Empirical Study in Finite Correlation Coefficient in Two Phase Estimation

Size: px
Start display at page:

Download "Empirical Study in Finite Correlation Coefficient in Two Phase Estimation"

Transcription

1 M. Khoshvisa Griffith Uivrsity Griffith Busiss School Australia F. Kaymarm Massachustts Istitut of Tchology Dpartmt of Mchaical girig USA H. P. Sigh R. Sigh Vikram Uivrsity Dpartmt of Mathmatics ad Statistics Idia F. Smaradach Uivrsity of Nw Mico Dpartmt of Mathmatics Gallup USA. mpirical Study i Fiit orrlatio officit i Two Phas stimatio Publishd i: Florti Smaradach Mohammad Khoshvisa Sukato Bhattacharya (ditors) OMPUTATIONAL MODLING IN APPLID PROBLMS: OLLTD PAPRS ON ONOMTRIS OPRATIONS RSARH GAM THORY AND SIMULATION His Phoi USA 006 ISBN: pp. - 7

2 Abstract This papr proposs a class of stimators for populatio corrlatio cofficit wh iformatio about th populatio ma ad populatio variac of o of th variabls is ot availabl but iformatio about ths paramtrs of aothr variabl (auiliary) is availabl i two phas samplig ad aalys its proprtis. Optimum stimator i th class is idtifid with its variac formula. Th stimators of th class ivolv ukow costats whos optimum valus dpd o ukow populatio paramtrs.followig (Sigh 98) ad (Srivastava ad Jhajj 98) it has b show that wh ths populatio paramtrs ar rplacd by thir cosistt stimats th rsultig class of stimators has th sam asymptotic variac as that of optimum stimator. A mpirical study is carrid out to dmostrat th prformac of th costruc stimators. Kywords: orrlatio cofficit Fiit populatio Auiliary iformatio Variac. 000 MS: 9B8 6P0

3 . Itroductio osidr a fiit populatio U {..i..n}. Lt y ad b th study ad auiliary variabls takig valus y i ad i rspctivly for th ith uit. Th corrlatio cofficit btw y ad is dfid by whr S y X N y S y /(S y S ) (.) N N N ( N ) ( yi Y )( i X ) S ( N ) ( i X ) S y ( N ) ( yi Y ) N i i i N y i i Y N. Basd o a simpl radom sampl of si draw without rplacmt i ( i y i ) i ; th usual stimator of y i is th corrspodig sampl corrlatio cofficit : r s y /(s s y) (.) whr s y ( ) ( yi y)( i ) s ( ) ( i ) s y i y y i i i ( ) ( yi y) Th problm of stimatig i i. i y has b arlir tak up by various authors icludig (Koop 970) (Gupta t. al ) (Wakimoto 97) (Gupta ad Sigh 989) (Raa 989) ad (Sigh t. al. 996) i diffrt situatios. (Srivastava ad Jhajj 986) hav furthr cosidrd th problm of stimatig y i th situatios whr th

4 iformatio o auiliary variabl for all uits i th populatio is availabl. I such situatios thy hav suggs a class of stimators for valus of th populatio ma X ad th populatio variac. y y which utilis th kow S of th auiliary variabl I this papr usig two phas samplig mchaism a class of stimators for i th prsc of th availabl kowldg ( Z ad S ) o scod auiliary variabl is cosidrd wh th populatio ma X ad populatio variac S of th mai auiliary variabl ar ot kow.. Th Suggs lass of stimators I may situatios of practical importac it may happ that o iformatio is availabl o th populatio ma X ad populatio variac S w sk to stimat th populatio corrlatio cofficit y from a sampl s obtaid through a two-phas slctio. Allowig simpl radom samplig without rplacmt schm i ach phas th two- phas samplig schm will b as follows: (i) Th first phas sampl of fid si is draw to obsrv oly i s ( s U ) ordr to furish a good stimats of X ad (ii) Giv obsrv y oly. Lt ( ) i ( ) s i s S. s th scod- phas sampl s ( s ) y ( ) y i i s ( ) ( ). i s i s ( ) ( i ) i i s s of fid si is draw to i s W writ u v s s. Whatvr b th sampl chos lt (uv) assum valus i a boudd closd cov subst R of th two-dimsioal ral spac cotaiig th poit (). Lt h (u v) b a fuctio of u ad v such that h() (.) ad such that it satisfis th followig coditios:

5 . Th fuctio h (uv) is cotiuous ad boudd i R.. Th first ad scod partial drivativs of h(uv) ist ad ar cotiuous ad boudd i R. Now o may cosidr th class of stimators of y dfid by hd r h( u v) (.) which is doubl samplig vrsio of th class of stimators ~ r r f ( u v t ) Suggs by (Srivastava ad Jhajj 986) whr kow. u X v s S Somtims v if th populatio ma X ad populatio variac ad ( S ) X ar S of ar ot kow iformatio o a chaply ascrtaiabl variabl closly rla to but compard to rmotly rla to y is availabl o all uits of th populatio. This typ of situatio has b brifly discussd by amog othrs (had 97) (Kirgyra ). Followig (had 97) o may dfi a chai ratio- typ stimator for y as Z s S d r (.) s s whr th populatio ma Z ad populatio variac kow ad ( ) s ( ) ( ) i s i i s i S of scod auiliary variabl ar ar th sampl ma ad sampl variac of basd o prlimiary larg sampl s si (>). of Th stimator d i (.) may b gralid as d α α α α s s r (.) s Z S 6

6 whr α i ' s (i) ar suitably chos costats. May othr graliatio of d is possibl. W hav thrfor cosidrd a mor gral class of y from which a umbr of stimators ca b gra. Th proposd gralid stimators for populatio corrlatio cofficit y is dfid by r t( u v w a) (.) whr w Z a s S ad t(uvwa) is a fuctio of (uvwa) such that t () (.6) Satisfyig th followig coditios: (i) Whatvr b th sampls (s ad s) chos lt (uvwa) assum valus i a closd cov subst S of th four dimsioal ral spac cotaiig th poit P(). (ii) I S th fuctio t(uvwa) is cotiuous ad boudd. (iii) Th first ad scod ordr partial drivativs of t(uvw a) ist ad ar cotiuous ad boudd i S To fid th bias ad variac of s s y S y S ( + ) X ( + ) ( + ) Z ( + ) s X ( + S w writ ) s ( + S ) s y ( + S y ) ( + s ) such that ( 0 ) ( )( )( )0 ad ( i ) 0 i ad igorig th fiit populatio corrctio trms w writ to th first dgr of approimatio 7

7 8 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) { } ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) { } ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) { } ( ) ( ) ( ) ( ) ( ) { } ( ) ( ) ( ) ( ) ( ) { } y y y y y y y y whr ( ) / 00 / 00 / 00 m q p pqm pqm μ μ μ μ ( ) ( ) ( ) ( ) N i m i q i p i pqm Z X Y y N μ (pqm) big o-gativ itgrs. To fid th pctatio ad variac of w pad t(uvwa) about th poit P () i a scod- ordr Taylor s sris prss this valu ad th valu of r i trms of s. padig i powrs of s ad rtaiig trms up to scod powr w hav ( ) ( ) + o y (.7) which shows that th bias of is of th ordr - ad so up to ordr - ma squar rror ad th variac of ar sam. padig ( ) y rtaiig trms up to scod powr i s takig pctatio ad usig th abov pc valus w obtai th variac of to th first dgr of approimatio as

8 Var( ) Var( r) + ( ( y / )[ Bt + Dt y / )[ t + ( + F t t + ( ) t + ) t At t ( t t Bt ) t + At t t ] t t ] (.8) whr t (P) t (P) t (P)ad t (P) rspctivly dot th first partial drivativs of t(uvwa) whit rspct to uvw ad a rspctivly at th poit P () Var(r) / )[ ( / ) (/ )( + + ) {( + ) / }] A { D { 0 0 ( 0 y y + y (.9) ( ( 0 / / y y )} )} B { F { ( ( 0 / / y y )} )} Ay paramtric fuctio t(uvwa) satisfyig (.6) ad th coditios () ad () ca grat a stimator of th class(.). Th variac of t t t t at (.6) is miimid for [ A( ) B ] ( ) ( B A ) ( ) [ D( ) F ] α(say) β (say) γ (say) ( ) 00 ( ) ( ) F D 00 (say) (.0) Thus th rsultig (miimum) variac of is giv by A mi. Var( ) Var( r) ( ) y[ ( y D / ) {( D / ) 00 + ( 00 {( A / ) + ( 00 F} ) B} ] ) (.) 9

9 It is obsrvd from (.) that if optimum valus of th paramtrs giv by (.0) ar usd th variac of th stimator is always lss tha that of r as th last two trms o th right had sids of (.) ar o-gativ. Two simpl fuctios t(uvwa) satisfyig th rquird coditios ar t(uvwa) + α u ) + α ( v ) + α ( w ) + α ( a ) t ( u v w a) u α ( v α w α a α ad for both ths fuctios t (P) α t (P) α t (P) α ad t (P) α. Thus o should us optimum valus of α α α ad α i to b o that th stima to gt th miimum variac. It is attaid th miimum variac oly wh th optimum valus of th costats α i (i) which ar fuctios of ukow populatio paramtrs ar kow. To us such stimators i practic o has to us som gussd valus of populatio paramtrs obtaid ithr through past pric or through a pilot sampl survy. It may b furthr o that v if th valus of th costats usd i th stimator ar ot actly qual to thir optimum valus as giv by (.8) but ar clos ough th rsultig stimator will b bttr tha th covtioal stimator as has b illustra by (Das ad Tripathi 978 Sc.). rducs to If o iformatio o scod auiliary variabl is usd th th stimator hd dfid i (.). Takig i (.8) w gt th variac of hd to th first dgr of approimatio as [ h ( ) + ( ) h () Ah () Bh () h () h () ] Var hd ) Var( r) + y + (.) ( which is miimid for h () [ A( ( ) B ) ] h () ( B ( A ) ) (.) Thus th miimum variac of hd is giv by 0

10 mi.var( hd )Var(r) -( ) A {( A ) } y [ + B ] (.) ( ) It follows from (.) ad (.) that mi.var( )-mi.var( hd ) ( ) y [ D {( D + ( which is always positiv. Thus th proposd stimator 00 ) F} ) ] (.) is always bttr tha hd.. A Widr lass of stimators I this sctio w cosidr a class of stimators of y widr tha (.) giv by gd g(ruvwa) (.) whr g(ruvwa) is a fuctio of ruv wa ad such that g( ) ad g( ) r ( ) Procdig as i sctio it ca asily b show to th first ordr of approimatio that th miimum variac of gd is sam as that of giv i (.). It is to b o that th diffrc-typ stimator r d r + α (u-) + α (v-) + α (w-) + α (a-) is a particular cas of ot th mmbr of i (.). gd but it is. Optimum Valus ad Thir stimats Th optimum valus t (P) α t (P) β t (P) γ ad t (P) giv at (.0) ivolvs ukow populatio paramtrs. Wh ths optimum valus ar substitu i (.) it o logr rmais a stimator sic it ivolvs ukow (α β γ ) which ar fuctios of ukow populatio paramtrs say pqm (p qm 0) ad y itslf. Hc it is advisabl to rplac thm by thir cosistt stimats from sampl valus. Lt ( α β γ ) b cosistt stimators of t (P)t (P) t (P) ad t (P) rspctivly whr

11 [ A( ) ] B [ t ( P) α B ] A t ( β ) ( ) [ D ( ) ] 00 F 00 [ t γ ] F D 00 t ( ) ( P ) ( ) with A [ + ( / r)] B [ + ( / )] r D [ + ( / r)] F [ + ( / )] 0 0 s s / ( ) p / q / m / μ μ μ μ / pqm pqm 0 0 r (.) μ pqm p q ( ) ( yi y) ( i ) ( i ) i m ( / ) i s ( ) ( i ) ( / ) i i i i r s y /( s ys ) s y ( ) ( yi y) s ) i i ( ( ). i W th rplac (α β γ ) by ( α β γ ) i th optimum rsultig i th stimator say which is dfid by r t ( u v w a α β γ ) (.) whr th fuctio t(u) U ( u v w a α β γ ) is drivd from th th fuctio t(uvwa) giv at (.) by rplacig th ukow costats ivolvd i it by th cosistt stimats of optimum valus. Th coditio (.6) will th imply that t(p) (.) whr P ( α β γ ) W furthr assum that

12 ( ) ( t U ( ) t P) α β u ( t U t P) v U P U P ( ) ( t U ( ) t P) γ w ( t U t P) (.) a U P U P ( ) ( t U ( ) t P) ο α 6 ο ( t U t P) U P β U P t ( U ) ( ) t 7 ο 8 ο γ ( t U t P) U P U P padig t(u) about P ( α β γ ) i Taylor s sris w hav r[ t ( P + ( β β ) t ) + ( u ) t 6 ( P ) + ( P ) + ( v ) t ( P ) + ( w ) t ( P ) + ( a ) t ( P ( ) ( ) γ γ t P + ( ) t ( P ) + scod ordr trms] 7 8 ) + ( α α) t ( P (.) ) Usig (.) i (.) w hav r[ + ( u ) α + ( v ) β + ( w ) γ + ( a ) + scod ordr trms] (.6) prssig (.6) i trm of s squarig ad rtaiig trms of s up to scod dgr w hav ( + Takig pctatio of both sids i (.7) w gt th variac of y ) y[ ( 0 ) + α( ) + β ( ) + γ ] (.7) approimatio as to th first dgr of

13 Var( ) Var( r) ( ) + ( y D / ) y A {( D / ) 00 + ( {( A / ) + ( F} ) B} ) which is sam as (.) w thus hav stablishd th followig rsult. (.8) Rsult.: If optimum valus of costats i (.0) ar rplacd by thir cosistt stimators ad coditios (.) ad (.) hold good th rsultig stimator sam variac to th first dgr of approimatio as that of optimum. has th Rmark.: It may b asily amid that som spcial cass: α β γ (i) r u v w a (ii) { + ( α u ) + ( γ w )} r { ( β v ) ( a )} (iii) r[ + ( α u ) + ( β u ) + ( γ w ) + ( a )] (iv) r[ ( α u ) ( β u ) ( γ w ) ( a )] of satisfy th coditios (.) ad (.) ad attai th variac (.8). Rmark.: Th fficicis of th stimators discussd i this papr ca b compard for fid cost followig th procdur giv i (Sukhatm t. al. 98).. mpirical Study To illustrat th prformac of various stimators of populatio corrlatio cofficit w cosidr th data giv i (Murthy 967 p. 6]. Th variats ar: youtput Numbr of Workrs Fid apital N80 0

14 X 8.87 Y 8.68 Z y y Th prct rlativ fficicis (PRs) of stimator r hav b compu ad compild i Tabl.. y d hd with rspct to covtioal Tabl.: Th PR s of diffrt stimators of stimator r hd (or PR(.r) y ) tha r ad Tabl. clarly shows that th proposd stimator hd. (or ) is mor fficit Rfrcs: [] had L. (97) Som ratio-typ stimators basd o two or mor auiliary variabls Ph.D. Dissrtatio Iowa Stat Uivrsity Ams Iowa. [] Das A.K. ad Tripathi T.P. ( 978) Us of Auiliary Iformatio i stimatig th Fiit populatio Variac SakhyaSr [] Gupta J.P. Sigh R. ad Lal B. (978) O th stimatio of th fiit populatio corrlatio cofficit-i Sakhya vol. 0 pp [] Gupta J.P. Sigh R. ad Lal B. (979) O th stimatio of th fiit populatio corrlatio cofficit-ii Sakhya vol. pp.-9.

15 [] Gupta J.P. ad Sigh R. (989) Usual corrlatio cofficit i PPSWR samplig Joural of Idia Statistical Associatio vol. 7 pp. -6. [6] Kirgyra B. (980) A chai- ratio typ stimators i fiit populatio doubl samplig usig two auiliary variabls Mtrika vol. 7 pp. 7-. [7] Kirgyra B. (98) Rgrssio typ stimators usig two auiliary variabls ad th modl of doubl samplig from fiit populatios Mtrika vol. pp. -6. [8] Koop J.. (970) stimatio of corrlatio for a fiit Uivrs Mtrika vol. pp [9] Murthy M.N. (967) Samplig Thory ad Mthods Statistical Publishig Socity alcutta Idia. [0] Raa R.S. (989) ocis stimator of bias ad variac of th fiit populatio corrlatio cofficit Jour. Id. Soc. Agr. Stat. vol. o. pp [] Sigh R.K. (98) O stimatig ratio ad product of populatio paramtrs al. Stat. Assoc. Bull. Vol. pp [] Sigh S. Magat N.S. ad Gupta J.P. (996) Improvd stimator of fiit populatio corrlatio cofficit Jour. Id. Soc. Agr. Stat. vol. 8 o. pp. -9. [] Srivastava S.K. (967) A stimator usig auiliary iformatio i sampl survys. al. Stat. Assoc. Bull. vol. 6 pp. -. [] Srivastava S.K. ad Jhajj H.S. (98) A lass of stimators of th populatio ma usig multi-auiliary iformatio al. Stat. Assoc. Bull. vol. pp

16 [] Srivastava S.K. ad Jhajj H.S. (986) O th stimatio of fiit populatio corrlatio cofficit Jour. Id. Soc. Agr. Stat. vol. 8 o. pp [6] Srivkatarma T. ad Tracy D.S. (989) Two-phas samplig for slctio with probability proportioal to si i sampl survys Biomtrika vol. 76 pp [7] Sukhatm P.V. Sukhatm B.V. Sukhatm S. ad Asok. ( 98) Samplig Thory of Survys with Applicatios Idia Socity of Agricultural Statistics Nw Dlhi. [8] Wakimoto K.(97) Stratifid radom samplig (III): stimatio of th corrlatio cofficit A. Ist. Statist Math vol. pp

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z Sris Expasio of Rciprocal of Gamma Fuctio. Fuctios with Itgrs as Roots Fuctio f with gativ itgrs as roots ca b dscribd as follows. f() Howvr, this ifiit product divrgs. That is, such a fuctio caot xist

More information

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net Taylor s Thorm & Lagrag Error Bouds Actual Error This is th ral amout o rror, ot th rror boud (worst cas scario). It is th dirc btw th actual () ad th polyomial. Stps:. Plug -valu ito () to gt a valu.

More information

1985 AP Calculus BC: Section I

1985 AP Calculus BC: Section I 985 AP Calculus BC: Sctio I 9 Miuts No Calculator Nots: () I this amiatio, l dots th atural logarithm of (that is, logarithm to th bas ). () Ulss othrwis spcifid, th domai of a fuctio f is assumd to b

More information

Chapter Taylor Theorem Revisited

Chapter Taylor Theorem Revisited Captr 0.07 Taylor Torm Rvisitd Atr radig tis captr, you sould b abl to. udrstad t basics o Taylor s torm,. writ trascdtal ad trigoomtric uctios as Taylor s polyomial,. us Taylor s torm to id t valus o

More information

APPENDIX: STATISTICAL TOOLS

APPENDIX: STATISTICAL TOOLS I. Nots o radom samplig Why do you d to sampl radomly? APPENDI: STATISTICAL TOOLS I ordr to masur som valu o a populatio of orgaisms, you usually caot masur all orgaisms, so you sampl a subst of th populatio.

More information

On the approximation of the constant of Napier

On the approximation of the constant of Napier Stud. Uiv. Babş-Bolyai Math. 560, No., 609 64 O th approximatio of th costat of Napir Adri Vrscu Abstract. Startig from som oldr idas of [] ad [6], w show w facts cocrig th approximatio of th costat of

More information

Chapter (8) Estimation and Confedence Intervals Examples

Chapter (8) Estimation and Confedence Intervals Examples Chaptr (8) Estimatio ad Cofdc Itrvals Exampls Typs of stimatio: i. Poit stimatio: Exampl (1): Cosidr th sampl obsrvatios, 17,3,5,1,18,6,16,10 8 X i i1 17 3 5 118 6 16 10 116 X 14.5 8 8 8 14.5 is a poit

More information

PURE MATHEMATICS A-LEVEL PAPER 1

PURE MATHEMATICS A-LEVEL PAPER 1 -AL P MATH PAPER HONG KONG EXAMINATIONS AUTHORITY HONG KONG ADVANCED LEVEL EXAMINATION PURE MATHEMATICS A-LEVEL PAPER 8 am am ( hours) This papr must b aswrd i Eglish This papr cosists of Sctio A ad Sctio

More information

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series Chatr Ifiit Sris Pag of Sctio F Itgral Tst Chatr : Ifiit Sris By th d of this sctio you will b abl to valuat imror itgrals tst a sris for covrgc by alyig th itgral tst aly th itgral tst to rov th -sris

More information

Probability & Statistics,

Probability & Statistics, Probability & Statistics, BITS Pilai K K Birla Goa Campus Dr. Jajati Kshari Sahoo Dpartmt of Mathmatics BITS Pilai, K K Birla Goa Campus Poisso Distributio Poisso Distributio: A radom variabl X is said

More information

A General Family of Estimators for Estimating Population Variance Using Known Value of Some Population Parameter(s)

A General Family of Estimators for Estimating Population Variance Using Known Value of Some Population Parameter(s) Rajesh Sigh, Pakaj Chauha, Nirmala Sawa School of Statistics, DAVV, Idore (M.P.), Idia Floreti Smaradache Uiversity of New Meico, USA A Geeral Family of Estimators for Estimatig Populatio Variace Usig

More information

A Simple Proof that e is Irrational

A Simple Proof that e is Irrational Two of th most bautiful ad sigificat umbrs i mathmatics ar π ad. π (approximatly qual to 3.459) rprsts th ratio of th circumfrc of a circl to its diamtr. (approximatly qual to.788) is th bas of th atural

More information

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges.

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges. Optio Chaptr Ercis. Covrgs to Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Divrgs 8 Divrgs Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Covrgs to Covrgs to 8 Proof Covrgs to π l 8 l a b Divrgt π Divrgt

More information

Further Results on Pair Sum Graphs

Further Results on Pair Sum Graphs Applid Mathmatis, 0,, 67-75 http://dx.doi.org/0.46/am.0.04 Publishd Oli Marh 0 (http://www.sirp.org/joural/am) Furthr Rsults o Pair Sum Graphs Raja Poraj, Jyaraj Vijaya Xavir Parthipa, Rukhmoi Kala Dpartmt

More information

10. Joint Moments and Joint Characteristic Functions

10. Joint Moments and Joint Characteristic Functions 0 Joit Momts ad Joit Charactristic Fctios Followig sctio 6 i this sctio w shall itrodc varios paramtrs to compactly rprst th iformatio cotaid i th joit pdf of two rvs Giv two rvs ad ad a fctio g x y dfi

More information

ln x = n e = 20 (nearest integer)

ln x = n e = 20 (nearest integer) H JC Prlim Solutios 6 a + b y a + b / / dy a b 3/ d dy a b at, d Giv quatio of ormal at is y dy ad y wh. d a b () (,) is o th curv a+ b () y.9958 Qustio Solvig () ad (), w hav a, b. Qustio d.77 d d d.77

More information

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx MONTGOMERY COLLEGE Dpartmt of Mathmatics Rockvill Campus MATH 8 - REVIEW PROBLEMS. Stat whthr ach of th followig ca b itgratd by partial fractios (PF), itgratio by parts (PI), u-substitutio (U), or o of

More information

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120 Tim : hr. Tst Papr 8 D 4//5 Bch - R Marks : SINGLE CORRECT CHOICE TYPE [4, ]. If th compl umbr z sisfis th coditio z 3, th th last valu of z is qual to : z (A) 5/3 (B) 8/3 (C) /3 (D) o of ths 5 4. Th itgral,

More information

NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES

NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES Digst Joural of Naomatrials ad Biostructurs Vol 4, No, March 009, p 67-76 NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES A IRANMANESH a*, O KHORMALI b, I NAJAFI KHALILSARAEE c, B SOLEIMANI

More information

Statistics 3858 : Likelihood Ratio for Exponential Distribution

Statistics 3858 : Likelihood Ratio for Exponential Distribution Statistics 3858 : Liklihood Ratio for Expotial Distributio I ths two xampl th rjctio rjctio rgio is of th form {x : 2 log (Λ(x)) > c} for a appropriat costat c. For a siz α tst, usig Thorm 9.5A w obtai

More information

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1 DTFT Proprtis Exampl - Dtrmi th DTFT Y of y α µ, α < Lt x α µ, α < W ca thrfor writ y x x From Tabl 3., th DTFT of x is giv by ω X ω α ω Copyright, S. K. Mitra Copyright, S. K. Mitra DTFT Proprtis DTFT

More information

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n 07 - SEQUENCES AND SERIES Pag ( Aswrs at h d of all qustios ) ( ) If = a, y = b, z = c, whr a, b, c ar i A.P. ad = 0 = 0 = 0 l a l

More information

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2 MATHEMATIS --RE Itgral alculus Marti Huard Witr 9 Rviw Erciss. Evaluat usig th dfiitio of th dfiit itgral as a Rima Sum. Dos th aswr rprst a ara? a ( d b ( d c ( ( d d ( d. Fid f ( usig th Fudamtal Thorm

More information

Iterative Methods of Order Four for Solving Nonlinear Equations

Iterative Methods of Order Four for Solving Nonlinear Equations Itrativ Mods of Ordr Four for Solvig Noliar Equatios V.B. Kumar,Vatti, Shouri Domii ad Mouia,V Dpartmt of Egirig Mamatis, Formr Studt of Chmial Egirig Adhra Uivrsity Collg of Egirig A, Adhra Uivrsity Visakhapatam

More information

Journal of Modern Applied Statistical Methods

Journal of Modern Applied Statistical Methods Joural of Modr Applid Statistical Mthods Volum Issu Articl 6 --03 O Som Proprtis of a Htrogous Trasfr Fuctio Ivolvig Symmtric Saturatd Liar (SATLINS) with Hyprbolic Tagt (TANH) Trasfr Fuctios Christophr

More information

Some Exponential Ratio-Product Type Estimators using information on Auxiliary Attributes under Second Order Approximation

Some Exponential Ratio-Product Type Estimators using information on Auxiliary Attributes under Second Order Approximation ; [Formerly kow as the Bulleti of Statistics & Ecoomics (ISSN 097-70)]; ISSN 0975-556X; Year: 0, Volume:, Issue Number: ; It. j. stat. eco.; opyright 0 by ESER Publicatios Some Expoetial Ratio-Product

More information

SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3

SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3 SOLVED EXAMPLES E. If f() E.,,, th f() f() h h LHL RHL, so / / Lim f() quls - (D) Dos ot ist [( h)+] [(+h) + ] f(). LHL E. RHL h h h / h / h / h / h / h / h As.[C] (D) Dos ot ist LHL RHL, so giv it dos

More information

SOME IDENTITIES FOR THE GENERALIZED POLY-GENOCCHI POLYNOMIALS WITH THE PARAMETERS A, B AND C

SOME IDENTITIES FOR THE GENERALIZED POLY-GENOCCHI POLYNOMIALS WITH THE PARAMETERS A, B AND C Joural of Mathatical Aalysis ISSN: 2217-3412, URL: www.ilirias.co/ja Volu 8 Issu 1 2017, Pags 156-163 SOME IDENTITIES FOR THE GENERALIZED POLY-GENOCCHI POLYNOMIALS WITH THE PARAMETERS A, B AND C BURAK

More information

Digital Signal Processing, Fall 2006

Digital Signal Processing, Fall 2006 Digital Sigal Procssig, Fall 6 Lctur 9: Th Discrt Fourir Trasfor Zhg-Hua Ta Dpartt of Elctroic Systs Aalborg Uivrsity, Dar zt@o.aau.d Digital Sigal Procssig, I, Zhg-Hua Ta, 6 Cours at a glac MM Discrt-ti

More information

Restricted Factorial And A Remark On The Reduced Residue Classes

Restricted Factorial And A Remark On The Reduced Residue Classes Applid Mathmatics E-Nots, 162016, 244-250 c ISSN 1607-2510 Availabl fr at mirror sits of http://www.math.thu.du.tw/ am/ Rstrictd Factorial Ad A Rmark O Th Rducd Rsidu Classs Mhdi Hassai Rcivd 26 March

More information

Folding of Hyperbolic Manifolds

Folding of Hyperbolic Manifolds It. J. Cotmp. Math. Scics, Vol. 7, 0, o. 6, 79-799 Foldig of Hyprbolic Maifolds H. I. Attiya Basic Scic Dpartmt, Collg of Idustrial Educatio BANE - SUEF Uivrsity, Egypt hala_attiya005@yahoo.com Abstract

More information

International Journal of Advanced and Applied Sciences

International Journal of Advanced and Applied Sciences Itratioal Joural of Advacd ad Applid Scics x(x) xxxx Pags: xx xx Cotts lists availabl at Scic Gat Itratioal Joural of Advacd ad Applid Scics Joural hompag: http://wwwscic gatcom/ijaashtml Symmtric Fuctios

More information

An Introduction to Asymptotic Expansions

An Introduction to Asymptotic Expansions A Itroductio to Asmptotic Expasios R. Shaar Subramaia Asmptotic xpasios ar usd i aalsis to dscrib th bhavior of a fuctio i a limitig situatio. Wh a fuctio ( x, dpds o a small paramtr, ad th solutio of

More information

Hadamard Exponential Hankel Matrix, Its Eigenvalues and Some Norms

Hadamard Exponential Hankel Matrix, Its Eigenvalues and Some Norms Math Sci Ltt Vol No 8-87 (0) adamard Exotial al Matrix, Its Eigvalus ad Som Norms İ ad M bula Mathmatical Scics Lttrs Itratioal Joural @ 0 NSP Natural Scics Publishig Cor Dartmt of Mathmatics, aculty of

More information

The Interplay between l-max, l-min, p-max and p-min Stable Distributions

The Interplay between l-max, l-min, p-max and p-min Stable Distributions DOI: 0.545/mjis.05.4006 Th Itrplay btw lma lmi pma ad pmi Stabl Distributios S Ravi ad TS Mavitha Dpartmt of Studis i Statistics Uivrsity of Mysor Maasagagotri Mysuru 570006 Idia. Email:ravi@statistics.uimysor.ac.i

More information

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1 Chatr Fiv Mor Dimsios 51 Th Sac R W ar ow rard to mov o to sacs of dimsio gratr tha thr Ths sacs ar a straightforward gralizatio of our Euclida sac of thr dimsios Lt b a ositiv itgr Th -dimsioal Euclida

More information

Discrete Fourier Transform. Nuno Vasconcelos UCSD

Discrete Fourier Transform. Nuno Vasconcelos UCSD Discrt Fourir Trasform uo Vascoclos UCSD Liar Shift Ivariat (LSI) systms o of th most importat cocpts i liar systms thory is that of a LSI systm Dfiitio: a systm T that maps [ ito y[ is LSI if ad oly if

More information

NET/JRF, GATE, IIT JAM, JEST, TIFR

NET/JRF, GATE, IIT JAM, JEST, TIFR Istitut for NET/JRF, GATE, IIT JAM, JEST, TIFR ad GRE i PHYSICAL SCIENCES Mathmatical Physics JEST-6 Q. Giv th coditio φ, th solutio of th quatio ψ φ φ is giv by k. kφ kφ lφ kφ lφ (a) ψ (b) ψ kφ (c) ψ

More information

Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT) Discrt Fourir Trasorm DFT Major: All Egirig Majors Authors: Duc guy http://umricalmthods.g.us.du umrical Mthods or STEM udrgraduats 8/3/29 http://umricalmthods.g.us.du Discrt Fourir Trasorm Rcalld th xpotial

More information

H2 Mathematics Arithmetic & Geometric Series ( )

H2 Mathematics Arithmetic & Geometric Series ( ) H Mathmatics Arithmtic & Gomtric Sris (08 09) Basic Mastry Qustios Arithmtic Progrssio ad Sris. Th rth trm of a squc is 4r 7. (i) Stat th first four trms ad th 0th trm. (ii) Show that th squc is a arithmtic

More information

INTRODUCTION TO SAMPLING DISTRIBUTIONS

INTRODUCTION TO SAMPLING DISTRIBUTIONS http://wiki.stat.ucla.du/socr/id.php/socr_courss_2008_thomso_econ261 INTRODUCTION TO SAMPLING DISTRIBUTIONS By Grac Thomso INTRODUCTION TO SAMPLING DISTRIBUTIONS Itro to Samplig 2 I this chaptr w will

More information

Improved exponential estimator for population variance using two auxiliary variables

Improved exponential estimator for population variance using two auxiliary variables OCTOGON MATHEMATICAL MAGAZINE Vol. 7, No., October 009, pp 667-67 ISSN -5657, ISBN 97-973-55-5-0, www.hetfalu.ro/octogo 667 Improved expoetial estimator for populatio variace usig two auxiliar variables

More information

Performance Rating of the Type 1 Half Logistic Gompertz Distribution: An Analytical Approach

Performance Rating of the Type 1 Half Logistic Gompertz Distribution: An Analytical Approach Amrica Joural of Mathmatics ad Statistics 27, 7(3): 93-98 DOI:.5923/j.ajms.2773. Prformac Ratig of th Typ Half Logistic Gomprtz Distributio: A Aalytical Approach Ogud A. A. *, Osghal O. I., Audu A. T.

More information

Session : Plasmas in Equilibrium

Session : Plasmas in Equilibrium Sssio : Plasmas i Equilibrium Ioizatio ad Coductio i a High-prssur Plasma A ormal gas at T < 3000 K is a good lctrical isulator, bcaus thr ar almost o fr lctros i it. For prssurs > 0.1 atm, collisio amog

More information

A Family of Unbiased Estimators of Population Mean Using an Auxiliary Variable

A Family of Unbiased Estimators of Population Mean Using an Auxiliary Variable Advaces i Computatioal Scieces ad Techolog ISSN 0973-6107 Volume 10, Number 1 (017 pp. 19-137 Research Idia Publicatios http://www.ripublicatio.com A Famil of Ubiased Estimators of Populatio Mea Usig a

More information

STIRLING'S 1 FORMULA AND ITS APPLICATION

STIRLING'S 1 FORMULA AND ITS APPLICATION MAT-KOL (Baja Luka) XXIV ()(08) 57-64 http://wwwimviblorg/dmbl/dmblhtm DOI: 075/МК80057A ISSN 0354-6969 (o) ISSN 986-588 (o) STIRLING'S FORMULA AND ITS APPLICATION Šfkt Arslaagić Sarajvo B&H Abstract:

More information

Technical Support Document Bias of the Minimum Statistic

Technical Support Document Bias of the Minimum Statistic Tchical Support Documt Bias o th Miimum Stattic Itroductio Th papr pla how to driv th bias o th miimum stattic i a radom sampl o siz rom dtributios with a shit paramtr (also kow as thrshold paramtr. Ths

More information

Improved Class of Ratio -Cum- Product Estimators of Finite Population Mean in two Phase Sampling

Improved Class of Ratio -Cum- Product Estimators of Finite Population Mean in two Phase Sampling Global Joural of Sciece Frotier Research: F Mathematics ad Decisio Scieces Volume 4 Issue 2 Versio.0 Year 204 Type : Double Blid Peer Reviewed Iteratioal Research Joural Publisher: Global Jourals Ic. (USA

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordiary Diffrtial Equatio Aftr radig thi chaptr, you hould b abl to:. dfi a ordiary diffrtial quatio,. diffrtiat btw a ordiary ad partial diffrtial quatio, ad. Solv liar ordiary diffrtial quatio with fid

More information

On a problem of J. de Graaf connected with algebras of unbounded operators de Bruijn, N.G.

On a problem of J. de Graaf connected with algebras of unbounded operators de Bruijn, N.G. O a problm of J. d Graaf coctd with algbras of uboudd oprators d Bruij, N.G. Publishd: 01/01/1984 Documt Vrsio Publishr s PDF, also kow as Vrsio of Rcord (icluds fial pag, issu ad volum umbrs) Plas chck

More information

Law of large numbers

Law of large numbers Law of larg umbrs Saya Mukhrj W rvisit th law of larg umbrs ad study i som dtail two typs of law of larg umbrs ( 0 = lim S ) p ε ε > 0, Wak law of larrg umbrs [ ] S = ω : lim = p, Strog law of larg umbrs

More information

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels LUR 3 illig th bads Occupacy o Availabl rgy Lvls W hav dtrmid ad a dsity o stats. W also d a way o dtrmiig i a stat is illd or ot at a giv tmpratur. h distributio o th rgis o a larg umbr o particls ad

More information

A Note on Quantile Coupling Inequalities and Their Applications

A Note on Quantile Coupling Inequalities and Their Applications A Not o Quatil Couplig Iqualitis ad Thir Applicatios Harriso H. Zhou Dpartmt of Statistics, Yal Uivrsity, Nw Hav, CT 06520, USA. E-mail:huibi.zhou@yal.du Ju 2, 2006 Abstract A rlatioship btw th larg dviatio

More information

UNIT 2: MATHEMATICAL ENVIRONMENT

UNIT 2: MATHEMATICAL ENVIRONMENT UNIT : MATHEMATICAL ENVIRONMENT. Itroductio This uit itroducs som basic mathmatical cocpts ad rlats thm to th otatio usd i th cours. Wh ou hav workd through this uit ou should: apprciat that a mathmatical

More information

Problem Value Score Earned No/Wrong Rec -3 Total

Problem Value Score Earned No/Wrong Rec -3 Total GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING ECE6 Fall Quiz # Writt Eam Novmr, NAME: Solutio Kys GT Usram: LAST FIRST.g., gtiit Rcitatio Sctio: Circl t dat & tim w your Rcitatio

More information

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II COLLECTION OF SUPPLEMENTARY PROBLEMS I. CHAPTER 6 --- Trscdtl Fuctios CALCULUS II A. FROM CALCULUS BY J. STEWART:. ( How is th umbr dfid? ( Wht is pproimt vlu for? (c ) Sktch th grph of th turl potil fuctios.

More information

Solution to 1223 The Evil Warden.

Solution to 1223 The Evil Warden. Solutio to 1 Th Evil Ward. This is o of thos vry rar PoWs (I caot thik of aothr cas) that o o solvd. About 10 of you submittd th basic approach, which givs a probability of 47%. I was shockd wh I foud

More information

A Review of Complex Arithmetic

A Review of Complex Arithmetic /0/005 Rviw of omplx Arithmti.do /9 A Rviw of omplx Arithmti A omplx valu has both a ral ad imagiary ompot: { } ad Im{ } a R b so that w a xprss this omplx valu as: whr. a + b Just as a ral valu a b xprssd

More information

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 12

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 12 REVIEW Lctur 11: Numrical Fluid Mchaics Sprig 2015 Lctur 12 Fiit Diffrcs basd Polyomial approximatios Obtai polyomial (i gral u-qually spacd), th diffrtiat as dd Nwto s itrpolatig polyomial formulas Triagular

More information

Introduction to Quantum Information Processing. Overview. A classical randomised algorithm. q 3,3 00 0,0. p 0,0. Lecture 10.

Introduction to Quantum Information Processing. Overview. A classical randomised algorithm. q 3,3 00 0,0. p 0,0. Lecture 10. Itroductio to Quatum Iformatio Procssig Lctur Michl Mosca Ovrviw! Classical Radomizd vs. Quatum Computig! Dutsch-Jozsa ad Brsti- Vazirai algorithms! Th quatum Fourir trasform ad phas stimatio A classical

More information

Chapter 11.00C Physical Problem for Fast Fourier Transform Civil Engineering

Chapter 11.00C Physical Problem for Fast Fourier Transform Civil Engineering haptr. Physical Problm for Fast Fourir Trasform ivil Egirig Itroductio I this chaptr, applicatios of FFT algorithms [-5] for solvig ral-lif problms such as computig th dyamical (displacmt rspos [6-7] of

More information

Normal Form for Systems with Linear Part N 3(n)

Normal Form for Systems with Linear Part N 3(n) Applid Mathmatics 64-647 http://dxdoiorg/46/am7 Publishd Oli ovmbr (http://wwwscirporg/joural/am) ormal Form or Systms with Liar Part () Grac Gachigua * David Maloza Johaa Sigy Dpartmt o Mathmatics Collg

More information

Estimation of Consumer Demand Functions When the Observed Prices Are the Same for All Sample Units

Estimation of Consumer Demand Functions When the Observed Prices Are the Same for All Sample Units Dpartmt of Agricultural ad Rsourc Ecoomics Uivrsity of Califoria, Davis Estimatio of Cosumr Dmad Fuctios Wh th Obsrvd Prics Ar th Sam for All Sampl Uits by Quirio Paris Workig Papr No. 03-004 Sptmbr 2003

More information

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple 5/24/5 A PROOF OF THE CONTINUED FRACTION EXPANSION OF / Thomas J Oslr INTRODUCTION This ar givs aothr roof for th rmarkabl siml cotiud fractio = 3 5 / Hr is ay ositiv umbr W us th otatio x= [ a; a, a2,

More information

Chapter 3 Fourier Series Representation of Periodic Signals

Chapter 3 Fourier Series Representation of Periodic Signals Chptr Fourir Sris Rprsttio of Priodic Sigls If ritrry sigl x(t or x[] is xprssd s lir comitio of som sic sigls th rspos of LI systm coms th sum of th idividul rsposs of thos sic sigls Such sic sigl must:

More information

Cramér-Rao Inequality: Let f(x; θ) be a probability density function with continuous parameter

Cramér-Rao Inequality: Let f(x; θ) be a probability density function with continuous parameter WHEN THE CRAMÉR-RAO INEQUALITY PROVIDES NO INFORMATION STEVEN J. MILLER Abstract. W invstigat a on-paramtr family of probability dnsitis (rlatd to th Parto distribution, which dscribs many natural phnomna)

More information

Lectures 9 IIR Systems: First Order System

Lectures 9 IIR Systems: First Order System EE3054 Sigals ad Systms Lcturs 9 IIR Systms: First Ordr Systm Yao Wag Polytchic Uivrsity Som slids icludd ar xtractd from lctur prstatios prpard by McCllla ad Schafr Lics Ifo for SPFirst Slids This work

More information

Calculus & analytic geometry

Calculus & analytic geometry Calculus & aalytic gomtry B Sc MATHEMATICS Admissio owards IV SEMESTER CORE COURSE UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION CALICUT UNIVERSITYPO, MALAPPURAM, KERALA, INDIA 67 65 5 School of Distac

More information

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA NE APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA Mirca I CÎRNU Ph Dp o Mathmatics III Faculty o Applid Scincs Univrsity Polithnica o Bucharst Cirnumirca @yahoocom Abstract In a rcnt papr [] 5 th indinit intgrals

More information

Solution of Assignment #2

Solution of Assignment #2 olution of Assignmnt #2 Instructor: Alirza imchi Qustion #: For simplicity, assum that th distribution function of T is continuous. Th distribution function of R is: F R ( r = P( R r = P( log ( T r = P(log

More information

CDS 101: Lecture 5.1 Reachability and State Space Feedback

CDS 101: Lecture 5.1 Reachability and State Space Feedback CDS, Lctur 5. CDS : Lctur 5. Rachability ad Stat Spac Fdback Richard M. Murray ad Hido Mabuchi 5 Octobr 4 Goals: Di rachability o a cotrol systm Giv tsts or rachability o liar systms ad apply to ampls

More information

6. Comparison of NLMS-OCF with Existing Algorithms

6. Comparison of NLMS-OCF with Existing Algorithms 6. Compariso of NLMS-OCF with Eistig Algorithms I Chaptrs 5 w drivd th NLMS-OCF algorithm, aalyzd th covrgc ad trackig bhavior of NLMS-OCF, ad dvlopd a fast vrsio of th NLMS-OCF algorithm. W also mtiod

More information

Reliability of time dependent stress-strength system for various distributions

Reliability of time dependent stress-strength system for various distributions IOS Joural of Mathmatcs (IOS-JM ISSN: 78-578. Volum 3, Issu 6 (Sp-Oct., PP -7 www.osrjourals.org lablty of tm dpdt strss-strgth systm for varous dstrbutos N.Swath, T.S.Uma Mahswar,, Dpartmt of Mathmatcs,

More information

CDS 101: Lecture 5.1 Reachability and State Space Feedback

CDS 101: Lecture 5.1 Reachability and State Space Feedback CDS, Lctur 5. CDS : Lctur 5. Rachability ad Stat Spac Fdback Richard M. Murray 7 Octobr 3 Goals: Di rachability o a cotrol systm Giv tsts or rachability o liar systms ad apply to ampls Dscrib th dsig o

More information

Construction of asymmetric orthogonal arrays of strength three via a replacement method

Construction of asymmetric orthogonal arrays of strength three via a replacement method isid/ms/26/2 Fbruary, 26 http://www.isid.ac.in/ statmath/indx.php?modul=prprint Construction of asymmtric orthogonal arrays of strngth thr via a rplacmnt mthod Tian-fang Zhang, Qiaoling Dng and Alok Dy

More information

PROOF OF FIRST STANDARD FORM OF NONELEMENTARY FUNCTIONS

PROOF OF FIRST STANDARD FORM OF NONELEMENTARY FUNCTIONS Intrnational Journal Of Advanc Rsarch In Scinc And Enginring http://www.ijars.com IJARSE, Vol. No., Issu No., Fbruary, 013 ISSN-319-8354(E) PROOF OF FIRST STANDARD FORM OF NONELEMENTARY FUNCTIONS 1 Dharmndra

More information

2617 Mark Scheme June 2005 Mark Scheme 2617 June 2005

2617 Mark Scheme June 2005 Mark Scheme 2617 June 2005 Mark Schm 67 Ju 5 GENERAL INSTRUCTIONS Marks i th mark schm ar plicitly dsigatd as M, A, B, E or G. M marks ("mthod" ar for a attmpt to us a corrct mthod (ot mrly for statig th mthod. A marks ("accuracy"

More information

Varanasi , India. Corresponding author

Varanasi , India. Corresponding author A Geeral Family of Estimators for Estimatig Populatio Mea i Systematic Samplig Usig Auxiliary Iformatio i the Presece of Missig Observatios Maoj K. Chaudhary, Sachi Malik, Jayat Sigh ad Rajesh Sigh Departmet

More information

FORBIDDING RAINBOW-COLORED STARS

FORBIDDING RAINBOW-COLORED STARS FORBIDDING RAINBOW-COLORED STARS CARLOS HOPPEN, HANNO LEFMANN, KNUT ODERMANN, AND JULIANA SANCHES Abstract. W cosidr a xtrmal problm motivatd by a papr of Balogh [J. Balogh, A rmark o th umbr of dg colorigs

More information

10. Limits involving infinity

10. Limits involving infinity . Limits involving infinity It is known from th it ruls for fundamntal arithmtic oprations (+,-,, ) that if two functions hav finit its at a (finit or infinit) point, that is, thy ar convrgnt, th it of

More information

ASSERTION AND REASON

ASSERTION AND REASON ASSERTION AND REASON Som qustios (Assrtio Rso typ) r giv low. Ech qustio cotis Sttmt (Assrtio) d Sttmt (Rso). Ech qustio hs choics (A), (B), (C) d (D) out of which ONLY ONE is corrct. So slct th corrct

More information

WBJEEM MATHEMATICS. Q.No. μ β γ δ 56 C A C B

WBJEEM MATHEMATICS. Q.No. μ β γ δ 56 C A C B WBJEEM - MATHEMATICS Q.No. μ β γ δ C A C B B A C C A B C A B B D B 5 A C A C 6 A A C C 7 B A B D 8 C B B C 9 A C A A C C A B B A C A B D A C D A A B C B A A 5 C A C B 6 A C D C 7 B A C A 8 A A A A 9 A

More information

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform Discrt Fourir Trasform Dfiitio - T simplst rlatio btw a lt- squc x dfid for ω ad its DTFT X ( ) is ω obtaid by uiformly sampli X ( ) o t ω-axis btw ω < at ω From t dfiitio of t DTFT w tus av X X( ω ) ω

More information

Washington State University

Washington State University he 3 Ktics ad Ractor Dsig Sprg, 00 Washgto Stat Uivrsity Dpartmt of hmical Egrg Richard L. Zollars Exam # You will hav o hour (60 muts) to complt this xam which cosists of four (4) problms. You may us

More information

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation.

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation. Lur 7 Fourir Transforms and th Wav Euation Ovrviw and Motivation: W first discuss a fw faturs of th Fourir transform (FT), and thn w solv th initial-valu problm for th wav uation using th Fourir transform

More information

COMPUTING FOLRIER AND LAPLACE TRANSFORMS. Sven-Ake Gustafson. be a real-valued func'cion, defined for nonnegative arguments.

COMPUTING FOLRIER AND LAPLACE TRANSFORMS. Sven-Ake Gustafson. be a real-valued func'cion, defined for nonnegative arguments. 77 COMPUTNG FOLRER AND LAPLACE TRANSFORMS BY MEANS OF PmER SERES EVALU\TON Sv-Ak Gustafso 1. NOTATONS AND ASSUMPTONS Lt f b a ral-valud fuc'cio, dfid for ogativ argumts. W shall discuss som aspcts of th

More information

Figure 2-18 Thevenin Equivalent Circuit of a Noisy Resistor

Figure 2-18 Thevenin Equivalent Circuit of a Noisy Resistor .8 NOISE.8. Th Nyquist Nois Thorm W ow wat to tur our atttio to ois. W will start with th basic dfiitio of ois as usd i radar thory ad th discuss ois figur. Th typ of ois of itrst i radar thory is trmd

More information

Deift/Zhou Steepest descent, Part I

Deift/Zhou Steepest descent, Part I Lctur 9 Dift/Zhou Stpst dscnt, Part I W now focus on th cas of orthogonal polynomials for th wight w(x) = NV (x), V (x) = t x2 2 + x4 4. Sinc th wight dpnds on th paramtr N N w will writ π n,n, a n,n,

More information

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero.

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero. SETION 6. 57 6. Evaluation of Dfinit Intgrals Exampl 6.6 W hav usd dfinit intgrals to valuat contour intgrals. It may com as a surpris to larn that contour intgrals and rsidus can b usd to valuat crtain

More information

A Generalized Class of Estimators for Finite Population Variance in Presence of Measurement Errors

A Generalized Class of Estimators for Finite Population Variance in Presence of Measurement Errors Joural of Moder Applied Statistical Methods Volume Issue Article 3 --03 A Geeralized Class of Estimators for Fiite Populatio Variace i Presece of Measuremet Errors Praas Sharma Baaras Hidu Uiversit, Varaasi,

More information

(Reference: sections in Silberberg 5 th ed.)

(Reference: sections in Silberberg 5 th ed.) ALE. Atomic Structur Nam HEM K. Marr Tam No. Sctio What is a atom? What is th structur of a atom? Th Modl th structur of a atom (Rfrc: sctios.4 -. i Silbrbrg 5 th d.) Th subatomic articls that chmists

More information

Element sampling: Part 2

Element sampling: Part 2 Chapter 4 Elemet samplig: Part 2 4.1 Itroductio We ow cosider uequal probability samplig desigs which is very popular i practice. I the uequal probability samplig, we ca improve the efficiecy of the resultig

More information

Ordinary Differential Equations

Ordinary Differential Equations Basi Nomlatur MAE 0 all 005 Egirig Aalsis Ltur Nots o: Ordiar Diffrtial Equatios Author: Profssor Albrt Y. Tog Tpist: Sakurako Takahashi Cosidr a gral O. D. E. with t as th idpdt variabl, ad th dpdt variabl.

More information

Homotopy perturbation technique

Homotopy perturbation technique Comput. Mthods Appl. Mch. Engrg. 178 (1999) 257±262 www.lsvir.com/locat/cma Homotopy prturbation tchniqu Ji-Huan H 1 Shanghai Univrsity, Shanghai Institut of Applid Mathmatics and Mchanics, Shanghai 272,

More information

8(4 m0) ( θ ) ( ) Solutions for HW 8. Chapter 25. Conceptual Questions

8(4 m0) ( θ ) ( ) Solutions for HW 8. Chapter 25. Conceptual Questions Solutios for HW 8 Captr 5 Cocptual Qustios 5.. θ dcrass. As t crystal is coprssd, t spacig d btw t plas of atos dcrass. For t first ordr diffractio =. T Bragg coditio is = d so as d dcrass, ust icras for

More information

EMPIRICAL STUDY IN FINITE CORRELATION COEFFICIENT IN TWO PHASE ESTIMATION

EMPIRICAL STUDY IN FINITE CORRELATION COEFFICIENT IN TWO PHASE ESTIMATION MPIRIAL TDY I FIIT ORRLATIO OFFIIT I TWO PHA TIMATIO M. Khohva Lcurr Grffh vry chool of Accoug ad Fac Aurala. F. Kaymarm Aa Profor Maachu Iu of Tchology Dparm of Mchacal grg A; currly a harf vry Thra Ira.

More information

Bipolar Junction Transistors

Bipolar Junction Transistors ipolar Juctio Trasistors ipolar juctio trasistors (JT) ar activ 3-trmial dvics with aras of applicatios: amplifirs, switch tc. high-powr circuits high-spd logic circuits for high-spd computrs. JT structur:

More information

15/03/1439. Lectures on Signals & systems Engineering

15/03/1439. Lectures on Signals & systems Engineering Lcturs o Sigals & syms Egirig Dsigd ad Prd by Dr. Ayma Elshawy Elsfy Dpt. of Syms & Computr Eg. Al-Azhar Uivrsity Email : aymalshawy@yahoo.com A sigal ca b rprd as a liar combiatio of basic sigals. Th

More information

Linear Algebra Existence of the determinant. Expansion according to a row.

Linear Algebra Existence of the determinant. Expansion according to a row. Lir Algbr 2270 1 Existc of th dtrmit. Expsio ccordig to row. W dfi th dtrmit for 1 1 mtrics s dt([]) = (1) It is sy chck tht it stisfis D1)-D3). For y othr w dfi th dtrmit s follows. Assumig th dtrmit

More information

A Prey-Predator Model with an Alternative Food for the Predator, Harvesting of Both the Species and with A Gestation Period for Interaction

A Prey-Predator Model with an Alternative Food for the Predator, Harvesting of Both the Species and with A Gestation Period for Interaction Int. J. Opn Problms Compt. Math., Vol., o., Jun 008 A Pry-Prdator Modl with an Altrnativ Food for th Prdator, Harvsting of Both th Spcis and with A Gstation Priod for Intraction K. L. arayan and. CH. P.

More information