DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1

Size: px
Start display at page:

Download "DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1"

Transcription

1 DTFT Proprtis Exampl - Dtrmi th DTFT Y of y α µ, α < Lt x α µ, α < W ca thrfor writ y x x From Tabl 3., th DTFT of x is giv by ω X ω α ω Copyright, S. K. Mitra

2 Copyright, S. K. Mitra DTFT Proprtis DTFT Proprtis Usig th diffrtiatio proprty of th DTFT giv i Tabl 3., w obsrv that th DTFT of is giv by xt usig th liarity proprty of th DTFT giv i Tabl 3. w arriv at x ω ω ω ω α α α ω ω d d d dx ω ω ω ω ω α α α α Y

3 DTFT Proprtis Exampl- Dtrmi th DTFT V of th squc v dfid by dv dv pδ pδ From Tabl 3., th DTFT of δ is Usig th tim-shiftig proprty of th DTFT giv i Tabl 3. w obsrv that ω th DTFT of δ is ad th DTFT ω ω of v is V ω 3 Copyright, S. K. Mitra

4 4 Copyright, S. K. Mitra DTFT Proprtis DTFT Proprtis Usig th liarity proprty of Tabl 3. w th obtai th frqucy-domai rprstatio of as Solvig th abov quatio w gt δ δ p p v d v d ω ω ω ω p p V d V d ω ω ω d d p p V

5 Ergy Dsity Spctrum 5 Th total rgy of a fiit-rgy squc g is giv by E g g From Parsval s rlatio giv i Tabl 3. w obsrv that π ω Eg g G dω π π Copyright, S. K. Mitra

6 Ergy Dsity Spctrum Th quatity S gg ω G ω is calld th rgy dsity spctrum Th ara udr this curv i th rag π ω π dividd by π is th rgy of th squc 6 Copyright, S. K. Mitra

7 Ergy Dsity Spctrum 7 Exampl- Comput th rgy of th squc si ω h c LP π, < < Hr π ω hlp H LP dω π π whr H ω LP,, ω c ω ω < c ω π Copyright, S. K. Mitra

8 Ergy Dsity Spctrum Thrfor h LP π ω c dω ω c ω π c < Hc, h LP is a fiit-rgy squc 8 Copyright, S. K. Mitra

9 DTFT Computatio Usig MATLAB 9 Th fuctio frqz ca b usd to comput th valus of th DTFT of a squc, dscribd as a ratioal fuctio i i th form of ω ωm ω p p... pm X ω ω d d... d at a prscribd st of discrt frqucy poits ω ω l Copyright, S. K. Mitra

10 DTFT Computatio Usig MATLAB For xampl, th statmt H frqzum,d,w rturs th frqucy rspos valus as a vctor H of a DTFT dfid i trms of th vctors um ad d cotaiig th cofficits { p i } ad { d i }, rspctivly at a prscribd st of frqucis btw ad π giv by th vctor w Copyright, S. K. Mitra

11 DTFT Computatio Usig MATLAB Thr ar svral othr forms of th fuctio frqz Th Program 3_ i th txt ca b usd to comput th valus of th DTFT of a ral squc It computs th ral ad imagiary parts, ad th magitud ad phas of th DTFT Copyright, S. K. Mitra

12 DTFT Computatio Usig MATLAB Exampl- Plots of th ral ad imagiary parts, ad th magitud ad phas of th DTFT ω ω X ω ω ω 3ω ω ω 4ω ar show o th xt slid Copyright, S. K. Mitra

13 DTFT Computatio Usig MATLAB Ral part Ral part.5.5 Amplitud Amplitud ω/π ω/π Magitud Spctrum 4 Phas Spctrum.8 Magitud.6.4 Phas, radias ω/π Copyright ω/π, S. K. Mitra

14 DTFT Computatio Usig MATLAB ot: Th phas spctrum displays a discotiuity of π at ω.7 This discotiuity ca b rmovd usig th fuctio uwrap as idicatd blow Phas, radias Uwrappd Phas Spctrum ω/π Copyright, S. K. Mitra

15 Liar Covolutio Usig DTFT 5 A importat proprty of th DTFT is giv by th covolutio thorm i Tabl 3. It stats that if y x * h, th th ω DTFT Y of y is giv by ω Y X H A implicatio of this rsult is that th liar covolutio y of th squcs x ad h ca b prformd as follows: ω ω Copyright, S. K. Mitra

16 Liar Covolutio Usig DTFT Comput th DTFTs X ad H of th squcs x ad h, rspctivly Form th DTFT ω ω ω Y X H ω 3 Comput th IDFT y of Y ω ω x h DTFT DTFT X H ω ω Y ω IDTFT y 6 Copyright, S. K. Mitra

17 Discrt Fourir Trasform 7 Dfiitio - Th simplst rlatio btw a lgth- squc x, dfid for ω, ad its DTFT X is ω obtaid by uiformly samplig X o th ω-axis btw ω π at ω π/, From th dfiitio of th DTFT w thus hav X X ω ω π/ x π/ Copyright, S. K. Mitra,

18 Discrt Fourir Trasform 8 ot: X is also a lgth- squc i th frqucy domai Th squc X is calld th discrt Fourir trasform DFT of th squc x π / Usig th otatio W th DFT is usually xprssd as: X x W, Copyright, S. K. Mitra

19 Discrt Fourir Trasform Th ivrs discrt Fourir trasform IDFT is giv by x X W To vrify th abov xprssio w multiply both sids of th abov quatio by W l ad sum th rsult from to, 9 Copyright, S. K. Mitra

20 Copyright, S. K. Mitra Discrt Fourir Trasform Discrt Fourir Trasform rsultig i W W X W x l l W X l W X l

21 Discrt Fourir Trasform Maig us of th idtity l W, for l r,, othrwis w obsrv that th RHS of th last quatio is qual to X l Hc l x W X l r a itgr Copyright, S. K. Mitra

22 Discrt Fourir Trasform Exampl - Cosidr th lgth- squc x,, Its -poit DFT is giv by X x W x W Copyright, S. K. Mitra

23 Discrt Fourir Trasform 3 Exampl - Cosidr th lgth- squc y,, Its -poit DFT is giv by m, m m m Y y W y m W W m Copyright, S. K. Mitra

24 Discrt Fourir Trasform 4 Exampl- Cosidr th lgth- squc dfid for g cosπr/, r Usig a trigoomtric idtity w ca writ πr / πr / g r r W W Copyright, S. K. Mitra

25 5 Copyright, S. K. Mitra Discrt Fourir Trasform Discrt Fourir Trasform Th -poit DFT of g is thus giv by W g G, r r W W

26 Discrt Fourir Trasform 6 Maig us of th idtity l, for l r, r a itgr W, othrwis w gt /, for r G /, for r, othrwis Copyright, S. K. Mitra

27 Matrix Rlatios 7 Th DFT sampls dfid by X x W ca b xprssd i matrix form as X whr X x D x,... X X X T... x x x T Copyright, S. K. Mitra

28 8 Copyright, S. K. Mitra Matrix Rlatios Matrix Rlatios ad is th DFT matrix giv by D 4 W W W W W W W W W L M O M M M L L L D

29 Matrix Rlatios Liwis, th IDFT rlatio giv by x X W ca b xprssd i matrix form as x D X whr D is th IDFT matrix, 9 Copyright, S. K. Mitra

30 3 Copyright, S. K. Mitra Matrix Rlatios Matrix Rlatios whr ot: 4 W W W W W W W W W L M O M M M L L L D D* D

31 DFT Computatio Usig MATLAB 3 Th fuctios to comput th DFT ad th IDFT ar fft ad ifft Ths fuctios ma us of FFT algorithms which ar computatioally highly fficit compard to th dirct computatio Programs 3_ ad 3_4 illustrat th us of ths fuctios Copyright, S. K. Mitra

32 DFT Computatio Usig MATLAB Exampl- Program 3_4 ca b usd to comput th DFT ad th DTFT of th squc x cos6π/6, 5 as show blow Magitud idicats DFT sampls ormalizd agular frqucy Copyright, S. K. Mitra

33 DTFT from DFT by Itrpolatio 33 Th -poit DFT X of a lgth- squc x is simply th frqucy ω sampls of its DTFT X valuatd at uiformly spacd frqucy poits ω ω π/, Giv th -poit DFT X of a lgth- ω squc x, its DTFT X ca b uiquly dtrmid from X Copyright, S. K. Mitra

34 34 Copyright, S. K. Mitra DTFT from DFT by DTFT from DFT by Itrpolatio Itrpolatio Thus ω ω x X W X ω π ω / X S

35 DTFT from DFT by Itrpolatio 35 To dvlop a compact xprssio for th sum S, lt ωπ / r r r S r ThS r From th abov rs r r r r r S r Copyright, S. K. Mitra

36 DTFT from DFT by 36 Or, quivaltly, Itrpolatio S rs rs r Hc r S r ωπ si ω π si ω π ω π / ωπ/ / Copyright, S. K. Mitra

37 Thrfor DTFT from DFT by Itrpolatio X ω si X si ω π ω π ωπ/ / 37 Copyright, S. K. Mitra

38 Samplig th DTFT Cosidr a squc x with a DTFT X ω W sampl X at qually spacd poits ω π/, dvlopig th ω frqucy sampls { X } Ths frqucy sampls ca b cosidrd as a -poit DFT Y whos - poit IDFT is a lgth- squc y ω 38 Copyright, S. K. Mitra

39 39 Copyright, S. K. Mitra Samplig th DTFT Samplig th DTFT ow Thus A IDFT of Y yilds ω ω l l l x X / X X Y π ω π l l l l l l W x x / W Y y

40 Samplig th DTFT 4 i.. y l xl W W l l x l W l Maig us of th idtity r W, for r m, othrwis Copyright, S. K. Mitra

41 Samplig th DTFT w arriv at th dsird rlatio 4 y x m, m Thus y is obtaid from x by addig a ifiit umbr of shiftd rplicas of x, with ach rplica shiftd by a itgr multipl of samplig istats, ad obsrvig th sum oly for th itrval Copyright, S. K. Mitra

42 To apply Samplig th DTFT y x m, m to fiit-lgth squcs, w assum that th sampls outsid th spcifid rag ar zros Thus if x is a lgth-m squc with M, th y x for 4 Copyright, S. K. Mitra

43 Samplig th DTFT If M >, thr is a tim-domai aliasig of sampls of x i gratig y, ad x caot b rcovrd from y Exampl- Lt { x } { 3 4 5} 43 By samplig its DTFT X at ω π/ 4, 3 ad th applyig a 4-poit IDFT to ths sampls, w arriv at th squc y giv by ω Copyright, S. K. Mitra

44 Samplig th DTFT y x x 4 x 4, 3 i.. { y } { 4 6 3} {x} caot b rcovrd from {y} 44 Copyright, S. K. Mitra

45 umrical Computatio of th DTFT Usig th DFT 45 A practical approach to th umrical computatio of th DTFT of a fiit-lgth squc ω Lt X b th DTFT of a lgth- squc x ω W wish to valuat X at a ds grid of frqucis ω π/ M, M, whr M >> : Copyright, S. K. Mitra

46 46 Copyright, S. K. Mitra umrical Computatio of th umrical Computatio of th DTFT Usig th DFT DTFT Usig th DFT Dfi a w squc Th π ω ω / M x x X,, M x x π ω / M M x X

47 umrical Computatio of th DTFT Usig th DFT 47 ω Thus X is sstially a M-poit DFT X of th lgth-m squc x Th DFT X ca b computd vry fficitly usig th FFT algorithm if M is a itgr powr of Th fuctio frqz mploys this approach to valuat th frqucy rspos at a prscribd st of frqucis of a DTFT ω xprssd as a ratioal fuctio i Copyright, S. K. Mitra

48 DFT Proprtis 48 Li th DTFT, th DFT also satisfis a umbr of proprtis that ar usful i sigal procssig applicatios Som of ths proprtis ar sstially idtical to thos of th DTFT, whil som othrs ar somwhat diffrt A summary of th DFT proprtis ar giv i tabls i th followig slids Copyright, S. K. Mitra

49 Tabl 3.5: Gral Proprtis of DFT 49 Copyright, S. K. Mitra

50 Tabl 3.6: DFT Proprtis: Symmtry Rlatios 5 x is a complx squc Copyright, S. K. Mitra

51 Tabl 3.7: DFT Proprtis: Symmtry Rlatios 5 x is a ral squc Copyright, S. K. Mitra

52 Circular Shift of a Squc This proprty is aalogous to th timshiftig proprty of th DTFT as giv i Tabl 3., but with a subtl diffrc Cosidr lgth- squcs dfid for Sampl valus of such squcs ar qual to zro for valus of < ad 5 Copyright, S. K. Mitra

53 Circular Shift of a Squc If x is such a squc, th for ay arbitrary itgr o, th shiftd squc x x o is o logr dfid for th rag W thus d to dfi aothr typ of a shift that will always p th shiftd squc i th rag 53 Copyright, S. K. Mitra

54 Circular Shift of a Squc Th dsird shift, calld th circular shift, is dfid usig a modulo opratio: x x c o For o > right circular shift, th abov quatio implis x c x, o for x o, for < o o 54 Copyright, S. K. Mitra

55 Circular Shift of a Squc Illustratio of th cocpt of a circular shift x x 6 x x 5 x 6 6 Copyright, S. K. Mitra

56 Circular Shift of a Squc As ca b s from th prvious figur, a right circular shift by o is quivalt to a lft circular shift by o sampl priods A circular shift by a itgr umbr o gratr tha is quivalt to a circular shift by o 56 Copyright, S. K. Mitra

57 Circular Covolutio 57 This opratio is aalogous to liar covolutio, but with a subtl diffrc Cosidr two lgth- squcs, g ad h, rspctivly Thir liar covolutio rsults i a lgth- squc y L giv by y L g m h m, m Copyright, S. K. Mitra

58 Circular Covolutio 58 I computig y L w hav assumd that both lgth- squcs hav b zropaddd to xtd thir lgths to Th logr form of y L rsults from th tim-rvrsal of th squc h ad its liar shift to th right Th first ozro valu of y L is y L g h, ad th last ozro valu is g h y L Copyright, S. K. Mitra

59 Circular Covolutio 59 To dvlop a covolutio-li opratio rsultig i a lgth- squc y C, w d to dfi a circular tim-rvrsal, ad th apply a circular tim-shift Rsultig opratio, calld a circular covolutio, is dfid by y C m g m h m, Copyright, S. K. Mitra

60 Circular Covolutio Sic th opratio dfid ivolvs two lgth- squcs, it is oft rfrrd to as a -poit circular covolutio, dotd as y g h Th circular covolutio is commutativ, i.. g h h g 6 Copyright, S. K. Mitra

61 Circular Covolutio 6 Exampl - Dtrmi th 4-poit circular covolutio of th two lgth-4 squcs: { g } { }, as stchd blow g 3 { h } { } h 3 Copyright, S. K. Mitra

62 6 Circular Covolutio Th rsult is a lgth-4 squc giv by C g y 4 h From th abov w obsrv y C 3 3 y C g m h m 4, m g m h m 4 m 3 g h g h3 g h g3 h 6 Copyright, S. K. Mitra

63 63 Copyright, S. K. Mitra Circular Covolutio Circular Covolutio Liwis 3 4 m C m h m g y 3 3 h g h g h g h g m C m h m g y 3 3 h g h g h g h g 6

64 64 Copyright, S. K. Mitra Circular Covolutio Circular Covolutio ad Th circular covolutio ca also b computd usig a DFT-basd approach as idicatd i Tabl h g h g h g h g m C m h m g y y C

65 65 Copyright, S. K. Mitra Circular Covolutio Circular Covolutio Exampl - Cosidr th two lgth-4 squcs rpatd blow for covic: Th 4-poit DFT G of g is giv by 3 g 3 h 4 / g g G π / / g g π π 3 3, / / π π

66 66 Copyright, S. K. Mitra Circular Covolutio Circular Covolutio Thrfor Liwis,, G, G G 3, 4 G 4 / h h H π / / h h π π 3 3, / / π π π

67 Circular Covolutio Hc, H 6, H, H, H 3 Th two 4-poit DFTs ca also b computd usig th matrix rlatio giv arlir 67 Copyright, S. K. Mitra

68 68 Copyright, S. K. Mitra Circular Covolutio Circular Covolutio g g g g G G G G D h h h h H H H H D is th 4-poit DFT matrix D 4

69 69 Copyright, S. K. Mitra Circular Covolutio Circular Covolutio If dots th 4-poit DFT of th from Tabl 3.5 w obsrv Thus 3 H G Y C, Y C y C H G H G H G H G Y Y Y Y C C C C

70 7 Copyright, S. K. Mitra Circular Covolutio Circular Covolutio A 4-poit IDFT of yilds Y C * C C C C C C C C Y Y Y Y y y y y D

71 Circular Covolutio 7 Exampl - ow lt us xtdd th two lgth-4 squcs to lgth 7 by appdig ach with thr zro-valud sampls, i.. g, g, h, h, Copyright, S. K. Mitra

72 Circular Covolutio 7 W xt dtrmi th 7-poit circular covolutio of g ad h : y 6 From th abov g m h m m, 7 y g h g h 6 6 g h 4 g 4 h 3 g 5 h g 6 h 3 g h Copyright, S. K. Mitra

73 73 Copyright, S. K. Mitra Circular Covolutio Circular Covolutio Cotiuig th procss w arriv at, 6 h g h g y h g h g h g y, h g h g h g h g y, h g h g h g y, 4

74 Circular Covolutio y 5 g h 3 g 3 h, y 6 g 3 h 3 As ca b s from th abov that y is prcisly th squc y L obtaid by a liar covolutio of g ad h y L 74 Copyright, S. K. Mitra

75 Circular Covolutio Th -poit circular covolutio ca b writt i matrix form as yc yc M y C h h h M h h h h M h h h h M h 3 L L L O L h g h g h3 g M M h g 75 ot: Th lmts of ach diagoal of th matrix ar qual Such a matrix is calld a circulat matrix Copyright, S. K. Mitra

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform Discrt Fourir Trasform Dfiitio - T simplst rlatio btw a lt- squc x dfid for ω ad its DTFT X ( ) is ω obtaid by uiformly sampli X ( ) o t ω-axis btw ω < at ω From t dfiitio of t DTFT w tus av X X( ω ) ω

More information

Digital Signal Processing, Fall 2006

Digital Signal Processing, Fall 2006 Digital Sigal Procssig, Fall 6 Lctur 9: Th Discrt Fourir Trasfor Zhg-Hua Ta Dpartt of Elctroic Systs Aalborg Uivrsity, Dar zt@o.aau.d Digital Sigal Procssig, I, Zhg-Hua Ta, 6 Cours at a glac MM Discrt-ti

More information

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia Part B: Trasform Mthods Chaptr 3: Discrt-Tim Fourir Trasform (DTFT) 3. Discrt Tim Fourir Trasform (DTFT) 3. Proprtis of DTFT 3.3 Discrt Fourir Trasform (DFT) 3.4 Paddig with Zros ad frqucy Rsolutio 3.5

More information

Discrete Fourier Transform. Nuno Vasconcelos UCSD

Discrete Fourier Transform. Nuno Vasconcelos UCSD Discrt Fourir Trasform uo Vascoclos UCSD Liar Shift Ivariat (LSI) systms o of th most importat cocpts i liar systms thory is that of a LSI systm Dfiitio: a systm T that maps [ ito y[ is LSI if ad oly if

More information

Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT) Discrt Fourir Trasorm DFT Major: All Egirig Majors Authors: Duc guy http://umricalmthods.g.us.du umrical Mthods or STEM udrgraduats 8/3/29 http://umricalmthods.g.us.du Discrt Fourir Trasorm Rcalld th xpotial

More information

Chapter 4 - The Fourier Series

Chapter 4 - The Fourier Series M. J. Robrts - 8/8/4 Chaptr 4 - Th Fourir Sris Slctd Solutios (I this solutio maual, th symbol,, is usd for priodic covolutio bcaus th prfrrd symbol which appars i th txt is ot i th fot slctio of th word

More information

Lectures 9 IIR Systems: First Order System

Lectures 9 IIR Systems: First Order System EE3054 Sigals ad Systms Lcturs 9 IIR Systms: First Ordr Systm Yao Wag Polytchic Uivrsity Som slids icludd ar xtractd from lctur prstatios prpard by McCllla ad Schafr Lics Ifo for SPFirst Slids This work

More information

Chapter 6: DFT/FFT Transforms and Applications 6.1 DFT and its Inverse

Chapter 6: DFT/FFT Transforms and Applications 6.1 DFT and its Inverse 6. Chaptr 6: DFT/FFT Trasforms ad Applicatios 6. DFT ad its Ivrs DFT: It is a trasformatio that maps a -poit Discrt-tim DT) sigal ] ito a fuctio of th compl discrt harmoics. That is, giv,,,, ]; L, a -poit

More information

Systems in Transform Domain Frequency Response Transfer Function Introduction to Filters

Systems in Transform Domain Frequency Response Transfer Function Introduction to Filters LTI Discrt-Tim Systms i Trasform Domai Frqucy Rspos Trasfr Fuctio Itroductio to Filtrs Taia Stathai 811b t.stathai@imprial.ac.u Frqucy Rspos of a LTI Discrt-Tim Systm Th wll ow covolutio sum dscriptio

More information

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z Sris Expasio of Rciprocal of Gamma Fuctio. Fuctios with Itgrs as Roots Fuctio f with gativ itgrs as roots ca b dscribd as follows. f() Howvr, this ifiit product divrgs. That is, such a fuctio caot xist

More information

A Simple Proof that e is Irrational

A Simple Proof that e is Irrational Two of th most bautiful ad sigificat umbrs i mathmatics ar π ad. π (approximatly qual to 3.459) rprsts th ratio of th circumfrc of a circl to its diamtr. (approximatly qual to.788) is th bas of th atural

More information

UNIT 2: MATHEMATICAL ENVIRONMENT

UNIT 2: MATHEMATICAL ENVIRONMENT UNIT : MATHEMATICAL ENVIRONMENT. Itroductio This uit itroducs som basic mathmatical cocpts ad rlats thm to th otatio usd i th cours. Wh ou hav workd through this uit ou should: apprciat that a mathmatical

More information

SIGNALS AND LINEAR SYSTEMS UNIT-1 SIGNALS

SIGNALS AND LINEAR SYSTEMS UNIT-1 SIGNALS SIGNALS AND LINEAR SYSTEMS UNIT- SIGNALS. Dfi a sigal. A sigal is a fuctio of o or mor idpdt variabls which cotais som iformatio. Eg: Radio sigal, TV sigal, Tlpho sigal, tc.. Dfi systm. A systm is a st

More information

PURE MATHEMATICS A-LEVEL PAPER 1

PURE MATHEMATICS A-LEVEL PAPER 1 -AL P MATH PAPER HONG KONG EXAMINATIONS AUTHORITY HONG KONG ADVANCED LEVEL EXAMINATION PURE MATHEMATICS A-LEVEL PAPER 8 am am ( hours) This papr must b aswrd i Eglish This papr cosists of Sctio A ad Sctio

More information

Continuous-Time Fourier Transform. Transform. Transform. Transform. Transform. Transform. Definition The CTFT of a continuoustime

Continuous-Time Fourier Transform. Transform. Transform. Transform. Transform. Transform. Definition The CTFT of a continuoustime Ctiuus-Tim Furir Dfiiti Th CTFT f a ctiuustim sigal x a (t is giv by Xa ( jω xa( t jωt Oft rfrrd t as th Furir spctrum r simply th spctrum f th ctiuus-tim sigal dt Ctiuus-Tim Furir Dfiiti Th ivrs CTFT

More information

DFT: Discrete Fourier Transform

DFT: Discrete Fourier Transform : Discrt Fourir Trasform Cogruc (Itgr modulo m) I this sctio, all lttrs stad for itgrs. gcd m, = th gratst commo divisor of ad m Lt d = gcd(,m) All th liar combiatios r s m of ad m ar multils of d. a b

More information

1985 AP Calculus BC: Section I

1985 AP Calculus BC: Section I 985 AP Calculus BC: Sctio I 9 Miuts No Calculator Nots: () I this amiatio, l dots th atural logarithm of (that is, logarithm to th bas ). () Ulss othrwis spcifid, th domai of a fuctio f is assumd to b

More information

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series Chatr Ifiit Sris Pag of Sctio F Itgral Tst Chatr : Ifiit Sris By th d of this sctio you will b abl to valuat imror itgrals tst a sris for covrgc by alyig th itgral tst aly th itgral tst to rov th -sris

More information

Chapter 11.00C Physical Problem for Fast Fourier Transform Civil Engineering

Chapter 11.00C Physical Problem for Fast Fourier Transform Civil Engineering haptr. Physical Problm for Fast Fourir Trasform ivil Egirig Itroductio I this chaptr, applicatios of FFT algorithms [-5] for solvig ral-lif problms such as computig th dyamical (displacmt rspos [6-7] of

More information

15/03/1439. Lectures on Signals & systems Engineering

15/03/1439. Lectures on Signals & systems Engineering Lcturs o Sigals & syms Egirig Dsigd ad Prd by Dr. Ayma Elshawy Elsfy Dpt. of Syms & Computr Eg. Al-Azhar Uivrsity Email : aymalshawy@yahoo.com A sigal ca b rprd as a liar combiatio of basic sigals. Th

More information

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net Taylor s Thorm & Lagrag Error Bouds Actual Error This is th ral amout o rror, ot th rror boud (worst cas scario). It is th dirc btw th actual () ad th polyomial. Stps:. Plug -valu ito () to gt a valu.

More information

10. The Discrete-Time Fourier Transform (DTFT)

10. The Discrete-Time Fourier Transform (DTFT) Th Discrt-Tim Fourir Transform (DTFT Dfinition of th discrt-tim Fourir transform Th Fourir rprsntation of signals plays an important rol in both continuous and discrt signal procssing In this sction w

More information

VI. FIR digital filters

VI. FIR digital filters www.jtuworld.com www.jtuworld.com Digital Sigal Procssig 6 Dcmbr 24, 29 VI. FIR digital filtrs (No chag i 27 syllabus). 27 Syllabus: Charactristics of FIR digital filtrs, Frqucy rspos, Dsig of FIR digital

More information

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1 Chatr Fiv Mor Dimsios 51 Th Sac R W ar ow rard to mov o to sacs of dimsio gratr tha thr Ths sacs ar a straightforward gralizatio of our Euclida sac of thr dimsios Lt b a ositiv itgr Th -dimsioal Euclida

More information

A Review of Complex Arithmetic

A Review of Complex Arithmetic /0/005 Rviw of omplx Arithmti.do /9 A Rviw of omplx Arithmti A omplx valu has both a ral ad imagiary ompot: { } ad Im{ } a R b so that w a xprss this omplx valu as: whr. a + b Just as a ral valu a b xprssd

More information

ELEC9721: Digital Signal Processing Theory and Applications

ELEC9721: Digital Signal Processing Theory and Applications ELEC97: Digital Sigal Pocssig Thoy ad Applicatios Tutoial ad solutios Not: som of th solutios may hav som typos. Q a Show that oth digital filts giv low hav th sam magitud spos: i [] [ ] m m i i i x c

More information

Fractional Sampling using the Asynchronous Shah with application to LINEAR PHASE FIR FILTER DESIGN

Fractional Sampling using the Asynchronous Shah with application to LINEAR PHASE FIR FILTER DESIGN Jo Dattorro, Summr 998 Fractioal Samplig usig th sychroous Shah with applicatio to LIER PSE FIR FILER DESIG bstract W ivstigat th fudamtal procss of samplig usig a impuls trai, calld th shah fuctio [Bracwll],

More information

Problem Value Score Earned No/Wrong Rec -3 Total

Problem Value Score Earned No/Wrong Rec -3 Total GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING ECE6 Fall Quiz # Writt Eam Novmr, NAME: Solutio Kys GT Usram: LAST FIRST.g., gtiit Rcitatio Sctio: Circl t dat & tim w your Rcitatio

More information

Chapter 3 Fourier Series Representation of Periodic Signals

Chapter 3 Fourier Series Representation of Periodic Signals Chptr Fourir Sris Rprsttio of Priodic Sigls If ritrry sigl x(t or x[] is xprssd s lir comitio of som sic sigls th rspos of LI systm coms th sum of th idividul rsposs of thos sic sigls Such sic sigl must:

More information

Figure 2-18 Thevenin Equivalent Circuit of a Noisy Resistor

Figure 2-18 Thevenin Equivalent Circuit of a Noisy Resistor .8 NOISE.8. Th Nyquist Nois Thorm W ow wat to tur our atttio to ois. W will start with th basic dfiitio of ois as usd i radar thory ad th discuss ois figur. Th typ of ois of itrst i radar thory is trmd

More information

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n 07 - SEQUENCES AND SERIES Pag ( Aswrs at h d of all qustios ) ( ) If = a, y = b, z = c, whr a, b, c ar i A.P. ad = 0 = 0 = 0 l a l

More information

On the approximation of the constant of Napier

On the approximation of the constant of Napier Stud. Uiv. Babş-Bolyai Math. 560, No., 609 64 O th approximatio of th costat of Napir Adri Vrscu Abstract. Startig from som oldr idas of [] ad [6], w show w facts cocrig th approximatio of th costat of

More information

EEO 401 Digital Signal Processing Prof. Mark Fowler

EEO 401 Digital Signal Processing Prof. Mark Fowler EEO 401 Digital Signal Procssing Prof. Mark Fowlr Dtails of th ot St #19 Rading Assignmnt: Sct. 7.1.2, 7.1.3, & 7.2 of Proakis & Manolakis Dfinition of th So Givn signal data points x[n] for n = 0,, -1

More information

Slide 1. Slide 2. Slide 3 DIGITAL SIGNAL PROCESSING CLASSIFICATION OF SIGNALS

Slide 1. Slide 2. Slide 3 DIGITAL SIGNAL PROCESSING CLASSIFICATION OF SIGNALS Slid DIGITAL SIGAL PROCESSIG UIT I DISCRETE TIME SIGALS AD SYSTEM Slid Rviw of discrt-tim signals & systms Signal:- A signal is dfind as any physical quantity that varis with tim, spac or any othr indpndnt

More information

EC1305 SIGNALS & SYSTEMS

EC1305 SIGNALS & SYSTEMS EC35 SIGNALS & SYSTES DEPT/ YEAR/ SE: IT/ III/ V PREPARED BY: s. S. TENOZI/ Lcturr/ECE SYLLABUS UNIT I CLASSIFICATION OF SIGNALS AND SYSTES Cotiuous Tim Sigals (CT Sigals Discrt Tim Sigals (DT Sigals Stp

More information

Probability & Statistics,

Probability & Statistics, Probability & Statistics, BITS Pilai K K Birla Goa Campus Dr. Jajati Kshari Sahoo Dpartmt of Mathmatics BITS Pilai, K K Birla Goa Campus Poisso Distributio Poisso Distributio: A radom variabl X is said

More information

Digital Signal Processing

Digital Signal Processing Digital Sigal Procssig Brli C 4 Rfrcs:.. V. Oppi ad R. W. Scafr, Discrt-ti Sigal Procssig, 999.. uag t. al., Spo Laguag Procssig, Captrs 5, 6. J. R. Dllr t. al., Discrt-Ti Procssig of Spc Sigals, Captrs

More information

H2 Mathematics Arithmetic & Geometric Series ( )

H2 Mathematics Arithmetic & Geometric Series ( ) H Mathmatics Arithmtic & Gomtric Sris (08 09) Basic Mastry Qustios Arithmtic Progrssio ad Sris. Th rth trm of a squc is 4r 7. (i) Stat th first four trms ad th 0th trm. (ii) Show that th squc is a arithmtic

More information

ω (argument or phase)

ω (argument or phase) Imagiary uit: i ( i Complx umbr: z x+ i y Cartsia coordiats: x (ral part y (imagiary part Complx cougat: z x i y Absolut valu: r z x + y Polar coordiats: r (absolut valu or modulus ω (argumt or phas x

More information

Statistics 3858 : Likelihood Ratio for Exponential Distribution

Statistics 3858 : Likelihood Ratio for Exponential Distribution Statistics 3858 : Liklihood Ratio for Expotial Distributio I ths two xampl th rjctio rjctio rgio is of th form {x : 2 log (Λ(x)) > c} for a appropriat costat c. For a siz α tst, usig Thorm 9.5A w obtai

More information

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120 Tim : hr. Tst Papr 8 D 4//5 Bch - R Marks : SINGLE CORRECT CHOICE TYPE [4, ]. If th compl umbr z sisfis th coditio z 3, th th last valu of z is qual to : z (A) 5/3 (B) 8/3 (C) /3 (D) o of ths 5 4. Th itgral,

More information

10. Joint Moments and Joint Characteristic Functions

10. Joint Moments and Joint Characteristic Functions 0 Joit Momts ad Joit Charactristic Fctios Followig sctio 6 i this sctio w shall itrodc varios paramtrs to compactly rprst th iformatio cotaid i th joit pdf of two rvs Giv two rvs ad ad a fctio g x y dfi

More information

Discrete Fourier Series and Transforms

Discrete Fourier Series and Transforms Lctur 4 Outi: Discrt Fourir Sris ad Trasforms Aoucmts: H 4 postd, du Tus May 8 at 4:3pm. o at Hs as soutios wi b avaiab immdiaty. Midtrm dtais o t pag H 5 wi b postd Fri May, du foowig Fri (as usua) Rviw

More information

Introduction to Quantum Information Processing. Overview. A classical randomised algorithm. q 3,3 00 0,0. p 0,0. Lecture 10.

Introduction to Quantum Information Processing. Overview. A classical randomised algorithm. q 3,3 00 0,0. p 0,0. Lecture 10. Itroductio to Quatum Iformatio Procssig Lctur Michl Mosca Ovrviw! Classical Radomizd vs. Quatum Computig! Dutsch-Jozsa ad Brsti- Vazirai algorithms! Th quatum Fourir trasform ad phas stimatio A classical

More information

An Introduction to Asymptotic Expansions

An Introduction to Asymptotic Expansions A Itroductio to Asmptotic Expasios R. Shaar Subramaia Asmptotic xpasios ar usd i aalsis to dscrib th bhavior of a fuctio i a limitig situatio. Wh a fuctio ( x, dpds o a small paramtr, ad th solutio of

More information

Restricted Factorial And A Remark On The Reduced Residue Classes

Restricted Factorial And A Remark On The Reduced Residue Classes Applid Mathmatics E-Nots, 162016, 244-250 c ISSN 1607-2510 Availabl fr at mirror sits of http://www.math.thu.du.tw/ am/ Rstrictd Factorial Ad A Rmark O Th Rducd Rsidu Classs Mhdi Hassai Rcivd 26 March

More information

Chapter Taylor Theorem Revisited

Chapter Taylor Theorem Revisited Captr 0.07 Taylor Torm Rvisitd Atr radig tis captr, you sould b abl to. udrstad t basics o Taylor s torm,. writ trascdtal ad trigoomtric uctios as Taylor s polyomial,. us Taylor s torm to id t valus o

More information

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II COLLECTION OF SUPPLEMENTARY PROBLEMS I. CHAPTER 6 --- Trscdtl Fuctios CALCULUS II A. FROM CALCULUS BY J. STEWART:. ( How is th umbr dfid? ( Wht is pproimt vlu for? (c ) Sktch th grph of th turl potil fuctios.

More information

International Journal of Advanced and Applied Sciences

International Journal of Advanced and Applied Sciences Itratioal Joural of Advacd ad Applid Scics x(x) xxxx Pags: xx xx Cotts lists availabl at Scic Gat Itratioal Joural of Advacd ad Applid Scics Joural hompag: http://wwwscic gatcom/ijaashtml Symmtric Fuctios

More information

(looks like a time sequence) i function of ˆ ω (looks like a transform) 2. Interpretations of X ( e ) DFT View OLA implementation

(looks like a time sequence) i function of ˆ ω (looks like a transform) 2. Interpretations of X ( e ) DFT View OLA implementation viw of STFT Digital Spch Procssig Lctur Short-Tim Fourir Aalysis Mthods - Filtr Ba Dsig j j ˆ m ˆ. X x[ m] w[ ˆ m] ˆ i fuctio of ˆ loos li a tim squc i fuctio of ˆ loos li a trasform j ˆ X dfid for ˆ 3,,,...;

More information

COMPUTER GENERATED HOLOGRAMS Optical Sciences 627 W.J. Dallas (Monday, April 04, 2005, 8:35 AM) PART I: CHAPTER TWO COMB MATH.

COMPUTER GENERATED HOLOGRAMS Optical Sciences 627 W.J. Dallas (Monday, April 04, 2005, 8:35 AM) PART I: CHAPTER TWO COMB MATH. C:\Dallas\0_Courss\03A_OpSci_67\0 Cgh_Book\0_athmaticalPrliminaris\0_0 Combath.doc of 8 COPUTER GENERATED HOLOGRAS Optical Scincs 67 W.J. Dallas (onday, April 04, 005, 8:35 A) PART I: CHAPTER TWO COB ATH

More information

STIRLING'S 1 FORMULA AND ITS APPLICATION

STIRLING'S 1 FORMULA AND ITS APPLICATION MAT-KOL (Baja Luka) XXIV ()(08) 57-64 http://wwwimviblorg/dmbl/dmblhtm DOI: 075/МК80057A ISSN 0354-6969 (o) ISSN 986-588 (o) STIRLING'S FORMULA AND ITS APPLICATION Šfkt Arslaagić Sarajvo B&H Abstract:

More information

Narayana IIT Academy

Narayana IIT Academy INDIA Sc: LT-IIT-SPARK Dat: 9--8 6_P Max.Mars: 86 KEY SHEET PHYSIS A 5 D 6 7 A,B 8 B,D 9 A,B A,,D A,B, A,B B, A,B 5 A 6 D 7 8 A HEMISTRY 9 A B D B B 5 A,B,,D 6 A,,D 7 B,,D 8 A,B,,D 9 A,B, A,B, A,B,,D A,B,

More information

Calculus & analytic geometry

Calculus & analytic geometry Calculus & aalytic gomtry B Sc MATHEMATICS Admissio owards IV SEMESTER CORE COURSE UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION CALICUT UNIVERSITYPO, MALAPPURAM, KERALA, INDIA 67 65 5 School of Distac

More information

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx MONTGOMERY COLLEGE Dpartmt of Mathmatics Rockvill Campus MATH 8 - REVIEW PROBLEMS. Stat whthr ach of th followig ca b itgratd by partial fractios (PF), itgratio by parts (PI), u-substitutio (U), or o of

More information

Session : Plasmas in Equilibrium

Session : Plasmas in Equilibrium Sssio : Plasmas i Equilibrium Ioizatio ad Coductio i a High-prssur Plasma A ormal gas at T < 3000 K is a good lctrical isulator, bcaus thr ar almost o fr lctros i it. For prssurs > 0.1 atm, collisio amog

More information

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 12

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 12 REVIEW Lctur 11: Numrical Fluid Mchaics Sprig 2015 Lctur 12 Fiit Diffrcs basd Polyomial approximatios Obtai polyomial (i gral u-qually spacd), th diffrtiat as dd Nwto s itrpolatig polyomial formulas Triagular

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordiary Diffrtial Equatio Aftr radig thi chaptr, you hould b abl to:. dfi a ordiary diffrtial quatio,. diffrtiat btw a ordiary ad partial diffrtial quatio, ad. Solv liar ordiary diffrtial quatio with fid

More information

Hadamard Exponential Hankel Matrix, Its Eigenvalues and Some Norms

Hadamard Exponential Hankel Matrix, Its Eigenvalues and Some Norms Math Sci Ltt Vol No 8-87 (0) adamard Exotial al Matrix, Its Eigvalus ad Som Norms İ ad M bula Mathmatical Scics Lttrs Itratioal Joural @ 0 NSP Natural Scics Publishig Cor Dartmt of Mathmatics, aculty of

More information

Solution to 1223 The Evil Warden.

Solution to 1223 The Evil Warden. Solutio to 1 Th Evil Ward. This is o of thos vry rar PoWs (I caot thik of aothr cas) that o o solvd. About 10 of you submittd th basic approach, which givs a probability of 47%. I was shockd wh I foud

More information

[ ] Review. For a discrete-time periodic signal xn with period N, the Fourier series representation is

[ ] Review. For a discrete-time periodic signal xn with period N, the Fourier series representation is Discrt-tim ourir Trsform Rviw or discrt-tim priodic sigl x with priod, th ourir sris rprsttio is x + < > < > x, Rviw or discrt-tim LTI systm with priodic iput sigl, y H ( ) < > < > x H r rfrrd to s th

More information

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia Par B: rasform Mhods Profssor E. Ambikairaah UNSW, Ausralia Chapr : Fourir Rprsaio of Sigal. Fourir Sris. Fourir rasform.3 Ivrs Fourir rasform.4 Propris.4. Frqucy Shif.4. im Shif.4.3 Scalig.4.4 Diffriaio

More information

DIGITAL SIGNAL PROCESSING BEG 433 EC

DIGITAL SIGNAL PROCESSING BEG 433 EC Dowloadd from www.ayaram.com. DIGITAL SIGAL PROCESSIG BEG EC.Yar: IV Smstr: II Tachig Schdul Examiatio Schm Hours/W Thory Tutorial Practical Itral Assssmt Fial - / Thory Practical* Thory Practical** 5

More information

Time Dependent Solutions: Propagators and Representations

Time Dependent Solutions: Propagators and Representations Tim Dpdt Solutios: Propagators ad Rprstatios Michal Fowlr, UVa 1/3/6 Itroductio W v spt most of th cours so far coctratig o th igstats of th amiltoia, stats whos tim dpdc is mrly a chagig phas W did mtio

More information

Law of large numbers

Law of large numbers Law of larg umbrs Saya Mukhrj W rvisit th law of larg umbrs ad study i som dtail two typs of law of larg umbrs ( 0 = lim S ) p ε ε > 0, Wak law of larrg umbrs [ ] S = ω : lim = p, Strog law of larg umbrs

More information

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2 MATHEMATIS --RE Itgral alculus Marti Huard Witr 9 Rviw Erciss. Evaluat usig th dfiitio of th dfiit itgral as a Rima Sum. Dos th aswr rprst a ara? a ( d b ( d c ( ( d d ( d. Fid f ( usig th Fudamtal Thorm

More information

COMPUTING FOLRIER AND LAPLACE TRANSFORMS. Sven-Ake Gustafson. be a real-valued func'cion, defined for nonnegative arguments.

COMPUTING FOLRIER AND LAPLACE TRANSFORMS. Sven-Ake Gustafson. be a real-valued func'cion, defined for nonnegative arguments. 77 COMPUTNG FOLRER AND LAPLACE TRANSFORMS BY MEANS OF PmER SERES EVALU\TON Sv-Ak Gustafso 1. NOTATONS AND ASSUMPTONS Lt f b a ral-valud fuc'cio, dfid for ogativ argumts. W shall discuss som aspcts of th

More information

Frequency Measurement in Noise

Frequency Measurement in Noise Frqucy Masurmt i ois Porat Sctio 6.5 /4 Frqucy Mas. i ois Problm Wat to o look at th ct o ois o usig th DFT to masur th rqucy o a siusoid. Cosidr sigl complx siusoid cas: j y +, ssum Complx Whit ois Gaussia,

More information

Finite-length Discrete Transforms. Chapter 5, Sections

Finite-length Discrete Transforms. Chapter 5, Sections Fiite-legth Discrete Trasforms Chapter 5, Sectios 5.2-50 5.0 Dr. Iyad djafar Outlie The Discrete Fourier Trasform (DFT) Matrix Represetatio of DFT Fiite-legth Sequeces Circular Covolutio DFT Symmetry Properties

More information

Chapter 6. The Discrete Fourier Transform and The Fast Fourier Transform

Chapter 6. The Discrete Fourier Transform and The Fast Fourier Transform Pusan ational Univrsity Chaptr 6. Th Discrt Fourir Transform and Th Fast Fourir Transform 6. Introduction Frquncy rsponss of discrt linar tim invariant systms ar rprsntd by Fourir transform or z-transforms.

More information

NET/JRF, GATE, IIT JAM, JEST, TIFR

NET/JRF, GATE, IIT JAM, JEST, TIFR Istitut for NET/JRF, GATE, IIT JAM, JEST, TIFR ad GRE i PHYSICAL SCIENCES Mathmatical Physics JEST-6 Q. Giv th coditio φ, th solutio of th quatio ψ φ φ is giv by k. kφ kφ lφ kφ lφ (a) ψ (b) ψ kφ (c) ψ

More information

Response of LTI Systems to Complex Exponentials

Response of LTI Systems to Complex Exponentials 3 Fourir sris coiuous-im Rspos of LI Sysms o Complx Expoials Ouli Cosidr a LI sysm wih h ui impuls rspos Suppos h ipu sigal is a complx xpoial s x s is a complx umbr, xz zis a complx umbr h or h h w will

More information

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges.

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges. Optio Chaptr Ercis. Covrgs to Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Divrgs 8 Divrgs Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Covrgs to Covrgs to 8 Proof Covrgs to π l 8 l a b Divrgt π Divrgt

More information

APPENDIX: STATISTICAL TOOLS

APPENDIX: STATISTICAL TOOLS I. Nots o radom samplig Why do you d to sampl radomly? APPENDI: STATISTICAL TOOLS I ordr to masur som valu o a populatio of orgaisms, you usually caot masur all orgaisms, so you sampl a subst of th populatio.

More information

Linear Algebra Existence of the determinant. Expansion according to a row.

Linear Algebra Existence of the determinant. Expansion according to a row. Lir Algbr 2270 1 Existc of th dtrmit. Expsio ccordig to row. W dfi th dtrmit for 1 1 mtrics s dt([]) = (1) It is sy chck tht it stisfis D1)-D3). For y othr w dfi th dtrmit s follows. Assumig th dtrmit

More information

Frequency Response & Digital Filters

Frequency Response & Digital Filters Frquy Rspos & Digital Filtrs S Wogsa Dpt. of Cotrol Systms ad Istrumtatio Egirig, KUTT Today s goals Frquy rspos aalysis of digital filtrs LTI Digital Filtrs Digital filtr rprstatios ad struturs Idal filtrs

More information

Problem Set #2 Due: Friday April 20, 2018 at 5 PM.

Problem Set #2 Due: Friday April 20, 2018 at 5 PM. 1 EE102B Spring 2018 Signal Procssing and Linar Systms II Goldsmith Problm St #2 Du: Friday April 20, 2018 at 5 PM. 1. Non-idal sampling and rcovry of idal sampls by discrt-tim filtring 30 pts) Considr

More information

Introduction to the Fourier transform. Computer Vision & Digital Image Processing. The Fourier transform (continued) The Fourier transform (continued)

Introduction to the Fourier transform. Computer Vision & Digital Image Processing. The Fourier transform (continued) The Fourier transform (continued) Introduction to th Fourir transform Computr Vision & Digital Imag Procssing Fourir Transform Lt f(x) b a continuous function of a ral variabl x Th Fourir transform of f(x), dnotd by I {f(x)} is givn by:

More information

Chapter (8) Estimation and Confedence Intervals Examples

Chapter (8) Estimation and Confedence Intervals Examples Chaptr (8) Estimatio ad Cofdc Itrvals Exampls Typs of stimatio: i. Poit stimatio: Exampl (1): Cosidr th sampl obsrvatios, 17,3,5,1,18,6,16,10 8 X i i1 17 3 5 118 6 16 10 116 X 14.5 8 8 8 14.5 is a poit

More information

Derivation of a Predictor of Combination #1 and the MSE for a Predictor of a Position in Two Stage Sampling with Response Error.

Derivation of a Predictor of Combination #1 and the MSE for a Predictor of a Position in Two Stage Sampling with Response Error. Drivatio of a Prdictor of Cobiatio # ad th SE for a Prdictor of a Positio i Two Stag Saplig with Rspos Error troductio Ed Stak W driv th prdictor ad its SE of a prdictor for a rado fuctio corrspodig to

More information

MATH 681 Notes Combinatorics and Graph Theory I. ( 4) n. This will actually turn out to be marvelously simplifiable: C n = 2 ( 4) n n + 1. ) (n + 1)!

MATH 681 Notes Combinatorics and Graph Theory I. ( 4) n. This will actually turn out to be marvelously simplifiable: C n = 2 ( 4) n n + 1. ) (n + 1)! MATH 681 Nots Combiatorics ad Graph Thory I 1 Catala umbrs Prviously, w usd gratig fuctios to discovr th closd form C = ( 1/ +1) ( 4). This will actually tur out to b marvlously simplifiabl: ( ) 1/ C =

More information

ln x = n e = 20 (nearest integer)

ln x = n e = 20 (nearest integer) H JC Prlim Solutios 6 a + b y a + b / / dy a b 3/ d dy a b at, d Giv quatio of ormal at is y dy ad y wh. d a b () (,) is o th curv a+ b () y.9958 Qustio Solvig () ad (), w hav a, b. Qustio d.77 d d d.77

More information

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple 5/24/5 A PROOF OF THE CONTINUED FRACTION EXPANSION OF / Thomas J Oslr INTRODUCTION This ar givs aothr roof for th rmarkabl siml cotiud fractio = 3 5 / Hr is ay ositiv umbr W us th otatio x= [ a; a, a2,

More information

Washington State University

Washington State University he 3 Ktics ad Ractor Dsig Sprg, 00 Washgto Stat Uivrsity Dpartmt of hmical Egrg Richard L. Zollars Exam # You will hav o hour (60 muts) to complt this xam which cosists of four (4) problms. You may us

More information

Ordinary Differential Equations

Ordinary Differential Equations Basi Nomlatur MAE 0 all 005 Egirig Aalsis Ltur Nots o: Ordiar Diffrtial Equatios Author: Profssor Albrt Y. Tog Tpist: Sakurako Takahashi Cosidr a gral O. D. E. with t as th idpdt variabl, ad th dpdt variabl.

More information

Module 5: IIR and FIR Filter Design Prof. Eliathamby Ambikairajah Dr. Tharmarajah Thiruvaran School of Electrical Engineering & Telecommunications

Module 5: IIR and FIR Filter Design Prof. Eliathamby Ambikairajah Dr. Tharmarajah Thiruvaran School of Electrical Engineering & Telecommunications Modul 5: IIR ad FIR Filtr Dsig Prof. Eliathamby Ambiairaah Dr. Tharmaraah Thiruvara School of Elctrical Egirig & Tlcommuicatios Th Uivrsity of w South Wals Australia IIR filtrs Evry rcursiv digital filtr

More information

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling Tripl Play: From D Morga to Stirlig To Eulr to Maclauri to Stirlig Augustus D Morga (186-1871) was a sigificat Victoria Mathmaticia who mad cotributios to Mathmatics History, Mathmatical Rcratios, Mathmatical

More information

Ideal crystal : Regulary ordered point masses connected via harmonic springs

Ideal crystal : Regulary ordered point masses connected via harmonic springs Statistical thrmodyamics of crystals Mooatomic crystal Idal crystal : Rgulary ordrd poit masss coctd via harmoic sprigs Itratomic itractios Rprstd by th lattic forc-costat quivalt atom positios miima o

More information

Practical Spectral Anaysis (continue) (from Boaz Porat s book) Frequency Measurement

Practical Spectral Anaysis (continue) (from Boaz Porat s book) Frequency Measurement Practical Spectral Aaysis (cotiue) (from Boaz Porat s book) Frequecy Measuremet Oe of the most importat applicatios of the DFT is the measuremet of frequecies of periodic sigals (eg., siusoidal sigals),

More information

Chapter 8. DFT : The Discrete Fourier Transform

Chapter 8. DFT : The Discrete Fourier Transform Chapter 8 DFT : The Discrete Fourier Trasform Roots of Uity Defiitio: A th root of uity is a complex umber x such that x The th roots of uity are: ω, ω,, ω - where ω e π /. Proof: (ω ) (e π / ) (e π )

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES

NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES Digst Joural of Naomatrials ad Biostructurs Vol 4, No, March 009, p 67-76 NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES A IRANMANESH a*, O KHORMALI b, I NAJAFI KHALILSARAEE c, B SOLEIMANI

More information

CORRECTIONS TO THE WU-SPRUNG POTENTIAL FOR THE RIEMANN ZEROS AND A NEW HAMILTONIAN WHOSE ENERGIES ARE THE PRIME NUMBERS

CORRECTIONS TO THE WU-SPRUNG POTENTIAL FOR THE RIEMANN ZEROS AND A NEW HAMILTONIAN WHOSE ENERGIES ARE THE PRIME NUMBERS CORRECTIONS TO THE WU-SPRUNG POTENTIAL FOR THE RIEMANN ZEROS AND A NEW HAMILTONIAN WHOSE ENERGIES ARE THE PRIME NUMBERS Jos Javir Garcia Morta Graduat studt of Physics at th UPV/EHU (Uivrsity of Basqu

More information

(Reference: sections in Silberberg 5 th ed.)

(Reference: sections in Silberberg 5 th ed.) ALE. Atomic Structur Nam HEM K. Marr Tam No. Sctio What is a atom? What is th structur of a atom? Th Modl th structur of a atom (Rfrc: sctios.4 -. i Silbrbrg 5 th d.) Th subatomic articls that chmists

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by Dan Klain Vrsion 28928 Corrctions and commnts ar wlcom Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix () A A k I + A + k!

More information

Lecture 2: Discrete-Time Signals & Systems. Reza Mohammadkhani, Digital Signal Processing, 2015 University of Kurdistan eng.uok.ac.

Lecture 2: Discrete-Time Signals & Systems. Reza Mohammadkhani, Digital Signal Processing, 2015 University of Kurdistan eng.uok.ac. Lctur 2: Discrt-Tim Signals & Systms Rza Mohammadkhani, Digital Signal Procssing, 2015 Univrsity of Kurdistan ng.uok.ac.ir/mohammadkhani 1 Signal Dfinition and Exampls 2 Signal: any physical quantity that

More information

Further Results on Pair Sum Graphs

Further Results on Pair Sum Graphs Applid Mathmatis, 0,, 67-75 http://dx.doi.org/0.46/am.0.04 Publishd Oli Marh 0 (http://www.sirp.org/joural/am) Furthr Rsults o Pair Sum Graphs Raja Poraj, Jyaraj Vijaya Xavir Parthipa, Rukhmoi Kala Dpartmt

More information

Электронный архив УГЛТУ ЭКО-ПОТЕНЦИАЛ 2 (14),

Электронный архив УГЛТУ ЭКО-ПОТЕНЦИАЛ 2 (14), УДК 004.93'; 004.93 Электронный архив УГЛТУ ЭКО-ПОТЕНЦИАЛ (4), 06 V. Labuts, I. Artmov, S. Martyugi & E. Osthimr Ural dral Uivrsity, Ykatriburg, Russia Capricat LLC, USA AST RACTIOAL OURIER TRASORMS BASED

More information

SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3

SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3 SOLVED EXAMPLES E. If f() E.,,, th f() f() h h LHL RHL, so / / Lim f() quls - (D) Dos ot ist [( h)+] [(+h) + ] f(). LHL E. RHL h h h / h / h / h / h / h / h As.[C] (D) Dos ot ist LHL RHL, so giv it dos

More information

ELCE5180 Digital Signal Processing

ELCE5180 Digital Signal Processing ELCE580 Digital Sigal Prossig Assigmt : Disrt Fourir Trasform DFT am Class&Stut ID Aim. To stuy t Disrt Fourir Trasform.. Us DFT to aalyz t DTFT. 3. Us t FFT to imlmt t fast ovolutios. Itroutio Fast Fourir

More information