Thevenin Equivalent Circuit of a Noisy Resistor .8 NOISE.8. Th Nyquist Nois Thorm W ow wat to tur our atttio to ois. W will start with th basic dfiitio of ois as usd i radar thory ad th discuss ois figur. Th typ of ois of itrst i radar thory is trmd

More information

Chapter 11.00C Physical Problem for Fast Fourier Transform Civil Engineering

Chapter 11.00C Physical Problem for Fast Fourier Transform Civil Engineering haptr. Physical Problm for Fast Fourir Trasform ivil Egirig Itroductio I this chaptr, applicatios of FFT algorithms [-5] for solvig ral-lif problms such as computig th dyamical (displacmt rspos [6-7] of

More information

STIRLING'S 1 FORMULA AND ITS APPLICATION

STIRLING'S 1 FORMULA AND ITS APPLICATION MAT-KOL (Baja Luka) XXIV ()(08) 57-64 http://wwwimviblorg/dmbl/dmblhtm DOI: 075/МК80057A ISSN 0354-6969 (o) ISSN 986-588 (o) STIRLING'S FORMULA AND ITS APPLICATION Šfkt Arslaagić Sarajvo B&H Abstract:

More information

cycle that does not cross any edges (including its own), then it has at least

cycle that does not cross any edges (including its own), then it has at least W prov th following thorm: Thorm If a K n is drawn in th plan in such a way that it has a hamiltonian cycl that dos not cross any dgs (including its own, thn it has at last n ( 4 48 π + O(n crossings Th

More information

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero.

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero. SETION 6. 57 6. Evaluation of Dfinit Intgrals Exampl 6.6 W hav usd dfinit intgrals to valuat contour intgrals. It may com as a surpris to larn that contour intgrals and rsidus can b usd to valuat crtain

More information

Derangements and Applications

Derangements and Applications 2 3 47 6 23 Journal of Intgr Squncs, Vol. 6 (2003), Articl 03..2 Drangmnts and Applications Mhdi Hassani Dpartmnt of Mathmatics Institut for Advancd Studis in Basic Scincs Zanjan, Iran mhassani@iasbs.ac.ir

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 301 Signals & Systms Prof. Mark Fowlr ot St #21 D-T Signals: Rlation btwn DFT, DTFT, & CTFT 1/16 W can us th DFT to implmnt numrical FT procssing This nabls us to numrically analyz a signal to find

More information

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform Discrt Fourir Trasform Dfiitio - T simplst rlatio btw a lt- squc x dfid for ω ad its DTFT X ( ) is ω obtaid by uiformly sampli X ( ) o t ω-axis btw ω < at ω From t dfiitio of t DTFT w tus av X X( ω ) ω

More information

Construction of asymmetric orthogonal arrays of strength three via a replacement method

Construction of asymmetric orthogonal arrays of strength three via a replacement method isid/ms/26/2 Fbruary, 26 http://www.isid.ac.in/ statmath/indx.php?modul=prprint Construction of asymmtric orthogonal arrays of strngth thr via a rplacmnt mthod Tian-fang Zhang, Qiaoling Dng and Alok Dy

More information

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013 18.782 Introduction to Arithmtic Gomtry Fall 2013 Lctur #20 11/14/2013 20.1 Dgr thorm for morphisms of curvs Lt us rstat th thorm givn at th nd of th last lctur, which w will now prov. Thorm 20.1. Lt φ:

More information

Spectral Synthesis in the Heisenberg Group

Spectral Synthesis in the Heisenberg Group Intrnational Journal of Mathmatical Analysis Vol. 13, 19, no. 1, 1-5 HIKARI Ltd, www.m-hikari.com https://doi.org/1.1988/ijma.19.81179 Spctral Synthsis in th Hisnbrg Group Yitzhak Wit Dpartmnt of Mathmatics,

More information

Calculus & analytic geometry

Calculus & analytic geometry Calculus & aalytic gomtry B Sc MATHEMATICS Admissio owards IV SEMESTER CORE COURSE UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION CALICUT UNIVERSITYPO, MALAPPURAM, KERALA, INDIA 67 65 5 School of Distac

More information

Empirical Study in Finite Correlation Coefficient in Two Phase Estimation

Empirical Study in Finite Correlation Coefficient in Two Phase Estimation M. Khoshvisa Griffith Uivrsity Griffith Busiss School Australia F. Kaymarm Massachustts Istitut of Tchology Dpartmt of Mchaical girig USA H. P. Sigh R. Sigh Vikram Uivrsity Dpartmt of Mathmatics ad Statistics

More information

Deift/Zhou Steepest descent, Part I

Deift/Zhou Steepest descent, Part I Lctur 9 Dift/Zhou Stpst dscnt, Part I W now focus on th cas of orthogonal polynomials for th wight w(x) = NV (x), V (x) = t x2 2 + x4 4. Sinc th wight dpnds on th paramtr N N w will writ π n,n, a n,n,

More information

A Note on Quantile Coupling Inequalities and Their Applications

A Note on Quantile Coupling Inequalities and Their Applications A Not o Quatil Couplig Iqualitis ad Thir Applicatios Harriso H. Zhou Dpartmt of Statistics, Yal Uivrsity, Nw Hav, CT 06520, USA. E-mail:huibi.zhou@yal.du Ju 2, 2006 Abstract A rlatioship btw th larg dviatio

More information

BOUNDS FOR THE COMPONENTWISE DISTANCE TO THE NEAREST SINGULAR MATRIX

BOUNDS FOR THE COMPONENTWISE DISTANCE TO THE NEAREST SINGULAR MATRIX SIAM J. Matrix Aal. Appl. (SIMAX), 8():83 03, 997 BOUNDS FOR THE COMPONENTWISE DISTANCE TO THE NEAREST SINGULAR MATRIX S. M. RUMP Abstract. Th ormwis distac of a matrix A to th arst sigular matrix is wll

More information

Hardy-Littlewood Conjecture and Exceptional real Zero. JinHua Fei. ChangLing Company of Electronic Technology Baoji Shannxi P.R.

Hardy-Littlewood Conjecture and Exceptional real Zero. JinHua Fei. ChangLing Company of Electronic Technology Baoji Shannxi P.R. Hardy-Littlwood Conjctur and Excptional ral Zro JinHua Fi ChangLing Company of Elctronic Tchnology Baoji Shannxi P.R.China E-mail: fijinhuayoujian@msn.com Abstract. In this papr, w assum that Hardy-Littlwood

More information

Periodic Structures. Filter Design by the Image Parameter Method

Periodic Structures. Filter Design by the Image Parameter Method Prioic Structurs a Filtr sig y th mag Paramtr Mtho ECE53: Microwav Circuit sig Pozar Chaptr 8, Sctios 8. & 8. Josh Ottos /4/ Microwav Filtrs (Chaptr Eight) microwav filtr is a two-port twork us to cotrol

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

Chapter (8) Estimation and Confedence Intervals Examples

Chapter (8) Estimation and Confedence Intervals Examples Chaptr (8) Estimatio ad Cofdc Itrvals Exampls Typs of stimatio: i. Poit stimatio: Exampl (1): Cosidr th sampl obsrvatios, 17,3,5,1,18,6,16,10 8 X i i1 17 3 5 118 6 16 10 116 X 14.5 8 8 8 14.5 is a poit

More information

Generalized weighted composition operators on Bloch-type spaces

Generalized weighted composition operators on Bloch-type spaces Zhu Joural of Iequalities ad Applicatios 2015) 2015:59 DOI 10.1186/s13660-015-0580-0 R E S E A R C H Ope Access Geeralized weighted compositio operators o Bloch-type spaces Xiaglig Zhu * * Correspodece:

More information

UNIVERSALITY LIMITS INVOLVING ORTHOGONAL POLYNOMIALS ON AN ARC OF THE UNIT CIRCLE

UNIVERSALITY LIMITS INVOLVING ORTHOGONAL POLYNOMIALS ON AN ARC OF THE UNIT CIRCLE UNIVERSALITY LIMITS INVOLVING ORTHOGONAL POLYNOMIALS ON AN ARC OF THE UNIT CIRCLE DORON S. LUBINSKY AND VY NGUYEN A. W stablish uivrsality limits for masurs o a subarc of th uit circl. Assum that µ is

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by Dan Klain Vrsion 28928 Corrctions and commnts ar wlcom Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix () A A k I + A + k!

More information

ω (argument or phase)

ω (argument or phase) Imagiary uit: i ( i Complx umbr: z x+ i y Cartsia coordiats: x (ral part y (imagiary part Complx cougat: z x i y Absolut valu: r z x + y Polar coordiats: r (absolut valu or modulus ω (argumt or phas x

More information

On the irreducibility of some polynomials in two variables

On the irreducibility of some polynomials in two variables ACTA ARITHMETICA LXXXII.3 (1997) On th irrducibility of som polynomials in two variabls by B. Brindza and Á. Pintér (Dbrcn) To th mmory of Paul Erdős Lt f(x) and g(y ) b polynomials with intgral cofficints

More information

On Jackson's Theorem

On Jackson's Theorem It. J. Cotm. Math. Scics, Vol. 7, 0, o. 4, 49 54 O Jackso's Thom Ema Sami Bhaya Datmt o Mathmatics, Collg o Educatio Babylo Uivsity, Babil, Iaq mabhaya@yahoo.com Abstact W ov that o a uctio W [, ], 0

More information

Frequency Measurement in Noise

Frequency Measurement in Noise Frqucy Masurmt i ois Porat Sctio 6.5 /4 Frqucy Mas. i ois Problm Wat to o look at th ct o ois o usig th DFT to masur th rqucy o a siusoid. Cosidr sigl complx siusoid cas: j y +, ssum Complx Whit ois Gaussia,

More information

Asymptotic Behaviors for Critical Branching Processes with Immigration

Asymptotic Behaviors for Critical Branching Processes with Immigration Acta Mathmatica Siica, Eglih Sri Apr., 9, Vol. 35, No. 4, pp. 537 549 Publihd oli: March 5, 9 http://doi.org/.7/4-9-744-6 http://www.actamath.com Acta Mathmatica Siica, Eglih Sri Sprigr-Vrlag GmbH Grmay

More information

Chapter 4 - The Fourier Series

Chapter 4 - The Fourier Series M. J. Robrts - 8/8/4 Chaptr 4 - Th Fourir Sris Slctd Solutios (I this solutio maual, th symbol,, is usd for priodic covolutio bcaus th prfrrd symbol which appars i th txt is ot i th fot slctio of th word

More information

NET/JRF, GATE, IIT JAM, JEST, TIFR

NET/JRF, GATE, IIT JAM, JEST, TIFR Istitut for NET/JRF, GATE, IIT JAM, JEST, TIFR ad GRE i PHYSICAL SCIENCES Mathmatical Physics JEST-6 Q. Giv th coditio φ, th solutio of th quatio ψ φ φ is giv by k. kφ kφ lφ kφ lφ (a) ψ (b) ψ kφ (c) ψ

More information

Washington State University

Washington State University he 3 Ktics ad Ractor Dsig Sprg, 00 Washgto Stat Uivrsity Dpartmt of hmical Egrg Richard L. Zollars Exam # You will hav o hour (60 muts) to complt this xam which cosists of four (4) problms. You may us

More information

Normal Form for Systems with Linear Part N 3(n)

Normal Form for Systems with Linear Part N 3(n) Applid Mathmatics 64-647 http://dxdoiorg/46/am7 Publishd Oli ovmbr (http://wwwscirporg/joural/am) ormal Form or Systms with Liar Part () Grac Gachigua * David Maloza Johaa Sigy Dpartmt o Mathmatics Collg

More information

Character sums over generalized Lehmer numbers

Character sums over generalized Lehmer numbers Ma t al. Joural of Iualitis ad Applicatios 206 206:270 DOI 0.86/s3660-06-23-y R E S E A R C H Op Accss Charactr sums ovr gralizd Lhmr umbrs Yuakui Ma, Hui Ch 2, Zhzh Qi 2 ad Tiapig Zhag 2* * Corrspodc:

More information

Addition of angular momentum

Addition of angular momentum Addition of angular momntum April, 07 Oftn w nd to combin diffrnt sourcs of angular momntum to charactriz th total angular momntum of a systm, or to divid th total angular momntum into parts to valuat

More information

Recall that by Theorems 10.3 and 10.4 together provide us the estimate o(n2 ), S(q) q 9, q=1

Recall that by Theorems 10.3 and 10.4 together provide us the estimate o(n2 ), S(q) q 9, q=1 Chaptr 11 Th singular sris Rcall that by Thorms 10 and 104 togthr provid us th stimat 9 4 n 2 111 Rn = SnΓ 2 + on2, whr th singular sris Sn was dfind in Chaptr 10 as Sn = q=1 Sq q 9, with Sq = 1 a q gcda,q=1

More information

Limiting value of higher Mahler measure

Limiting value of higher Mahler measure Limiting valu of highr Mahlr masur Arunabha Biswas a, Chris Monico a, a Dpartmnt of Mathmatics & Statistics, Txas Tch Univrsity, Lubbock, TX 7949, USA Abstract W considr th k-highr Mahlr masur m k P )

More information

EEO 401 Digital Signal Processing Prof. Mark Fowler

EEO 401 Digital Signal Processing Prof. Mark Fowler EEO 401 Digital Signal Procssing Prof. Mark Fowlr Dtails of th ot St #19 Rading Assignmnt: Sct. 7.1.2, 7.1.3, & 7.2 of Proakis & Manolakis Dfinition of th So Givn signal data points x[n] for n = 0,, -1

More information

Australian Journal of Basic and Applied Sciences, 4(9): , 2010 ISSN

Australian Journal of Basic and Applied Sciences, 4(9): , 2010 ISSN Australia Joural of Basic ad Applid Scics, 4(9): 4-43, ISSN 99-878 Th Caoical Product of th Diffrtial Equatio with O Turig Poit ad Sigular Poit A Dabbaghia, R Darzi, 3 ANaty ad 4 A Jodayr Akbarfa, Islaic

More information

The Equitable Dominating Graph

The Equitable Dominating Graph Intrnational Journal of Enginring Rsarch and Tchnology. ISSN 0974-3154 Volum 8, Numbr 1 (015), pp. 35-4 Intrnational Rsarch Publication Hous http://www.irphous.com Th Equitabl Dominating Graph P.N. Vinay

More information

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges.

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges. Optio Chaptr Ercis. Covrgs to Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Divrgs 8 Divrgs Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Covrgs to Covrgs to 8 Proof Covrgs to π l 8 l a b Divrgt π Divrgt

More information

Derivation of a Predictor of Combination #1 and the MSE for a Predictor of a Position in Two Stage Sampling with Response Error.

Derivation of a Predictor of Combination #1 and the MSE for a Predictor of a Position in Two Stage Sampling with Response Error. Drivatio of a Prdictor of Cobiatio # ad th SE for a Prdictor of a Positio i Two Stag Saplig with Rspos Error troductio Ed Stak W driv th prdictor ad its SE of a prdictor for a rado fuctio corrspodig to

More information

Session : Plasmas in Equilibrium

Session : Plasmas in Equilibrium Sssio : Plasmas i Equilibrium Ioizatio ad Coductio i a High-prssur Plasma A ormal gas at T < 3000 K is a good lctrical isulator, bcaus thr ar almost o fr lctros i it. For prssurs > 0.1 atm, collisio amog

More information

FORBIDDING RAINBOW-COLORED STARS

FORBIDDING RAINBOW-COLORED STARS FORBIDDING RAINBOW-COLORED STARS CARLOS HOPPEN, HANNO LEFMANN, KNUT ODERMANN, AND JULIANA SANCHES Abstract. W cosidr a xtrmal problm motivatd by a papr of Balogh [J. Balogh, A rmark o th umbr of dg colorigs

More information

Week 3: Connected Subgraphs

Week 3: Connected Subgraphs Wk 3: Connctd Subgraphs Sptmbr 19, 2016 1 Connctd Graphs Path, Distanc: A path from a vrtx x to a vrtx y in a graph G is rfrrd to an xy-path. Lt X, Y V (G). An (X, Y )-path is an xy-path with x X and y

More information

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 12

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 12 REVIEW Lctur 11: Numrical Fluid Mchaics Sprig 2015 Lctur 12 Fiit Diffrcs basd Polyomial approximatios Obtai polyomial (i gral u-qually spacd), th diffrtiat as dd Nwto s itrpolatig polyomial formulas Triagular

More information

Technical Support Document Bias of the Minimum Statistic

Technical Support Document Bias of the Minimum Statistic Tchical Support Documt Bias o th Miimum Stattic Itroductio Th papr pla how to driv th bias o th miimum stattic i a radom sampl o siz rom dtributios with a shit paramtr (also kow as thrshold paramtr. Ths

More information

1 Minimum Cut Problem

1 Minimum Cut Problem CS 6 Lctur 6 Min Cut and argr s Algorithm Scribs: Png Hui How (05), Virginia Dat: May 4, 06 Minimum Cut Problm Today, w introduc th minimum cut problm. This problm has many motivations, on of which coms

More information

Introduction to Quantum Information Processing. Overview. A classical randomised algorithm. q 3,3 00 0,0. p 0,0. Lecture 10.

Introduction to Quantum Information Processing. Overview. A classical randomised algorithm. q 3,3 00 0,0. p 0,0. Lecture 10. Itroductio to Quatum Iformatio Procssig Lctur Michl Mosca Ovrviw! Classical Radomizd vs. Quatum Computig! Dutsch-Jozsa ad Brsti- Vazirai algorithms! Th quatum Fourir trasform ad phas stimatio A classical

More information

Further Results on Pair Sum Graphs

Further Results on Pair Sum Graphs Applid Mathmatis, 0,, 67-75 http://dx.doi.org/0.46/am.0.04 Publishd Oli Marh 0 (http://www.sirp.org/joural/am) Furthr Rsults o Pair Sum Graphs Raja Poraj, Jyaraj Vijaya Xavir Parthipa, Rukhmoi Kala Dpartmt

More information

Blackbody Radiation. All bodies at a temperature T emit and absorb thermal electromagnetic radiation. How is blackbody radiation absorbed and emitted?

Blackbody Radiation. All bodies at a temperature T emit and absorb thermal electromagnetic radiation. How is blackbody radiation absorbed and emitted? All bodis at a tmpratur T mit ad absorb thrmal lctromagtic radiatio Blackbody radiatio I thrmal quilibrium, th powr mittd quals th powr absorbd How is blackbody radiatio absorbd ad mittd? 1 2 A blackbody

More information

Homotopy perturbation technique

Homotopy perturbation technique Comput. Mthods Appl. Mch. Engrg. 178 (1999) 257±262 www.lsvir.com/locat/cma Homotopy prturbation tchniqu Ji-Huan H 1 Shanghai Univrsity, Shanghai Institut of Applid Mathmatics and Mchanics, Shanghai 272,

More information

Time regularity of solutions to linear equations with Lévy noise in infinite dimensions

Time regularity of solutions to linear equations with Lévy noise in infinite dimensions Tim rgularity of solutios to liar quatios with Lévy ois i ifiit dimsios S. Pszat Faculty of Applid Mathmatics, AG Uivrsity of Scic ad Tchology, Kraków, Polad, E-mail adrss: apszat@cyf-kr.du.pl. J. Zabczyk

More information

(1) Then we could wave our hands over this and it would become:

(1) Then we could wave our hands over this and it would become: MAT* K285 Spring 28 Anthony Bnoit 4/17/28 Wk 12: Laplac Tranform Rading: Kohlr & Johnon, Chaptr 5 to p. 35 HW: 5.1: 3, 7, 1*, 19 5.2: 1, 5*, 13*, 19, 45* 5.3: 1, 11*, 19 * Pla writ-up th problm natly and

More information

Problem Value Score Earned No/Wrong Rec -3 Total

Problem Value Score Earned No/Wrong Rec -3 Total GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING ECE6 Fall Quiz # Writt Eam Novmr, NAME: Solutio Kys GT Usram: LAST FIRST.g., gtiit Rcitatio Sctio: Circl t dat & tim w your Rcitatio

More information

(Reference: sections in Silberberg 5 th ed.)

(Reference: sections in Silberberg 5 th ed.) ALE. Atomic Structur Nam HEM K. Marr Tam No. Sctio What is a atom? What is th structur of a atom? Th Modl th structur of a atom (Rfrc: sctios.4 -. i Silbrbrg 5 th d.) Th subatomic articls that chmists

More information