Varanasi , India. Corresponding author

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Varanasi , India. Corresponding author"

Transcription

1 A Geeral Family of Estimators for Estimatig Populatio Mea i Systematic Samplig Usig Auxiliary Iformatio i the Presece of Missig Observatios Maoj K. Chaudhary, Sachi Malik, Jayat Sigh ad Rajesh Sigh Departmet of Statistics, Baaras Hidu Uiversity Varaasi-005, Idia Departmet of Statistics, Rajastha Uiversity, Jaipur, Idia Correspodig author Abstract This paper proposes a geeral family of estimators for estimatig the populatio mea i systematic samplig i the presece of o-respose adaptig the family of estimators proposed by Khoshevisa et al. (007). I this paper we have discussed the geeral properties of the proposed family icludig optimum property. The results have bee illustrated umerically by takig a empirical populatio cosidered i the literature. Keywords: Family of estimators, Auxiliary iformatio, Mea square error, Norespose, Systematic samplig.. Itroductio The method of systematic samplig, first studied by Madow ad Madow (944), is used widely i surveys of fiite populatios. Whe properly applied, the methods pocks up ay obvious or hidde stratificatio i the populatio ad thus ca be more precise tha radom samplig. I additio, systematic samplig is implemeted easily, thus reducig costs. I this variat of radom samplig, oly the first uit of the sample is selected at radom from the populatio. The subsequet uits are the selected by followig some defiite rule. Systematic samplig has bee cosidered i detail by Cochra (946) ad Lahiri (954). Reviews of the work doe i the field have bee give by ates (948) ad

2 Bucklad (95). The applicatio of systematic samplig to forest surveys has bee illustrated by Hasel (94), Fiey (948) ad Nair ad Bhargava (95). Use of systematic samplig i estimatig catch of fish has bee demostrated by Sukhatme et al. (958). The use of auxiliary iformatio has bee permeated the importat role to improve the efficiecy of the estimator. Kushwaha ad Sigh (989) suggested a class of almost ubiased ratio ad product type estimators for estimatig the populatio mea usig jack-kife techique iitiated by Queouille (956). Afterward Baarasi et al. (993) ad Sigh ad Sigh (998) have proposed the estimators of populatio mea usig auxiliary iformatio i systematic samplig. Khoshevisa et al. (007) suggested a geeral family of estimators for estimatig the populatios mea usig kow values of some populatio parameters i simple radom samplig, give by a + b t = y (.) α(ax + b) + ( α)(a + b) where y ad x are the sample meas of study ad auxiliary variables respectively. is the populatio mea of auxiliary variable. a 0 ad b are either real umbers or fuctios of kow parameters of auxiliary variable. α ad g are the real umbers which are to be determied. Here we would like to metio that the choice of the estimator depeds o the availability ad values of the various parameter(s) used (for choice of the parameters a ad b refer to Sigh et al. (008) ad Sigh ad Kumar(0)). I this paper we have proposed a geeral family of estimators for estimatig the populatio mea i systematic samplig usig auxiliary iformatio i the presece of o-respose followig Khoshevisa et al. (007). We have also derived the expressios for miimum mea square errors (MSE) of the family with respect to α. A comparative study is also carried out to compare the optimum estimators of the family with respect to usual mea estimator with the help of umerical data. g. Proposed Family of Estimators Let us suppose that a populatio cosists of N uits umbered from to N i some order ad a sample of size is to be draw such that N = k ( k is a iteger). Thus

3 there will be k samples each of uits ad we select oe sample from the set of k samples. Let ad be the study ad auxiliary variable with respective meas ad. Let us cosider yij(xij) be the th j observatio i the th i systematic sample uder study (auxiliary) variable ( i =...k : j =... ). Wwe assume that the o-respose is observed oly o study variable ad auxiliary variable is free from o-respose. Usig Hase-Hurwitz (946) techique of sub-samplig of o-respodets, the estimator of populatio mea, ca be defied as where y ad y y yh = (.) + y h are, respectively the meas based o respodet uits from the systematic sample of uits ad sub-sample of h uits selected from o- respodet uits i the systematic sample. The estimator of populatio mea of auxiliary variable based o the systematic sample of size uits, is give by x ij j= x = ( i =... k ) (.) Obviously, y ad x are ubiased estimators. The variace expressio for the estimators ad ( x) where y ad x are, respectively, give by N V y = L { + ρ} S + WS V = { + ( ) ρ } S (.3) (.4) ρ ad ρ are the correlatio coefficiets betwee a pair of uits withi the systematic sample for the study ad auxiliary variables respectively. S ad respectively the mea squares of the etire group for study ad auxiliary variable. S are be the mea square of o-respose group uder study variable, W is the o-respose rate i the populatio ad L =. h S

4 Let us assume that the populatio mea is kow. Thus the usual ratio ad product estimators of the populatio mea uder o-respose based o a systematic sample of size, ca be respectively defied as ad y y R = (.5) x y P = y x (.6) To obtai the biases ad mea square errors, we use large sample approximatio. y = ( + ) e 0 x = ( + ) e e such that E ( e 0 ) = ( ) ( ) E e 0 = ( ) e V y V( x) E = ad E ( e 0 e ) = where respectively. E = 0, ad L S = { + ρ } C + W, = { + } C, Cov y, x ρ = { + ρ } { + ρ} ρcc C ad C are the coefficiets of variatio of study ad auxiliary variables Expressig the equatios (.5) ad (.6) i terms of i expectatios the bias expressios of the estimators of by ad y R B = + y P { ρ}( Kρ ) C B = { + ρ} Kρ C e s ( 0,) i = ad takig y R ad y P, are respectively give (.7) (.8)

5 where, ρ = { + ρ} { + ρ } C ad K = ρ. C The mea square errors (MSE s) of y R N MSE = + ad P y MSE = + y R ad y P, are respectively, give by + ρ L C K C + W S { } ( ) ρ ρ N { } ( ) ρ ρ C + + Kρ C + L W S (.9) (.0) Motivated by Khoshevisa et al. (007), we ow defie a family of estimators of populatio mea based o a systematic sample of size i the presece of orespose as t g a + b = y (.) α( ax + b) + ( α)( a + b) This family ca geerate the o-respose versios of a umber of estimators of populatio mea icludig the usual ratio ad product estimators o differet choices of a, b, α ad g.. Properties of Expressig t t a where λ =. a + b t i terms of e i s, we get ( + e )( + αλe ) g = y 0 (.) We assume that λ e < so that the right had side of the equatio (.) is expadable i terms of power series. Expadig the right had side of the equatio (.) ad eglectig the terms i e i s havig power greater tha two, we have

6 g(g + ) t = e0 gαλe + α λ e gαλe0e (.3) Takig expectatio both the sides of equatio (.3), we get the bias of t up to the first order of approximatio, as ( t ) B = { + ρ } ( g + ) N g C α λ gαλkρ (.4) Squarig both the sides of the equatio (.3) ad the takig the expectatio, we obtai the MSE of t up to the first order of approximatio, as ( t ) N MSE = +. Optimum Choice of α { } ( ) ρ ρ C + g α λ gαλρ K C I order to obtai the miimum MSE of respect to α ad equatig the derivative to zero, we get { + ρ }[ αg λ gλρ K] C L + ( ) t, we differetiate the MSE of The equatio (.6) provides the optimum values of α as W S (.5) t with = 0 (.6) ρ K α = gλ (.7) Puttig the optimum value of α from equatio (.7) ito the equatio (.5), we get the miimum MSE of t, as ( t ) mi MSE = + { ρ }[ C K C ] ρ L + ( ) W S (.8)

7 The miimum MSE of t, is same as the mea square error of the usual regressio estimator i systematic samplig uder o-respose. 3. Empirical Study For umerical illustratio, we have cosidered the data give i Murthy (967, p. 3-3). The data are based o legth () ad timber volume () for 76 forest strips. Murthy (967, p.49) ad Kushwaha ad Sigh (989) reported the values of itraclass correlatio coefficiets ρ ad ρ approximately equal for the systematic sample of size 6 by eumeratig all possible systematic samples after arragig the data i ascedig order of strip legth. The details of populatio parameters are : N = 76, = 6, = 8.636, = , S = , S = , ρ = 0.870, 3 S = S 4 = Table shows the percetage relative efficiecy (PRE) of t (optimum) with respect to y for the differet choices of W ad L. Table : PRE of t (optimum) with respect to y W L PRE

8 Coclusio I this paper, we have proposed a geeral family of estimators of populatio mea i systematic samplig usig a auxiliary variable i the presece of o-respose. The optimum property of the family has bee discussed. The study cocludes that the suggested family coverges to the usual regressio estimator of populatio mea i systematic samplig uder o-respose if the parameter α attais its optimum value. From Table, it ca easily be see that the estimator t (optimum) performs always better tha the usual estimator y. It is also observed that the percetage relative efficiecy (PRE) of t (optimum) with respect to y decreases with icrease i orespose rate W as well as L. Refereces. Baarasi, Kushwaha, S.N.S. ad Kushwaha, K.S. (993): A class of ratio, product ad differece (RPD) estimators i systematic samplig, Microelectro. Reliab., 33, 4,

9 . Bucklad, W. R. (95): A review of the literature of systematic samplig, JRSS, (B), 3, Cochra, W. G. (946): Relative accuracy of systematic ad stratified radom samples for a certai class of populatio, AMS, 7, Fiey, D.J. (948): Radom ad systematic samplig i timber surveys, Forestry,, Hase, M. H. ad Hurwitz, W. N. (946) : The problem of o-respose i sample surveys, Jour. of The Amer. Stat. Assoc., 4, Hasel, A. A. (94): Estimatio of volume i timber stads by strip samplig, AMS, 3, Khoshevisa, M., Sigh, R., Chauha, P., Sawa, N. ad Smaradache, F. (007): A geeral family of estimators for estimatig populatio mea usig kow value of some populatio parameter(s). Far East J. Theor. Statist.,, Kushwaha, K. S. ad Sigh, H.P. (989): Class of almost ubiased ratio ad product estimators i systematic samplig, Jour. Id. Soc. Ag. Statistics, 4,, Lahiri, D. B. (954): O the questio of bias of systematic samplig, Proceedigs of World Populatio Coferece, 6, Madow, W. G. ad Madow, L.H. (944): O the theory of systematic samplig, I. A. Math. Statist., 5, -4.. Murthy, M.N. (967): Samplig Theory ad Methods. Statistical Publishig Society, Calcutta.. Nair, K. R. ad Bhargava, R. P. (95): Statistical samplig i timber surveys i Idia, Forest Research Istitute, Dehradu, Idia forest leaflet, Queouille, M. H. (956): Notes o bias i estimatio, Biometrika, 43, Sigh, R ad Sigh, H. P. (998): Almost ubiased ratio ad product type- estimators i systematic samplig, Questiio,,3, Sigh, R., Kumar, M. ad Smaradache, F. (008): Almost Ubiased Estimator for Estimatig Populatio Mea Usig Kow Value of Some Populatio Parameter(s). Pak. J. Stat. Oper. Res., 4() pp63-76.

10 6. Sigh, R. ad Kumar, M. (0): A ote o trasformatios o auxiliary variable i survey samplig. MASA, 6:, Sukhatme, P. V., Paes, V. G. ad Sastry, K. V. R. (958): Samplig techiques for estimatig the catch of sea fish i Idia, Biometrics, 4, ates, F. (948): Systematic samplig, Philosophical Trasactios of Royal Society, (A), 4,

Use of Auxiliary Information for Estimating Population Mean in Systematic Sampling under Non- Response

Use of Auxiliary Information for Estimating Population Mean in Systematic Sampling under Non- Response Maoj K. haudhar, Sachi Malik, Rajesh Sigh Departmet of Statistics, Baaras Hidu Uiversit Varaasi-005, Idia Floreti Smaradache Uiversit of New Mexico, Gallup, USA Use of Auxiliar Iformatio for Estimatig

More information

Some Exponential Ratio-Product Type Estimators using information on Auxiliary Attributes under Second Order Approximation

Some Exponential Ratio-Product Type Estimators using information on Auxiliary Attributes under Second Order Approximation ; [Formerly kow as the Bulleti of Statistics & Ecoomics (ISSN 097-70)]; ISSN 0975-556X; Year: 0, Volume:, Issue Number: ; It. j. stat. eco.; opyright 0 by ESER Publicatios Some Expoetial Ratio-Product

More information

A General Family of Estimators for Estimating Population Variance Using Known Value of Some Population Parameter(s)

A General Family of Estimators for Estimating Population Variance Using Known Value of Some Population Parameter(s) Rajesh Sigh, Pakaj Chauha, Nirmala Sawa School of Statistics, DAVV, Idore (M.P.), Idia Floreti Smaradache Uiversity of New Meico, USA A Geeral Family of Estimators for Estimatig Populatio Variace Usig

More information

Improved exponential estimator for population variance using two auxiliary variables

Improved exponential estimator for population variance using two auxiliary variables OCTOGON MATHEMATICAL MAGAZINE Vol. 7, No., October 009, pp 667-67 ISSN -5657, ISBN 97-973-55-5-0, www.hetfalu.ro/octogo 667 Improved expoetial estimator for populatio variace usig two auxiliar variables

More information

Improved Class of Ratio -Cum- Product Estimators of Finite Population Mean in two Phase Sampling

Improved Class of Ratio -Cum- Product Estimators of Finite Population Mean in two Phase Sampling Global Joural of Sciece Frotier Research: F Mathematics ad Decisio Scieces Volume 4 Issue 2 Versio.0 Year 204 Type : Double Blid Peer Reviewed Iteratioal Research Joural Publisher: Global Jourals Ic. (USA

More information

Chain ratio-to-regression estimators in two-phase sampling in the presence of non-response

Chain ratio-to-regression estimators in two-phase sampling in the presence of non-response ProbStat Forum, Volume 08, July 015, Pages 95 10 ISS 0974-335 ProbStat Forum is a e-joural. For details please visit www.probstat.org.i Chai ratio-to-regressio estimators i two-phase samplig i the presece

More information

A Family of Unbiased Estimators of Population Mean Using an Auxiliary Variable

A Family of Unbiased Estimators of Population Mean Using an Auxiliary Variable Advaces i Computatioal Scieces ad Techolog ISSN 0973-6107 Volume 10, Number 1 (017 pp. 19-137 Research Idia Publicatios http://www.ripublicatio.com A Famil of Ubiased Estimators of Populatio Mea Usig a

More information

Estimation of the Population Mean in Presence of Non-Response

Estimation of the Population Mean in Presence of Non-Response Commuicatios of the Korea Statistical Society 0, Vol. 8, No. 4, 537 548 DOI: 0.535/CKSS.0.8.4.537 Estimatio of the Populatio Mea i Presece of No-Respose Suil Kumar,a, Sadeep Bhougal b a Departmet of Statistics,

More information

A Generalized Class of Estimators for Finite Population Variance in Presence of Measurement Errors

A Generalized Class of Estimators for Finite Population Variance in Presence of Measurement Errors Joural of Moder Applied Statistical Methods Volume Issue Article 3 --03 A Geeralized Class of Estimators for Fiite Populatio Variace i Presece of Measuremet Errors Praas Sharma Baaras Hidu Uiversit, Varaasi,

More information

Journal of Scientific Research Vol. 62, 2018 : Banaras Hindu University, Varanasi ISSN :

Journal of Scientific Research Vol. 62, 2018 : Banaras Hindu University, Varanasi ISSN : Joural of Scietific Research Vol. 6 8 : 3-34 Baaras Hidu Uiversity Varaasi ISS : 447-9483 Geeralized ad trasformed two phase samplig Ratio ad Product ype stimators for Populatio Mea Usig uiliary haracter

More information

Estimation of Population Mean Using Co-Efficient of Variation and Median of an Auxiliary Variable

Estimation of Population Mean Using Co-Efficient of Variation and Median of an Auxiliary Variable Iteratioal Joural of Probability ad Statistics 01, 1(4: 111-118 DOI: 10.593/j.ijps.010104.04 Estimatio of Populatio Mea Usig Co-Efficiet of Variatio ad Media of a Auxiliary Variable J. Subramai *, G. Kumarapadiya

More information

Modified Ratio Estimators Using Known Median and Co-Efficent of Kurtosis

Modified Ratio Estimators Using Known Median and Co-Efficent of Kurtosis America Joural of Mathematics ad Statistics 01, (4): 95-100 DOI: 10.593/j.ajms.01004.05 Modified Ratio s Usig Kow Media ad Co-Efficet of Kurtosis J.Subramai *, G.Kumarapadiya Departmet of Statistics, Podicherry

More information

SYSTEMATIC SAMPLING FOR NON-LINEAR TREND IN MILK YIELD DATA

SYSTEMATIC SAMPLING FOR NON-LINEAR TREND IN MILK YIELD DATA Joural of Reliability ad Statistical Studies; ISS (Prit): 0974-804, (Olie):9-5666 Vol. 7, Issue (04): 57-68 SYSTEMATIC SAMPLIG FOR O-LIEAR TRED I MILK YIELD DATA Tauj Kumar Padey ad Viod Kumar Departmet

More information

AClassofRegressionEstimatorwithCumDualProductEstimatorAsIntercept

AClassofRegressionEstimatorwithCumDualProductEstimatorAsIntercept Global Joural of Sciece Frotier Research: F Mathematics ad Decisio Scieces Volume 15 Issue 3 Versio 1.0 Year 2015 Type : Double Blid Peer Reviewed Iteratioal Research Joural Publisher: Global Jourals Ic.

More information

Method of Estimation in the Presence of Nonresponse and Measurement Errors Simultaneously

Method of Estimation in the Presence of Nonresponse and Measurement Errors Simultaneously Joural of Moder Applied Statistical Methods Volume 4 Issue Article 5--05 Method of Estimatio i the Presece of Norespose ad Measuremet Errors Simultaeousl Rajesh Sigh Sigh Baaras Hidu Uiversit, Varaasi,

More information

Improved Ratio Estimators of Population Mean In Adaptive Cluster Sampling

Improved Ratio Estimators of Population Mean In Adaptive Cluster Sampling J. Stat. Appl. Pro. Lett. 3, o. 1, 1-6 (016) 1 Joural of Statistics Applicatios & Probability Letters A Iteratioal Joural http://dx.doi.org/10.18576/jsapl/030101 Improved Ratio Estimators of Populatio

More information

Random Variables, Sampling and Estimation

Random Variables, Sampling and Estimation Chapter 1 Radom Variables, Samplig ad Estimatio 1.1 Itroductio This chapter will cover the most importat basic statistical theory you eed i order to uderstad the ecoometric material that will be comig

More information

Research Article An Alternative Estimator for Estimating the Finite Population Mean Using Auxiliary Information in Sample Surveys

Research Article An Alternative Estimator for Estimating the Finite Population Mean Using Auxiliary Information in Sample Surveys Iteratioal Scholarly Research Network ISRN Probability ad Statistics Volume 01, Article ID 65768, 1 pages doi:10.50/01/65768 Research Article A Alterative Estimator for Estimatig the Fiite Populatio Mea

More information

Alternative Ratio Estimator of Population Mean in Simple Random Sampling

Alternative Ratio Estimator of Population Mean in Simple Random Sampling Joural of Mathematics Research; Vol. 6, No. 3; 014 ISSN 1916-9795 E-ISSN 1916-9809 Published by Caadia Ceter of Sciece ad Educatio Alterative Ratio Estimator of Populatio Mea i Simple Radom Samplig Ekaette

More information

A Family of Efficient Estimator in Circular Systematic Sampling

A Family of Efficient Estimator in Circular Systematic Sampling olumbia Iteratioal Publishig Joural of dvaced omputig (0) Vol. o. pp. 6-68 doi:0.776/jac.0.00 Research rticle Famil of Efficiet Estimator i ircular Sstematic Samplig Hemat K. Verma ad Rajesh Sigh * Received

More information

Jambulingam Subramani 1, Gnanasegaran Kumarapandiyan 2 and Saminathan Balamurali 3

Jambulingam Subramani 1, Gnanasegaran Kumarapandiyan 2 and Saminathan Balamurali 3 ISSN 1684-8403 Joural of Statistics Volume, 015. pp. 84-305 Abstract A Class of Modified Liear Regressio Type Ratio Estimators for Estimatio of Populatio Mea usig Coefficiet of Variatio ad Quartiles of

More information

A Generalized Class of Unbiased Estimators for Population Mean Using Auxiliary Information on an Attribute and an Auxiliary Variable

A Generalized Class of Unbiased Estimators for Population Mean Using Auxiliary Information on an Attribute and an Auxiliary Variable Iteratioal Joural of Computatioal ad Applied Mathematics. ISSN 89-4966 Volume, Number 07, pp. -8 Research Idia ublicatios http://www.ripublicatio.com A Geeralized Class of Ubiased Estimators for opulatio

More information

Abstract. Ranked set sampling, auxiliary variable, variance.

Abstract. Ranked set sampling, auxiliary variable, variance. Hacettepe Joural of Mathematics ad Statistics Volume (), 1 A class of Hartley-Ross type Ubiased estimators for Populatio Mea usig Raked Set Samplig Lakhkar Kha ad Javid Shabbir Abstract I this paper, we

More information

On ratio and product methods with certain known population parameters of auxiliary variable in sample surveys

On ratio and product methods with certain known population parameters of auxiliary variable in sample surveys Statistics & Operatios Research Trasactios SORT 34 July-December 010, 157-180 ISSN: 1696-81 www.idescat.cat/sort/ Statistics & Operatios Research c Istitut d Estadística de Cataluya Trasactios sort@idescat.cat

More information

Chapter 13, Part A Analysis of Variance and Experimental Design

Chapter 13, Part A Analysis of Variance and Experimental Design Slides Prepared by JOHN S. LOUCKS St. Edward s Uiversity Slide 1 Chapter 13, Part A Aalysis of Variace ad Eperimetal Desig Itroductio to Aalysis of Variace Aalysis of Variace: Testig for the Equality of

More information

Properties and Hypothesis Testing

Properties and Hypothesis Testing Chapter 3 Properties ad Hypothesis Testig 3.1 Types of data The regressio techiques developed i previous chapters ca be applied to three differet kids of data. 1. Cross-sectioal data. 2. Time series data.

More information

New Ratio Estimators Using Correlation Coefficient

New Ratio Estimators Using Correlation Coefficient New atio Estimators Usig Correlatio Coefficiet Cem Kadilar ad Hula Cigi Hacettepe Uiversit, Departmet of tatistics, Betepe, 06800, Akara, Turke. e-mails : kadilar@hacettepe.edu.tr ; hcigi@hacettepe.edu.tr

More information

Simple Random Sampling!

Simple Random Sampling! Simple Radom Samplig! Professor Ro Fricker! Naval Postgraduate School! Moterey, Califoria! Readig:! 3/26/13 Scheaffer et al. chapter 4! 1 Goals for this Lecture! Defie simple radom samplig (SRS) ad discuss

More information

Dual to Ratio Estimators for Mean Estimation in Successive Sampling using Auxiliary Information on Two Occasion

Dual to Ratio Estimators for Mean Estimation in Successive Sampling using Auxiliary Information on Two Occasion J. Stat. Appl. Pro. 7, o. 1, 49-58 (018) 49 Joural of Statistics Applicatios & Probability A Iteratioal Joural http://dx.doi.org/10.18576/jsap/070105 Dual to Ratio Estimators for Mea Estimatio i Successive

More information

Double Stage Shrinkage Estimator of Two Parameters. Generalized Exponential Distribution

Double Stage Shrinkage Estimator of Two Parameters. Generalized Exponential Distribution Iteratioal Mathematical Forum, Vol., 3, o. 3, 3-53 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.9/imf.3.335 Double Stage Shrikage Estimator of Two Parameters Geeralized Expoetial Distributio Alaa M.

More information

Estimation of Population Mean in Presence of Non-Response in Double Sampling

Estimation of Population Mean in Presence of Non-Response in Double Sampling J. Stat. Appl. Pro. 6, No. 2, 345-353 (2017) 345 Joural of Statistics Applicatios & Probability A Iteratioal Joural http://dx.doi.org/10.18576/jsap/060209 Estimatio of Populatio Mea i Presece of No-Respose

More information

Estimation of Gumbel Parameters under Ranked Set Sampling

Estimation of Gumbel Parameters under Ranked Set Sampling Joural of Moder Applied Statistical Methods Volume 13 Issue 2 Article 11-2014 Estimatio of Gumbel Parameters uder Raked Set Samplig Omar M. Yousef Al Balqa' Applied Uiversity, Zarqa, Jorda, abuyaza_o@yahoo.com

More information

Estimation of Population Ratio in Post-Stratified Sampling Using Variable Transformation

Estimation of Population Ratio in Post-Stratified Sampling Using Variable Transformation Ope Joural o Statistics, 05, 5, -9 Published Olie Februar 05 i SciRes. http://www.scirp.org/joural/ojs http://dx.doi.org/0.436/ojs.05.500 Estimatio o Populatio Ratio i Post-Stratiied Samplig Usig Variable

More information

On stratified randomized response sampling

On stratified randomized response sampling Model Assisted Statistics ad Applicatios 1 (005,006) 31 36 31 IOS ress O stratified radomized respose samplig Jea-Bok Ryu a,, Jog-Mi Kim b, Tae-Youg Heo c ad Chu Gu ark d a Statistics, Divisio of Life

More information

G. R. Pasha Department of Statistics Bahauddin Zakariya University Multan, Pakistan

G. R. Pasha Department of Statistics Bahauddin Zakariya University Multan, Pakistan Deviatio of the Variaces of Classical Estimators ad Negative Iteger Momet Estimator from Miimum Variace Boud with Referece to Maxwell Distributio G. R. Pasha Departmet of Statistics Bahauddi Zakariya Uiversity

More information

Element sampling: Part 2

Element sampling: Part 2 Chapter 4 Elemet samplig: Part 2 4.1 Itroductio We ow cosider uequal probability samplig desigs which is very popular i practice. I the uequal probability samplig, we ca improve the efficiecy of the resultig

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2016 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

5. Fractional Hot deck Imputation

5. Fractional Hot deck Imputation 5. Fractioal Hot deck Imputatio Itroductio Suppose that we are iterested i estimatig θ EY or eve θ 2 P ry < c where y fy x where x is always observed ad y is subject to missigess. Assume MAR i the sese

More information

An Improved Warner s Randomized Response Model

An Improved Warner s Randomized Response Model Iteratioal Joural of Statistics ad Applicatios 05, 5(6: 63-67 DOI: 0.593/j.statistics.050506.0 A Improved Warer s Radomized Respose Model F. B. Adebola, O. O. Johso * Departmet of Statistics, Federal Uiversit

More information

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING Lectures MODULE 5 STATISTICS II. Mea ad stadard error of sample data. Biomial distributio. Normal distributio 4. Samplig 5. Cofidece itervals

More information

CSE 527, Additional notes on MLE & EM

CSE 527, Additional notes on MLE & EM CSE 57 Lecture Notes: MLE & EM CSE 57, Additioal otes o MLE & EM Based o earlier otes by C. Grat & M. Narasimha Itroductio Last lecture we bega a examiatio of model based clusterig. This lecture will be

More information

Unbiased Estimation. February 7-12, 2008

Unbiased Estimation. February 7-12, 2008 Ubiased Estimatio February 7-2, 2008 We begi with a sample X = (X,..., X ) of radom variables chose accordig to oe of a family of probabilities P θ where θ is elemet from the parameter space Θ. For radom

More information

The Sampling Distribution of the Maximum. Likelihood Estimators for the Parameters of. Beta-Binomial Distribution

The Sampling Distribution of the Maximum. Likelihood Estimators for the Parameters of. Beta-Binomial Distribution Iteratioal Mathematical Forum, Vol. 8, 2013, o. 26, 1263-1277 HIKARI Ltd, www.m-hikari.com http://d.doi.org/10.12988/imf.2013.3475 The Samplig Distributio of the Maimum Likelihood Estimators for the Parameters

More information

REVISTA INVESTIGACION OPERACIONAL VOL. 35, NO. 1, 49-57, 2014

REVISTA INVESTIGACION OPERACIONAL VOL. 35, NO. 1, 49-57, 2014 EVISTA IVESTIGAIO OPEAIOAL VOL. 35, O., 9-57, 0 O A IMPOVED ATIO TYPE ESTIMATO OF FIITE POPULATIO MEA I SAMPLE SUVEYS A K P Swai Former Professor of Statistics, Utkal Uiversit, Bhubaeswar-7500, Idia ABSTAT

More information

ON POINTWISE BINOMIAL APPROXIMATION

ON POINTWISE BINOMIAL APPROXIMATION Iteratioal Joural of Pure ad Applied Mathematics Volume 71 No. 1 2011, 57-66 ON POINTWISE BINOMIAL APPROXIMATION BY w-functions K. Teerapabolar 1, P. Wogkasem 2 Departmet of Mathematics Faculty of Sciece

More information

Lecture 3. Properties of Summary Statistics: Sampling Distribution

Lecture 3. Properties of Summary Statistics: Sampling Distribution Lecture 3 Properties of Summary Statistics: Samplig Distributio Mai Theme How ca we use math to justify that our umerical summaries from the sample are good summaries of the populatio? Lecture Summary

More information

A statistical method to determine sample size to estimate characteristic value of soil parameters

A statistical method to determine sample size to estimate characteristic value of soil parameters A statistical method to determie sample size to estimate characteristic value of soil parameters Y. Hojo, B. Setiawa 2 ad M. Suzuki 3 Abstract Sample size is a importat factor to be cosidered i determiig

More information

Activity 3: Length Measurements with the Four-Sided Meter Stick

Activity 3: Length Measurements with the Four-Sided Meter Stick Activity 3: Legth Measuremets with the Four-Sided Meter Stick OBJECTIVE: The purpose of this experimet is to study errors ad the propagatio of errors whe experimetal data derived usig a four-sided meter

More information

Math 155 (Lecture 3)

Math 155 (Lecture 3) Math 55 (Lecture 3) September 8, I this lecture, we ll cosider the aswer to oe of the most basic coutig problems i combiatorics Questio How may ways are there to choose a -elemet subset of the set {,,,

More information

MATH 320: Probability and Statistics 9. Estimation and Testing of Parameters. Readings: Pruim, Chapter 4

MATH 320: Probability and Statistics 9. Estimation and Testing of Parameters. Readings: Pruim, Chapter 4 MATH 30: Probability ad Statistics 9. Estimatio ad Testig of Parameters Estimatio ad Testig of Parameters We have bee dealig situatios i which we have full kowledge of the distributio of a radom variable.

More information

Confidence Interval for Standard Deviation of Normal Distribution with Known Coefficients of Variation

Confidence Interval for Standard Deviation of Normal Distribution with Known Coefficients of Variation Cofidece Iterval for tadard Deviatio of Normal Distributio with Kow Coefficiets of Variatio uparat Niwitpog Departmet of Applied tatistics, Faculty of Applied ciece Kig Mogkut s Uiversity of Techology

More information

Since X n /n P p, we know that X n (n. Xn (n X n ) Using the asymptotic result above to obtain an approximation for fixed n, we obtain

Since X n /n P p, we know that X n (n. Xn (n X n ) Using the asymptotic result above to obtain an approximation for fixed n, we obtain Assigmet 9 Exercise 5.5 Let X biomial, p, where p 0, 1 is ukow. Obtai cofidece itervals for p i two differet ways: a Sice X / p d N0, p1 p], the variace of the limitig distributio depeds oly o p. Use the

More information

It should be unbiased, or approximately unbiased. Variance of the variance estimator should be small. That is, the variance estimator is stable.

It should be unbiased, or approximately unbiased. Variance of the variance estimator should be small. That is, the variance estimator is stable. Chapter 10 Variace Estimatio 10.1 Itroductio Variace estimatio is a importat practical problem i survey samplig. Variace estimates are used i two purposes. Oe is the aalytic purpose such as costructig

More information

Basics of Probability Theory (for Theory of Computation courses)

Basics of Probability Theory (for Theory of Computation courses) Basics of Probability Theory (for Theory of Computatio courses) Oded Goldreich Departmet of Computer Sciece Weizma Istitute of Sciece Rehovot, Israel. oded.goldreich@weizma.ac.il November 24, 2008 Preface.

More information

Chapter 6 Sampling Distributions

Chapter 6 Sampling Distributions Chapter 6 Samplig Distributios 1 I most experimets, we have more tha oe measuremet for ay give variable, each measuremet beig associated with oe radomly selected a member of a populatio. Hece we eed to

More information

1 Inferential Methods for Correlation and Regression Analysis

1 Inferential Methods for Correlation and Regression Analysis 1 Iferetial Methods for Correlatio ad Regressio Aalysis I the chapter o Correlatio ad Regressio Aalysis tools for describig bivariate cotiuous data were itroduced. The sample Pearso Correlatio Coefficiet

More information

Two phase stratified sampling with ratio and regression methods of estimation

Two phase stratified sampling with ratio and regression methods of estimation CHAPTER - IV Two phase stratified samplig with ratio ad regressio methods of estimatio 4.1 Itroductio I sample survey a survey sampler might like to use a size variable x either (i) for stratificatio or

More information

Statistical Properties of OLS estimators

Statistical Properties of OLS estimators 1 Statistical Properties of OLS estimators Liear Model: Y i = β 0 + β 1 X i + u i OLS estimators: β 0 = Y β 1X β 1 = Best Liear Ubiased Estimator (BLUE) Liear Estimator: β 0 ad β 1 are liear fuctio of

More information

Modeling and Estimation of a Bivariate Pareto Distribution using the Principle of Maximum Entropy

Modeling and Estimation of a Bivariate Pareto Distribution using the Principle of Maximum Entropy Sri Laka Joural of Applied Statistics, Vol (5-3) Modelig ad Estimatio of a Bivariate Pareto Distributio usig the Priciple of Maximum Etropy Jagathath Krisha K.M. * Ecoomics Research Divisio, CSIR-Cetral

More information

Discrete Mathematics for CS Spring 2008 David Wagner Note 22

Discrete Mathematics for CS Spring 2008 David Wagner Note 22 CS 70 Discrete Mathematics for CS Sprig 2008 David Wager Note 22 I.I.D. Radom Variables Estimatig the bias of a coi Questio: We wat to estimate the proportio p of Democrats i the US populatio, by takig

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2018 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

Generalized Exponential Type Estimator for Population Variance in Survey Sampling

Generalized Exponential Type Estimator for Population Variance in Survey Sampling Revista Colombiaa de Estadística Juio 2014, volume 37, o. 1, pp. 211 a 222 Geeralized Expoetial Type Estimator for Populatio Variace i Survey Samplig Estimadores tipo expoecial geeralizado para la variaza

More information

Research Article A Two-Parameter Ratio-Product-Ratio Estimator Using Auxiliary Information

Research Article A Two-Parameter Ratio-Product-Ratio Estimator Using Auxiliary Information Iteratioal Scholarly Research Network ISRN Probability ad Statistics Volume, Article ID 386, 5 pages doi:.54//386 Research Article A Two-Parameter Ratio-Product-Ratio Estimator Usig Auxiliary Iformatio

More information

On an Application of Bayesian Estimation

On an Application of Bayesian Estimation O a Applicatio of ayesia Estimatio KIYOHARU TANAKA School of Sciece ad Egieerig, Kiki Uiversity, Kowakae, Higashi-Osaka, JAPAN Email: ktaaka@ifokidaiacjp EVGENIY GRECHNIKOV Departmet of Mathematics, auma

More information

Investigating the Significance of a Correlation Coefficient using Jackknife Estimates

Investigating the Significance of a Correlation Coefficient using Jackknife Estimates Iteratioal Joural of Scieces: Basic ad Applied Research (IJSBAR) ISSN 2307-4531 (Prit & Olie) http://gssrr.org/idex.php?joural=jouralofbasicadapplied ---------------------------------------------------------------------------------------------------------------------------

More information

Stat 421-SP2012 Interval Estimation Section

Stat 421-SP2012 Interval Estimation Section Stat 41-SP01 Iterval Estimatio Sectio 11.1-11. We ow uderstad (Chapter 10) how to fid poit estimators of a ukow parameter. o However, a poit estimate does ot provide ay iformatio about the ucertaity (possible

More information

Chapter 11 Output Analysis for a Single Model. Banks, Carson, Nelson & Nicol Discrete-Event System Simulation

Chapter 11 Output Analysis for a Single Model. Banks, Carson, Nelson & Nicol Discrete-Event System Simulation Chapter Output Aalysis for a Sigle Model Baks, Carso, Nelso & Nicol Discrete-Evet System Simulatio Error Estimatio If {,, } are ot statistically idepedet, the S / is a biased estimator of the true variace.

More information

3 Resampling Methods: The Jackknife

3 Resampling Methods: The Jackknife 3 Resamplig Methods: The Jackkife 3.1 Itroductio I this sectio, much of the cotet is a summary of material from Efro ad Tibshirai (1993) ad Maly (2007). Here are several useful referece texts o resamplig

More information

Econ 325/327 Notes on Sample Mean, Sample Proportion, Central Limit Theorem, Chi-square Distribution, Student s t distribution 1.

Econ 325/327 Notes on Sample Mean, Sample Proportion, Central Limit Theorem, Chi-square Distribution, Student s t distribution 1. Eco 325/327 Notes o Sample Mea, Sample Proportio, Cetral Limit Theorem, Chi-square Distributio, Studet s t distributio 1 Sample Mea By Hiro Kasahara We cosider a radom sample from a populatio. Defiitio

More information

1 Introduction to reducing variance in Monte Carlo simulations

1 Introduction to reducing variance in Monte Carlo simulations Copyright c 010 by Karl Sigma 1 Itroductio to reducig variace i Mote Carlo simulatios 11 Review of cofidece itervals for estimatig a mea I statistics, we estimate a ukow mea µ = E(X) of a distributio by

More information

Lecture 7: Density Estimation: k-nearest Neighbor and Basis Approach

Lecture 7: Density Estimation: k-nearest Neighbor and Basis Approach STAT 425: Itroductio to Noparametric Statistics Witer 28 Lecture 7: Desity Estimatio: k-nearest Neighbor ad Basis Approach Istructor: Ye-Chi Che Referece: Sectio 8.4 of All of Noparametric Statistics.

More information

Comparison Study of Series Approximation. and Convergence between Chebyshev. and Legendre Series

Comparison Study of Series Approximation. and Convergence between Chebyshev. and Legendre Series Applied Mathematical Scieces, Vol. 7, 03, o. 6, 3-337 HIKARI Ltd, www.m-hikari.com http://d.doi.org/0.988/ams.03.3430 Compariso Study of Series Approimatio ad Covergece betwee Chebyshev ad Legedre Series

More information

Goodness-Of-Fit For The Generalized Exponential Distribution. Abstract

Goodness-Of-Fit For The Generalized Exponential Distribution. Abstract Goodess-Of-Fit For The Geeralized Expoetial Distributio By Amal S. Hassa stitute of Statistical Studies & Research Cairo Uiversity Abstract Recetly a ew distributio called geeralized expoetial or expoetiated

More information

o <Xln <X2n <... <X n < o (1.1)

o <Xln <X2n <... <X n < o (1.1) Metrika, Volume 28, 1981, page 257-262. 9 Viea. Estimatio Problems for Rectagular Distributios (Or the Taxi Problem Revisited) By J.S. Rao, Sata Barbara I ) Abstract: The problem of estimatig the ukow

More information

A proposed discrete distribution for the statistical modeling of

A proposed discrete distribution for the statistical modeling of It. Statistical Ist.: Proc. 58th World Statistical Cogress, 0, Dubli (Sessio CPS047) p.5059 A proposed discrete distributio for the statistical modelig of Likert data Kidd, Marti Cetre for Statistical

More information

CEE 522 Autumn Uncertainty Concepts for Geotechnical Engineering

CEE 522 Autumn Uncertainty Concepts for Geotechnical Engineering CEE 5 Autum 005 Ucertaity Cocepts for Geotechical Egieerig Basic Termiology Set A set is a collectio of (mutually exclusive) objects or evets. The sample space is the (collectively exhaustive) collectio

More information

Resampling Methods. X (1/2), i.e., Pr (X i m) = 1/2. We order the data: X (1) X (2) X (n). Define the sample median: ( n.

Resampling Methods. X (1/2), i.e., Pr (X i m) = 1/2. We order the data: X (1) X (2) X (n). Define the sample median: ( n. Jauary 1, 2019 Resamplig Methods Motivatio We have so may estimators with the property θ θ d N 0, σ 2 We ca also write θ a N θ, σ 2 /, where a meas approximately distributed as Oce we have a cosistet estimator

More information

Infinite Sequences and Series

Infinite Sequences and Series Chapter 6 Ifiite Sequeces ad Series 6.1 Ifiite Sequeces 6.1.1 Elemetary Cocepts Simply speakig, a sequece is a ordered list of umbers writte: {a 1, a 2, a 3,...a, a +1,...} where the elemets a i represet

More information

Estimating the Population Mean using Stratified Double Ranked Set Sample

Estimating the Population Mean using Stratified Double Ranked Set Sample Estimatig te Populatio Mea usig Stratified Double Raked Set Sample Mamoud Syam * Kamarulzama Ibraim Amer Ibraim Al-Omari Qatar Uiversity Foudatio Program Departmet of Mat ad Computer P.O.Box (7) Doa State

More information

The standard deviation of the mean

The standard deviation of the mean Physics 6C Fall 20 The stadard deviatio of the mea These otes provide some clarificatio o the distictio betwee the stadard deviatio ad the stadard deviatio of the mea.. The sample mea ad variace Cosider

More information

ECONOMETRIC THEORY. MODULE XIII Lecture - 34 Asymptotic Theory and Stochastic Regressors

ECONOMETRIC THEORY. MODULE XIII Lecture - 34 Asymptotic Theory and Stochastic Regressors ECONOMETRIC THEORY MODULE XIII Lecture - 34 Asymptotic Theory ad Stochastic Regressors Dr. Shalabh Departmet of Mathematics ad Statistics Idia Istitute of Techology Kapur Asymptotic theory The asymptotic

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2018 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

In this section we derive some finite-sample properties of the OLS estimator. b is an estimator of β. It is a function of the random sample data.

In this section we derive some finite-sample properties of the OLS estimator. b is an estimator of β. It is a function of the random sample data. 17 3. OLS Part III I this sectio we derive some fiite-sample properties of the OLS estimator. 3.1 The Samplig Distributio of the OLS Estimator y = Xβ + ε ; ε ~ N[0, σ 2 I ] b = (X X) 1 X y = f(y) ε is

More information

Lecture 2: Monte Carlo Simulation

Lecture 2: Monte Carlo Simulation STAT/Q SCI 43: Itroductio to Resamplig ethods Sprig 27 Istructor: Ye-Chi Che Lecture 2: ote Carlo Simulatio 2 ote Carlo Itegratio Assume we wat to evaluate the followig itegratio: e x3 dx What ca we do?

More information

ECE 8527: Introduction to Machine Learning and Pattern Recognition Midterm # 1. Vaishali Amin Fall, 2015

ECE 8527: Introduction to Machine Learning and Pattern Recognition Midterm # 1. Vaishali Amin Fall, 2015 ECE 8527: Itroductio to Machie Learig ad Patter Recogitio Midterm # 1 Vaishali Ami Fall, 2015 tue39624@temple.edu Problem No. 1: Cosider a two-class discrete distributio problem: ω 1 :{[0,0], [2,0], [2,2],

More information

GUIDELINES ON REPRESENTATIVE SAMPLING

GUIDELINES ON REPRESENTATIVE SAMPLING DRUGS WORKING GROUP VALIDATION OF THE GUIDELINES ON REPRESENTATIVE SAMPLING DOCUMENT TYPE : REF. CODE: ISSUE NO: ISSUE DATE: VALIDATION REPORT DWG-SGL-001 002 08 DECEMBER 2012 Ref code: DWG-SGL-001 Issue

More information

Control Charts for Mean for Non-Normally Correlated Data

Control Charts for Mean for Non-Normally Correlated Data Joural of Moder Applied Statistical Methods Volume 16 Issue 1 Article 5 5-1-017 Cotrol Charts for Mea for No-Normally Correlated Data J. R. Sigh Vikram Uiversity, Ujjai, Idia Ab Latif Dar School of Studies

More information

Analytic Theory of Probabilities

Analytic Theory of Probabilities Aalytic Theory of Probabilities PS Laplace Book II Chapter II, 4 pp 94 03 4 A lottery beig composed of umbered tickets of which r exit at each drawig, oe requires the probability that after i drawigs all

More information

7-1. Chapter 4. Part I. Sampling Distributions and Confidence Intervals

7-1. Chapter 4. Part I. Sampling Distributions and Confidence Intervals 7-1 Chapter 4 Part I. Samplig Distributios ad Cofidece Itervals 1 7- Sectio 1. Samplig Distributio 7-3 Usig Statistics Statistical Iferece: Predict ad forecast values of populatio parameters... Test hypotheses

More information

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity LINEAR REGRESSION ANALYSIS MODULE IX Lecture - 9 Multicolliearity Dr Shalabh Departmet of Mathematics ad Statistics Idia Istitute of Techology Kapur Multicolliearity diagostics A importat questio that

More information

Hypothesis Testing. Evaluation of Performance of Learned h. Issues. Trade-off Between Bias and Variance

Hypothesis Testing. Evaluation of Performance of Learned h. Issues. Trade-off Between Bias and Variance Hypothesis Testig Empirically evaluatig accuracy of hypotheses: importat activity i ML. Three questios: Give observed accuracy over a sample set, how well does this estimate apply over additioal samples?

More information

Economics Spring 2015

Economics Spring 2015 1 Ecoomics 400 -- Sprig 015 /17/015 pp. 30-38; Ch. 7.1.4-7. New Stata Assigmet ad ew MyStatlab assigmet, both due Feb 4th Midterm Exam Thursday Feb 6th, Chapters 1-7 of Groeber text ad all relevat lectures

More information

Statistics 511 Additional Materials

Statistics 511 Additional Materials Cofidece Itervals o mu Statistics 511 Additioal Materials This topic officially moves us from probability to statistics. We begi to discuss makig ifereces about the populatio. Oe way to differetiate probability

More information

µ and π p i.e. Point Estimation x And, more generally, the population proportion is approximately equal to a sample proportion

µ and π p i.e. Point Estimation x And, more generally, the population proportion is approximately equal to a sample proportion Poit Estimatio Poit estimatio is the rather simplistic (ad obvious) process of usig the kow value of a sample statistic as a approximatio to the ukow value of a populatio parameter. So we could for example

More information

EECS564 Estimation, Filtering, and Detection Hwk 2 Solns. Winter p θ (z) = (2θz + 1 θ), 0 z 1

EECS564 Estimation, Filtering, and Detection Hwk 2 Solns. Winter p θ (z) = (2θz + 1 θ), 0 z 1 EECS564 Estimatio, Filterig, ad Detectio Hwk 2 Sols. Witer 25 4. Let Z be a sigle observatio havig desity fuctio where. p (z) = (2z + ), z (a) Assumig that is a oradom parameter, fid ad plot the maximum

More information

Estimation of the Mean and the ACVF

Estimation of the Mean and the ACVF Chapter 5 Estimatio of the Mea ad the ACVF A statioary process {X t } is characterized by its mea ad its autocovariace fuctio γ ), ad so by the autocorrelatio fuctio ρ ) I this chapter we preset the estimators

More information

Estimation of a population proportion March 23,

Estimation of a population proportion March 23, 1 Social Studies 201 Notes for March 23, 2005 Estimatio of a populatio proportio Sectio 8.5, p. 521. For the most part, we have dealt with meas ad stadard deviatios this semester. This sectio of the otes

More information

t distribution [34] : used to test a mean against an hypothesized value (H 0 : µ = µ 0 ) or the difference

t distribution [34] : used to test a mean against an hypothesized value (H 0 : µ = µ 0 ) or the difference EXST30 Backgroud material Page From the textbook The Statistical Sleuth Mea [0]: I your text the word mea deotes a populatio mea (µ) while the work average deotes a sample average ( ). Variace [0]: The

More information