A Family of Efficient Estimator in Circular Systematic Sampling

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "A Family of Efficient Estimator in Circular Systematic Sampling"

Transcription

1 olumbia Iteratioal Publishig Joural of dvaced omputig (0) Vol. o. pp doi:0.776/jac.0.00 Research rticle Famil of Efficiet Estimator i ircular Sstematic Samplig Hemat K. Verma ad Rajesh Sigh * Received 8 ugust 0; Published olie September 0 The author(s) 0. Published ith ope access at.uscip.us bstract This paper proposes a famil of epoetial estimators for estimatig the populatio mea of stud variable usig a auiliar variable i circular sstematic samplig desig uder sigle ad to phase samplig. The epressio of the bias ad mea square error of proposed class of estimators are derived i geeral form. It has bee sho that the proposed class of estimators are more efficiet tha ratio, product, regressio ad other estimators cosidered here i circular sstematic samplig uder sigle ad to phase samplig. empirical stud is carried out i support of theoretical stud. Keords: ircular sstematic samplig; Efficiec; Ratio estimator; Regressio estimator; To-phase samplig. Itroductio I sample surves, the utilizatio of auiliar iformatio is frequetl ackoledged to higher the accurac of the estimatio of populatio characteristics uder stud. The auiliar data might either be promptl accessible or ma be made accessible ithout much trouble b occup a part of the surve resources or available from previous eperiece, cesus or admiistrative databases. It is ell ko that he the auiliar iformatio is to be used at the estimatio stage, the ratio, product ad regressio methods are idel emploed. Ma authors icludig Sigh et al. (007), Shabbir ad Gupta (007), Sigh ad Kumar (0), ad Sharma ad Sigh (0, 0) suggested estimators usig auiliar variable. The usual sstematic samplig desig is quite simple ad most commol used i sample surve. Sstematic samplig has a advatage of selectig the hole sample ith just oe radom start. I *orrespodig Departmet of statistics, Baaras Hidu Uiversit, Varaasi (U.P), Idia 6

2 Hemat K. Verm ad Rajesh Sigh / Joural of dvaced omputig (0) Vol. o. pp this method of samplig, the first uit is selected radoml ad remaiig uits are selected automaticall accordig to some predetermied patters. Hasel (9) ad Griffth (9-96) foud sstematic samplig to be efficiet ad coveiet i samplig certai atural populatios like forest areas for estimatig the volume of the timber ad area uder differet tpes of cover. ochra (96) ad Hajeck (99) had stated that i large-scale samplig ork, this procedure provides more efficiet estimators tha those provided b simple radom samplig ad/or stratified radom samplig uder certai coditios. I case of ko populatio mea, of the auiliar variable, Sai (96) ad Shukla (97) have suggested the ratio ad product estimators for the populatio mea of the surve variable, respectivel, alog ith their properties i sstematic samplig. Some other remarkable ork i this area are Sigh ad Sigh (998), Sigh et al. (0), Verma et al. (0), Sigh ad Jata (0), Sigh ad Solaki (0), ad Verma et al. (0). I liear sstematic samplig, give a sample size, samplig is possible ol if populatio size is divisible b. Eve he this coditio is satisfied, the scheme caot provide estimate of variace of the sample mea. This scheme has to drabacks amel, give, has limited choice ad variace of the sample mea is ot estimable. The first limitatio could be removed through circular sstematic samplig () as suggested b Lahiri (9). The procedure cosists i th selectig a uit, b a radom start, from to ad the thereafter selectig ever k uit, k beig a iteger earest to /, i a circular maer, util a sample of uits is obtaied. Suppose that a uit ith radom umber i is selected. The sample ill the cosists of the uits correspodig to the serial umbers i jk, i jk, Label for i 0,,..., ( ) i jk, i jk. (for details see Sigh ad haudhar (986), pp8) I the folloig maer, e ma dra circular sstematic samples, each of size as displaed i table. Table Possible Samples usig ircular Sstematic Samplig Sample umber i u u u i u uk uk uk i u u(-)k u(-)k u(-)k i u 7

3 Hemat K. Verm ad Rajesh Sigh / Joural of dvaced omputig (0) Vol. o. pp From this possible sample, a sample of size is selected radoml to observe ad.. Termiolog used i ircular Sstematic Samplig * Let us suppose that U be a fiite populatio cosists of distict labelled uits i.e. U * (U,U....U ) ad be a fied sample size. lso, let ad be stud ad auiliar variables takig values ad i (,,..., ), j (,,..., ). The sample meas meas / ad / are ubiased estimates of populatio j j / ad / respectivel. j The variace of ad here V j ad uder desig is ritte as- ( ) V( S ( ) S () S ) ( ) S (), S i j ( ) ( ), S i j ( ) ( ) ith ( )( )S i ju ( )( iu ) ad ( )( )S i ju ( )( iu ) 8

4 Hemat K. Verm ad Rajesh Sigh / Joural of dvaced omputig (0) Vol. o. pp here, ) represets itraclass correlatio coefficiets betee pairs of uits ithi the ( for ad, respectivel. also, here ov( S / / ( ) ( ) S, ) i j ( )( ( ) ). Estimators i Literature. I literature, geerall, e use ratio, product ad regressio estimators for estimatig the populatio mea he e have iformatio o auiliar variables. Thus, e cosider ratio, product ad regressio estimators based o as stadard result for makig compariso ith our suggested class of estimators. The ratio estimator of the populatio mea based o ith ko is defied as R () S The product estimator of the populatio mea based o ith ko is defied as P () The liear regressio estimator of the populatio mea based o ith ko is defied as lr ˆ ( ) () s here ˆ is a estimator for populatio regressio coefficiet ith s s j ( ) ad s ( ) j ( )( ) ( ) 9

5 The bias epressios of estimators Hemat K. Verm ad Rajesh Sigh / Joural of dvaced omputig (0) Vol. o. pp R, P ad lr are give as Bias R (6) Bias P (7) Bias lr 0 (8) ad the MSE epressios of estimators MSE MSE MSE R R, P ad lr are give as (9) (0) P lr here, S S S () Double samplig scheme is applicable he populatio mea of auiliar variable, is uko. Uder double samplig scheme, first e divide the populatio ito clusters of size, each accordig to, ad select radoml m distict clusters (< m <k) to estimate ol. I secod phase, a cluster is selected radoml from m s to estimate. Hece, the epressios for ad lr, ith uko, are give as R () P () lr R, P ˆ ( ), () here m i j m 60

6 Hemat K. Verm ad Rajesh Sigh / Joural of dvaced omputig (0) Vol. o. pp Defied, S S V() ov(, ) ( ) () m m ad ov / S S (6) m m /, ( ) ( ) The bias epressios of estimators R, P ad lr are give as Bias R (7) Bias P (8) Bias lr 0 (9) ad the MSE epressios of estimators R, P ad lr are give as MSE R (0) MSE P () MSE lr () here, S S S, such that m S S m ith S ad ad S S m S m () 6

7 . Proposed Estimator Hemat K. Verm ad Rajesh Sigh / Joural of dvaced omputig (0) Vol. o. pp Motivated b Koucu (0), e propose the folloig estimator for estimatig populatio mea of a stud variable uder assumig is ko as t p ep () Where is a suitable real umber, ad are either real umbers or the fuctios of the ko parameters associated ith a auiliar attribute. (, ) are suitabl chose scalars to be properl determied for miimum mea square error (MSE) of suggested estimators ad. (See Sharma ad Sigh 0a) Epadig equatio () i terms of e s up to the first order of approimatio, e have, t p e 0 e e e e e 8 8 e e e 0 e () here, e 0, e ad To obtai the bias ad MSE of the estimator t p to the first degree of approimatio, e rite Such that, E(e i ) 0; i 0,. also, 0, E e, E e ad Ee e, 0 Takig epectatio both sides of equatio (), e get the bias epressio of estimator t P as Bias t P 8 8 (6) Squarig both sides of equatio () ad takig epectatio e get the MSE epressio of estimator t P as 6

8 Hemat K. Verm ad Rajesh Sigh / Joural of dvaced omputig (0) Vol. o. pp P t MSE (7) here, 8 8 Partiall differetiatig equatio (7) ith respect to ad ad equatig to zero, e get the optimum value of ad as (opt) (opt) o suppose, is uko, the aalogue of p t becomes ep t p (8) here, the otatios used here are alread defied earlier. To obtai the bias ad MSE of the proposed class of estimators T, e defie e Such that

9 Hemat K. Verm ad Rajesh Sigh / Joural of dvaced omputig (0) Vol. o. pp m e E e ad m,e E e E e 0, E e 0 (9) The epressios for bias ad MSE of the proposed estimator P t usig are give respectivel as P 8 8 t Bias (0) P W t MSE () here, 8 8 Partiall differetiatig equatio () ith respect to ad ad equatig to zero, e get the optimum value of ad as (opt) (opt) ote: It ca be observed from equatio (6), (7) ad (0), () that the bias ad MSE of P t ad P t look similar. Hoever, due to sigle ad double samplig desig the dissimilarit eists ol i terms, ad,.

10 Hemat K. Verm ad Rajesh Sigh / Joural of dvaced omputig (0) Vol. o. pp Table Members of class of estimators t P Estimators ostats t P t P ep 0 tp ep - t P ep - S S t P ep - t P ep - t P6 ep 0 t P7 ep 0 S S S t P8 ep - S. Empirical Stud I order to check the efficiec of proposed estimators, e take a data set hich is earlier cosidered b Koucu ad Kadilar (009) ad Sigh ad Solaki (0). The data cocers primar ad secodar schools of 9 districts of Turke i 007. The descriptio of variables is give belo 6

11 Hemat K. Verm ad Rajesh Sigh / Joural of dvaced omputig (0) Vol. o. pp = umber of teachers i both primar ad secodar school; = umber of studets i both primar ad secodar school. =9 =60 =80 m = =0. =6. S =79.9 S =. =0.9 =-0.00 = For to-phases, oe ca select < m < (as e metioed earlier < m < k). ll possible values of m are cosidered. Here i this problem e have take m=. Folloig table shos the variace/mse ad PRE of all the estimators cosidered here. here, PRE., V 00. MSE. Table Variace/ Miimum MSE/PRE s of cosidered estimators uder sigle ad to phase samplig (usig usual otatio i to-phase as is ad so o) Estimators (Sigle phase) (To phase) V/MSE PRE V/MSE PRE P R lr t P t P t P t P t P t P t P t P

12 6. oclusio Hemat K. Verm ad Rajesh Sigh / Joural of dvaced omputig (0) Vol. o. pp I this paper, e proposed a efficiet class of epoetial estimators t P usig auiliar variable i circular sstematic samplig (). The Variace/MSE/miimum MSE ad PRE of differet estimators have bee sho i table ad it has bee observed that the estimator 7, hich is a member of proposed famil of estimators t P has miimum MSE amog all the estimators cosidered here. Thus, from empirical stud, e coclude that estimator 7 is more efficiet tha other eistig estimators i for sigle-phase ad to-phase samplig for the give data set. Refereces ochra, W. G. (96). Relative efficiec of sstematic ad stratified radom samples for a certai class of populatios.. Math. Stat., 7, Griffth,. L The efficiec of eumeratios. Forest-Research Istitute, Dehra Du. Idia Forest Leaflets,8 9. Hajeck, J., (99). Optimum strateg ad other problems i probabilit samplig.osopis pro Pestovai Mathematik, 8, 87. Hasel,.. (9): Estimatio of volume i timber stads b strip samplig, MS,, Koucu,. (0): Efficiet estimators of populatio mea usig auiliar attributes. M, 8, Koucu,., Kadilar,., (009). Efficiet estimators for the populatio mea. Hacettepe Joural of Mathematics ad Statistics, 8, 7. Lahiri, D. B., (9). method for selectio providig ubiased estimates. Bulleti of the Iteratioal Statistical Istitute, (), 0. Shabbir, J. ad S. Gupta, 007. O estimatig the fiite populatio mea ith ko populatio proportio of a auiliar variable. Pakista Joural of Statistics, (): -9. Sharma, P. ad Sigh, R (0). Improved Estimators for Simple radom samplig ad Stratified radom samplig Uder Secod order of pproimatio. Statistics I Trasitio- e series, (), Sharma, P. d Sigh, R. (0a). Efficiet Estimators of Populatio Mea i Stratified Radom Samplig Usig uiliar ttribute. World pplied Scieces Joural, 7(), Sharma, P. ad Sigh, R. (0). Geeralized class of estimators for populatio media usig auiliar iformatio, Hecettepe Joural of Statistics ad Mathematics ( I Press) Shukla,. D. (97). Sstematic samplig ad product method of estimatio, Proceedigs of all Idia Semiar o Demograph ad Statistics, B.H.U.,Varaasi, Idia. Sigh, D. ad haudhar, F. S. (986). Theor ad aalsis of sample surve desig. Wile Easter Limited. Sigh, R. ad Kumar, M. (0): ote o trasformatios o auiliar variable i surve samplig. MS, 6:, 7-9. Sigh, H. P., Jata,. K., (0). class of epoetial-tpe estimators i sstematic samplig. Ecoomic Qualit otrol, 7, Sigh, H. P., Solaki, R. S., (0). efficiet class of estimators for the populatio mea usig auiliar iformatio i sstematic samplig. Joural of Statistical Theor ad Practice, 6, Sigh, H. P., Solaki, R. S. (0). efficiet class of estimators for the populatio mea usig auiliar iformatio. ommuicatio i Statistics- Theor ad Methods,, t P t P

13 Hemat K. Verm ad Rajesh Sigh / Joural of dvaced omputig (0) Vol. o. pp Sigh, R., P. auha,. Saa ad F.Smaradache, (007). uiliar iformatio ad a priori values i costructio of improved estimators. Reaissace High Press. Sigh, R., Malik, S., haudr, M. K., Verma, H. K., deara,.., (0). geeral famil of ratio-tpe estimators i sstematic samplig. Joural of Reliabilit ad Statistical Studies, (), 7 8. Sigh, R., Sigh, H. P., (998). lmost ubiased ratio ad product-tpe estimators i sstematic samplig. QUESTIIO, (), 0 6. Sai,. K. P.. (96). The use of sstematic samplig i ratio estimate. J. Id. Stat. ssoc., (), Verma, H. K, Sigh, R. D. ad Sigh, R. (0). Geeral lass of Regressio Tpe Estimators i Sstematic Samplig Uder o-respose, OTOGO Mathematical Magazie, 0(), -0. Verma, H. K., Sigh, R. D. ad Sigh, R (0). Some Improved Estimators i Sstematic Samplig Uder o- Respose, atl. cad. Sci. Lett., 7(),

Use of Auxiliary Information for Estimating Population Mean in Systematic Sampling under Non- Response

Use of Auxiliary Information for Estimating Population Mean in Systematic Sampling under Non- Response Maoj K. haudhar, Sachi Malik, Rajesh Sigh Departmet of Statistics, Baaras Hidu Uiversit Varaasi-005, Idia Floreti Smaradache Uiversit of New Mexico, Gallup, USA Use of Auxiliar Iformatio for Estimatig

More information

A Generalized Class of Estimators for Finite Population Variance in Presence of Measurement Errors

A Generalized Class of Estimators for Finite Population Variance in Presence of Measurement Errors Joural of Moder Applied Statistical Methods Volume Issue Article 3 --03 A Geeralized Class of Estimators for Fiite Populatio Variace i Presece of Measuremet Errors Praas Sharma Baaras Hidu Uiversit, Varaasi,

More information

Varanasi , India. Corresponding author

Varanasi , India. Corresponding author A Geeral Family of Estimators for Estimatig Populatio Mea i Systematic Samplig Usig Auxiliary Iformatio i the Presece of Missig Observatios Maoj K. Chaudhary, Sachi Malik, Jayat Sigh ad Rajesh Sigh Departmet

More information

A Family of Unbiased Estimators of Population Mean Using an Auxiliary Variable

A Family of Unbiased Estimators of Population Mean Using an Auxiliary Variable Advaces i Computatioal Scieces ad Techolog ISSN 0973-6107 Volume 10, Number 1 (017 pp. 19-137 Research Idia Publicatios http://www.ripublicatio.com A Famil of Ubiased Estimators of Populatio Mea Usig a

More information

Some Exponential Ratio-Product Type Estimators using information on Auxiliary Attributes under Second Order Approximation

Some Exponential Ratio-Product Type Estimators using information on Auxiliary Attributes under Second Order Approximation ; [Formerly kow as the Bulleti of Statistics & Ecoomics (ISSN 097-70)]; ISSN 0975-556X; Year: 0, Volume:, Issue Number: ; It. j. stat. eco.; opyright 0 by ESER Publicatios Some Expoetial Ratio-Product

More information

Method of Estimation in the Presence of Nonresponse and Measurement Errors Simultaneously

Method of Estimation in the Presence of Nonresponse and Measurement Errors Simultaneously Joural of Moder Applied Statistical Methods Volume 4 Issue Article 5--05 Method of Estimatio i the Presece of Norespose ad Measuremet Errors Simultaeousl Rajesh Sigh Sigh Baaras Hidu Uiversit, Varaasi,

More information

Improved exponential estimator for population variance using two auxiliary variables

Improved exponential estimator for population variance using two auxiliary variables OCTOGON MATHEMATICAL MAGAZINE Vol. 7, No., October 009, pp 667-67 ISSN -5657, ISBN 97-973-55-5-0, www.hetfalu.ro/octogo 667 Improved expoetial estimator for populatio variace usig two auxiliar variables

More information

Modified Ratio Estimators Using Known Median and Co-Efficent of Kurtosis

Modified Ratio Estimators Using Known Median and Co-Efficent of Kurtosis America Joural of Mathematics ad Statistics 01, (4): 95-100 DOI: 10.593/j.ajms.01004.05 Modified Ratio s Usig Kow Media ad Co-Efficet of Kurtosis J.Subramai *, G.Kumarapadiya Departmet of Statistics, Podicherry

More information

A General Family of Estimators for Estimating Population Variance Using Known Value of Some Population Parameter(s)

A General Family of Estimators for Estimating Population Variance Using Known Value of Some Population Parameter(s) Rajesh Sigh, Pakaj Chauha, Nirmala Sawa School of Statistics, DAVV, Idore (M.P.), Idia Floreti Smaradache Uiversity of New Meico, USA A Geeral Family of Estimators for Estimatig Populatio Variace Usig

More information

Enhancing ratio estimators for estimating population mean using maximum value of auxiliary variable

Enhancing ratio estimators for estimating population mean using maximum value of auxiliary variable J.Nat.Sci.Foudatio Sri Laka 08 46 (: 45-46 DOI: http://d.doi.org/0.408/jsfsr.v46i.8498 RESEARCH ARTICLE Ehacig ratio estimators for estimatig populatio mea usig maimum value of auiliar variable Nasir Abbas,

More information

New Ratio Estimators Using Correlation Coefficient

New Ratio Estimators Using Correlation Coefficient New atio Estimators Usig Correlatio Coefficiet Cem Kadilar ad Hula Cigi Hacettepe Uiversit, Departmet of tatistics, Betepe, 06800, Akara, Turke. e-mails : kadilar@hacettepe.edu.tr ; hcigi@hacettepe.edu.tr

More information

Estimation of Population Mean Using Co-Efficient of Variation and Median of an Auxiliary Variable

Estimation of Population Mean Using Co-Efficient of Variation and Median of an Auxiliary Variable Iteratioal Joural of Probability ad Statistics 01, 1(4: 111-118 DOI: 10.593/j.ijps.010104.04 Estimatio of Populatio Mea Usig Co-Efficiet of Variatio ad Media of a Auxiliary Variable J. Subramai *, G. Kumarapadiya

More information

Journal of Scientific Research Vol. 62, 2018 : Banaras Hindu University, Varanasi ISSN :

Journal of Scientific Research Vol. 62, 2018 : Banaras Hindu University, Varanasi ISSN : Joural of Scietific Research Vol. 6 8 : 3-34 Baaras Hidu Uiversity Varaasi ISS : 447-9483 Geeralized ad trasformed two phase samplig Ratio ad Product ype stimators for Populatio Mea Usig uiliary haracter

More information

Improved Class of Ratio -Cum- Product Estimators of Finite Population Mean in two Phase Sampling

Improved Class of Ratio -Cum- Product Estimators of Finite Population Mean in two Phase Sampling Global Joural of Sciece Frotier Research: F Mathematics ad Decisio Scieces Volume 4 Issue 2 Versio.0 Year 204 Type : Double Blid Peer Reviewed Iteratioal Research Joural Publisher: Global Jourals Ic. (USA

More information

An Improved Warner s Randomized Response Model

An Improved Warner s Randomized Response Model Iteratioal Joural of Statistics ad Applicatios 05, 5(6: 63-67 DOI: 0.593/j.statistics.050506.0 A Improved Warer s Radomized Respose Model F. B. Adebola, O. O. Johso * Departmet of Statistics, Federal Uiversit

More information

Estimation of Population Ratio in Post-Stratified Sampling Using Variable Transformation

Estimation of Population Ratio in Post-Stratified Sampling Using Variable Transformation Ope Joural o Statistics, 05, 5, -9 Published Olie Februar 05 i SciRes. http://www.scirp.org/joural/ojs http://dx.doi.org/0.436/ojs.05.500 Estimatio o Populatio Ratio i Post-Stratiied Samplig Usig Variable

More information

Estimation of the Population Mean in Presence of Non-Response

Estimation of the Population Mean in Presence of Non-Response Commuicatios of the Korea Statistical Society 0, Vol. 8, No. 4, 537 548 DOI: 0.535/CKSS.0.8.4.537 Estimatio of the Populatio Mea i Presece of No-Respose Suil Kumar,a, Sadeep Bhougal b a Departmet of Statistics,

More information

SYSTEMATIC SAMPLING FOR NON-LINEAR TREND IN MILK YIELD DATA

SYSTEMATIC SAMPLING FOR NON-LINEAR TREND IN MILK YIELD DATA Joural of Reliability ad Statistical Studies; ISS (Prit): 0974-804, (Olie):9-5666 Vol. 7, Issue (04): 57-68 SYSTEMATIC SAMPLIG FOR O-LIEAR TRED I MILK YIELD DATA Tauj Kumar Padey ad Viod Kumar Departmet

More information

Chain ratio-to-regression estimators in two-phase sampling in the presence of non-response

Chain ratio-to-regression estimators in two-phase sampling in the presence of non-response ProbStat Forum, Volume 08, July 015, Pages 95 10 ISS 0974-335 ProbStat Forum is a e-joural. For details please visit www.probstat.org.i Chai ratio-to-regressio estimators i two-phase samplig i the presece

More information

Research Article An Alternative Estimator for Estimating the Finite Population Mean Using Auxiliary Information in Sample Surveys

Research Article An Alternative Estimator for Estimating the Finite Population Mean Using Auxiliary Information in Sample Surveys Iteratioal Scholarly Research Network ISRN Probability ad Statistics Volume 01, Article ID 65768, 1 pages doi:10.50/01/65768 Research Article A Alterative Estimator for Estimatig the Fiite Populatio Mea

More information

Alternative Ratio Estimator of Population Mean in Simple Random Sampling

Alternative Ratio Estimator of Population Mean in Simple Random Sampling Joural of Mathematics Research; Vol. 6, No. 3; 014 ISSN 1916-9795 E-ISSN 1916-9809 Published by Caadia Ceter of Sciece ad Educatio Alterative Ratio Estimator of Populatio Mea i Simple Radom Samplig Ekaette

More information

A New Mixed Randomized Response Model

A New Mixed Randomized Response Model Iteratioal Joural of Busiess ad Social Sciece ol No ; October 00 A New Mixed adomized espose Model Aesha Nazuk NUST Busiess School Islamabad, Paksta E-mail: Aeshaazuk@bsedupk Phoe: 009-5-9085-367 Abstract

More information

Improvement in Estimating The Population Mean Using Dual To Ratio-Cum-Product Estimator in Simple Random Sampling

Improvement in Estimating The Population Mean Using Dual To Ratio-Cum-Product Estimator in Simple Random Sampling Olufadi Yuusa Departmet of tatistics ad Mathematical cieces Kwara tate Uiversit.M.B 53 Malete Nigeria ajesh igh Departmet of tatistics Baaras Hidu Uiversit Varaasi (U..) Idia Floreti maradache Uiversit

More information

REVISTA INVESTIGACION OPERACIONAL VOL. 35, NO. 1, 49-57, 2014

REVISTA INVESTIGACION OPERACIONAL VOL. 35, NO. 1, 49-57, 2014 EVISTA IVESTIGAIO OPEAIOAL VOL. 35, O., 9-57, 0 O A IMPOVED ATIO TYPE ESTIMATO OF FIITE POPULATIO MEA I SAMPLE SUVEYS A K P Swai Former Professor of Statistics, Utkal Uiversit, Bhubaeswar-7500, Idia ABSTAT

More information

Abstract. Ranked set sampling, auxiliary variable, variance.

Abstract. Ranked set sampling, auxiliary variable, variance. Hacettepe Joural of Mathematics ad Statistics Volume (), 1 A class of Hartley-Ross type Ubiased estimators for Populatio Mea usig Raked Set Samplig Lakhkar Kha ad Javid Shabbir Abstract I this paper, we

More information

Improved Ratio Estimators of Population Mean In Adaptive Cluster Sampling

Improved Ratio Estimators of Population Mean In Adaptive Cluster Sampling J. Stat. Appl. Pro. Lett. 3, o. 1, 1-6 (016) 1 Joural of Statistics Applicatios & Probability Letters A Iteratioal Joural http://dx.doi.org/10.18576/jsapl/030101 Improved Ratio Estimators of Populatio

More information

Jambulingam Subramani 1, Gnanasegaran Kumarapandiyan 2 and Saminathan Balamurali 3

Jambulingam Subramani 1, Gnanasegaran Kumarapandiyan 2 and Saminathan Balamurali 3 ISSN 1684-8403 Joural of Statistics Volume, 015. pp. 84-305 Abstract A Class of Modified Liear Regressio Type Ratio Estimators for Estimatio of Populatio Mea usig Coefficiet of Variatio ad Quartiles of

More information

AClassofRegressionEstimatorwithCumDualProductEstimatorAsIntercept

AClassofRegressionEstimatorwithCumDualProductEstimatorAsIntercept Global Joural of Sciece Frotier Research: F Mathematics ad Decisio Scieces Volume 15 Issue 3 Versio 1.0 Year 2015 Type : Double Blid Peer Reviewed Iteratioal Research Joural Publisher: Global Jourals Ic.

More information

Properties and Hypothesis Testing

Properties and Hypothesis Testing Chapter 3 Properties ad Hypothesis Testig 3.1 Types of data The regressio techiques developed i previous chapters ca be applied to three differet kids of data. 1. Cross-sectioal data. 2. Time series data.

More information

Element sampling: Part 2

Element sampling: Part 2 Chapter 4 Elemet samplig: Part 2 4.1 Itroductio We ow cosider uequal probability samplig desigs which is very popular i practice. I the uequal probability samplig, we ca improve the efficiecy of the resultig

More information

Random Variables, Sampling and Estimation

Random Variables, Sampling and Estimation Chapter 1 Radom Variables, Samplig ad Estimatio 1.1 Itroductio This chapter will cover the most importat basic statistical theory you eed i order to uderstad the ecoometric material that will be comig

More information

Modeling and Estimation of a Bivariate Pareto Distribution using the Principle of Maximum Entropy

Modeling and Estimation of a Bivariate Pareto Distribution using the Principle of Maximum Entropy Sri Laka Joural of Applied Statistics, Vol (5-3) Modelig ad Estimatio of a Bivariate Pareto Distributio usig the Priciple of Maximum Etropy Jagathath Krisha K.M. * Ecoomics Research Divisio, CSIR-Cetral

More information

On stratified randomized response sampling

On stratified randomized response sampling Model Assisted Statistics ad Applicatios 1 (005,006) 31 36 31 IOS ress O stratified radomized respose samplig Jea-Bok Ryu a,, Jog-Mi Kim b, Tae-Youg Heo c ad Chu Gu ark d a Statistics, Divisio of Life

More information

Statistical inference: example 1. Inferential Statistics

Statistical inference: example 1. Inferential Statistics Statistical iferece: example 1 Iferetial Statistics POPULATION SAMPLE A clothig store chai regularly buys from a supplier large quatities of a certai piece of clothig. Each item ca be classified either

More information

WEIGHTED LEAST SQUARES - used to give more emphasis to selected points in the analysis. Recall, in OLS we minimize Q =! % =!

WEIGHTED LEAST SQUARES - used to give more emphasis to selected points in the analysis. Recall, in OLS we minimize Q =! % =! WEIGHTED LEAST SQUARES - used to give more emphasis to selected poits i the aalysis What are eighted least squares?! " i=1 i=1 Recall, i OLS e miimize Q =! % =!(Y - " - " X ) or Q = (Y_ - X "_) (Y_ - X

More information

POWER AKASH DISTRIBUTION AND ITS APPLICATION

POWER AKASH DISTRIBUTION AND ITS APPLICATION POWER AKASH DISTRIBUTION AND ITS APPLICATION Rama SHANKER PhD, Uiversity Professor, Departmet of Statistics, College of Sciece, Eritrea Istitute of Techology, Asmara, Eritrea E-mail: shakerrama009@gmail.com

More information

Generalized Exponential Type Estimator for Population Variance in Survey Sampling

Generalized Exponential Type Estimator for Population Variance in Survey Sampling Revista Colombiaa de Estadística Juio 2014, volume 37, o. 1, pp. 211 a 222 Geeralized Expoetial Type Estimator for Populatio Variace i Survey Samplig Estimadores tipo expoecial geeralizado para la variaza

More information

Improved Estimation of Rare Sensitive Attribute in a Stratified Sampling Using Poisson Distribution

Improved Estimation of Rare Sensitive Attribute in a Stratified Sampling Using Poisson Distribution Ope Joural of Statistics, 06, 6, 85-95 Publised Olie February 06 i SciRes ttp://wwwscirporg/joural/ojs ttp://dxdoiorg/0436/ojs0660 Improved Estimatio of Rare Sesitive ttribute i a Stratified Samplig Usig

More information

Estimation of Gumbel Parameters under Ranked Set Sampling

Estimation of Gumbel Parameters under Ranked Set Sampling Joural of Moder Applied Statistical Methods Volume 13 Issue 2 Article 11-2014 Estimatio of Gumbel Parameters uder Raked Set Samplig Omar M. Yousef Al Balqa' Applied Uiversity, Zarqa, Jorda, abuyaza_o@yahoo.com

More information

ESTIMATION OF FINITE POPULATION MEAN WITH KNOWN COEFFICIENT OF VARIATION OF AN AUXILIARY CHARACTER

ESTIMATION OF FINITE POPULATION MEAN WITH KNOWN COEFFICIENT OF VARIATION OF AN AUXILIARY CHARACTER STATISTICA, ao LXV,. 3, 2005 ESTIMATION OF FINITE POPULATION MEAN WITH KNOWN COEFFICIENT OF VARIATION OF AN AUXILIAR CHARACTER H.P. Sigh, R. Tail 1. INTRODUCTION AND THE SUGGESTED ESTIMATOR It is well

More information

RAINFALL PREDICTION BY WAVELET DECOMPOSITION

RAINFALL PREDICTION BY WAVELET DECOMPOSITION RAIFALL PREDICTIO BY WAVELET DECOMPOSITIO A. W. JAYAWARDEA Departmet of Civil Egieerig, The Uiversit of Hog Kog, Hog Kog, Chia P. C. XU Academ of Mathematics ad Sstem Scieces, Chiese Academ of Scieces,

More information

EECS564 Estimation, Filtering, and Detection Hwk 2 Solns. Winter p θ (z) = (2θz + 1 θ), 0 z 1

EECS564 Estimation, Filtering, and Detection Hwk 2 Solns. Winter p θ (z) = (2θz + 1 θ), 0 z 1 EECS564 Estimatio, Filterig, ad Detectio Hwk 2 Sols. Witer 25 4. Let Z be a sigle observatio havig desity fuctio where. p (z) = (2z + ), z (a) Assumig that is a oradom parameter, fid ad plot the maximum

More information

G. R. Pasha Department of Statistics Bahauddin Zakariya University Multan, Pakistan

G. R. Pasha Department of Statistics Bahauddin Zakariya University Multan, Pakistan Deviatio of the Variaces of Classical Estimators ad Negative Iteger Momet Estimator from Miimum Variace Boud with Referece to Maxwell Distributio G. R. Pasha Departmet of Statistics Bahauddi Zakariya Uiversity

More information

Investigating the Significance of a Correlation Coefficient using Jackknife Estimates

Investigating the Significance of a Correlation Coefficient using Jackknife Estimates Iteratioal Joural of Scieces: Basic ad Applied Research (IJSBAR) ISSN 2307-4531 (Prit & Olie) http://gssrr.org/idex.php?joural=jouralofbasicadapplied ---------------------------------------------------------------------------------------------------------------------------

More information

International Journal of Multidisciplinary Research and Development. M.A. Gopalan, A. Kavitha, G. Thamaraiselvi

International Journal of Multidisciplinary Research and Development. M.A. Gopalan, A. Kavitha, G. Thamaraiselvi Volume:, Issue: 6, -7 Jue 015.allsubjectjoural.com e-issn: 49-418 p-issn: 49-5979 Impact Factor:.76 M.A. Gopala Professor, Departmet of Idira Gadhi College, Trichy-6000, Tamiladu, Idia. A. Kavitha Lecturer,

More information

U8L1: Sec Equations of Lines in R 2

U8L1: Sec Equations of Lines in R 2 MCVU U8L: Sec. 8.9. Equatios of Lies i R Review of Equatios of a Straight Lie (-D) Cosider the lie passig through A (-,) with slope, as show i the diagram below. I poit slope form, the equatio of the lie

More information

MATH 320: Probability and Statistics 9. Estimation and Testing of Parameters. Readings: Pruim, Chapter 4

MATH 320: Probability and Statistics 9. Estimation and Testing of Parameters. Readings: Pruim, Chapter 4 MATH 30: Probability ad Statistics 9. Estimatio ad Testig of Parameters Estimatio ad Testig of Parameters We have bee dealig situatios i which we have full kowledge of the distributio of a radom variable.

More information

The Sampling Distribution of the Maximum. Likelihood Estimators for the Parameters of. Beta-Binomial Distribution

The Sampling Distribution of the Maximum. Likelihood Estimators for the Parameters of. Beta-Binomial Distribution Iteratioal Mathematical Forum, Vol. 8, 2013, o. 26, 1263-1277 HIKARI Ltd, www.m-hikari.com http://d.doi.org/10.12988/imf.2013.3475 The Samplig Distributio of the Maimum Likelihood Estimators for the Parameters

More information

Developing Efficient Ratio and Product Type Exponential Estimators of Population Mean under Two Phase Sampling for Stratification

Developing Efficient Ratio and Product Type Exponential Estimators of Population Mean under Two Phase Sampling for Stratification America Joural of Operatioal Researc 05 5: -8 DOI: 0.593/j.ajor.05050.0 Developig Efficiet Ratio ad Product Type Epoetial Eimators of Populatio Mea uder Two Pase Samplig for Stratificatio Subas Kumar adav

More information

A Generalized Class of Unbiased Estimators for Population Mean Using Auxiliary Information on an Attribute and an Auxiliary Variable

A Generalized Class of Unbiased Estimators for Population Mean Using Auxiliary Information on an Attribute and an Auxiliary Variable Iteratioal Joural of Computatioal ad Applied Mathematics. ISSN 89-4966 Volume, Number 07, pp. -8 Research Idia ublicatios http://www.ripublicatio.com A Geeralized Class of Ubiased Estimators for opulatio

More information

Mathematical Modeling of Optimum 3 Step Stress Accelerated Life Testing for Generalized Pareto Distribution

Mathematical Modeling of Optimum 3 Step Stress Accelerated Life Testing for Generalized Pareto Distribution America Joural of Theoretical ad Applied Statistics 05; 4(: 6-69 Published olie May 8, 05 (http://www.sciecepublishiggroup.com/j/ajtas doi: 0.648/j.ajtas.05040. ISSN: 6-8999 (Prit; ISSN: 6-9006 (Olie Mathematical

More information

Double Stage Shrinkage Estimator of Two Parameters. Generalized Exponential Distribution

Double Stage Shrinkage Estimator of Two Parameters. Generalized Exponential Distribution Iteratioal Mathematical Forum, Vol., 3, o. 3, 3-53 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.9/imf.3.335 Double Stage Shrikage Estimator of Two Parameters Geeralized Expoetial Distributio Alaa M.

More information

Warped, Chirp Z-Transform: Radar Signal Processing

Warped, Chirp Z-Transform: Radar Signal Processing arped, Chirp Z-Trasform: Radar Sigal Processig by Garimella Ramamurthy Report o: IIIT/TR// Cetre for Commuicatios Iteratioal Istitute of Iformatio Techology Hyderabad - 5 3, IDIA Jauary ARPED, CHIRP Z

More information

Dual to Ratio Estimators for Mean Estimation in Successive Sampling using Auxiliary Information on Two Occasion

Dual to Ratio Estimators for Mean Estimation in Successive Sampling using Auxiliary Information on Two Occasion J. Stat. Appl. Pro. 7, o. 1, 49-58 (018) 49 Joural of Statistics Applicatios & Probability A Iteratioal Joural http://dx.doi.org/10.18576/jsap/070105 Dual to Ratio Estimators for Mea Estimatio i Successive

More information

A statistical method to determine sample size to estimate characteristic value of soil parameters

A statistical method to determine sample size to estimate characteristic value of soil parameters A statistical method to determie sample size to estimate characteristic value of soil parameters Y. Hojo, B. Setiawa 2 ad M. Suzuki 3 Abstract Sample size is a importat factor to be cosidered i determiig

More information

If, for instance, we were required to test whether the population mean μ could be equal to a certain value μ

If, for instance, we were required to test whether the population mean μ could be equal to a certain value μ STATISTICAL INFERENCE INTRODUCTION Statistical iferece is that brach of Statistics i which oe typically makes a statemet about a populatio based upo the results of a sample. I oesample testig, we essetially

More information

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 5

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 5 CS434a/54a: Patter Recogitio Prof. Olga Veksler Lecture 5 Today Itroductio to parameter estimatio Two methods for parameter estimatio Maimum Likelihood Estimatio Bayesia Estimatio Itroducto Bayesia Decisio

More information

(all terms are scalars).the minimization is clearer in sum notation:

(all terms are scalars).the minimization is clearer in sum notation: 7 Multiple liear regressio: with predictors) Depedet data set: y i i = 1, oe predictad, predictors x i,k i = 1,, k = 1, ' The forecast equatio is ŷ i = b + Use matrix otatio: k =1 b k x ik Y = y 1 y 1

More information

Sampling, Sampling Distribution and Normality

Sampling, Sampling Distribution and Normality 4/17/11 Tools of Busiess Statistics Samplig, Samplig Distributio ad ormality Preseted by: Mahedra Adhi ugroho, M.Sc Descriptive statistics Collectig, presetig, ad describig data Iferetial statistics Drawig

More information

7-1. Chapter 4. Part I. Sampling Distributions and Confidence Intervals

7-1. Chapter 4. Part I. Sampling Distributions and Confidence Intervals 7-1 Chapter 4 Part I. Samplig Distributios ad Cofidece Itervals 1 7- Sectio 1. Samplig Distributio 7-3 Usig Statistics Statistical Iferece: Predict ad forecast values of populatio parameters... Test hypotheses

More information

Chapter 13, Part A Analysis of Variance and Experimental Design

Chapter 13, Part A Analysis of Variance and Experimental Design Slides Prepared by JOHN S. LOUCKS St. Edward s Uiversity Slide 1 Chapter 13, Part A Aalysis of Variace ad Eperimetal Desig Itroductio to Aalysis of Variace Aalysis of Variace: Testig for the Equality of

More information

ECONOMETRIC THEORY. MODULE XIII Lecture - 34 Asymptotic Theory and Stochastic Regressors

ECONOMETRIC THEORY. MODULE XIII Lecture - 34 Asymptotic Theory and Stochastic Regressors ECONOMETRIC THEORY MODULE XIII Lecture - 34 Asymptotic Theory ad Stochastic Regressors Dr. Shalabh Departmet of Mathematics ad Statistics Idia Istitute of Techology Kapur Asymptotic theory The asymptotic

More information

Estimation for Complete Data

Estimation for Complete Data Estimatio for Complete Data complete data: there is o loss of iformatio durig study. complete idividual complete data= grouped data A complete idividual data is the oe i which the complete iformatio of

More information

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 +

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + 62. Power series Defiitio 16. (Power series) Give a sequece {c }, the series c x = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + is called a power series i the variable x. The umbers c are called the coefficiets of

More information

A Relationship Between the One-Way MANOVA Test Statistic and the Hotelling Lawley Trace Test Statistic

A Relationship Between the One-Way MANOVA Test Statistic and the Hotelling Lawley Trace Test Statistic http://ijspccseetorg Iteratioal Joural of Statistics ad Probability Vol 7, No 6; 2018 A Relatioship Betwee the Oe-Way MANOVA Test Statistic ad the Hotellig Lawley Trace Test Statistic Hasthika S Rupasighe

More information

ECE 8527: Introduction to Machine Learning and Pattern Recognition Midterm # 1. Vaishali Amin Fall, 2015

ECE 8527: Introduction to Machine Learning and Pattern Recognition Midterm # 1. Vaishali Amin Fall, 2015 ECE 8527: Itroductio to Machie Learig ad Patter Recogitio Midterm # 1 Vaishali Ami Fall, 2015 tue39624@temple.edu Problem No. 1: Cosider a two-class discrete distributio problem: ω 1 :{[0,0], [2,0], [2,2],

More information

CEE 522 Autumn Uncertainty Concepts for Geotechnical Engineering

CEE 522 Autumn Uncertainty Concepts for Geotechnical Engineering CEE 5 Autum 005 Ucertaity Cocepts for Geotechical Egieerig Basic Termiology Set A set is a collectio of (mutually exclusive) objects or evets. The sample space is the (collectively exhaustive) collectio

More information

INF Introduction to classifiction Anne Solberg Based on Chapter 2 ( ) in Duda and Hart: Pattern Classification

INF Introduction to classifiction Anne Solberg Based on Chapter 2 ( ) in Duda and Hart: Pattern Classification INF 4300 90 Itroductio to classifictio Ae Solberg ae@ifiuioo Based o Chapter -6 i Duda ad Hart: atter Classificatio 90 INF 4300 Madator proect Mai task: classificatio You must implemet a classificatio

More information

On an Application of Bayesian Estimation

On an Application of Bayesian Estimation O a Applicatio of ayesia Estimatio KIYOHARU TANAKA School of Sciece ad Egieerig, Kiki Uiversity, Kowakae, Higashi-Osaka, JAPAN Email: ktaaka@ifokidaiacjp EVGENIY GRECHNIKOV Departmet of Mathematics, auma

More information

Topic 5 [434 marks] (i) Find the range of values of n for which. (ii) Write down the value of x dx in terms of n, when it does exist.

Topic 5 [434 marks] (i) Find the range of values of n for which. (ii) Write down the value of x dx in terms of n, when it does exist. Topic 5 [44 marks] 1a (i) Fid the rage of values of for which eists 1 Write dow the value of i terms of 1, whe it does eist Fid the solutio to the differetial equatio 1b give that y = 1 whe = π (cos si

More information

GUIDELINES ON REPRESENTATIVE SAMPLING

GUIDELINES ON REPRESENTATIVE SAMPLING DRUGS WORKING GROUP VALIDATION OF THE GUIDELINES ON REPRESENTATIVE SAMPLING DOCUMENT TYPE : REF. CODE: ISSUE NO: ISSUE DATE: VALIDATION REPORT DWG-SGL-001 002 08 DECEMBER 2012 Ref code: DWG-SGL-001 Issue

More information

Subject: Differential Equations & Mathematical Modeling-III

Subject: Differential Equations & Mathematical Modeling-III Power Series Solutios of Differetial Equatios about Sigular poits Subject: Differetial Equatios & Mathematical Modelig-III Lesso: Power series solutios of differetial equatios about Sigular poits Lesso

More information

Estimating the Population Mean using Stratified Double Ranked Set Sample

Estimating the Population Mean using Stratified Double Ranked Set Sample Estimatig te Populatio Mea usig Stratified Double Raked Set Sample Mamoud Syam * Kamarulzama Ibraim Amer Ibraim Al-Omari Qatar Uiversity Foudatio Program Departmet of Mat ad Computer P.O.Box (7) Doa State

More information

PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 9

PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 9 Hypothesis testig PSYCHOLOGICAL RESEARCH (PYC 34-C Lecture 9 Statistical iferece is that brach of Statistics i which oe typically makes a statemet about a populatio based upo the results of a sample. I

More information

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity LINEAR REGRESSION ANALYSIS MODULE IX Lecture - 9 Multicolliearity Dr Shalabh Departmet of Mathematics ad Statistics Idia Istitute of Techology Kapur Multicolliearity diagostics A importat questio that

More information

Estimation of Population Mean in Presence of Non-Response in Double Sampling

Estimation of Population Mean in Presence of Non-Response in Double Sampling J. Stat. Appl. Pro. 6, No. 2, 345-353 (2017) 345 Joural of Statistics Applicatios & Probability A Iteratioal Joural http://dx.doi.org/10.18576/jsap/060209 Estimatio of Populatio Mea i Presece of No-Respose

More information

µ and π p i.e. Point Estimation x And, more generally, the population proportion is approximately equal to a sample proportion

µ and π p i.e. Point Estimation x And, more generally, the population proportion is approximately equal to a sample proportion Poit Estimatio Poit estimatio is the rather simplistic (ad obvious) process of usig the kow value of a sample statistic as a approximatio to the ukow value of a populatio parameter. So we could for example

More information

The Random Walk For Dummies

The Random Walk For Dummies The Radom Walk For Dummies Richard A Mote Abstract We look at the priciples goverig the oe-dimesioal discrete radom walk First we review five basic cocepts of probability theory The we cosider the Beroulli

More information

1.010 Uncertainty in Engineering Fall 2008

1.010 Uncertainty in Engineering Fall 2008 MIT OpeCourseWare http://ocw.mit.edu.00 Ucertaity i Egieerig Fall 2008 For iformatio about citig these materials or our Terms of Use, visit: http://ocw.mit.edu.terms. .00 - Brief Notes # 9 Poit ad Iterval

More information

MOMENT-METHOD ESTIMATION BASED ON CENSORED SAMPLE

MOMENT-METHOD ESTIMATION BASED ON CENSORED SAMPLE Vol. 8 o. Joural of Systems Sciece ad Complexity Apr., 5 MOMET-METHOD ESTIMATIO BASED O CESORED SAMPLE I Zhogxi Departmet of Mathematics, East Chia Uiversity of Sciece ad Techology, Shaghai 37, Chia. Email:

More information

Mathacle. PSet Stats, Concepts In Statistics Level Number Name: Date:

Mathacle. PSet Stats, Concepts In Statistics Level Number Name: Date: PSet ----- Stats, Cocepts I Statistics 7.3. Cofidece Iterval for a Mea i Oe Sample [MATH] The Cetral Limit Theorem. Let...,,, be idepedet, idetically distributed (i.i.d.) radom variables havig mea µ ad

More information

Sampling Error. Chapter 6 Student Lecture Notes 6-1. Business Statistics: A Decision-Making Approach, 6e. Chapter Goals

Sampling Error. Chapter 6 Student Lecture Notes 6-1. Business Statistics: A Decision-Making Approach, 6e. Chapter Goals Chapter 6 Studet Lecture Notes 6-1 Busiess Statistics: A Decisio-Makig Approach 6 th Editio Chapter 6 Itroductio to Samplig Distributios Chap 6-1 Chapter Goals After completig this chapter, you should

More information

Principle Of Superposition

Principle Of Superposition ecture 5: PREIMINRY CONCEP O RUCUR NYI Priciple Of uperpositio Mathematically, the priciple of superpositio is stated as ( a ) G( a ) G( ) G a a or for a liear structural system, the respose at a give

More information

Extension of Mangat Randomized Response Model

Extension of Mangat Randomized Response Model Iteratioal Joural of Busiess ad Social Sciece Vol. 2 No. 8; May 2011 Etesio of Magat Radomized Respose Model Zawar Hussai Departmet of Statistics, Quaid-i-Azam Uiversity 45320, Islamabad 44000, Pakista

More information

5. Fractional Hot deck Imputation

5. Fractional Hot deck Imputation 5. Fractioal Hot deck Imputatio Itroductio Suppose that we are iterested i estimatig θ EY or eve θ 2 P ry < c where y fy x where x is always observed ad y is subject to missigess. Assume MAR i the sese

More information

Matrix Representation of Data in Experiment

Matrix Representation of Data in Experiment Matrix Represetatio of Data i Experimet Cosider a very simple model for resposes y ij : y ij i ij, i 1,; j 1,,..., (ote that for simplicity we are assumig the two () groups are of equal sample size ) Y

More information

(7 One- and Two-Sample Estimation Problem )

(7 One- and Two-Sample Estimation Problem ) 34 Stat Lecture Notes (7 Oe- ad Two-Sample Estimatio Problem ) ( Book*: Chapter 8,pg65) Probability& Statistics for Egieers & Scietists By Walpole, Myers, Myers, Ye Estimatio 1 ) ( ˆ S P i i Poit estimate:

More information

Section 14. Simple linear regression.

Section 14. Simple linear regression. Sectio 14 Simple liear regressio. Let us look at the cigarette dataset from [1] (available to dowload from joural s website) ad []. The cigarette dataset cotais measuremets of tar, icotie, weight ad carbo

More information

( ) = is larger than. the variance of X V

( ) = is larger than. the variance of X V Stat 400, sectio 6. Methods of Poit Estimatio otes by Tim Pilachoski A oit estimate of a arameter is a sigle umber that ca be regarded as a sesible value for The selected statistic is called the oit estimator

More information

Apply change-of-basis formula to rewrite x as a linear combination of eigenvectors v j.

Apply change-of-basis formula to rewrite x as a linear combination of eigenvectors v j. Eigevalue-Eigevector Istructor: Nam Su Wag eigemcd Ay vector i real Euclidea space of dimesio ca be uiquely epressed as a liear combiatio of liearly idepedet vectors (ie, basis) g j, j,,, α g α g α g α

More information

Mathacle. PSet Stats, Concepts In Statistics Level Number Name: Date: Confidence Interval Guesswork with Confidence

Mathacle. PSet Stats, Concepts In Statistics Level Number Name: Date: Confidence Interval Guesswork with Confidence PSet ----- Stats, Cocepts I Statistics Cofidece Iterval Guesswork with Cofidece VII. CONFIDENCE INTERVAL 7.1. Sigificace Level ad Cofidece Iterval (CI) The Sigificace Level The sigificace level, ofte deoted

More information

Evapotranspiration Estimation Using Support Vector Machines and Hargreaves-Samani Equation for St. Johns, FL, USA

Evapotranspiration Estimation Using Support Vector Machines and Hargreaves-Samani Equation for St. Johns, FL, USA Evirometal Egieerig 0th Iteratioal Coferece eissn 2029-7092 / eisbn 978-609-476-044-0 Vilius Gedimias Techical Uiversity Lithuaia, 27 28 April 207 Article ID: eviro.207.094 http://eviro.vgtu.lt DOI: https://doi.org/0.3846/eviro.207.094

More information

Classification with linear models

Classification with linear models Lecture 8 Classificatio with liear models Milos Hauskrecht milos@cs.pitt.edu 539 Seott Square Geerative approach to classificatio Idea:. Represet ad lear the distributio, ). Use it to defie probabilistic

More information

It should be unbiased, or approximately unbiased. Variance of the variance estimator should be small. That is, the variance estimator is stable.

It should be unbiased, or approximately unbiased. Variance of the variance estimator should be small. That is, the variance estimator is stable. Chapter 10 Variace Estimatio 10.1 Itroductio Variace estimatio is a importat practical problem i survey samplig. Variace estimates are used i two purposes. Oe is the aalytic purpose such as costructig

More information

International Journal of Mathematical Archive-5(7), 2014, Available online through ISSN

International Journal of Mathematical Archive-5(7), 2014, Available online through  ISSN Iteratioal Joural of Mathematical Archive-5(7), 214, 11-117 Available olie through www.ijma.ifo ISSN 2229 546 USING SQUARED-LOG ERROR LOSS FUNCTION TO ESTIMATE THE SHAPE PARAMETER AND THE RELIABILITY FUNCTION

More information

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. Comments:

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. Comments: Recall: STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS Commets:. So far we have estimates of the parameters! 0 ad!, but have o idea how good these estimates are. Assumptio: E(Y x)! 0 +! x (liear coditioal

More information

The exact confidence limits for unknown probability in Bernoulli models

The exact confidence limits for unknown probability in Bernoulli models The eact cofidece limits for uow probabilit i Beroulli models RI Adrushiw Departmet of Mathematical Scieces ad Ceter for Applied Mathematics ad Statistics New Jerse Istitute of Techolog Newar NJ 7 DA Klushi

More information

Simple Random Sampling!

Simple Random Sampling! Simple Radom Samplig! Professor Ro Fricker! Naval Postgraduate School! Moterey, Califoria! Readig:! 3/26/13 Scheaffer et al. chapter 4! 1 Goals for this Lecture! Defie simple radom samplig (SRS) ad discuss

More information

BUSINESS STATISTICS (PART-9) AVERAGE OR MEASURES OF CENTRAL TENDENCY: THE GEOMETRIC AND HARMONIC MEANS

BUSINESS STATISTICS (PART-9) AVERAGE OR MEASURES OF CENTRAL TENDENCY: THE GEOMETRIC AND HARMONIC MEANS BUSINESS STATISTICS (PART-9) AVERAGE OR MEASURES OF CENTRAL TENDENCY: THE GEOMETRIC AND HARMONIC MEANS. INTRODUCTION We have so far discussed three measures of cetral tedecy, viz. The Arithmetic Mea, Media

More information