WBJEEM MATHEMATICS. Q.No. μ β γ δ 56 C A C B

Size: px
Start display at page:

Download "WBJEEM MATHEMATICS. Q.No. μ β γ δ 56 C A C B"

Transcription

1 WBJEEM - MATHEMATICS Q.No. μ β γ δ C A C B B A C C A B C A B B D B 5 A C A C 6 A A C C 7 B A B D 8 C B B C 9 A C A A C C A B B A C A B D A C D A A B C B A A 5 C A C B 6 A C D C 7 B A C A 8 A A A A 9 A C B B A D A A D A A C D A C A C B D D A A B A 5 B C C A 6 C B B A 7 A A A A 8 A C A C 9 B A D A C C C D B C C C C B A C B B D A B A A 5 C A B C 6 A C C D 7 D A A 8 A B A C 9 C C A B D C A D A D B C C A A A A D C A A A A 5 A B C D B C A C 7 A C A B 8 C D A B 9 B C D B 5 B C C C 5 A C D C 5 A D C C 5 A A C B 5 A A B A 55 C A C A 56 C A C B 57 D B B A 58 B A B A 59 C C A C 6 C D A D 6 D B C A 6 A A A C 6 D B A A 6 B C A C 65 B C D A 66 A D D C 67 A D C C 68 C D A D 69 A A A D 7 D A B A 7 C C B D 7 C A C A 7 A A D B 7 C A A B 75 A C C A 76 A,D A,B,D C,D A,B 77 A,B A,B A,B A,B 78 A,B C,D A,B,D A,D 79 C,D A,B A,D A,B,D 8 A,B,D A,D A,B C,D

2 WBJEEM - (Aswrs & Hits) Cod-μ CATEGORY - I Q. to Q.6 carry o mark ach, for which oly o optio is corrct. Ay wrog aswr will lad to dductio of / mark.. y Lt th quatio of a llips b 5, ad passig through th foci of th llips is 9 (B) 7 (C) (D) 5 Hits : a, b 5 P (, ), S(a, ) Radius PS, S ( 9, ) PS +. Th th radius of th circl with tr ( ). If y + is paralll to a tagt to th parabola y, th its distac from th ormal paralll to th giv li is 9 (B) 7 7 As : (B) Hits : m slop of li ; a y m am am (Norm l) (C) 7 y 6.. Distac 9 7. I a ΔABC, taa ad tab ar th roots of pq( + ) r. Th ΔABC is a right agld triagl (B) a acut agld triagl (C) a obtus agld triagl (D) a quilatral triagl Hits : pq r + pq taa tab so ta(a+b) is udfid C π/. Lt th umbr of lmts of th sts A ad B b p ad q rspctivly. Th th umbr of rlatios from th st A to th st B is p+q (B) pq (C) p + q (D) pq As : (B) Hits : p (B) q ; (A B) pq ANSWERS & HINTS for WBJEEM - SUB : MATHEMATICS (D) 7

3 WBJEEM - (Aswrs & Hits) 5. Th fuctio π ta π[ ] f(), whr [] dots th gratst itgr, is + [] cotiuous for all valus of (B) discotiuous at (C) ot diffrtiabl for som valus of (D) discotiuous at Hits : f() R 6. Lt z, z b two fid compl umbrs i th Argad pla ad z b a arbitrary poit satisfyig z z + z z z z. Th th locus of z will b a llips (B) a straight li joiig z ad z (C) a parabola (D) a bisctor of th li sgmt joiig z ad z Hits : Possibility of llips P(z), S (z ), S (z ) PS + PS a S S a So it is a llips + 7. Lt S C + C+ C C. Th S quals + As : (B) + + Hits : P + + r+ (B) + + r Cr ; S r + C. r, r (C) S C. r π (D) 8. Out of 7 cosoats ad vowls, th umbr of words (ot cssarily maigful) that ca b mad, ach cosistig of cosoats ad vowls, is 8 (B) 5 (C) 5 (D) 5 Hits : 7 C C 5! 9. Th rmaidr obtaid wh! +! +! ! is dividd by is 9 (B) 8 (C) 7 (D) 6 Hits : divids!, 5! tc. Rmaidr

4 WBJEEM - (Aswrs & Hits) Lt S dot th sum of th ifiit sris Th!!! 5! S < 8 (B) S > (C) 8 < S < (D) S 8 Hits : th trm of, 8,,, 65,... ( ) r r.(r ) + r! 7 5. For vry ral umbr, lt f() Th th quatio f() has!!!! o ral solutio (B) actly o ral solutio (C) actly two ral solutios (D) iifiit umbr of ral solutios As : (B) Hits : is a solutio r ( r ) r! r. Th cofficit of i th ifiit sris pasio of, for <, is ( )( ) /6 (B) 5/8 (C) /8 (D) 5/6 As : (B) Hits : Ep Cofficit 5/8 ( ) ( ) If α, β ar th roots of th quadratic quatio + p + q, th th valus of α + β ad α + α β + β ar rspctivly pq p ad p p q + q (B) p(q p ) ad (p q)(p + q) (C) pq ad p q (D) pq p ad (p q) (p q) As : (D) Hits : α + β + α β α + β (α+β) αβ (α + β) (α + β ) α β p + pq (p q) q. A fair si-facd di is rolld tims. Th probability that ach fac turs up twic is qual to! 6!6!6 (B) 6 6! (C) 6 6! (D) 66 As : ( C) Hits : C C... C. 6

5 WBJEEM - (Aswrs & Hits) 5. Lt f() b a diffrtiabl fuctio i [, 7]. If f() ad f () 5 for all i (, 7), th th maimum possibl valu of f() at 7 is 7 (B) 5 (C) 8 (D) θ 5 Hits : ta 5 5 θ 5 7 So f(7) Th valu of π π π ta + ta + cot is cot 5 π Hits : Add, subtract cot 5 π (B) cot π 5 (C) cot π 5 (D) cot π 5 7. Lt b th st of all ral umbrs ad f : b giv by f() +. Th th st f ([, 6]) is 5 5,, (B) 5 5, As : (B) Hits : f () 6 > if >, < if < f() f(α) 6. So α± 5 (C), (D) 5 5, 5 [Not : f() is is ivrtibl ithr f r > or for < so th right aswr should b ithr, or 5, 8. Th ara of th rgio boudd by th curvs y ad y is / (B) / (C) / (D) Hits : ( ) 9. Th poit o th parabola y 6 which is arst to th li + y + 5 has coordiats (9, ) (B) (, 8) (C) (, 6) (D) ( 9, ) Hits : Normal at P(am, am) has slop m. a 6, m. Th quatio of th commo tagt with positiv slop to th parabola y 8 ad th hyprbola y is y 6 + (B) y 6 (C) y + (D) y Hits : y a, a

6 WBJEEM - (Aswrs & Hits) y m + a m ; m >, a.m m, m 6. Lt p,q b ral umbrs. If α is th root of +p +5q, β is a root of +9p +5q ad <α<β, th th quatio +6p +q has a root γ that always satisfis γ α/+β (B) β < γ (C) γ α/+β (D) α < γ < β As : (D) Hits : Lt, f() +6p +q f(α) α +6p α+q (α +p α+5q ) + (p α+5q ) + p α+5q > Agai, f(β) β +6p β+q (β +9p β+5q ) (p β+5q ) (p β + 5q ) < So, thr is o root γ such that, α<γ<β. Th valu of th sum ( C ) + ( C ) + ( C ) ( C ) is ( C ) (B) C (C) C + (D) C As : (D) Hits : (+) C + C + C C, (+) C + C +C C So, cofficit of i [(+) (+) ] i.. (+) is ( C +C C ), which is C So, C C +C + C C, ( C ) + ( C ) + ( C ) ( C ) C C C. Ram is visitig a frid. Ram kows that his frid has childr ad of thm is a boy. Assumig that a child is qually likly to b a boy or a girl, th th probability that th othr child is a girl, is / (B) / (C) / (D) 7/ Hits : Evt that at last o of thm is a boy A, Evt that othr is girl B, So, probability rquird P(B/A) ( A) P( A) PB ( ) ( ) PB A, Now, total cass ar ( BG, BB GG) P A (As, B A {BG} ad A {BG,BB}) ( ) ( ) / cos π/ si π/ si. Lt b a itgr, A ( π/) cos( π/) ad Ι is th idtity matri of ordr. Th A Ι ad A Ι (B) A m Ι for ay positiv itgr m (C) A is ot ivrtibl (D) A m for a positiv itgr m Hits : A cos θ si θ siθ cos θ, A cosθ si θ si θ cos θ, So, hr, A cosπ si π si π cos π,, ad A Ι

7 WBJEEM - (Aswrs & Hits) 5. Lt Ι dot th idtity matri ad P b a matri obtaid by rarragig th colums of Ι. Th Thr ar si distict choics for P ad dt(p) (B) Thr ar si distict choics for P ad dt(p) ± (C) Thr ar mor tha o choics for P ad som of thm ar ot ivrtibl (D) Thr ar mor tha o choics for P ad P Ι i ach choic As : (B) Hits : Ι, diffrt colums ca b arragd i,! i.. 6 ways, I ach cas, if thr ar v umbr of itrchags of colums, dtrmiat rmais ad for odd umbr of itrchags, dtrmiat taks th gativ valu i..! 6. Th sum of th sris π si 7 is π si 8 +si π 6 +si π 5 (C) (B) π si 6 +si π +si π +si π 6 π si 6 +si π +si π +si π 6 +si π 7 (D) si π 8 +s π 6! Hits : π si 7,! π! π si5! π! π si + si si π si 6 +si π +si π +si π 6 6 π s 7 + si k π, whr k, so si k π k 6 7. Lt α,β b th roots of ad S α +β, for all itgrs. Th for vry itgr S +S S + (B) S S S (C) S S + (D) S +S S + Hits : α+β, S + S, (α +α )+ β +β ), α (α+) + β (β+), ow sic α α & β β α.α + β.β α + +β + S + 8. I a ΔABC, a,b,c ar th sid of th triagl opposi to th agls A,B,C rspctivly. Th th valu of a si(b C) + b si(c A) + c si(a B) is quqal to (B) (C) (D) 9. I th Argad pla, th distict roots of +z+z +z (z is a compl umbr) rprst vrtics of a squar (B) a quilatral triagl (C) a rhombus (D) a rctagl As : (B) Hits : +z+z +z, (+z) (+z ), z,, ω, ω, whr ω is a cub root of uity, so, distict roots ar : (,),,,,. Distac btw ach of thm is. So, thy form a quilatral triagl. Th umbr of digits i (giv log.) is 6 (B) (C) 9 (D) 9 Hits : log log. 9.6, so, 9 digits

8 WBJEEM - (Aswrs & Hits). If y cos, th it satisfis th diffrtial quatio ( ) c, whr c is qual to (B) (C) (D) As : (D) Hits : y cos y (cos ), cos, cos, +, (- ). Th itgratig factor of th diffrtial quatio (+ ) y + ta is ta (B) + (C) ta (D) log (+ ) Hits : + y ta, I.F ta. Th solutio of th quatio log log 7 ( ) is (B) 7 (C) 9 (D) 9 Hits : log log 7 ( ), log 7 ( ), , ,, 9. If α,β ar th roots of a +b+c (a ) a d α + h, β + h ar th roots of p +q+r (p ) th th ratio of th squars of thir discrimiats is a :p (B) a:p (C) a :p (D) a:p D Hits : D a (α β), D P (α β) ; D a p [ Not : Corrct aswr is 5. Lt f() +5+. If w writ f() as f() a(+)( ) +b( )( )+c( )(+) for ral umbrs a,b,c th thr ar ifiit umbr of choics for a,b,c (B) oly o choic for a but ifiit umbr of choics for b ad c (C) actly o choic for ach of a,b,c (D) mor tha o but fiit umbr of choics for a,b,c a p for D Hits : f() (a+b+c) + ( a b) a+b c, a+b+c, a b 5, a+b c, a, b /, c 9 6. Lt f() + /. th th umbr of ral valus of for which th thr uqual trms f(), f(), f() ar i H.P. is (B) (C) (D) D ]

9 WBJEEM - (Aswrs & Hits) Hits : f() f()f(), f(), f(), f(), f(), f() ar i H.P., So, f() f() + f(),,, at, trms ar qual so oly solutio is 7. Th fuctio f() +b+c, whr b ad c ral costats, dscribs o-to-o mappig (B) oto mappig (C) ot o-to-o but oto mappig (D) ithr o-to-o or oto mappig As : (D) Hits : Upward parabola f() has a miimum valu. So, it is ot oto, also symmtric about its ais which is a straight li paralll to Y-ais, so it is ot o-to-o 8. Suppos that th quatio f() +b+c has two distict ral roots α ad β. Th agl btw th tagt to α+β α+β th curv y f() at th poit,f ad th positiv dirctio of th -ais is (B) (C) 6 (D) 9 Hits : f() +b+c rprsts upward parabola which cuts -ais at α ad β. As th graph is symmtric, so, α+β α+β tagt at,f paralll to -ais. Hc, M α β N ( α+ β, f ( α+ β )) y ϕ y 9. Th solutio of th diffrtial quatio y + y is (whr c is a costat) ϕ y y y ϕ c (B) ϕ c (C) ϕ y c (D) ϕ c Hits : Lt, y ν, y ν ν + d ν d substitutig, v (ν + φν ν ( ) ) ν + φ ( ν ) ( ) νφ ν, dv, φν ( ) [Lt, φ(v ) z, φ (v )v dv dz], dz z, z / + k, z c, y φ c. Lt f() b a diffrtiabl fuctio ad f () 5. Th ( ) f( ) f lim (B) 5 (C) (D) As : (D) quals

10 WBJEEM - (Aswrs & Hits) Hits : lim ( ) f( ) f,( form, so usig L Hospital s rul), lim ( ) f, f () 5. Th valu of cos(t )dt lim is si (B) (C) (D) log Hits : cos lim si + cos cos lim si + cos +. Th rag of th fuctio y si, Hits : y si π 6 (B) [, ] π 6 is (C), (D) [, ) y ma si π/, y mi. Thr is a group of 65 prsos who lik ithr s gig or dacig or paitig. I this group lik sigig, lik dacig ad 55 lik paitig. If 6 prsos lik bot sigig ad dacig, lik both sigig ad paitig ad lik all thr activitis, th th umbr of prs s who lik oly dacig ad paitig is (B) (C) (D) Hits : (S P D) 65 (S) (D) (P) 55 (S D) 6 (S P) (S D P) (S P D) (S) + (D) + (P) (S D) (D P) (P S) + (S D P) (P D) + (P D) (P D) (P D S). Th curv y (cos + y) / satisfis th diffrtial quatio (y ) + + cos (B) y + cos (C) (y ) + cos (D) (y ) + cos

11 WBJEEM - (Aswrs & Hits) Hits : y (cos + y) / y cos + y y si + +.y. cos +, (y ) + + cos 5. Suppos that z, z, z ar thr vrtics of a quilatral triagl i th Argad pla. Lt α ( + i ) ad β b a o-zro compl umbr. Th poits αz + β, αz + β, αz + β will b Th vrtics of a quilatral triagl (B) Th vrtics of a isoscls triagl (C) Colliar (D) Th vrtics of a scal triagl Hits : + + ( α z +β) ( α z +β) ( α z +β) ( α z +β) ( α z +β) ( α z +β) + + α(z z ) α(z z ) α(z z ) + + α (z z ) (z z ) (z z ) Hc, αz + β, αz + β, αz + β ar vrtics of quilat ral triagl. a si si 6. If lim ists ad is qual to, th th valu of a is ta (B) (C) (D) As : (B) Hits : 8 a( ) ( ) lim +... a (a ) lim +... a a +, 7. If f() th, > f() is 7/ (B) 5/ (C) / (D) 7/ Hits : f() + f() ( + ) + ( ) + + 5/ + 7/

12 WBJEEM - (Aswrs & Hits) 8. Th valu of z + z + z i is miimum wh z quals i (B) 5 + i (C) Hits : z + z + z i + y + ( ) + y + + (y ) + y 6 y + i + (D) i [ + y.y. ] + i z Th umbr of solutio(s) of th quatio + is/ar (B) (C) (D) As : (B) Hits : + Squarig, / Which dos ot satisfis th quat o. Hc, o solutio 5. Th valus of λ for which th curv (7 + 5) + (7y + ) λ ( + y ) rprsts a parabola is ± 6 5 As : (B) (B) ± 7 5 Hits : 9 [( + 5/7) + (y + /7) ] 5λ + y 5 (C) ± 5 (D) ± 5 5λ 9 λ 9 5 λ ±7/5

13 WBJEEM - (Aswrs & Hits) 5. If si + cosc π, th th valu of is 5 (B) (C) (D) Hits : si π cosc sc cos 5 si si 5 5. Th straight lis + y, 5 + y ad + 5y form a isoscls triagl (B) a quilatral triagl (C) a scal tri gl (D) a right agld triagl Hits : Thir poit of itrsctio ar (, ) (, ) ad (/, /) which is th vrtics of isocls triagl. 5. If I ( α ), th α lis i th itrval (, ) (B) (, ) (C) (, ) (D) (, ) Hits : I ( α ) > ( α) should b somwhr positiv ad somwhr gativ so α (, ) Hc, a (, ) 5. If th cofficit of 8 i a + b is qual to th cofficit of 8 i a b, th a ad b will satisfy th rlatio ab + (B) ab (C) a b (D) a + b Hits : a + b Co-fficit of 8 i a + b

14 WBJEEM - (Aswrs & Hits) C 6 a 7. 6 b () Co-fficit 8 i a b C 7 a 6 7 b C 7 a 6. 7 b () Sic, C 6 a 7 /b 6 C 7 a 6 /b 7 a b ab Th fuctio f() a si + b is diffrtiabl at wh a + b (B) a b (C) a + b (D) a b Hits : f() a si + b f() a si + b a si + b < f () acos + b acos b < at a + b a b a + b 56. If a, b ad c ar positiv umbrs i a G.P., th th roots of th quadratic quatio (log a) (log b) + (log c) ar log c log c ad log a (B) ad log a Hits : b ac log a log b + log c ( ) ( ) log a log b + log c Sic, satisfis th quatio Thrfor is o root ad othr root say β (C) ad log a c (D) ad log c a.β log c log a log a c β log c log a log c a

15 WBJEEM - (Aswrs & Hits) si, 57. Lt R b th st of all ral umbrs ad f: [, ] R b dfid by f(), Th, f satisfis th coditios of Roll s thorm o [, ] (B) f satisfis th coditios of Lagrag s Ma Valu Thorm o [, ] (C) f satisfis th coditios of Roll s thorm o [, ] (D) f satisfis th coditios of Lagrag s Ma Valu Thorm o [, ] As : (D) Hits : f() is odiffrtiabl at 58. Lt z b a fid poit o th circl of radius ctrd at th origi i th Argad pla ad z ±. Cosidr a quilatral triagl iscribd i th circl with z, z, z as th vrtics tak i th coutr clockwis dirctio. Th z z z is qual to z (B) z (C) z (D) z As : (B) π Hits : Lt z r iα, z r i( α+ ), z r z z z r π α+α+ +α+ r i(α + π) r iα (r iα ) π i( ) π i( α+ ) z 59. Suppos that f() is a diffrtiabl fuctio s ch tha f () is cotiuous, f () ad f () dos ot ist. Lt g() f (). Th g () dos ot ist (B) g () (C) g () (D) g () Hits : g().f () g( + h) g() g () lim h h (+ h) f( + h) f() g () lim h h g () + lim f ( + h) h f () z z z

16 WBJEEM - (Aswrs & Hits) 6. Lt [] dot th gratst itgr lss tha or qual to for ay ral umbr. Th lim is qual to (B) (C) (D) Hits : lim < + < + lim lim < CATEGORY - II Q.6 to Q.75 carry two marks ach, for which oly o optio is corrct. Ay wrog aswr will lad to dductio of / mark 6. W dfi a biary rlatio ~ o th st of all ral mat ics as A ~ B if ad oly if thr ist ivrtibl matrics P ad Q such that B PAQ. Th biary rlatio ~ is Nithr rfliv or symmtric (B) Rfliv ad symmtric but ot trasitiv (C) Symmtric ad trasitiv but ot rfl iv (D) A quivalc rlatio As : (D) Hits : For Rfliv, A.I IA, A IAI so rfliv. For Symmtric, B PAQ, BQ PA, P BQ A or A (P ) B. (Q ),so symmtric. For Trasitiv, B PAQ, C PBQ P.PAQ.Q (PP)A(QQ), so trasitiv 6. Th miimum valu of si + co is / (B) / + (C) (D) si cos + si + cos Hits :, si cos +., si cos + 6. For ay two ral umbrs θ ad ϕ, w dfi θrϕ if ad oly if sc θ ta ϕ. Th rlatio R is Rfliv but ot trasitiv (B) Symmtric but ot rfliv (C) Both rfliv ad symmtric but ot trasitiv (D) A quivalc rlatio As : (D) Hits: For rfliv, θ φ so sc θ ta θ, Hc Rfliv For symmtric, sc θ ta φ so, ( + ta θ) (sc φ ) so, sc φ ta θ. Hc symmtric For Trasitiv, lt sc θ ta φ ad sc φ ta γ so, + ta φ ta γ or, sc θ ta γ. Hc Trasitiv

17 WBJEEM - (Aswrs & Hits) 6. A particl startig from a poit A ad movig with a positiv costat acclratio alog a straight li rachs aothr poit B i tim T. Suppos that th iitial vlocity of th particl is u > ad P is th midpoit of th li AB. If th vlocity of th particl at poit P is v ad if th vlocity at tim T is v, th v v (B) v > v (C) v < v (D) v v As : (B) t tt/ tt A (v ) P(v ) B (u>) Hits : Sic th particl is movig with a positiv costat acclratio hc it s vlocity should icras. So th tim tak to travl AP is mor that th timtak for PB. So th istat T is bfor P. Hc v > v sic vlocity icrass from A to B. 65. Lt t dot th th trm of th ifiit sris 9...! +! +! +! + 5! +. Th lim t is (B) (C) (D) As : (B) Hits : t + 6 6, lim sic domiator is vry larg compard to umrator 66. Lt α, β dot th cub roots of uity othr tha ad α β. Lt s ( ) α β. Th th valu of s is Eithr ω or ω (B) Eithr ω or ω (C) Eithr ω or ω (D) Eithr ω or ω Hits : a ω, β ω α ω β ω ω + ω ω + ω...+ ω, S ( ).( ω) ( ) ( ) α ω α ω, β ω ω, S (ω β ω ) (ω ) +(ω )...+(ω ) ω ω ω ( ) ( ω) ω ω ω 67. Th quatio of hyprbola whos coordiats of th foci ar (±8, ) ad th lgth of latus rctum is uits, is y 8 (B) y 8 (C) y 8 (D) y 8 b Hits : a 8, a, y a a + b or, 6 a + a so a, b 8, so y Applyig Lagrag s Ma Valu Thorm for a suitabl fuctio f() i [, h], w hav f(h) f() + hf (θh), < θ <. Th for f() cos, th valu of lim h + θ is (B) (C) (D)

18 WBJEEM - (Aswrs & Hits) Hits : For f() cos, cos h + h ( si(θh)), cosh siθ h, h cosh si h θ h cosh h si si h lim θ lim lim h h h h h 69. Lt X {z + iy : z } for all itgrs. Th is X A siglto st (B) Not a fiit st (C) A mpty st (D) A fiit st with mor tha o lmts Hits : X ( z ) (,) X ( z ), X ( z ), Th rquird rgios ar shadd for,, so clarly will b oly th poit circl origi. So a siglto st π/cos 7. Suppos M N, + π+ As : (D) (B) π/ ( + ) X si cos. Th th valu of (M N) quals π π π π si cos N si Hits : + ( ) + ( + ) + π cos cost Rplacig t, dt M ( + ) ( t+. So M N ) π+ π (C) π π + cos π+ + ( ) (D) π+ 7. π π 6π cos + cos + cos is qual to zro (B) lis btw ad (C) is a gativ umbr (D) lis btw ad 6 As : (c)

19 WBJEEM - (Aswrs & Hits) π si π π 6π Hits : cos cos cos 7 π + + cos si π 7 7. Clarly it is a gativ o. 7. A studt aswrs a multipl choic qustio with 5 altrativs, of which actly o is corrct. Th probability that h kows th corrct aswr is p, < p <. If h dos ot kow th corrct aswr, h radomly ticks o aswr. Giv that h has aswrd th qustio corrctly, th probability that h did ot tick th aswr radomly, is p p + (B) 5p p + (C) 5p p + As : (c) Hits : K H kows th aswrs, NK H radomly ticks th aswrs, C H is corrct C PK ( ) P K K P C C C PK ( ) P + PNK ( ) P K NK P P + ( P) 5 5P P+ (D) p p + 7. A pokr had cosists of 5 cards draw at radom from a wll-shuffld pack of 5 cards. Th th probability that a pokr had cosists of a pair ad a tripl of qual fac valus (for ampl svs ad kigs or acs ad qus, tc.) is 6 65 Hits : (B) 5 C5 65 C C C C (C) (D) Lt f( ) ma{ +, [ ]}, whr [] d ts th gratst itgr. Th th valu of ( ) (B) 5/ (C) / (D) As : (c) Hits : Rquird ara Th solutio of th diffrtial quatio K f is y + udr th coditio y wh is log NK C y y log + (B) y log + (C) y log log + (D) y log log log + Hits : Itgratig factor y ( log ) + log log log ( log ) log y log + c + c,c

20 WBJEEM - (Aswrs & Hits) CATEGORY - III Q. 76 Q. 8 carry two marks ach, for which o or mor tha o optios may b corrct. Markig of corrct optios will lad to a maimum mark of two o pro rata basis. Thr will b o gativ markig for ths qustios. Howvr, ay markig of wrog optio will lad to award of zro mark agaist th rspctiv qustio irrspctiv of th umbr of corrct optios markd. 76. Lt f( ) t dt, >, Th, f() is cotiuous at (B) f() is ot cotiuous at (C) f() is diffrtiabl at (D) f() is ot diffrtiabl at As : (A,D) Hits : t dt ( t) dt + ( t ) dt +, f( ) f ( ) Clarly f() is cotiuous but ot diffrtiabl at. +, >, >,, 77. Th agl of itrsctio btw th curvs y si + cos ad + y, whr [] dots th gratst itgr, is ta (B) ta ( ) (C) ta (D) ta ( ) / As : (A,B) Hits : si + cos + si So, s + cos. y si + cos. (,) y y, So, agl is ithr ta ( ) or ta (). (,) y 78. If u() ad v() ar two idp dt solutios of th diffrtial quatio b cy, + th additioal solutio(s) of th giv diffrtial qua io is (ar) y 5 u() + 8 v() (B) y c {u() v()} + c v(), c ad c ar arbitrary costats (C) y c u() v() + c u()/v(), c ad c ar arbitrary costats (D) y u() v() As : (A,B) Hits : Ay liar combiatio of u() ad v() will also b a solutio. 79. For two vts A ad B, lt P.7 ad P(B).6. Th cssarily fals statmts(s) is/ar P( A B).5 (B) P( A B).5 (C) P( A B).65 (D) ( ) As : (C,D) P A B.8 Hits : P( A B) P( A B) ow PA ( ) PA ( B),.7. P( A B), ( ). P A B.6

21 WBJEEM - (Aswrs & Hits) 8. If th circl + y + g + fy + c cuts th thr circls + y 5, + y 8 6y + ad + y + y at th trmitis of thir diamtrs, th C 5 (B) fg 7/5 (C) g + f c + (D) f g As : (A,B,D) Hits : Commo chords of th circl will pass through th ctrs. c 5, 8g + 6f 5, g f 7 so, g,f 5

PURE MATHEMATICS A-LEVEL PAPER 1

PURE MATHEMATICS A-LEVEL PAPER 1 -AL P MATH PAPER HONG KONG EXAMINATIONS AUTHORITY HONG KONG ADVANCED LEVEL EXAMINATION PURE MATHEMATICS A-LEVEL PAPER 8 am am ( hours) This papr must b aswrd i Eglish This papr cosists of Sctio A ad Sctio

More information

1985 AP Calculus BC: Section I

1985 AP Calculus BC: Section I 985 AP Calculus BC: Sctio I 9 Miuts No Calculator Nots: () I this amiatio, l dots th atural logarithm of (that is, logarithm to th bas ). () Ulss othrwis spcifid, th domai of a fuctio f is assumd to b

More information

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120 Tim : hr. Tst Papr 8 D 4//5 Bch - R Marks : SINGLE CORRECT CHOICE TYPE [4, ]. If th compl umbr z sisfis th coditio z 3, th th last valu of z is qual to : z (A) 5/3 (B) 8/3 (C) /3 (D) o of ths 5 4. Th itgral,

More information

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n 07 - SEQUENCES AND SERIES Pag ( Aswrs at h d of all qustios ) ( ) If = a, y = b, z = c, whr a, b, c ar i A.P. ad = 0 = 0 = 0 l a l

More information

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx MONTGOMERY COLLEGE Dpartmt of Mathmatics Rockvill Campus MATH 8 - REVIEW PROBLEMS. Stat whthr ach of th followig ca b itgratd by partial fractios (PF), itgratio by parts (PI), u-substitutio (U), or o of

More information

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges.

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges. Optio Chaptr Ercis. Covrgs to Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Divrgs 8 Divrgs Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Covrgs to Covrgs to 8 Proof Covrgs to π l 8 l a b Divrgt π Divrgt

More information

SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3

SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3 SOLVED EXAMPLES E. If f() E.,,, th f() f() h h LHL RHL, so / / Lim f() quls - (D) Dos ot ist [( h)+] [(+h) + ] f(). LHL E. RHL h h h / h / h / h / h / h / h As.[C] (D) Dos ot ist LHL RHL, so giv it dos

More information

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series Chatr Ifiit Sris Pag of Sctio F Itgral Tst Chatr : Ifiit Sris By th d of this sctio you will b abl to valuat imror itgrals tst a sris for covrgc by alyig th itgral tst aly th itgral tst to rov th -sris

More information

ln x = n e = 20 (nearest integer)

ln x = n e = 20 (nearest integer) H JC Prlim Solutios 6 a + b y a + b / / dy a b 3/ d dy a b at, d Giv quatio of ormal at is y dy ad y wh. d a b () (,) is o th curv a+ b () y.9958 Qustio Solvig () ad (), w hav a, b. Qustio d.77 d d d.77

More information

1973 AP Calculus BC: Section I

1973 AP Calculus BC: Section I 97 AP Calculus BC: Scio I 9 Mius No Calculaor No: I his amiaio, l dos h aural logarihm of (ha is, logarihm o h bas ).. If f ( ) =, h f ( ) = ( ). ( ) + d = 7 6. If f( ) = +, h h s of valus for which f

More information

WBJEE Answer Keys by Aakash Institute, Kolkata Centre

WBJEE Answer Keys by Aakash Institute, Kolkata Centre WBJEE - 7 Aswer Keys by, Kolkata Cetre MATHEMATICS Q.No. B A C B A C A B 3 D C B B 4 B C D D 5 D A B B 6 C D B B 7 B C C A 8 B B A A 9 A * B D C C B B D A A D B B C B 3 A D D D 4 C B A A 5 C B B B 6 C

More information

H2 Mathematics Arithmetic & Geometric Series ( )

H2 Mathematics Arithmetic & Geometric Series ( ) H Mathmatics Arithmtic & Gomtric Sris (08 09) Basic Mastry Qustios Arithmtic Progrssio ad Sris. Th rth trm of a squc is 4r 7. (i) Stat th first four trms ad th 0th trm. (ii) Show that th squc is a arithmtic

More information

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2 MATHEMATIS --RE Itgral alculus Marti Huard Witr 9 Rviw Erciss. Evaluat usig th dfiitio of th dfiit itgral as a Rima Sum. Dos th aswr rprst a ara? a ( d b ( d c ( ( d d ( d. Fid f ( usig th Fudamtal Thorm

More information

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net Taylor s Thorm & Lagrag Error Bouds Actual Error This is th ral amout o rror, ot th rror boud (worst cas scario). It is th dirc btw th actual () ad th polyomial. Stps:. Plug -valu ito () to gt a valu.

More information

MATHEMATICS (B) 2 log (D) ( 1) = where z =

MATHEMATICS (B) 2 log (D) ( 1) = where z = MATHEMATICS SECTION- I STRAIGHT OBJECTIVE TYPE This sction contains 9 multipl choic qustions numbrd to 9. Each qustion has choic (A), (B), (C) and (D), out of which ONLY-ONE is corrct. Lt I d + +, J +

More information

امتحانات الشهادة الثانوية العامة فرع: العلوم العامة

امتحانات الشهادة الثانوية العامة فرع: العلوم العامة وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة االمتحانات امتحانات الشهادة الثانوية العامة فرع: العلوم العامة االسم: الرقم: مسابقة في مادة الرياضيات المدة أربع ساعات عدد المسائل: ست مالحظة:

More information

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z Sris Expasio of Rciprocal of Gamma Fuctio. Fuctios with Itgrs as Roots Fuctio f with gativ itgrs as roots ca b dscribd as follows. f() Howvr, this ifiit product divrgs. That is, such a fuctio caot xist

More information

NET/JRF, GATE, IIT JAM, JEST, TIFR

NET/JRF, GATE, IIT JAM, JEST, TIFR Istitut for NET/JRF, GATE, IIT JAM, JEST, TIFR ad GRE i PHYSICAL SCIENCES Mathmatical Physics JEST-6 Q. Giv th coditio φ, th solutio of th quatio ψ φ φ is giv by k. kφ kφ lφ kφ lφ (a) ψ (b) ψ kφ (c) ψ

More information

JEE(Advanced) 2018 TEST PAPER WITH SOLUTION (HELD ON SUNDAY 20 th MAY, 2018)

JEE(Advanced) 2018 TEST PAPER WITH SOLUTION (HELD ON SUNDAY 20 th MAY, 2018) JEE(Advaced) 08 TEST PAPER WITH SOLUTION (HELD ON SUNDAY 0 th MAY, 08) PART- : JEE(Advaced) 08/Paper- SECTION. For ay positive iteger, defie ƒ : (0, ) as ƒ () j ta j j for all (0, ). (Here, the iverse

More information

+ x. x 2x. 12. dx. 24. dx + 1)

+ x. x 2x. 12. dx. 24. dx + 1) INTEGRATION of FUNCTION of ONE VARIABLE INDEFINITE INTEGRAL Fidig th idfiit itgrals Rductio to basic itgrals, usig th rul f ( ) f ( ) d =... ( ). ( )d. d. d ( ). d. d. d 7. d 8. d 9. d. d. d. d 9. d 9.

More information

SINGLE CORRECT ANSWER TYPE QUESTIONS: TRIGONOMETRY 2 2

SINGLE CORRECT ANSWER TYPE QUESTIONS: TRIGONOMETRY 2 2 Class-Jr.X_E-E SIMPLE HOLIDAY PACKAGE CLASS-IX MATHEMATICS SUB BATCH : E-E SINGLE CORRECT ANSWER TYPE QUESTIONS: TRIGONOMETRY. siθ+cosθ + siθ cosθ = ) ) ). If a cos q, y bsi q, the a y b ) ) ). The value

More information

+ {JEE Advace 03} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks: 00. If A (α, β) = (a) A( α, β) = A( α, β) (c) Adj (A ( α, β)) = Sol : We

More information

MATHEMATICS PAPER IIB COORDINATE GEOMETRY AND CALCULUS. Note: This question paper consists of three sections A, B and C.

MATHEMATICS PAPER IIB COORDINATE GEOMETRY AND CALCULUS. Note: This question paper consists of three sections A, B and C. MATHEMATICS PAPER IIB COORDINATE GEOMETRY AND CALCULUS. Tim: 3hrs Ma. Marks.75 Not: This qustion papr consists of thr sctions A, B and C. SECTION -A Vry Short Answr Typ Qustions. 0 X = 0. Find th condition

More information

National Quali cations

National Quali cations PRINT COPY OF BRAILLE Ntiol Quli ctios AH08 X747/77/ Mthmtics THURSDAY, MAY INSTRUCTIONS TO CANDIDATES Cdidts should tr thir surm, form(s), dt of birth, Scottish cdidt umbr d th m d Lvl of th subjct t

More information

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1 Chatr Fiv Mor Dimsios 51 Th Sac R W ar ow rard to mov o to sacs of dimsio gratr tha thr Ths sacs ar a straightforward gralizatio of our Euclida sac of thr dimsios Lt b a ositiv itgr Th -dimsioal Euclida

More information

ASSERTION AND REASON

ASSERTION AND REASON ASSERTION AND REASON Som qustios (Assrtio Rso typ) r giv low. Ech qustio cotis Sttmt (Assrtio) d Sttmt (Rso). Ech qustio hs choics (A), (B), (C) d (D) out of which ONLY ONE is corrct. So slct th corrct

More information

Probability & Statistics,

Probability & Statistics, Probability & Statistics, BITS Pilai K K Birla Goa Campus Dr. Jajati Kshari Sahoo Dpartmt of Mathmatics BITS Pilai, K K Birla Goa Campus Poisso Distributio Poisso Distributio: A radom variabl X is said

More information

Chapter At each point (x, y) on the curve, y satisfies the condition

Chapter At each point (x, y) on the curve, y satisfies the condition Chaptr 6. At ach poit (, y) o th curv, y satisfis th coditio d y 6; th li y = 5 is tagt to th curv at th poit whr =. I Erciss -6, valuat th itgral ivolvig si ad cosi.. cos si. si 5 cos 5. si cos 5. cos

More information

Chapter Taylor Theorem Revisited

Chapter Taylor Theorem Revisited Captr 0.07 Taylor Torm Rvisitd Atr radig tis captr, you sould b abl to. udrstad t basics o Taylor s torm,. writ trascdtal ad trigoomtric uctios as Taylor s polyomial,. us Taylor s torm to id t valus o

More information

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1 DTFT Proprtis Exampl - Dtrmi th DTFT Y of y α µ, α < Lt x α µ, α < W ca thrfor writ y x x From Tabl 3., th DTFT of x is giv by ω X ω α ω Copyright, S. K. Mitra Copyright, S. K. Mitra DTFT Proprtis DTFT

More information

3sin A 1 2sin B. 3π x is a solution. 1. If A and B are acute positive angles satisfying the equation 3sin A 2sin B 1 and 3sin 2A 2sin 2B 0, then A 2B

3sin A 1 2sin B. 3π x is a solution. 1. If A and B are acute positive angles satisfying the equation 3sin A 2sin B 1 and 3sin 2A 2sin 2B 0, then A 2B 1. If A ad B are acute positive agles satisfyig the equatio 3si A si B 1 ad 3si A si B 0, the A B (a) (b) (c) (d) 6. 3 si A + si B = 1 3si A 1 si B 3 si A = cosb Also 3 si A si B = 0 si B = 3 si A Now,

More information

Assignment ( ) Class-XI. = iii. v. A B= A B '

Assignment ( ) Class-XI. = iii. v. A B= A B ' Assigmet (8-9) Class-XI. Proe that: ( A B)' = A' B ' i A ( BAC) = ( A B) ( A C) ii A ( B C) = ( A B) ( A C) iv. A B= A B= φ v. A B= A B ' v A B B ' A'. A relatio R is dified o the set z of itegers as:

More information

Solution to 1223 The Evil Warden.

Solution to 1223 The Evil Warden. Solutio to 1 Th Evil Ward. This is o of thos vry rar PoWs (I caot thik of aothr cas) that o o solvd. About 10 of you submittd th basic approach, which givs a probability of 47%. I was shockd wh I foud

More information

Calculus & analytic geometry

Calculus & analytic geometry Calculus & aalytic gomtry B Sc MATHEMATICS Admissio owards IV SEMESTER CORE COURSE UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION CALICUT UNIVERSITYPO, MALAPPURAM, KERALA, INDIA 67 65 5 School of Distac

More information

UNIT 2: MATHEMATICAL ENVIRONMENT

UNIT 2: MATHEMATICAL ENVIRONMENT UNIT : MATHEMATICAL ENVIRONMENT. Itroductio This uit itroducs som basic mathmatical cocpts ad rlats thm to th otatio usd i th cours. Wh ou hav workd through this uit ou should: apprciat that a mathmatical

More information

10. Joint Moments and Joint Characteristic Functions

10. Joint Moments and Joint Characteristic Functions 0 Joit Momts ad Joit Charactristic Fctios Followig sctio 6 i this sctio w shall itrodc varios paramtrs to compactly rprst th iformatio cotaid i th joit pdf of two rvs Giv two rvs ad ad a fctio g x y dfi

More information

COMPLEX NUMBERS AND DE MOIVRE'S THEOREM SYNOPSIS. Ay umber of the form x+iy where x, y R ad i = - is called a complex umber.. I the complex umber x+iy, x is called the real part ad y is called the imagiary

More information

Session : Plasmas in Equilibrium

Session : Plasmas in Equilibrium Sssio : Plasmas i Equilibrium Ioizatio ad Coductio i a High-prssur Plasma A ormal gas at T < 3000 K is a good lctrical isulator, bcaus thr ar almost o fr lctros i it. For prssurs > 0.1 atm, collisio amog

More information

MTH Assignment 1 : Real Numbers, Sequences

MTH Assignment 1 : Real Numbers, Sequences MTH -26 Assigmet : Real Numbers, Sequeces. Fid the supremum of the set { m m+ : N, m Z}. 2. Let A be a o-empty subset of R ad α R. Show that α = supa if ad oly if α is ot a upper boud of A but α + is a

More information

A Simple Proof that e is Irrational

A Simple Proof that e is Irrational Two of th most bautiful ad sigificat umbrs i mathmatics ar π ad. π (approximatly qual to 3.459) rprsts th ratio of th circumfrc of a circl to its diamtr. (approximatly qual to.788) is th bas of th atural

More information

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II COLLECTION OF SUPPLEMENTARY PROBLEMS I. CHAPTER 6 --- Trscdtl Fuctios CALCULUS II A. FROM CALCULUS BY J. STEWART:. ( How is th umbr dfid? ( Wht is pproimt vlu for? (c ) Sktch th grph of th turl potil fuctios.

More information

IIT JAM Mathematical Statistics (MS) 2006 SECTION A

IIT JAM Mathematical Statistics (MS) 2006 SECTION A IIT JAM Mathematical Statistics (MS) 6 SECTION A. If a > for ad lim a / L >, the which of the followig series is ot coverget? (a) (b) (c) (d) (d) = = a = a = a a + / a lim a a / + = lim a / a / + = lim

More information

Objective Mathematics

Objective Mathematics . If sum of '' terms of a sequece is give by S Tr ( )( ), the 4 5 67 r (d) 4 9 r is equal to : T. Let a, b, c be distict o-zero real umbers such that a, b, c are i harmoic progressio ad a, b, c are i arithmetic

More information

2) 3 π. EAMCET Maths Practice Questions Examples with hints and short cuts from few important chapters

2) 3 π. EAMCET Maths Practice Questions Examples with hints and short cuts from few important chapters EAMCET Maths Practice Questios Examples with hits ad short cuts from few importat chapters. If the vectors pi j + 5k, i qj + 5k are colliear the (p,q) ) 0 ) 3) 4) Hit : p 5 p, q q 5.If the vectors i j

More information

Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT) Discrt Fourir Trasorm DFT Major: All Egirig Majors Authors: Duc guy http://umricalmthods.g.us.du umrical Mthods or STEM udrgraduats 8/3/29 http://umricalmthods.g.us.du Discrt Fourir Trasorm Rcalld th xpotial

More information

Digital Signal Processing, Fall 2006

Digital Signal Processing, Fall 2006 Digital Sigal Procssig, Fall 6 Lctur 9: Th Discrt Fourir Trasfor Zhg-Hua Ta Dpartt of Elctroic Systs Aalborg Uivrsity, Dar zt@o.aau.d Digital Sigal Procssig, I, Zhg-Hua Ta, 6 Cours at a glac MM Discrt-ti

More information

Student s Printed Name:

Student s Printed Name: Studt s Pritd Nam: Istructor: CUID: Sctio: Istructios: You ar ot prmittd to us a calculator o ay portio of this tst. You ar ot allowd to us a txtbook, ots, cll pho, computr, or ay othr tchology o ay portio

More information

ANSWERSHEET (TOPIC = ALGEBRA) COLLECTION #2

ANSWERSHEET (TOPIC = ALGEBRA) COLLECTION #2 Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC ALGEBRA) COLLECTION # Questio Type A.Sigle Correct Type Q. (B) Sol ( 5 7 ) ( 5 7 9 )!!!! C

More information

Objective Mathematics

Objective Mathematics 6. If si () + cos () =, the is equal to :. If <

More information

BITSAT MATHEMATICS PAPER III. For the followig liear programmig problem : miimize z = + y subject to the costraits + y, + y 8, y, 0, the solutio is (0, ) ad (, ) (0, ) ad ( /, ) (0, ) ad (, ) (d) (0, )

More information

VIVEKANANDA VIDYALAYA MATRIC HR SEC SCHOOL FIRST MODEL EXAM (A) 10th Standard Reg.No. : MATHEMATICS - MOD EXAM 1(A)

VIVEKANANDA VIDYALAYA MATRIC HR SEC SCHOOL FIRST MODEL EXAM (A) 10th Standard Reg.No. : MATHEMATICS - MOD EXAM 1(A) Time : 0:30:00 Hrs VIVEKANANDA VIDYALAYA MATRIC HR SEC SCHOOL FIRST MODEL EXAM 018-19(A) 10th Stadard Reg.No. : MATHEMATICS - MOD EXAM 1(A) Total Mark : 100 I. CHOOSE THE BEST ANSWER WITH CORRECT OPTION:-

More information

AIEEE 2004 (MATHEMATICS)

AIEEE 2004 (MATHEMATICS) AIEEE 00 (MATHEMATICS) Importat Istructios: i) The test is of hours duratio. ii) The test cosists of 75 questios. iii) The maimum marks are 5. iv) For each correct aswer you will get marks ad for a wrog

More information

They must have different numbers of electrons orbiting their nuclei. They must have the same number of neutrons in their nuclei.

They must have different numbers of electrons orbiting their nuclei. They must have the same number of neutrons in their nuclei. 37 1 How may utros ar i a uclus of th uclid l? 20 37 54 2 crtai lmt has svral isotops. Which statmt about ths isotops is corrct? Thy must hav diffrt umbrs of lctros orbitig thir ucli. Thy must hav th sam

More information

Hadamard Exponential Hankel Matrix, Its Eigenvalues and Some Norms

Hadamard Exponential Hankel Matrix, Its Eigenvalues and Some Norms Math Sci Ltt Vol No 8-87 (0) adamard Exotial al Matrix, Its Eigvalus ad Som Norms İ ad M bula Mathmatical Scics Lttrs Itratioal Joural @ 0 NSP Natural Scics Publishig Cor Dartmt of Mathmatics, aculty of

More information

1973 AP Calculus AB: Section I

1973 AP Calculus AB: Section I 97 AP Calculus AB: Sction I 9 Minuts No Calculator Not: In this amination, ln dnots th natural logarithm of (that is, logarithm to th bas ).. ( ) d= + C 6 + C + C + C + C. If f ( ) = + + + and ( ), g=

More information

WBJEE MATHEMATICS

WBJEE MATHEMATICS WBJEE - 06 MATHEMATICS Q.No. 0 A C B B 0 B B A B 0 C A C C 0 A B C C 05 A A B C 06 B C B C 07 B C A D 08 C C C A 09 D D C C 0 A C A B B C B A A C A B D A A A B B D C 5 B C C C 6 C A B B 7 C A A B 8 C B

More information

Assignment 1 : Real Numbers, Sequences. for n 1. Show that (x n ) converges. Further, by observing that x n+2 + x n+1

Assignment 1 : Real Numbers, Sequences. for n 1. Show that (x n ) converges. Further, by observing that x n+2 + x n+1 Assigmet : Real Numbers, Sequeces. Let A be a o-empty subset of R ad α R. Show that α = supa if ad oly if α is ot a upper boud of A but α + is a upper boud of A for every N. 2. Let y (, ) ad x (, ). Evaluate

More information

2008 AP Calculus BC Multiple Choice Exam

2008 AP Calculus BC Multiple Choice Exam 008 AP Multipl Choic Eam Nam 008 AP Calculus BC Multipl Choic Eam Sction No Calculator Activ AP Calculus 008 BC Multipl Choic. At tim t 0, a particl moving in th -plan is th acclration vctor of th particl

More information

BRAIN TEASURES TRIGONOMETRICAL RATIOS BY ABHIJIT KUMAR JHA EXERCISE I. or tan &, lie between 0 &, then find the value of tan 2.

BRAIN TEASURES TRIGONOMETRICAL RATIOS BY ABHIJIT KUMAR JHA EXERCISE I. or tan &, lie between 0 &, then find the value of tan 2. EXERCISE I Q Prove that cos² + cos² (+ ) cos cos cos (+ ) ² Q Prove that cos ² + cos (+ ) + cos (+ ) Q Prove that, ta + ta + ta + cot cot Q Prove that : (a) ta 0 ta 0 ta 60 ta 0 (b) ta 9 ta 7 ta 6 + ta

More information

SEQUENCE AND SERIES NCERT

SEQUENCE AND SERIES NCERT 9. Overview By a sequece, we mea a arragemet of umbers i a defiite order accordig to some rule. We deote the terms of a sequece by a, a,..., etc., the subscript deotes the positio of the term. I view of

More information

Mathematics Extension 2

Mathematics Extension 2 009 HIGHER SCHOOL CERTIFICATE EXAMINATION Mathematics Etesio Geeral Istructios Readig time 5 miutes Workig time hours Write usig black or blue pe Board-approved calculators may be used A table of stadard

More information

Further Results on Pair Sum Graphs

Further Results on Pair Sum Graphs Applid Mathmatis, 0,, 67-75 http://dx.doi.org/0.46/am.0.04 Publishd Oli Marh 0 (http://www.sirp.org/joural/am) Furthr Rsults o Pair Sum Graphs Raja Poraj, Jyaraj Vijaya Xavir Parthipa, Rukhmoi Kala Dpartmt

More information

Narayana IIT Academy

Narayana IIT Academy INDIA Sc: LT-IIT-SPARK Dat: 9--8 6_P Max.Mars: 86 KEY SHEET PHYSIS A 5 D 6 7 A,B 8 B,D 9 A,B A,,D A,B, A,B B, A,B 5 A 6 D 7 8 A HEMISTRY 9 A B D B B 5 A,B,,D 6 A,,D 7 B,,D 8 A,B,,D 9 A,B, A,B, A,B,,D A,B,

More information

Poornima University, For any query, contact us at: ,18

Poornima University, For any query, contact us at: ,18 AIEEE/1/MAHS 1 S. No Questios Solutios Q.1 he circle passig through (1, ) ad touchig the axis of x at (, ) also passes through the poit (a) (, ) (b) (, ) (c) (, ) (d) (, ) Q. ABCD is a trapezium such that

More information

MATHEMATICS PAPER IB COORDINATE GEOMETRY(2D &3D) AND CALCULUS. Note: This question paper consists of three sections A,B and C.

MATHEMATICS PAPER IB COORDINATE GEOMETRY(2D &3D) AND CALCULUS. Note: This question paper consists of three sections A,B and C. MATHEMATICS PAPER IB COORDINATE GEOMETRY(D &D) AND CALCULUS. TIME : hrs Ma. Marks.75 Not: This qustion papr consists of thr sctions A,B and C. SECTION A VERY SHORT ANSWER TYPE QUESTIONS. 0X =0.If th portion

More information

GULF MATHEMATICS OLYMPIAD 2014 CLASS : XII

GULF MATHEMATICS OLYMPIAD 2014 CLASS : XII GULF MATHEMATICS OLYMPIAD 04 CLASS : XII Date of Eamiatio: Maimum Marks : 50 Time : 0:30 a.m. to :30 p.m. Duratio: Hours Istructios to cadidates. This questio paper cosists of 50 questios. All questios

More information

Chapter 3 Fourier Series Representation of Periodic Signals

Chapter 3 Fourier Series Representation of Periodic Signals Chptr Fourir Sris Rprsttio of Priodic Sigls If ritrry sigl x(t or x[] is xprssd s lir comitio of som sic sigls th rspos of LI systm coms th sum of th idividul rsposs of thos sic sigls Such sic sigl must:

More information

(c) Write, but do not evaluate, an integral expression for the volume of the solid generated when R is

(c) Write, but do not evaluate, an integral expression for the volume of the solid generated when R is Calculus BC Fial Review Name: Revised 7 EXAM Date: Tuesday, May 9 Remiders:. Put ew batteries i your calculator. Make sure your calculator is i RADIAN mode.. Get a good ight s sleep. Eat breakfast. Brig:

More information

MAXIMA-MINIMA EXERCISE - 01 CHECK YOUR GRASP

MAXIMA-MINIMA EXERCISE - 01 CHECK YOUR GRASP EXERCISE - MAXIMA-MINIMA CHECK YOUR GRASP. f() 5 () 75 f'() 5. () 75 75.() 7. 5 + 5. () 7 {} 5 () 7 ( ) 5. f() 9a + a +, a > f'() 6 8a + a 6( a + a ) 6( a) ( a) p a, q a a a + + a a a (rjctd) or a a 6.

More information

Mathematics Extension 2

Mathematics Extension 2 004 HIGHER SCHOOL CERTIFICATE EXAMINATION Mathematics Etesio Geeral Istructios Readig time 5 miutes Workig time hours Write usig black or blue pe Board-approved calculators may be used A table of stadard

More information

MULTIPLE CHOICE QUESTIONS SUBJECT : MATHEMATICS Duration : Two Hours Maximum Marks : 100. [ Q. 1 to 60 carry one mark each ] A. 0 B. 1 C. 2 D.

MULTIPLE CHOICE QUESTIONS SUBJECT : MATHEMATICS Duration : Two Hours Maximum Marks : 100. [ Q. 1 to 60 carry one mark each ] A. 0 B. 1 C. 2 D. M 68 MULTIPLE CHOICE QUESTIONS SUBJECT : MATHEMATICS Duration : Two Hours Maimum Marks : [ Q. to 6 carry one mark each ]. If sin sin sin y z, then the value of 9 y 9 z 9 9 y 9 z 9 A. B. C. D. is equal

More information

(HELD ON 22nd MAY SUNDAY 2016) MATHEMATICS CODE - 2 [PAPER -2]

(HELD ON 22nd MAY SUNDAY 2016) MATHEMATICS CODE - 2 [PAPER -2] QUESTION PAPER WITH SOLUTION OF JEE ADVANCED - 6 7. Lt P (HELD ON d MAY SUNDAY 6) FEEL THE POWER OF OUR KNOWLEDGE & EXPERIENCE Our Top clss IITi fculty tm promiss to giv you uthtic swr ky which will b

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordiary Diffrtial Equatio Aftr radig thi chaptr, you hould b abl to:. dfi a ordiary diffrtial quatio,. diffrtiat btw a ordiary ad partial diffrtial quatio, ad. Solv liar ordiary diffrtial quatio with fid

More information

Q.11 If S be the sum, P the product & R the sum of the reciprocals of a GP, find the value of

Q.11 If S be the sum, P the product & R the sum of the reciprocals of a GP, find the value of Brai Teasures Progressio ad Series By Abhijit kumar Jha EXERCISE I Q If the 0th term of a HP is & st term of the same HP is 0, the fid the 0 th term Q ( ) Show that l (4 36 08 up to terms) = l + l 3 Q3

More information

National Quali cations

National Quali cations Ntiol Quli ctios AH07 X77/77/ Mthmtics FRIDAY, 5 MAY 9:00 AM :00 NOON Totl mrks 00 Attmpt ALL qustios. You my us clcultor. Full crdit will b giv oly to solutios which coti pproprit workig. Stt th uits

More information

Linear Algebra Existence of the determinant. Expansion according to a row.

Linear Algebra Existence of the determinant. Expansion according to a row. Lir Algbr 2270 1 Existc of th dtrmit. Expsio ccordig to row. W dfi th dtrmit for 1 1 mtrics s dt([]) = (1) It is sy chck tht it stisfis D1)-D3). For y othr w dfi th dtrmit s follows. Assumig th dtrmit

More information

Consortium of Medical Engineering and Dental Colleges of Karnataka (COMEDK) Undergraduate Entrance Test(UGET) Maths-2012

Consortium of Medical Engineering and Dental Colleges of Karnataka (COMEDK) Undergraduate Entrance Test(UGET) Maths-2012 Cosortium of Medical Egieerig ad Detal Colleges of Karataka (COMEDK) Udergraduate Etrace Test(UGET) Maths-0. If the area of the circle 7 7 7 k 0 is sq. uits, the the value of k is As: (b) b) 0 7 K 0 c)

More information

ENJOY MATHEMATICS WITH SUHAAG SIR

ENJOY MATHEMATICS WITH SUHAAG SIR R-, OPPOSITE RAILWAY TRACK, ZONE-, M. P. NAGAR, BHOPAL :(0755) 00 000, 80 5 888 IIT-JEE, AIEEE (WITH TH, TH 0 TH, TH & DROPPERS ) www.tkoclasss.com Pag: SOLUTION OF IITJEE 0; PAPER ; BHARAT MAIN SABSE

More information

Solution: APPM 1360 Final (150 pts) Spring (60 pts total) The following parts are not related, justify your answers:

Solution: APPM 1360 Final (150 pts) Spring (60 pts total) The following parts are not related, justify your answers: APPM 6 Final 5 pts) Spring 4. 6 pts total) Th following parts ar not rlatd, justify your answrs: a) Considr th curv rprsntd by th paramtric quations, t and y t + for t. i) 6 pts) Writ down th corrsponding

More information

2617 Mark Scheme June 2005 Mark Scheme 2617 June 2005

2617 Mark Scheme June 2005 Mark Scheme 2617 June 2005 Mark Schm 67 Ju 5 GENERAL INSTRUCTIONS Marks i th mark schm ar plicitly dsigatd as M, A, B, E or G. M marks ("mthod" ar for a attmpt to us a corrct mthod (ot mrly for statig th mthod. A marks ("accuracy"

More information

A Review of Complex Arithmetic

A Review of Complex Arithmetic /0/005 Rviw of omplx Arithmti.do /9 A Rviw of omplx Arithmti A omplx valu has both a ral ad imagiary ompot: { } ad Im{ } a R b so that w a xprss this omplx valu as: whr. a + b Just as a ral valu a b xprssd

More information

( ) ( ) ( ) 2011 HSC Mathematics Solutions ( 6) ( ) ( ) ( ) π π. αβ = = 2. α β αβ. Question 1. (iii) 1 1 β + (a) (4 sig. fig.

( ) ( ) ( ) 2011 HSC Mathematics Solutions ( 6) ( ) ( ) ( ) π π. αβ = = 2. α β αβ. Question 1. (iii) 1 1 β + (a) (4 sig. fig. HS Mathmatics Solutios Qustio.778.78 ( sig. fig.) (b) (c) ( )( + ) + + + + d d (d) l ( ) () 8 6 (f) + + + + ( ) ( ) (iii) β + + α α β αβ 6 (b) si π si π π π +,π π π, (c) y + dy + d 8+ At : y + (,) dy 8(

More information

CDS 101: Lecture 5.1 Reachability and State Space Feedback

CDS 101: Lecture 5.1 Reachability and State Space Feedback CDS, Lctur 5. CDS : Lctur 5. Rachability ad Stat Spac Fdback Richard M. Murray ad Hido Mabuchi 5 Octobr 4 Goals: Di rachability o a cotrol systm Giv tsts or rachability o liar systms ad apply to ampls

More information

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling Tripl Play: From D Morga to Stirlig To Eulr to Maclauri to Stirlig Augustus D Morga (186-1871) was a sigificat Victoria Mathmaticia who mad cotributios to Mathmatics History, Mathmatical Rcratios, Mathmatical

More information

Mathematics Extension 1

Mathematics Extension 1 016 Bored of Studies Trial Eamiatios Mathematics Etesio 1 3 rd ctober 016 Geeral Istructios Total Marks 70 Readig time 5 miutes Workig time hours Write usig black or blue pe Black pe is preferred Board-approved

More information

WBJEEM Answer Keys by Aakash Institute, Kolkata Centre MATHEMATICS

WBJEEM Answer Keys by Aakash Institute, Kolkata Centre MATHEMATICS WBJEEM - 05 Answer Keys by, Kolkata Centre MATHEMATICS Q.No. μ β γ δ 0 B A A D 0 B A C A 0 B C A * 04 C B B C 05 D D B A 06 A A B C 07 A * C A 08 D C D A 09 C C A * 0 C B D D B C A A D A A B A C A B 4

More information

Objective Mathematics

Objective Mathematics x. Lt 'P' b a point on th curv y and tangnt x drawn at P to th curv has gratst slop in magnitud, thn point 'P' is,, (0, 0),. Th quation of common tangnt to th curvs y = 6 x x and xy = x + is : x y = 8

More information

MATHEMATICS Code No. 13 INSTRUCTIONS

MATHEMATICS Code No. 13 INSTRUCTIONS DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE ASKED TO DO SO COMBINED COMPETITIVE (PRELIMINARY) EXAMINATION, 0 Serial No. MATHEMATICS Code No. A Time Allowed : Two Hours Maimum Marks : 00 INSTRUCTIONS. IMMEDIATELY

More information

Regn. No. North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: ,

Regn. No. North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: , . Sectio-A cotais 30 Multiple Choice Questios (MCQ). Each questio has 4 choices (a), (b), (c) ad (d), for its aswer, out of which ONLY ONE is correct. From Q. to Q.0 carries Marks ad Q. to Q.30 carries

More information

Law of large numbers

Law of large numbers Law of larg umbrs Saya Mukhrj W rvisit th law of larg umbrs ad study i som dtail two typs of law of larg umbrs ( 0 = lim S ) p ε ε > 0, Wak law of larrg umbrs [ ] S = ω : lim = p, Strog law of larg umbrs

More information

RAJASTHAN P.E.T. MATHS 1997

RAJASTHAN P.E.T. MATHS 1997 RAJASTHAN P.E.T. MATHS 1997 1. The value of k for which the points (0,0), (2,0), (0,1) and (0,k) lies on a circle is : (1) 1,2 (2) -1,2 (3) 0,2 (4) 0, 1 2. The area of the triangle formed by the tangent

More information

IIT JEE MATHS MATRICES AND DETERMINANTS

IIT JEE MATHS MATRICES AND DETERMINANTS IIT JEE MTHS MTRICES ND DETERMINNTS THIRUMURUGN.K PGT Mths IIT Trir 978757 Pg. Lt = 5, th () =, = () = -, = () =, = - (d) = -, = -. Lt sw smmtri mtri of odd th quls () () () - (d) o of ths. Th vlu of th

More information

Chapter (8) Estimation and Confedence Intervals Examples

Chapter (8) Estimation and Confedence Intervals Examples Chaptr (8) Estimatio ad Cofdc Itrvals Exampls Typs of stimatio: i. Poit stimatio: Exampl (1): Cosidr th sampl obsrvatios, 17,3,5,1,18,6,16,10 8 X i i1 17 3 5 118 6 16 10 116 X 14.5 8 8 8 14.5 is a poit

More information

NATIONAL SENIOR CERTIFICATE GRADE 12

NATIONAL SENIOR CERTIFICATE GRADE 12 NATIONAL SENIOR CERTIFICATE GRADE MATHEMATICS P NOVEMBER 06 MARKS: 50 TIME: hours This questio paper cosists of 4 pages, iformatio sheet ad a aswer book of 8 pages. Mathematics/P DBE/November 06 INSTRUCTIONS

More information

5.1 The Nuclear Atom

5.1 The Nuclear Atom Sav My Exams! Th Hom of Rvisio For mor awsom GSE ad lvl rsourcs, visit us at www.savmyxams.co.uk/ 5.1 Th Nuclar tom Qustio Papr Lvl IGSE Subjct Physics (0625) Exam oard Topic Sub Topic ooklt ambridg Itratioal

More information

Physics 302 Exam Find the curve that passes through endpoints (0,0) and (1,1) and minimizes 1

Physics 302 Exam Find the curve that passes through endpoints (0,0) and (1,1) and minimizes 1 Physis Exam 6. Fid th urv that passs through dpoits (, ad (, ad miimizs J [ y' y ]dx Solutio: Si th itgrad f dos ot dpd upo th variabl of itgratio x, w will us th sod form of Eulr s quatio: f f y' y' y

More information

Washington State University

Washington State University he 3 Ktics ad Ractor Dsig Sprg, 00 Washgto Stat Uivrsity Dpartmt of hmical Egrg Richard L. Zollars Exam # You will hav o hour (60 muts) to complt this xam which cosists of four (4) problms. You may us

More information

10. Limits involving infinity

10. Limits involving infinity . Limits involving infinity It is known from th it ruls for fundamntal arithmtic oprations (+,-,, ) that if two functions hav finit its at a (finit or infinit) point, that is, thy ar convrgnt, th it of

More information

1997 AP Calculus AB: Section I, Part A

1997 AP Calculus AB: Section I, Part A 997 AP Calculus AB: Sction I, Part A 50 Minuts No Calculator Not: Unlss othrwis spcifid, th domain of a function f is assumd to b th st of all ral numbrs for which f () is a ral numbr.. (4 6 ) d= 4 6 6

More information

Mathematics Extension 2 SOLUTIONS

Mathematics Extension 2 SOLUTIONS 3 HSC Examiatio Mathematics Extesio SOLUIONS Writte by Carrotstics. Multiple Choice. B 6. D. A 7. C 3. D 8. C 4. A 9. B 5. B. A Brief Explaatios Questio Questio Basic itegral. Maipulate ad calculate as

More information