Investigating the Significance of a Correlation Coefficient using Jackknife Estimates

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Investigating the Significance of a Correlation Coefficient using Jackknife Estimates"

Transcription

1 Iteratioal Joural of Scieces: Basic ad Applied Research (IJSBAR) ISSN (Prit & Olie) Ivestigatig the Sigificace of a Correlatio Coefficiet usig Jackkife Estimates Athoy Akpata a, Idika Okorie b a,b Departmet of Statistics, Abia State Uiversity Uturu,Nigeria a b Abstract Ofte i Applied statistics, populatio parameters are ot kow ad could be iferred usig the available sample data ad this is the uderpiig of statistical iferece. Resamplig techique such as jackkife offers effective estimates of parameters ad its asymptotic distributio. I this paper, we preset the jackkife estimate of the parameters of a simple liear regressio model with particular iterest o the correlatio coefficiet. This procedure provides a effective alterative test statistic for testig the ull hypothesis of o associatio betwee the explaatory variables ad a respose variable. Keywords: Jackkife; simple liear regressio; correlatio coefficiet; ols estimates; bias. 1. Itroductio After estimatio of parameters i applied statistics it is always crucial to assess the accuracy of the estimator by its stadard error ad costructio of cofidece itervals for the parameter [1]. Queouille i 1956 developed a cross validatio procedure kow as jackkife (leave-oe-out procedure) for estimatig the bias of a estimator [2]. Two years later this method was further exteded by Joh Tukey to estimate the variace of a estimator ad the ame Jackkife was coied for this cross validatio method [3] * Correspodig author. address: 441

2 Iteratioal Joural of Scieces: Basic ad Applied Research (IJSBAR)(2015) Volume 22, No 2, pp The jackkife algorithm is a iterative procedure. The iitial step is to estimate the parameter(s) from the etire sample. The the ith elemet (datum) is sequetially dropped from the sample ad the model parameters estimated from the reduced sample data. The resultat estimates are called the partial estimate (pseudo estimates) [4]. The mea of the pseudo estimates is referred to as the jackkife estimate used i place of the mai parameter value [5]. Also, from the pseudo estimates the stadard errors of the parameters could be estimated usig the stadard deviatio i order to eable a statistically sigificat test of the parameters ad the costructio of the cofidece iterval [6]. Regressio aalysis has bee widely used to explai the relatioship betwee the explaatory variables ad a respose variable. However, jackkife was foud viable i estimatig the samplig distributio of the regressio coefficiets i the work of Efro [7], ad further exteded by Freedma [8] ad Wu [9]. With a special case of the simple liear regressio model, this article is aimed at illustratig a alterative to the classic test statistic for assessig the sigificace of the correlatio coefficiet usig jackkife estimates. 2. Methods The liear regressio model could be give i matrix form Y = Xθ + ε (1) Where x 11 x 12 x 1p x 21 x 22 x 2p X = x 1 x 2 x p p, is the p desig matrix (matrix of the explaatory variables) ad the remaiig quatities are vectors correspodig to p 1 regressio parameters, 1 respose variable ad 1 ormally distributed error term with zero mea ad costat variace, defied by θ 1 θ = θ p p 1 Y 1, Y = Y 1 ad ε = ε 1 ε 1. The simple liear regressio model with oe explaatory variable (x i, i = 1,2,3,, ) ad two parameters θ (0) ad θ (1) correspodig to the itercept ad slope parameter is a special case of (1). Hece, the ordiary least square (ols) estimator of this model is θ ols (0) ols θ = (X X) 1 X Y (2) (1) 442

3 Iteratioal Joural of Scieces: Basic ad Applied Research (IJSBAR)(2015) Volume 22, No 2, pp Where 1 x 1 1 x X = 2 1 x 2 With variace covariace matrix of θ ols (0) ad θ ols (1) give by var/cov θ ols (0) ols θ = σ 2 (X X) (3) (1) Where the diagoal elemets of (3) are the variaces of θ ols (0) ad θ ols (1) respectively, ad the off-diagoals are their co-variaces. Also, the least squares estimate of the correlatio coefficiet which measures the stregth of a liear relatioship is give by the Pearso product momet estimate x i y i x i y i ρ x,y = ( x 2 i [ x i )( y 2 i [ y i ). (4) ] 2 ] 2 This measure of stregth lies withi 1 ρ x,y 1 where the closer it is to 1 the stroger the positive, if closer to -1 the the stroger the egative relatioship, ad the closer it is to 0, the weaker the relatioship. Iterestigly, -1, 0 ad 1 estimates of this measure imply perfect egative, o ad perfect positive relatioships, respectively. Also, it is ofte ecessary to test the sigificace of this parameter with the followig hypothesis ad test statistic Hypothesis: H 0 : ρ x,y = 0 H 1 : ρ x,y 0 Test Statistic ρ x,y 2 1 ρ x,y 2 ~t α,( 2). However, the test statistic above is classical, ad i this article we propose a jackkife based statistic ρ x,y(j) var ρ x,y(j) ~t α,( 2) for testig the above hypothesis. The jackkife estimates of (2) ad (4) is obtaied by leavig-out the ith observatio of the pair y i, x i ; i = 443

4 Iteratioal Joural of Scieces: Basic ad Applied Research (IJSBAR)(2015) Volume 22, No 2, pp ,2,3,, ad evaluatig θ ols (J) ad ρ x,y (J) the least squares estimates based o the remaiig observatios [10]. The estimates of θ J ad ρ J, bias ad variace usig the pseudo values θ Ji ad ρ x,y(ji) are θ J = θ Ji (5) With bias bias = θ ols θ Ji (6) Or more succictly bias = θ ols θ J (7) Ad the variace var θ J = θ Ji θ J 2 ( 1) (8) Also, ρ x,y(j) = ρ x,y(ji) (9) With bias bias = ρ x,y ρ x,y(ji) (10) Or bias = ρ x,y ρ x,y(j) (11) Ad variace var ρ x,y(j) = ρ x,y(ji) ρ x,y(j) 2 ( 1) (12) 2.1 Algorithm for Jackkifig Simple Liear Regressio Model Steps: 444

5 Iteratioal Joural of Scieces: Basic ad Applied Research (IJSBAR)(2015) Volume 22, No 2, pp Usig a pair of idepedet sample of size () of explaatory ad respose variables (x i, y i ), i = 1, 2, 3,,. Drop the first datum i both variable ad estimate the ordiary least squares (ols) regressio coefficiets θ (0)J1 ad θ (1)J1 ad the correlatio coefficiet ρ x,y(j1) usig 1 observatios. Drop the secod datum ad replace the iitially dropped datum i (ii) ad compute the ordiary least squares (ols) regressio coefficiets θ (0)J2 ad θ (1)J2 ad the correlatio coefficiet ρ x,y(j2) usig 1 observatios. Repeat steps (ii) ad (iii) by replacig the (i 1)th previously dropped observatio ad droppig the ith observatio ad the computig the ordiary least squares (ols) regressio coefficiets θ (0)Ji ad θ (1)Ji, i = 3, 4, 5,, ad the correlatio coefficiet ρ x,y(ji), i = 3, 4, 5,, usig 1 observatios at each iteratio util all the observatios i the pair (x i, y i ), i = 1, 2, 3,, has bee sequetially dropped ad replaced i turs. Steps (ii) to (iv) results to a dimesioal vectors of pseudo values correspodig to θ (0)Ji, θ (1)Ji ad ρ x,y(ji). Compute the jackkife regressio parameters, correlatio coefficiets ad their correspodig bias ad stadard errors usig (5), (7), (8), (9), (11), ad (12). 3. Data ad Simulatio We have used the total demad ad supply of FOREX (USD millio) data from Jauary 2008 to May (77 data poits) available o the Cetral Bak of Nigeria official website [11]. All computatios are doe usig R programs for widows. 3.1 Simulatio Results Usig the data i 2.0 we fit a simple liear regressio model ad the result is show i Table 1. Table 1: Parameter Estimates for the Fitted Simple Liear Regressio Model Parameters θ (0) θ (1) ρ x,y Estimate Stadard Error Jackkifig the Simple Liear Regressio Model Table 2 shows the ols estimates of the pseudo values, jackkife estimates ad their correspodig stadard errors obtaied from the leave-oe-out procedure. 445

6 Iteratioal Joural of Scieces: Basic ad Applied Research (IJSBAR)(2015) Volume 22, No 2, pp Table 2: ols Estimates S/N θ (0)Ji θ (1)Ji ρ x,y(ji) θ (0)J θ (1)J ρ x,y(j) SE θ (0)J SE θ (1)J SE ρ x,y(j) Table 3: Compariso betwee ols ad Jackkife ols Estimates Estimates ols Jackkife Bias θ (0) SE θ (0) θ (1) SE θ (1) ρ x,y SE ρ x,y Testig the sigificace of the correlatio coefficiet We shall proceed to test the sigificace of the correlatio coefficiet at 5% level of sigificace as follows: H 0 : ρ x,y = 0 H 1 : ρ x,y 0 446

7 Iteratioal Joural of Scieces: Basic ad Applied Research (IJSBAR)(2015) Volume 22, No 2, pp classic = ρ x,y 2 1 ρ x,y 2 = ( ) ( ) 2 = jackkife = ρ x,y(j) SE ρ x,y(j) = = with critical value t α,( 2) = t 0.05,(77 2) = Decisio: Sice both test statistics are larger tha the critical value, we therefore coclude that there is eough evidece agaist the ull hypothesis; hece, the correlatio coefficiet is sigificatly differet from 0 at 5% level of sigificace Discussios The jackkife (leave-oe-out) ols estimator provides better estimates of the regressio parameters tha the ols method. From Table 3 above it could be see that the Jackkife estimates of both the regressio coefficiets θ (0) ad θ (1) ad the correlatio coefficiet ρ x,y are approximately the ols estimates with very small bias, it is iterestig to observe that the Jackkife estimates has smaller stadard errors (Efficiecy property), a uique feature of a good estimator i compariso to their ols couterpart. The classic test statistic value for testig the sigificace of the correlatio coefficiet is smaller tha the value obtaied from the proposed jackkife test statistic; this is a cosequece of a large variace of the ols estimates. 4. Coclusio Jackkife results are misleadig whe the sample size is ot large eough ( < 50), [12]. Factually, the 77 observatios used i this study reveals that the Jackkife estimators are more efficiet tha their ols couterpart i estimatig the coefficiets of a liear regressio model ad the correlatio coefficiet. It also provides the asymptotic distributio of the above metioed parameters, e.g., Table 2. The classic test statistic for testig the sigificace of the correlatio coefficiet is uder-estimated, a effect of large stadard error of the ols estimators ad cosequetly, could lead to erroeously acceptig the ull hypothesis (Type II error). Without loss of geerality, the jackkife based test statistic is better tha its classic couterpart. Refereces [1] M. R. Cherick. Bootstrap Methods a Guide for Practitioers ad Researchers. 2d ed; Joh Wiley & Sos Ic., New Jersey, [2] M. H. Queouille. "Notes o Bias i Estimatio", Biometrika, 61, pp. 1-17, [3] J. W.Tukey."Bias, ad Cofidece i ot Quite Large Samples (Abstract)" Aals of Mathematical 447

8 Iteratioal Joural of Scieces: Basic ad Applied Research (IJSBAR)(2015) Volume 22, No 2, pp Statistics, 29, pp. 614, [4] H. Friedl ad E. Stampfer. "Jackkife Resamplig", Ecyclopaedia of Ecoometrics, 2, pp , [5] S. Sahiler ad D.Topuz. "Bootstrap ad Jackkife Resamplig Algorithms for Estimatio of Regressio Parameters", Joural of Applied Quatitative Methods, Vol. 2. No. 2. pp , [6] H. Abdi ad J. L. Williams. "Jackkife", I Neil Salkid (Ed.), Ecyclopaedia of Research Desig. Thousad Oaks, CA: Sage,2010. [7] B. Efro. "Bootstrap Method; aother Look at Jackkife". Aals of Statistics, Vol. 7, pp. 1-26, [8] D.A. Freedma. "Bootstrappig Regressio Models", Aals of Statistics. Vol.1, No. 6, pp , 1981 [9] C. F. J. Wu. "Jackkife, Bootstrap ad other Resamplig Methods i Regressio Aalysis", Aals of Statistics, Vol. 14, No. 4, pp ,1986. [10] J. Shao ad D. Tu. The Jackkife ad Bootstrap, Spriger- Verlag, New York, [11] http// date accessed 1\5\2015. [12] Zakariya, Y. A. ad Khairy, B. R., (2010), Re-samplig i Liear Regressio Model Usig Jackkife ad Bootstrap, Iraqi Joural of Statistical Sciece. Vol. 18, pp

Properties and Hypothesis Testing

Properties and Hypothesis Testing Chapter 3 Properties ad Hypothesis Testig 3.1 Types of data The regressio techiques developed i previous chapters ca be applied to three differet kids of data. 1. Cross-sectioal data. 2. Time series data.

More information

It should be unbiased, or approximately unbiased. Variance of the variance estimator should be small. That is, the variance estimator is stable.

It should be unbiased, or approximately unbiased. Variance of the variance estimator should be small. That is, the variance estimator is stable. Chapter 10 Variace Estimatio 10.1 Itroductio Variace estimatio is a importat practical problem i survey samplig. Variace estimates are used i two purposes. Oe is the aalytic purpose such as costructig

More information

MOST PEOPLE WOULD RATHER LIVE WITH A PROBLEM THEY CAN'T SOLVE, THAN ACCEPT A SOLUTION THEY CAN'T UNDERSTAND.

MOST PEOPLE WOULD RATHER LIVE WITH A PROBLEM THEY CAN'T SOLVE, THAN ACCEPT A SOLUTION THEY CAN'T UNDERSTAND. XI-1 (1074) MOST PEOPLE WOULD RATHER LIVE WITH A PROBLEM THEY CAN'T SOLVE, THAN ACCEPT A SOLUTION THEY CAN'T UNDERSTAND. R. E. D. WOOLSEY AND H. S. SWANSON XI-2 (1075) STATISTICAL DECISION MAKING Advaced

More information

Resampling Methods. X (1/2), i.e., Pr (X i m) = 1/2. We order the data: X (1) X (2) X (n). Define the sample median: ( n.

Resampling Methods. X (1/2), i.e., Pr (X i m) = 1/2. We order the data: X (1) X (2) X (n). Define the sample median: ( n. Jauary 1, 2019 Resamplig Methods Motivatio We have so may estimators with the property θ θ d N 0, σ 2 We ca also write θ a N θ, σ 2 /, where a meas approximately distributed as Oce we have a cosistet estimator

More information

Regression, Inference, and Model Building

Regression, Inference, and Model Building Regressio, Iferece, ad Model Buildig Scatter Plots ad Correlatio Correlatio coefficiet, r -1 r 1 If r is positive, the the scatter plot has a positive slope ad variables are said to have a positive relatioship

More information

1 Inferential Methods for Correlation and Regression Analysis

1 Inferential Methods for Correlation and Regression Analysis 1 Iferetial Methods for Correlatio ad Regressio Aalysis I the chapter o Correlatio ad Regressio Aalysis tools for describig bivariate cotiuous data were itroduced. The sample Pearso Correlatio Coefficiet

More information

A statistical method to determine sample size to estimate characteristic value of soil parameters

A statistical method to determine sample size to estimate characteristic value of soil parameters A statistical method to determie sample size to estimate characteristic value of soil parameters Y. Hojo, B. Setiawa 2 ad M. Suzuki 3 Abstract Sample size is a importat factor to be cosidered i determiig

More information

3 Resampling Methods: The Jackknife

3 Resampling Methods: The Jackknife 3 Resamplig Methods: The Jackkife 3.1 Itroductio I this sectio, much of the cotet is a summary of material from Efro ad Tibshirai (1993) ad Maly (2007). Here are several useful referece texts o resamplig

More information

Chapter 13, Part A Analysis of Variance and Experimental Design

Chapter 13, Part A Analysis of Variance and Experimental Design Slides Prepared by JOHN S. LOUCKS St. Edward s Uiversity Slide 1 Chapter 13, Part A Aalysis of Variace ad Eperimetal Desig Itroductio to Aalysis of Variace Aalysis of Variace: Testig for the Equality of

More information

(all terms are scalars).the minimization is clearer in sum notation:

(all terms are scalars).the minimization is clearer in sum notation: 7 Multiple liear regressio: with predictors) Depedet data set: y i i = 1, oe predictad, predictors x i,k i = 1,, k = 1, ' The forecast equatio is ŷ i = b + Use matrix otatio: k =1 b k x ik Y = y 1 y 1

More information

GG313 GEOLOGICAL DATA ANALYSIS

GG313 GEOLOGICAL DATA ANALYSIS GG313 GEOLOGICAL DATA ANALYSIS 1 Testig Hypothesis GG313 GEOLOGICAL DATA ANALYSIS LECTURE NOTES PAUL WESSEL SECTION TESTING OF HYPOTHESES Much of statistics is cocered with testig hypothesis agaist data

More information

11 Correlation and Regression

11 Correlation and Regression 11 Correlatio Regressio 11.1 Multivariate Data Ofte we look at data where several variables are recorded for the same idividuals or samplig uits. For example, at a coastal weather statio, we might record

More information

3/3/2014. CDS M Phil Econometrics. Types of Relationships. Types of Relationships. Types of Relationships. Vijayamohanan Pillai N.

3/3/2014. CDS M Phil Econometrics. Types of Relationships. Types of Relationships. Types of Relationships. Vijayamohanan Pillai N. 3/3/04 CDS M Phil Old Least Squares (OLS) Vijayamohaa Pillai N CDS M Phil Vijayamoha CDS M Phil Vijayamoha Types of Relatioships Oly oe idepedet variable, Relatioship betwee ad is Liear relatioships Curviliear

More information

Final Examination Solutions 17/6/2010

Final Examination Solutions 17/6/2010 The Islamic Uiversity of Gaza Faculty of Commerce epartmet of Ecoomics ad Political Scieces A Itroductio to Statistics Course (ECOE 30) Sprig Semester 009-00 Fial Eamiatio Solutios 7/6/00 Name: I: Istructor:

More information

Chapters 5 and 13: REGRESSION AND CORRELATION. Univariate data: x, Bivariate data (x,y).

Chapters 5 and 13: REGRESSION AND CORRELATION. Univariate data: x, Bivariate data (x,y). Chapters 5 ad 13: REGREION AND CORRELATION (ectios 5.5 ad 13.5 are omitted) Uivariate data: x, Bivariate data (x,y). Example: x: umber of years studets studied paish y: score o a proficiecy test For each

More information

UNIVERSITY OF TORONTO Faculty of Arts and Science APRIL/MAY 2009 EXAMINATIONS ECO220Y1Y PART 1 OF 2 SOLUTIONS

UNIVERSITY OF TORONTO Faculty of Arts and Science APRIL/MAY 2009 EXAMINATIONS ECO220Y1Y PART 1 OF 2 SOLUTIONS PART of UNIVERSITY OF TORONTO Faculty of Arts ad Sciece APRIL/MAY 009 EAMINATIONS ECO0YY PART OF () The sample media is greater tha the sample mea whe there is. (B) () A radom variable is ormally distributed

More information

S Y Y = ΣY 2 n. Using the above expressions, the correlation coefficient is. r = SXX S Y Y

S Y Y = ΣY 2 n. Using the above expressions, the correlation coefficient is. r = SXX S Y Y 1 Sociology 405/805 Revised February 4, 004 Summary of Formulae for Bivariate Regressio ad Correlatio Let X be a idepedet variable ad Y a depedet variable, with observatios for each of the values of these

More information

Random Variables, Sampling and Estimation

Random Variables, Sampling and Estimation Chapter 1 Radom Variables, Samplig ad Estimatio 1.1 Itroductio This chapter will cover the most importat basic statistical theory you eed i order to uderstad the ecoometric material that will be comig

More information

Resampling modifications for the Bagai test

Resampling modifications for the Bagai test Joural of the Korea Data & Iformatio Sciece Society 2018, 29(2), 485 499 http://dx.doi.org/10.7465/jkdi.2018.29.2.485 한국데이터정보과학회지 Resamplig modificatios for the Bagai test Youg Mi Kim 1 Hyug-Tae Ha 2 1

More information

Introduction to Econometrics (3 rd Updated Edition) Solutions to Odd- Numbered End- of- Chapter Exercises: Chapter 3

Introduction to Econometrics (3 rd Updated Edition) Solutions to Odd- Numbered End- of- Chapter Exercises: Chapter 3 Itroductio to Ecoometrics (3 rd Updated Editio) by James H. Stock ad Mark W. Watso Solutios to Odd- Numbered Ed- of- Chapter Exercises: Chapter 3 (This versio August 17, 014) 015 Pearso Educatio, Ic. Stock/Watso

More information

Goodness-Of-Fit For The Generalized Exponential Distribution. Abstract

Goodness-Of-Fit For The Generalized Exponential Distribution. Abstract Goodess-Of-Fit For The Geeralized Expoetial Distributio By Amal S. Hassa stitute of Statistical Studies & Research Cairo Uiversity Abstract Recetly a ew distributio called geeralized expoetial or expoetiated

More information

Comparing Two Populations. Topic 15 - Two Sample Inference I. Comparing Two Means. Comparing Two Pop Means. Background Reading

Comparing Two Populations. Topic 15 - Two Sample Inference I. Comparing Two Means. Comparing Two Pop Means. Background Reading Topic 15 - Two Sample Iferece I STAT 511 Professor Bruce Craig Comparig Two Populatios Research ofte ivolves the compariso of two or more samples from differet populatios Graphical summaries provide visual

More information

The Bootstrap, Jackknife, Randomization, and other non-traditional approaches to estimation and hypothesis testing

The Bootstrap, Jackknife, Randomization, and other non-traditional approaches to estimation and hypothesis testing The Bootstrap, Jackkife, Radomizatio, ad other o-traditioal approaches to estimatio ad hypothesis testig Ratioale Much of moder statistics is achored i the use of statistics ad hypothesis tests that oly

More information

Mathematical Notation Math Introduction to Applied Statistics

Mathematical Notation Math Introduction to Applied Statistics Mathematical Notatio Math 113 - Itroductio to Applied Statistics Name : Use Word or WordPerfect to recreate the followig documets. Each article is worth 10 poits ad ca be prited ad give to the istructor

More information

Access to the published version may require journal subscription. Published with permission from: Elsevier.

Access to the published version may require journal subscription. Published with permission from: Elsevier. This is a author produced versio of a paper published i Statistics ad Probability Letters. This paper has bee peer-reviewed, it does ot iclude the joural pagiatio. Citatio for the published paper: Forkma,

More information

Statistical Analysis on Uncertainty for Autocorrelated Measurements and its Applications to Key Comparisons

Statistical Analysis on Uncertainty for Autocorrelated Measurements and its Applications to Key Comparisons Statistical Aalysis o Ucertaity for Autocorrelated Measuremets ad its Applicatios to Key Comparisos Nie Fa Zhag Natioal Istitute of Stadards ad Techology Gaithersburg, MD 0899, USA Outlies. Itroductio.

More information

Overview. p 2. Chapter 9. Pooled Estimate of. q = 1 p. Notation for Two Proportions. Inferences about Two Proportions. Assumptions

Overview. p 2. Chapter 9. Pooled Estimate of. q = 1 p. Notation for Two Proportions. Inferences about Two Proportions. Assumptions Chapter 9 Slide Ifereces from Two Samples 9- Overview 9- Ifereces about Two Proportios 9- Ifereces about Two Meas: Idepedet Samples 9-4 Ifereces about Matched Pairs 9-5 Comparig Variatio i Two Samples

More information

There is no straightforward approach for choosing the warmup period l.

There is no straightforward approach for choosing the warmup period l. B. Maddah INDE 504 Discrete-Evet Simulatio Output Aalysis () Statistical Aalysis for Steady-State Parameters I a otermiatig simulatio, the iterest is i estimatig the log ru steady state measures of performace.

More information

Stat 200 -Testing Summary Page 1

Stat 200 -Testing Summary Page 1 Stat 00 -Testig Summary Page 1 Mathematicias are like Frechme; whatever you say to them, they traslate it ito their ow laguage ad forthwith it is somethig etirely differet Goethe 1 Large Sample Cofidece

More information

Lecture 2: Monte Carlo Simulation

Lecture 2: Monte Carlo Simulation STAT/Q SCI 43: Itroductio to Resamplig ethods Sprig 27 Istructor: Ye-Chi Che Lecture 2: ote Carlo Simulatio 2 ote Carlo Itegratio Assume we wat to evaluate the followig itegratio: e x3 dx What ca we do?

More information

Improved Class of Ratio -Cum- Product Estimators of Finite Population Mean in two Phase Sampling

Improved Class of Ratio -Cum- Product Estimators of Finite Population Mean in two Phase Sampling Global Joural of Sciece Frotier Research: F Mathematics ad Decisio Scieces Volume 4 Issue 2 Versio.0 Year 204 Type : Double Blid Peer Reviewed Iteratioal Research Joural Publisher: Global Jourals Ic. (USA

More information

[412] A TEST FOR HOMOGENEITY OF THE MARGINAL DISTRIBUTIONS IN A TWO-WAY CLASSIFICATION

[412] A TEST FOR HOMOGENEITY OF THE MARGINAL DISTRIBUTIONS IN A TWO-WAY CLASSIFICATION [412] A TEST FOR HOMOGENEITY OF THE MARGINAL DISTRIBUTIONS IN A TWO-WAY CLASSIFICATION BY ALAN STUART Divisio of Research Techiques, Lodo School of Ecoomics 1. INTRODUCTION There are several circumstaces

More information

Chapter 11 Output Analysis for a Single Model. Banks, Carson, Nelson & Nicol Discrete-Event System Simulation

Chapter 11 Output Analysis for a Single Model. Banks, Carson, Nelson & Nicol Discrete-Event System Simulation Chapter Output Aalysis for a Sigle Model Baks, Carso, Nelso & Nicol Discrete-Evet System Simulatio Error Estimatio If {,, } are ot statistically idepedet, the S / is a biased estimator of the true variace.

More information

AClassofRegressionEstimatorwithCumDualProductEstimatorAsIntercept

AClassofRegressionEstimatorwithCumDualProductEstimatorAsIntercept Global Joural of Sciece Frotier Research: F Mathematics ad Decisio Scieces Volume 15 Issue 3 Versio 1.0 Year 2015 Type : Double Blid Peer Reviewed Iteratioal Research Joural Publisher: Global Jourals Ic.

More information

Lesson 11: Simple Linear Regression

Lesson 11: Simple Linear Regression Lesso 11: Simple Liear Regressio Ka-fu WONG December 2, 2004 I previous lessos, we have covered maily about the estimatio of populatio mea (or expected value) ad its iferece. Sometimes we are iterested

More information

Circle the single best answer for each multiple choice question. Your choice should be made clearly.

Circle the single best answer for each multiple choice question. Your choice should be made clearly. TEST #1 STA 4853 March 6, 2017 Name: Please read the followig directios. DO NOT TURN THE PAGE UNTIL INSTRUCTED TO DO SO Directios This exam is closed book ad closed otes. There are 32 multiple choice questios.

More information

A Relationship Between the One-Way MANOVA Test Statistic and the Hotelling Lawley Trace Test Statistic

A Relationship Between the One-Way MANOVA Test Statistic and the Hotelling Lawley Trace Test Statistic http://ijspccseetorg Iteratioal Joural of Statistics ad Probability Vol 7, No 6; 2018 A Relatioship Betwee the Oe-Way MANOVA Test Statistic ad the Hotellig Lawley Trace Test Statistic Hasthika S Rupasighe

More information

Correlation Regression

Correlation Regression Correlatio Regressio While correlatio methods measure the stregth of a liear relatioship betwee two variables, we might wish to go a little further: How much does oe variable chage for a give chage i aother

More information

Continuous Data that can take on any real number (time/length) based on sample data. Categorical data can only be named or categorised

Continuous Data that can take on any real number (time/length) based on sample data. Categorical data can only be named or categorised Questio 1. (Topics 1-3) A populatio cosists of all the members of a group about which you wat to draw a coclusio (Greek letters (μ, σ, Ν) are used) A sample is the portio of the populatio selected for

More information

V. Nollau Institute of Mathematical Stochastics, Technical University of Dresden, Germany

V. Nollau Institute of Mathematical Stochastics, Technical University of Dresden, Germany PROBABILITY AND STATISTICS Vol. III - Correlatio Aalysis - V. Nollau CORRELATION ANALYSIS V. Nollau Istitute of Mathematical Stochastics, Techical Uiversity of Dresde, Germay Keywords: Radom vector, multivariate

More information

Sample Size Determination (Two or More Samples)

Sample Size Determination (Two or More Samples) Sample Sie Determiatio (Two or More Samples) STATGRAPHICS Rev. 963 Summary... Data Iput... Aalysis Summary... 5 Power Curve... 5 Calculatios... 6 Summary This procedure determies a suitable sample sie

More information

ECON 3150/4150, Spring term Lecture 3

ECON 3150/4150, Spring term Lecture 3 Itroductio Fidig the best fit by regressio Residuals ad R-sq Regressio ad causality Summary ad ext step ECON 3150/4150, Sprig term 2014. Lecture 3 Ragar Nymoe Uiversity of Oslo 21 Jauary 2014 1 / 30 Itroductio

More information

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY HIGHER CERTIFICATE IN STATISTICS, 017 MODULE 4 : Liear models Time allowed: Oe ad a half hours Cadidates should aswer THREE questios. Each questio carries

More information

TABLES AND FORMULAS FOR MOORE Basic Practice of Statistics

TABLES AND FORMULAS FOR MOORE Basic Practice of Statistics TABLES AND FORMULAS FOR MOORE Basic Practice of Statistics Explorig Data: Distributios Look for overall patter (shape, ceter, spread) ad deviatios (outliers). Mea (use a calculator): x = x 1 + x 2 + +

More information

G. R. Pasha Department of Statistics Bahauddin Zakariya University Multan, Pakistan

G. R. Pasha Department of Statistics Bahauddin Zakariya University Multan, Pakistan Deviatio of the Variaces of Classical Estimators ad Negative Iteger Momet Estimator from Miimum Variace Boud with Referece to Maxwell Distributio G. R. Pasha Departmet of Statistics Bahauddi Zakariya Uiversity

More information

Expectation and Variance of a random variable

Expectation and Variance of a random variable Chapter 11 Expectatio ad Variace of a radom variable The aim of this lecture is to defie ad itroduce mathematical Expectatio ad variace of a fuctio of discrete & cotiuous radom variables ad the distributio

More information

11 THE GMM ESTIMATION

11 THE GMM ESTIMATION Cotets THE GMM ESTIMATION 2. Cosistecy ad Asymptotic Normality..................... 3.2 Regularity Coditios ad Idetificatio..................... 4.3 The GMM Iterpretatio of the OLS Estimatio.................

More information

Assessment and Modeling of Forests. FR 4218 Spring Assignment 1 Solutions

Assessment and Modeling of Forests. FR 4218 Spring Assignment 1 Solutions Assessmet ad Modelig of Forests FR 48 Sprig Assigmet Solutios. The first part of the questio asked that you calculate the average, stadard deviatio, coefficiet of variatio, ad 9% cofidece iterval of the

More information

ECONOMETRIC THEORY. MODULE XIII Lecture - 34 Asymptotic Theory and Stochastic Regressors

ECONOMETRIC THEORY. MODULE XIII Lecture - 34 Asymptotic Theory and Stochastic Regressors ECONOMETRIC THEORY MODULE XIII Lecture - 34 Asymptotic Theory ad Stochastic Regressors Dr. Shalabh Departmet of Mathematics ad Statistics Idia Istitute of Techology Kapur Asymptotic theory The asymptotic

More information

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING Lectures MODULE 5 STATISTICS II. Mea ad stadard error of sample data. Biomial distributio. Normal distributio 4. Samplig 5. Cofidece itervals

More information

Comparison of Minimum Initial Capital with Investment and Non-investment Discrete Time Surplus Processes

Comparison of Minimum Initial Capital with Investment and Non-investment Discrete Time Surplus Processes The 22 d Aual Meetig i Mathematics (AMM 207) Departmet of Mathematics, Faculty of Sciece Chiag Mai Uiversity, Chiag Mai, Thailad Compariso of Miimum Iitial Capital with Ivestmet ad -ivestmet Discrete Time

More information

Worksheet 23 ( ) Introduction to Simple Linear Regression (continued)

Worksheet 23 ( ) Introduction to Simple Linear Regression (continued) Worksheet 3 ( 11.5-11.8) Itroductio to Simple Liear Regressio (cotiued) This worksheet is a cotiuatio of Discussio Sheet 3; please complete that discussio sheet first if you have ot already doe so. This

More information

Linear Regression Models

Linear Regression Models Liear Regressio Models Dr. Joh Mellor-Crummey Departmet of Computer Sciece Rice Uiversity johmc@cs.rice.edu COMP 528 Lecture 9 15 February 2005 Goals for Today Uderstad how to Use scatter diagrams to ispect

More information

STA Learning Objectives. Population Proportions. Module 10 Comparing Two Proportions. Upon completing this module, you should be able to:

STA Learning Objectives. Population Proportions. Module 10 Comparing Two Proportions. Upon completing this module, you should be able to: STA 2023 Module 10 Comparig Two Proportios Learig Objectives Upo completig this module, you should be able to: 1. Perform large-sample ifereces (hypothesis test ad cofidece itervals) to compare two populatio

More information

A quick activity - Central Limit Theorem and Proportions. Lecture 21: Testing Proportions. Results from the GSS. Statistics and the General Population

A quick activity - Central Limit Theorem and Proportions. Lecture 21: Testing Proportions. Results from the GSS. Statistics and the General Population A quick activity - Cetral Limit Theorem ad Proportios Lecture 21: Testig Proportios Statistics 10 Coli Rudel Flip a coi 30 times this is goig to get loud! Record the umber of heads you obtaied ad calculate

More information

Lecture 33: Bootstrap

Lecture 33: Bootstrap Lecture 33: ootstrap Motivatio To evaluate ad compare differet estimators, we eed cosistet estimators of variaces or asymptotic variaces of estimators. This is also importat for hypothesis testig ad cofidece

More information

Stat 139 Homework 7 Solutions, Fall 2015

Stat 139 Homework 7 Solutions, Fall 2015 Stat 139 Homework 7 Solutios, Fall 2015 Problem 1. I class we leared that the classical simple liear regressio model assumes the followig distributio of resposes: Y i = β 0 + β 1 X i + ɛ i, i = 1,...,,

More information

The standard deviation of the mean

The standard deviation of the mean Physics 6C Fall 20 The stadard deviatio of the mea These otes provide some clarificatio o the distictio betwee the stadard deviatio ad the stadard deviatio of the mea.. The sample mea ad variace Cosider

More information

Stat 319 Theory of Statistics (2) Exercises

Stat 319 Theory of Statistics (2) Exercises Kig Saud Uiversity College of Sciece Statistics ad Operatios Research Departmet Stat 39 Theory of Statistics () Exercises Refereces:. Itroductio to Mathematical Statistics, Sixth Editio, by R. Hogg, J.

More information

Describing the Relation between Two Variables

Describing the Relation between Two Variables Copyright 010 Pearso Educatio, Ic. Tables ad Formulas for Sulliva, Statistics: Iformed Decisios Usig Data 010 Pearso Educatio, Ic Chapter Orgaizig ad Summarizig Data Relative frequecy = frequecy sum of

More information

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity LINEAR REGRESSION ANALYSIS MODULE IX Lecture - 9 Multicolliearity Dr Shalabh Departmet of Mathematics ad Statistics Idia Istitute of Techology Kapur Multicolliearity diagostics A importat questio that

More information

SIMPLE LINEAR REGRESSION AND CORRELATION ANALYSIS

SIMPLE LINEAR REGRESSION AND CORRELATION ANALYSIS SIMPLE LINEAR REGRESSION AND CORRELATION ANALSIS INTRODUCTION There are lot of statistical ivestigatio to kow whether there is a relatioship amog variables Two aalyses: (1) regressio aalysis; () correlatio

More information

Correlation. Two variables: Which test? Relationship Between Two Numerical Variables. Two variables: Which test? Contingency table Grouped bar graph

Correlation. Two variables: Which test? Relationship Between Two Numerical Variables. Two variables: Which test? Contingency table Grouped bar graph Correlatio Y Two variables: Which test? X Explaatory variable Respose variable Categorical Numerical Categorical Cotigecy table Cotigecy Logistic Grouped bar graph aalysis regressio Mosaic plot Numerical

More information

Additional Notes and Computational Formulas CHAPTER 3

Additional Notes and Computational Formulas CHAPTER 3 Additioal Notes ad Computatioal Formulas APPENDIX CHAPTER 3 1 The Greek capital sigma is the mathematical sig for summatio If we have a sample of observatios say y 1 y 2 y 3 y their sum is y 1 + y 2 +

More information

2 1. The r.s., of size n2, from population 2 will be. 2 and 2. 2) The two populations are independent. This implies that all of the n1 n2

2 1. The r.s., of size n2, from population 2 will be. 2 and 2. 2) The two populations are independent. This implies that all of the n1 n2 Chapter 8 Comparig Two Treatmets Iferece about Two Populatio Meas We wat to compare the meas of two populatios to see whether they differ. There are two situatios to cosider, as show i the followig examples:

More information

Efficient GMM LECTURE 12 GMM II

Efficient GMM LECTURE 12 GMM II DECEMBER 1 010 LECTURE 1 II Efficiet The estimator depeds o the choice of the weight matrix A. The efficiet estimator is the oe that has the smallest asymptotic variace amog all estimators defied by differet

More information

Statistical inference: example 1. Inferential Statistics

Statistical inference: example 1. Inferential Statistics Statistical iferece: example 1 Iferetial Statistics POPULATION SAMPLE A clothig store chai regularly buys from a supplier large quatities of a certai piece of clothig. Each item ca be classified either

More information

Biostatistics for Med Students. Lecture 2

Biostatistics for Med Students. Lecture 2 Biostatistics for Med Studets Lecture 2 Joh J. Che, Ph.D. Professor & Director of Biostatistics Core UH JABSOM JABSOM MD7 February 22, 2017 Lecture Objectives To uderstad basic research desig priciples

More information

Confidence Interval for Standard Deviation of Normal Distribution with Known Coefficients of Variation

Confidence Interval for Standard Deviation of Normal Distribution with Known Coefficients of Variation Cofidece Iterval for tadard Deviatio of Normal Distributio with Kow Coefficiets of Variatio uparat Niwitpog Departmet of Applied tatistics, Faculty of Applied ciece Kig Mogkut s Uiversity of Techology

More information

4 Multidimensional quantitative data

4 Multidimensional quantitative data Chapter 4 Multidimesioal quatitative data 4 Multidimesioal statistics Basic statistics are ow part of the curriculum of most ecologists However, statistical techiques based o such simple distributios as

More information

Output Analysis (2, Chapters 10 &11 Law)

Output Analysis (2, Chapters 10 &11 Law) B. Maddah ENMG 6 Simulatio Output Aalysis (, Chapters 10 &11 Law) Comparig alterative system cofiguratio Sice the output of a simulatio is radom, the comparig differet systems via simulatio should be doe

More information

This is an introductory course in Analysis of Variance and Design of Experiments.

This is an introductory course in Analysis of Variance and Design of Experiments. 1 Notes for M 384E, Wedesday, Jauary 21, 2009 (Please ote: I will ot pass out hard-copy class otes i future classes. If there are writte class otes, they will be posted o the web by the ight before class

More information

April 18, 2017 CONFIDENCE INTERVALS AND HYPOTHESIS TESTING, UNDERGRADUATE MATH 526 STYLE

April 18, 2017 CONFIDENCE INTERVALS AND HYPOTHESIS TESTING, UNDERGRADUATE MATH 526 STYLE April 18, 2017 CONFIDENCE INTERVALS AND HYPOTHESIS TESTING, UNDERGRADUATE MATH 526 STYLE TERRY SOO Abstract These otes are adapted from whe I taught Math 526 ad meat to give a quick itroductio to cofidece

More information

Chain ratio-to-regression estimators in two-phase sampling in the presence of non-response

Chain ratio-to-regression estimators in two-phase sampling in the presence of non-response ProbStat Forum, Volume 08, July 015, Pages 95 10 ISS 0974-335 ProbStat Forum is a e-joural. For details please visit www.probstat.org.i Chai ratio-to-regressio estimators i two-phase samplig i the presece

More information

CONTROL CHARTS FOR THE LOGNORMAL DISTRIBUTION

CONTROL CHARTS FOR THE LOGNORMAL DISTRIBUTION CONTROL CHARTS FOR THE LOGNORMAL DISTRIBUTION Petros Maravelakis, Joh Paaretos ad Stelios Psarakis Departmet of Statistics Athes Uiversity of Ecoomics ad Busiess 76 Patisio St., 4 34, Athes, GREECE. Itroductio

More information

Algebra of Least Squares

Algebra of Least Squares October 19, 2018 Algebra of Least Squares Geometry of Least Squares Recall that out data is like a table [Y X] where Y collects observatios o the depedet variable Y ad X collects observatios o the k-dimesioal

More information

Econ 325 Notes on Point Estimator and Confidence Interval 1 By Hiro Kasahara

Econ 325 Notes on Point Estimator and Confidence Interval 1 By Hiro Kasahara Poit Estimator Eco 325 Notes o Poit Estimator ad Cofidece Iterval 1 By Hiro Kasahara Parameter, Estimator, ad Estimate The ormal probability desity fuctio is fully characterized by two costats: populatio

More information

Chapter 6 Sampling Distributions

Chapter 6 Sampling Distributions Chapter 6 Samplig Distributios 1 I most experimets, we have more tha oe measuremet for ay give variable, each measuremet beig associated with oe radomly selected a member of a populatio. Hece we eed to

More information

CEE 522 Autumn Uncertainty Concepts for Geotechnical Engineering

CEE 522 Autumn Uncertainty Concepts for Geotechnical Engineering CEE 5 Autum 005 Ucertaity Cocepts for Geotechical Egieerig Basic Termiology Set A set is a collectio of (mutually exclusive) objects or evets. The sample space is the (collectively exhaustive) collectio

More information

Response Variable denoted by y it is the variable that is to be predicted measure of the outcome of an experiment also called the dependent variable

Response Variable denoted by y it is the variable that is to be predicted measure of the outcome of an experiment also called the dependent variable Statistics Chapter 4 Correlatio ad Regressio If we have two (or more) variables we are usually iterested i the relatioship betwee the variables. Associatio betwee Variables Two variables are associated

More information

Confidence interval for the two-parameter exponentiated Gumbel distribution based on record values

Confidence interval for the two-parameter exponentiated Gumbel distribution based on record values Iteratioal Joural of Applied Operatioal Research Vol. 4 No. 1 pp. 61-68 Witer 2014 Joural homepage: www.ijorlu.ir Cofidece iterval for the two-parameter expoetiated Gumbel distributio based o record values

More information

Lecture 3. Properties of Summary Statistics: Sampling Distribution

Lecture 3. Properties of Summary Statistics: Sampling Distribution Lecture 3 Properties of Summary Statistics: Samplig Distributio Mai Theme How ca we use math to justify that our umerical summaries from the sample are good summaries of the populatio? Lecture Summary

More information

Recall the study where we estimated the difference between mean systolic blood pressure levels of users of oral contraceptives and non-users, x - y.

Recall the study where we estimated the difference between mean systolic blood pressure levels of users of oral contraceptives and non-users, x - y. Testig Statistical Hypotheses Recall the study where we estimated the differece betwee mea systolic blood pressure levels of users of oral cotraceptives ad o-users, x - y. Such studies are sometimes viewed

More information

If, for instance, we were required to test whether the population mean μ could be equal to a certain value μ

If, for instance, we were required to test whether the population mean μ could be equal to a certain value μ STATISTICAL INFERENCE INTRODUCTION Statistical iferece is that brach of Statistics i which oe typically makes a statemet about a populatio based upo the results of a sample. I oesample testig, we essetially

More information

Common Large/Small Sample Tests 1/55

Common Large/Small Sample Tests 1/55 Commo Large/Small Sample Tests 1/55 Test of Hypothesis for the Mea (σ Kow) Covert sample result ( x) to a z value Hypothesis Tests for µ Cosider the test H :μ = μ H 1 :μ > μ σ Kow (Assume the populatio

More information

Double Stage Shrinkage Estimator of Two Parameters. Generalized Exponential Distribution

Double Stage Shrinkage Estimator of Two Parameters. Generalized Exponential Distribution Iteratioal Mathematical Forum, Vol., 3, o. 3, 3-53 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.9/imf.3.335 Double Stage Shrikage Estimator of Two Parameters Geeralized Expoetial Distributio Alaa M.

More information

Geometry of LS. LECTURE 3 GEOMETRY OF LS, PROPERTIES OF σ 2, PARTITIONED REGRESSION, GOODNESS OF FIT

Geometry of LS. LECTURE 3 GEOMETRY OF LS, PROPERTIES OF σ 2, PARTITIONED REGRESSION, GOODNESS OF FIT OCTOBER 7, 2016 LECTURE 3 GEOMETRY OF LS, PROPERTIES OF σ 2, PARTITIONED REGRESSION, GOODNESS OF FIT Geometry of LS We ca thik of y ad the colums of X as members of the -dimesioal Euclidea space R Oe ca

More information

[ ] ( ) ( ) [ ] ( ) 1 [ ] [ ] Sums of Random Variables Y = a 1 X 1 + a 2 X 2 + +a n X n The expected value of Y is:

[ ] ( ) ( ) [ ] ( ) 1 [ ] [ ] Sums of Random Variables Y = a 1 X 1 + a 2 X 2 + +a n X n The expected value of Y is: PROBABILITY FUNCTIONS A radom variable X has a probabilit associated with each of its possible values. The probabilit is termed a discrete probabilit if X ca assume ol discrete values, or X = x, x, x 3,,

More information

University of California, Los Angeles Department of Statistics. Hypothesis testing

University of California, Los Angeles Department of Statistics. Hypothesis testing Uiversity of Califoria, Los Ageles Departmet of Statistics Statistics 100B Elemets of a hypothesis test: Hypothesis testig Istructor: Nicolas Christou 1. Null hypothesis, H 0 (claim about µ, p, σ 2, µ

More information

Modified Ratio Estimators Using Known Median and Co-Efficent of Kurtosis

Modified Ratio Estimators Using Known Median and Co-Efficent of Kurtosis America Joural of Mathematics ad Statistics 01, (4): 95-100 DOI: 10.593/j.ajms.01004.05 Modified Ratio s Usig Kow Media ad Co-Efficet of Kurtosis J.Subramai *, G.Kumarapadiya Departmet of Statistics, Podicherry

More information

PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 9

PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 9 Hypothesis testig PSYCHOLOGICAL RESEARCH (PYC 34-C Lecture 9 Statistical iferece is that brach of Statistics i which oe typically makes a statemet about a populatio based upo the results of a sample. I

More information

Chapter 5: Hypothesis testing

Chapter 5: Hypothesis testing Slide 5. Chapter 5: Hypothesis testig Hypothesis testig is about makig decisios Is a hypothesis true or false? Are wome paid less, o average, tha me? Barrow, Statistics for Ecoomics, Accoutig ad Busiess

More information

Chapter 13: Tests of Hypothesis Section 13.1 Introduction

Chapter 13: Tests of Hypothesis Section 13.1 Introduction Chapter 13: Tests of Hypothesis Sectio 13.1 Itroductio RECAP: Chapter 1 discussed the Likelihood Ratio Method as a geeral approach to fid good test procedures. Testig for the Normal Mea Example, discussed

More information

Statistics Lecture 27. Final review. Administrative Notes. Outline. Experiments. Sampling and Surveys. Administrative Notes

Statistics Lecture 27. Final review. Administrative Notes. Outline. Experiments. Sampling and Surveys. Administrative Notes Admiistrative Notes s - Lecture 7 Fial review Fial Exam is Tuesday, May 0th (3-5pm Covers Chapters -8 ad 0 i textbook Brig ID cards to fial! Allowed: Calculators, double-sided 8.5 x cheat sheet Exam Rooms:

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2016 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

10. Comparative Tests among Spatial Regression Models. Here we revisit the example in Section 8.1 of estimating the mean of a normal random

10. Comparative Tests among Spatial Regression Models. Here we revisit the example in Section 8.1 of estimating the mean of a normal random Part III. Areal Data Aalysis 0. Comparative Tests amog Spatial Regressio Models While the otio of relative likelihood values for differet models is somewhat difficult to iterpret directly (as metioed above),

More information

Section 14. Simple linear regression.

Section 14. Simple linear regression. Sectio 14 Simple liear regressio. Let us look at the cigarette dataset from [1] (available to dowload from joural s website) ad []. The cigarette dataset cotais measuremets of tar, icotie, weight ad carbo

More information

This chapter focuses on two experimental designs that are crucial to comparative studies: (1) independent samples and (2) matched pair samples.

This chapter focuses on two experimental designs that are crucial to comparative studies: (1) independent samples and (2) matched pair samples. Chapter 9 & : Comparig Two Treatmets: This chapter focuses o two eperimetal desigs that are crucial to comparative studies: () idepedet samples ad () matched pair samples Idepedet Radom amples from Two

More information

Class 23. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700

Class 23. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700 Class 23 Daiel B. Rowe, Ph.D. Departmet of Mathematics, Statistics, ad Computer Sciece Copyright 2017 by D.B. Rowe 1 Ageda: Recap Chapter 9.1 Lecture Chapter 9.2 Review Exam 6 Problem Solvig Sessio. 2

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2018 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information