# Estimation of Gumbel Parameters under Ranked Set Sampling

Size: px
Start display at page:

Download "Estimation of Gumbel Parameters under Ranked Set Sampling"

## Transcription

1 Joural of Moder Applied Statistical Methods Volume 13 Issue 2 Article Estimatio of Gumbel Parameters uder Raked Set Samplig Omar M. Yousef Al Balqa' Applied Uiversity, Zarqa, Jorda, Sameer A. Al-Subh Mutah Uiversity, Karak, Jorda, Follow this ad additioal works at: Part of the Applied Statistics Commos, Social ad Behavioral Scieces Commos, ad the Statistical Theory Commos Recommeded Citatio Yousef, Omar M. ad Al-Subh, Sameer A. (2014) "Estimatio of Gumbel Parameters uder Raked Set Samplig," Joural of Moder Applied Statistical Methods: Vol. 13 : Iss. 2, Article. DOI: /masm/ Available at: This Regular Article is brought to you for free ad ope access by the Ope Access Jourals at It has bee accepted for iclusio i Joural of Moder Applied Statistical Methods by a authorized editor of

5 YOUSEF & AL-SUBH After takig the derivatives with respect to α ad β equatig to 0, the MLEs are obtaied as ˆ ad ˆ log. (4) ˆ x x w z MLE, S i i MLE, S MLE, S i1 where x i 1 zi zi exp, z zi ad wi. ˆ mle, S i1 z MOMEs The mea ad variace for Gumbel distributio are give by ad. (5) 6 The momet estimators of the two parameters are ˆMOME, S 6 s ad ˆ ˆ MOME, S x MOME, S (6) where s, x are the sample stadard deviatio ad mea, respectively, ad γ = is Euler s costat. REGs x x Let y Fx ( ;, ) exp exp l y= exp x x l y= exp t=l -l y = t a x b 1 where a ad b. 435

6 ESTIMATION OF GUMBEL PARAMETERS The regressio estimators of the two parameters are ˆ 1, ad ˆ ˆ,, ˆ REG S REG S REG S t ax (7) aˆ x x t t i i i1 where aˆ. 2 i1 x i x Parameter Estimatio Uder RSS MLEs Let X(i:m), i = 1,, m ad = 1,, r deote the i th order statistics from the i th set of size m of the th cycle be the RSS data for X with sample size = mr. Usig (1) ad (2), the pdf of X(i:m) is give by (Arold et al.,1992) i-1 m-i 1 fi : m( X ) cf( X ) 1- F( X ) f ( X ), where c B( i, m -i 1), 1 X X f( X ) exp exp ad F X by X ( ) exp exp. r l(, ) f ( X ) m i1 1 r m i1 1 i: m i r m i i1 1 The the likelihood fuctio is give -1 m-i = c F( X ) 1- F( X ) f ( X ) mr -1 m-i c F( X ) 1- F( X ) f ( X ). 436

8 ESTIMATION OF GUMBEL PARAMETERS Table 1. The bias ad MSE of estimators of α Bias MSE (α, b) =mr ˆ mle,s ˆ moe,s ˆ reg,s ˆ mle,r ˆ moe,r ˆ mle,s ˆ moe,s ˆ reg,s ˆ mle,r ˆ moe,r (1,1) (1,2) (2,1) (0.5,1) (1,0.5) m=3, r= m=4, r= m=2, r= m=3, r= m=4, r= m=3, r= m=4, r= m=2, r= m=3, r= m=4, r= m=3, r= m=4, r= m=2, r= m=3, r= m=4, r= m=3, r= m=4, r= m=2, r= m=3, r= m=4, r= m=3, r= m=4, r= m=2, r= m=3, r= m=4, r=

9 YOUSEF & AL-SUBH Table 2. The efficiecy of estimators of α (α, b) =mr ˆ mle,s ˆ moe,s ˆ reg,s ˆ mle,r ˆ moe,r (1,1) (1,2) (2,1) (0.5,1) (1,0.5) m=3, r= m=4, r= m=2, r= m=3, r= m=4, r= m=3, r= m=4, r= m=2, r= m=3, r= m=4, r= m=3, r= m=4, r= m=2, r= m=3, r= m=4, r= m=3, r= m=4, r= m=2, r= m=3, r= m=4, r= m=3, r= m=4, r= m=2, r= m=3, r= m=4, r=

10 ESTIMATION OF GUMBEL PARAMETERS Table 3. The bias ad MSE of estimators of β Bias MSE (α, b) =mr ˆ mle,s ˆ moe,s ˆ reg,s ˆ mle,r ˆ moe,r ˆ mle,s ˆ moe,s ˆ reg,s ˆ mle,r ˆ moe,r (1,1) (1,2) (2,1) (0.5,1) (1,0.5) m=3, r= m=4, r= m=2, r= m=3, r= m=4, r= m=3, r= m=4, r= m=2, r= m=3, r= m=4, r= m=3, r= m=4, r= m=2, r= m=3, r= m=4, r= m=3, r= m=4, r= m=2, r= m=3, r= m=4, r= m=3, r= m=4, r= m=2, r= m=3, r= m=4, r=

11 YOUSEF & AL-SUBH Table 4. The efficiecy of estimators of β (α, b) =mr ˆ mle,s ˆ moe,s ˆ reg,s ˆ mle,r ˆ moe,r (1,1) (1,2) (2,1) (0.5,1) (1,0.5) m=3, r= m=4, r= m=2, r= m=3, r= m=4, r= m=3, r= m=4, r= m=2, r= m=3, r= m=4, r= m=3, r= m=4, r= m=2, r= m=3, r= m=4, r= m=3, r= m=4, r= m=2, r= m=3, r= m=4, r= m=3, r= m=4, r= m=2, r= m=3, r= m=4, r= From Tables 1 to 4, the followig coclusios are put forth i) I geeral, the bias is large for all estimators. Therefore, all the estimators are cosidered as biased estimators for α. ii) From Table 1, it ca be oticed that the REG uder SRS has the smallest bias as compared to the other estimators cosidered i most cases. I geeral, for all estimators of α uder RSS, the bias is less tha the case uder SRS. iii) For fixed α, the MSE of ˆ decreases as the sample size icreases. iv) It is oticed that from Table 2 that MLE uder RSS is the most efficiet tha the MLE based o SRS. 441

13 YOUSEF & AL-SUBH McItyre, G. A. (1952). A method of ubiased selective samplig usig raked sets. Australia Joural of Agricultural Research, 3, Mousa, M. A. M., Jahee, Z. F., & Ahmad, A. A. (2002). Bayesia Estimatio, Predictio ad Characterizatio for the Gumbel Model Based o Records. A Joural of Theoretical ad Applied Statistics, 36(1), Muttlak, H. A., & Al-Saleh, M. F Recet developmets i raked set samplig, Pakista Joural of Statistics, 16, Phie, H. N. (1987). A review of methods of parameter estimatio for the extreme value type-1 distributio. Joural of Hydrology, 90(3 4), Takahasi, K., & Wakitmoto, K. (1968). O ubiased estimates of the populatio mea based o the sample stratified by meas of orderig. Aals of the Istitute of Statistical Mathematics, 20,

### New Entropy Estimators with Smaller Root Mean Squared Error

Joural of Moder Applied Statistical Methods Volume 4 Issue 2 Article 0 --205 New Etropy Estimators with Smaller Root Mea Squared Error Amer Ibrahim Al-Omari Al al-bayt Uiversity, Mafraq, Jorda, alomari_amer@yahoo.com

### Estimating the Population Mean using Stratified Double Ranked Set Sample

Estimatig te Populatio Mea usig Stratified Double Raked Set Sample Mamoud Syam * Kamarulzama Ibraim Amer Ibraim Al-Omari Qatar Uiversity Foudatio Program Departmet of Mat ad Computer P.O.Box (7) Doa State

### G. R. Pasha Department of Statistics Bahauddin Zakariya University Multan, Pakistan

Deviatio of the Variaces of Classical Estimators ad Negative Iteger Momet Estimator from Miimum Variace Boud with Referece to Maxwell Distributio G. R. Pasha Departmet of Statistics Bahauddi Zakariya Uiversity

### Bootstrap Intervals of the Parameters of Lognormal Distribution Using Power Rule Model and Accelerated Life Tests

Joural of Moder Applied Statistical Methods Volume 5 Issue Article --5 Bootstrap Itervals of the Parameters of Logormal Distributio Usig Power Rule Model ad Accelerated Life Tests Mohammed Al-Ha Ebrahem

### Abstract. Ranked set sampling, auxiliary variable, variance.

Hacettepe Joural of Mathematics ad Statistics Volume (), 1 A class of Hartley-Ross type Ubiased estimators for Populatio Mea usig Raked Set Samplig Lakhkar Kha ad Javid Shabbir Abstract I this paper, we

### Maximum likelihood estimation from record-breaking data for the generalized Pareto distribution

METRON - Iteratioal Joural of Statistics 004, vol. LXII,. 3, pp. 377-389 NAGI S. ABD-EL-HAKIM KHALAF S. SULTAN Maximum likelihood estimatio from record-breakig data for the geeralized Pareto distributio

### The Sampling Distribution of the Maximum. Likelihood Estimators for the Parameters of. Beta-Binomial Distribution

Iteratioal Mathematical Forum, Vol. 8, 2013, o. 26, 1263-1277 HIKARI Ltd, www.m-hikari.com http://d.doi.org/10.12988/imf.2013.3475 The Samplig Distributio of the Maimum Likelihood Estimators for the Parameters

### Control Charts for Mean for Non-Normally Correlated Data

Joural of Moder Applied Statistical Methods Volume 16 Issue 1 Article 5 5-1-017 Cotrol Charts for Mea for No-Normally Correlated Data J. R. Sigh Vikram Uiversity, Ujjai, Idia Ab Latif Dar School of Studies

### Bayesian and E- Bayesian Method of Estimation of Parameter of Rayleigh Distribution- A Bayesian Approach under Linex Loss Function

Iteratioal Joural of Statistics ad Systems ISSN 973-2675 Volume 12, Number 4 (217), pp. 791-796 Research Idia Publicatios http://www.ripublicatio.com Bayesia ad E- Bayesia Method of Estimatio of Parameter

### Double Stage Shrinkage Estimator of Two Parameters. Generalized Exponential Distribution

Iteratioal Mathematical Forum, Vol., 3, o. 3, 3-53 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.9/imf.3.335 Double Stage Shrikage Estimator of Two Parameters Geeralized Expoetial Distributio Alaa M.

### MATH 320: Probability and Statistics 9. Estimation and Testing of Parameters. Readings: Pruim, Chapter 4

MATH 30: Probability ad Statistics 9. Estimatio ad Testig of Parameters Estimatio ad Testig of Parameters We have bee dealig situatios i which we have full kowledge of the distributio of a radom variable.

### Statistical Inference (Chapter 10) Statistical inference = learn about a population based on the information provided by a sample.

Statistical Iferece (Chapter 10) Statistical iferece = lear about a populatio based o the iformatio provided by a sample. Populatio: The set of all values of a radom variable X of iterest. Characterized

### Goodness-Of-Fit For The Generalized Exponential Distribution. Abstract

Goodess-Of-Fit For The Geeralized Expoetial Distributio By Amal S. Hassa stitute of Statistical Studies & Research Cairo Uiversity Abstract Recetly a ew distributio called geeralized expoetial or expoetiated

### Bayesian inference for Parameter and Reliability function of Inverse Rayleigh Distribution Under Modified Squared Error Loss Function

Australia Joural of Basic ad Applied Scieces, (6) November 26, Pages: 24-248 AUSTRALIAN JOURNAL OF BASIC AND APPLIED SCIENCES ISSN:99-878 EISSN: 239-844 Joural home page: www.ajbasweb.com Bayesia iferece

### MOMENT-METHOD ESTIMATION BASED ON CENSORED SAMPLE

Vol. 8 o. Joural of Systems Sciece ad Complexity Apr., 5 MOMET-METHOD ESTIMATIO BASED O CESORED SAMPLE I Zhogxi Departmet of Mathematics, East Chia Uiversity of Sciece ad Techology, Shaghai 37, Chia. Email:

### Lecture Note 8 Point Estimators and Point Estimation Methods. MIT Spring 2006 Herman Bennett

Lecture Note 8 Poit Estimators ad Poit Estimatio Methods MIT 14.30 Sprig 2006 Herma Beett Give a parameter with ukow value, the goal of poit estimatio is to use a sample to compute a umber that represets

### Mathematical Modeling of Optimum 3 Step Stress Accelerated Life Testing for Generalized Pareto Distribution

America Joural of Theoretical ad Applied Statistics 05; 4(: 6-69 Published olie May 8, 05 (http://www.sciecepublishiggroup.com/j/ajtas doi: 0.648/j.ajtas.05040. ISSN: 6-8999 (Prit; ISSN: 6-9006 (Olie Mathematical

### Topic 9: Sampling Distributions of Estimators

Topic 9: Samplig Distributios of Estimators Course 003, 2016 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

### A Generalized Class of Estimators for Finite Population Variance in Presence of Measurement Errors

Joural of Moder Applied Statistical Methods Volume Issue Article 3 --03 A Geeralized Class of Estimators for Fiite Populatio Variace i Presece of Measuremet Errors Praas Sharma Baaras Hidu Uiversit, Varaasi,

### Topic 9: Sampling Distributions of Estimators

Topic 9: Samplig Distributios of Estimators Course 003, 2018 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

### Topic 9: Sampling Distributions of Estimators

Topic 9: Samplig Distributios of Estimators Course 003, 2018 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

### Confidence interval for the two-parameter exponentiated Gumbel distribution based on record values

Iteratioal Joural of Applied Operatioal Research Vol. 4 No. 1 pp. 61-68 Witer 2014 Joural homepage: www.ijorlu.ir Cofidece iterval for the two-parameter expoetiated Gumbel distributio based o record values

### Random Variables, Sampling and Estimation

Chapter 1 Radom Variables, Samplig ad Estimatio 1.1 Itroductio This chapter will cover the most importat basic statistical theory you eed i order to uderstad the ecoometric material that will be comig

### ESTIMATION AND PREDICTION BASED ON K-RECORD VALUES FROM NORMAL DISTRIBUTION

STATISTICA, ao LXXIII,. 4, 013 ESTIMATION AND PREDICTION BASED ON K-RECORD VALUES FROM NORMAL DISTRIBUTION Maoj Chacko Departmet of Statistics, Uiversity of Kerala, Trivadrum- 695581, Kerala, Idia M. Shy

### Properties and Hypothesis Testing

Chapter 3 Properties ad Hypothesis Testig 3.1 Types of data The regressio techiques developed i previous chapters ca be applied to three differet kids of data. 1. Cross-sectioal data. 2. Time series data.

### ANOTHER WEIGHTED WEIBULL DISTRIBUTION FROM AZZALINI S FAMILY

ANOTHER WEIGHTED WEIBULL DISTRIBUTION FROM AZZALINI S FAMILY Sulema Nasiru, MSc. Departmet of Statistics, Faculty of Mathematical Scieces, Uiversity for Developmet Studies, Navrogo, Upper East Regio, Ghaa,

### Chain ratio-to-regression estimators in two-phase sampling in the presence of non-response

ProbStat Forum, Volume 08, July 015, Pages 95 10 ISS 0974-335 ProbStat Forum is a e-joural. For details please visit www.probstat.org.i Chai ratio-to-regressio estimators i two-phase samplig i the presece

### Improved Class of Ratio -Cum- Product Estimators of Finite Population Mean in two Phase Sampling

Global Joural of Sciece Frotier Research: F Mathematics ad Decisio Scieces Volume 4 Issue 2 Versio.0 Year 204 Type : Double Blid Peer Reviewed Iteratioal Research Joural Publisher: Global Jourals Ic. (USA

### A Note on Box-Cox Quantile Regression Estimation of the Parameters of the Generalized Pareto Distribution

A Note o Box-Cox Quatile Regressio Estimatio of the Parameters of the Geeralized Pareto Distributio JM va Zyl Abstract: Makig use of the quatile equatio, Box-Cox regressio ad Laplace distributed disturbaces,

### Chapter 6 Sampling Distributions

Chapter 6 Samplig Distributios 1 I most experimets, we have more tha oe measuremet for ay give variable, each measuremet beig associated with oe radomly selected a member of a populatio. Hece we eed to

### EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA, 016 MODULE : Statistical Iferece Time allowed: Three hours Cadidates should aswer FIVE questios. All questios carry equal marks. The umber

### Estimation of Population Mean Using Co-Efficient of Variation and Median of an Auxiliary Variable

Iteratioal Joural of Probability ad Statistics 01, 1(4: 111-118 DOI: 10.593/j.ijps.010104.04 Estimatio of Populatio Mea Usig Co-Efficiet of Variatio ad Media of a Auxiliary Variable J. Subramai *, G. Kumarapadiya

### Comparison of Minimum Initial Capital with Investment and Non-investment Discrete Time Surplus Processes

The 22 d Aual Meetig i Mathematics (AMM 207) Departmet of Mathematics, Faculty of Sciece Chiag Mai Uiversity, Chiag Mai, Thailad Compariso of Miimum Iitial Capital with Ivestmet ad -ivestmet Discrete Time

### Approximate Confidence Interval for the Reciprocal of a Normal Mean with a Known Coefficient of Variation

Metodološki zvezki, Vol. 13, No., 016, 117-130 Approximate Cofidece Iterval for the Reciprocal of a Normal Mea with a Kow Coefficiet of Variatio Wararit Paichkitkosolkul 1 Abstract A approximate cofidece

### A General Family of Estimators for Estimating Population Variance Using Known Value of Some Population Parameter(s)

Rajesh Sigh, Pakaj Chauha, Nirmala Sawa School of Statistics, DAVV, Idore (M.P.), Idia Floreti Smaradache Uiversity of New Meico, USA A Geeral Family of Estimators for Estimatig Populatio Variace Usig

### Linear Regression Models

Liear Regressio Models Dr. Joh Mellor-Crummey Departmet of Computer Sciece Rice Uiversity johmc@cs.rice.edu COMP 528 Lecture 9 15 February 2005 Goals for Today Uderstad how to Use scatter diagrams to ispect

### Estimation of the Population Mean in Presence of Non-Response

Commuicatios of the Korea Statistical Society 0, Vol. 8, No. 4, 537 548 DOI: 0.535/CKSS.0.8.4.537 Estimatio of the Populatio Mea i Presece of No-Respose Suil Kumar,a, Sadeep Bhougal b a Departmet of Statistics,

### Confidence Interval for Standard Deviation of Normal Distribution with Known Coefficients of Variation

Cofidece Iterval for tadard Deviatio of Normal Distributio with Kow Coefficiets of Variatio uparat Niwitpog Departmet of Applied tatistics, Faculty of Applied ciece Kig Mogkut s Uiversity of Techology

### 1 Inferential Methods for Correlation and Regression Analysis

1 Iferetial Methods for Correlatio ad Regressio Aalysis I the chapter o Correlatio ad Regressio Aalysis tools for describig bivariate cotiuous data were itroduced. The sample Pearso Correlatio Coefficiet

### Minimax Estimation of the Parameter of Maxwell Distribution Under Different Loss Functions

America Joural of heoretical ad Applied Statistics 6; 5(4): -7 http://www.sciecepublishiggroup.com/j/ajtas doi:.648/j.ajtas.654.6 ISSN: 6-8999 (Prit); ISSN: 6-96 (Olie) Miimax Estimatio of the Parameter

### EECS564 Estimation, Filtering, and Detection Hwk 2 Solns. Winter p θ (z) = (2θz + 1 θ), 0 z 1

EECS564 Estimatio, Filterig, ad Detectio Hwk 2 Sols. Witer 25 4. Let Z be a sigle observatio havig desity fuctio where. p (z) = (2z + ), z (a) Assumig that is a oradom parameter, fid ad plot the maximum

### Goodness-Of-Fit For The Generalized Exponential Distribution. Abstract

Goodess-Of-Fit For The Geeralized Expoetial Distributio By Amal S. Hassa stitute of Statistical Studies & Research Cairo Uiversity Abstract Recetly a ew distributio called geeralized expoetial or expoetiated

### A new distribution-free quantile estimator

Biometrika (1982), 69, 3, pp. 635-40 Prited i Great Britai 635 A ew distributio-free quatile estimator BY FRANK E. HARRELL Cliical Biostatistics, Duke Uiversity Medical Ceter, Durham, North Carolia, U.S.A.

### Confidence Intervals For P(X less than Y) In The Exponential Case With Common Location Parameter

Joural of Moder Applied Statistical Methods Volume Issue Article 7 --3 Cofidece Itervals For P(X less tha Y I he Expoetial Case With Commo Locatio Parameter Ayma Baklizi Yarmouk Uiversity, Irbid, Jorda,

### Lecture 2: Monte Carlo Simulation

STAT/Q SCI 43: Itroductio to Resamplig ethods Sprig 27 Istructor: Ye-Chi Che Lecture 2: ote Carlo Simulatio 2 ote Carlo Itegratio Assume we wat to evaluate the followig itegratio: e x3 dx What ca we do?

### 1.010 Uncertainty in Engineering Fall 2008

MIT OpeCourseWare http://ocw.mit.edu.00 Ucertaity i Egieerig Fall 2008 For iformatio about citig these materials or our Terms of Use, visit: http://ocw.mit.edu.terms. .00 - Brief Notes # 9 Poit ad Iterval

### Lecture 3. Properties of Summary Statistics: Sampling Distribution

Lecture 3 Properties of Summary Statistics: Samplig Distributio Mai Theme How ca we use math to justify that our umerical summaries from the sample are good summaries of the populatio? Lecture Summary

### R. van Zyl 1, A.J. van der Merwe 2. Quintiles International, University of the Free State

Bayesia Cotrol Charts for the Two-parameter Expoetial Distributio if the Locatio Parameter Ca Take o Ay Value Betwee Mius Iity ad Plus Iity R. va Zyl, A.J. va der Merwe 2 Quitiles Iteratioal, ruaavz@gmail.com

### Resampling Methods. X (1/2), i.e., Pr (X i m) = 1/2. We order the data: X (1) X (2) X (n). Define the sample median: ( n.

Jauary 1, 2019 Resamplig Methods Motivatio We have so may estimators with the property θ θ d N 0, σ 2 We ca also write θ a N θ, σ 2 /, where a meas approximately distributed as Oce we have a cosistet estimator

### A statistical method to determine sample size to estimate characteristic value of soil parameters

A statistical method to determie sample size to estimate characteristic value of soil parameters Y. Hojo, B. Setiawa 2 ad M. Suzuki 3 Abstract Sample size is a importat factor to be cosidered i determiig

### Using the IML Procedure to Examine the Efficacy of a New Control Charting Technique

Paper 2894-2018 Usig the IML Procedure to Examie the Efficacy of a New Cotrol Chartig Techique Austi Brow, M.S., Uiversity of Norther Colorado; Bryce Whitehead, M.S., Uiversity of Norther Colorado ABSTRACT

### International Journal of Mathematical Archive-5(7), 2014, Available online through ISSN

Iteratioal Joural of Mathematical Archive-5(7), 214, 11-117 Available olie through www.ijma.ifo ISSN 2229 546 USING SQUARED-LOG ERROR LOSS FUNCTION TO ESTIMATE THE SHAPE PARAMETER AND THE RELIABILITY FUNCTION

### Investigating the Significance of a Correlation Coefficient using Jackknife Estimates

Iteratioal Joural of Scieces: Basic ad Applied Research (IJSBAR) ISSN 2307-4531 (Prit & Olie) http://gssrr.org/idex.php?joural=jouralofbasicadapplied ---------------------------------------------------------------------------------------------------------------------------

### Element sampling: Part 2

Chapter 4 Elemet samplig: Part 2 4.1 Itroductio We ow cosider uequal probability samplig desigs which is very popular i practice. I the uequal probability samplig, we ca improve the efficiecy of the resultig

### Lecture 33: Bootstrap

Lecture 33: ootstrap Motivatio To evaluate ad compare differet estimators, we eed cosistet estimators of variaces or asymptotic variaces of estimators. This is also importat for hypothesis testig ad cofidece

### 7-1. Chapter 4. Part I. Sampling Distributions and Confidence Intervals

7-1 Chapter 4 Part I. Samplig Distributios ad Cofidece Itervals 1 7- Sectio 1. Samplig Distributio 7-3 Usig Statistics Statistical Iferece: Predict ad forecast values of populatio parameters... Test hypotheses

### Expectation and Variance of a random variable

Chapter 11 Expectatio ad Variace of a radom variable The aim of this lecture is to defie ad itroduce mathematical Expectatio ad variace of a fuctio of discrete & cotiuous radom variables ad the distributio

### Varanasi , India. Corresponding author

A Geeral Family of Estimators for Estimatig Populatio Mea i Systematic Samplig Usig Auxiliary Iformatio i the Presece of Missig Observatios Maoj K. Chaudhary, Sachi Malik, Jayat Sigh ad Rajesh Sigh Departmet

### Estimation for Complete Data

Estimatio for Complete Data complete data: there is o loss of iformatio durig study. complete idividual complete data= grouped data A complete idividual data is the oe i which the complete iformatio of

### Computing Confidence Intervals for Sample Data

Computig Cofidece Itervals for Sample Data Topics Use of Statistics Sources of errors Accuracy, precisio, resolutio A mathematical model of errors Cofidece itervals For meas For variaces For proportios

### Parameter, Statistic and Random Samples

Parameter, Statistic ad Radom Samples A parameter is a umber that describes the populatio. It is a fixed umber, but i practice we do ot kow its value. A statistic is a fuctio of the sample data, i.e.,

### MATH/STAT 352: Lecture 15

MATH/STAT 352: Lecture 15 Sectios 5.2 ad 5.3. Large sample CI for a proportio ad small sample CI for a mea. 1 5.2: Cofidece Iterval for a Proportio Estimatig proportio of successes i a biomial experimet

### Power Comparison of Some Goodness-of-fit Tests

Florida Iteratioal Uiversity FIU Digital Commos FIU Electroic Theses ad Dissertatios Uiversity Graduate School 7-6-2016 Power Compariso of Some Goodess-of-fit Tests Tiayi Liu tliu019@fiu.edu DOI: 10.25148/etd.FIDC000750

### Modified Ratio Estimators Using Known Median and Co-Efficent of Kurtosis

America Joural of Mathematics ad Statistics 01, (4): 95-100 DOI: 10.593/j.ajms.01004.05 Modified Ratio s Usig Kow Media ad Co-Efficet of Kurtosis J.Subramai *, G.Kumarapadiya Departmet of Statistics, Podicherry

### The variance of a sum of independent variables is the sum of their variances, since covariances are zero. Therefore. V (xi )= n n 2 σ2 = σ2.

SAMPLE STATISTICS A radom sample x 1,x,,x from a distributio f(x) is a set of idepedetly ad idetically variables with x i f(x) for all i Their joit pdf is f(x 1,x,,x )=f(x 1 )f(x ) f(x )= f(x i ) The sample

### A proposed discrete distribution for the statistical modeling of

It. Statistical Ist.: Proc. 58th World Statistical Cogress, 0, Dubli (Sessio CPS047) p.5059 A proposed discrete distributio for the statistical modelig of Likert data Kidd, Marti Cetre for Statistical

### Akaike Information Criterion and Fourth-Order Kernel Method for Line Transect Sampling (LTS)

Appl. Math. If. Sci. 10, No. 1, 267-271 (2016 267 Applied Mathematics & Iformatio Scieces A Iteratioal Joural http://dx.doi.org/10.18576/amis/100127 Akaike Iformatio Criterio ad Fourth-Order Kerel Method

### Interval Estimation (Confidence Interval = C.I.): An interval estimate of some population parameter is an interval of the form (, ),

Cofidece Iterval Estimatio Problems Suppose we have a populatio with some ukow parameter(s). Example: Normal(,) ad are parameters. We eed to draw coclusios (make ifereces) about the ukow parameters. We

### Econ 325 Notes on Point Estimator and Confidence Interval 1 By Hiro Kasahara

Poit Estimator Eco 325 Notes o Poit Estimator ad Cofidece Iterval 1 By Hiro Kasahara Parameter, Estimator, ad Estimate The ormal probability desity fuctio is fully characterized by two costats: populatio

### Access to the published version may require journal subscription. Published with permission from: Elsevier.

This is a author produced versio of a paper published i Statistics ad Probability Letters. This paper has bee peer-reviewed, it does ot iclude the joural pagiatio. Citatio for the published paper: Forkma,

### A NEW METHOD FOR CONSTRUCTING APPROXIMATE CONFIDENCE INTERVALS FOR M-ESTU1ATES. Dennis D. Boos

.- A NEW METHOD FOR CONSTRUCTING APPROXIMATE CONFIDENCE INTERVALS FOR M-ESTU1ATES by Deis D. Boos Departmet of Statistics North Carolia State Uiversity Istitute of Statistics Mimeo Series #1198 September,

### It should be unbiased, or approximately unbiased. Variance of the variance estimator should be small. That is, the variance estimator is stable.

Chapter 10 Variace Estimatio 10.1 Itroductio Variace estimatio is a importat practical problem i survey samplig. Variace estimates are used i two purposes. Oe is the aalytic purpose such as costructig

### ECONOMETRIC THEORY. MODULE XIII Lecture - 34 Asymptotic Theory and Stochastic Regressors

ECONOMETRIC THEORY MODULE XIII Lecture - 34 Asymptotic Theory ad Stochastic Regressors Dr. Shalabh Departmet of Mathematics ad Statistics Idia Istitute of Techology Kapur Asymptotic theory The asymptotic

### SYSTEMATIC SAMPLING FOR NON-LINEAR TREND IN MILK YIELD DATA

Joural of Reliability ad Statistical Studies; ISS (Prit): 0974-804, (Olie):9-5666 Vol. 7, Issue (04): 57-68 SYSTEMATIC SAMPLIG FOR O-LIEAR TRED I MILK YIELD DATA Tauj Kumar Padey ad Viod Kumar Departmet

### Department of Mathematics

Departmet of Mathematics Ma 3/103 KC Border Itroductio to Probability ad Statistics Witer 2017 Lecture 19: Estimatio II Relevat textbook passages: Larse Marx [1]: Sectios 5.2 5.7 19.1 The method of momets

### ECE 8527: Introduction to Machine Learning and Pattern Recognition Midterm # 1. Vaishali Amin Fall, 2015

ECE 8527: Itroductio to Machie Learig ad Patter Recogitio Midterm # 1 Vaishali Ami Fall, 2015 tue39624@temple.edu Problem No. 1: Cosider a two-class discrete distributio problem: ω 1 :{[0,0], [2,0], [2,2],

### ECE 901 Lecture 12: Complexity Regularization and the Squared Loss

ECE 90 Lecture : Complexity Regularizatio ad the Squared Loss R. Nowak 5/7/009 I the previous lectures we made use of the Cheroff/Hoeffdig bouds for our aalysis of classifier errors. Hoeffdig s iequality

### AClassofRegressionEstimatorwithCumDualProductEstimatorAsIntercept

Global Joural of Sciece Frotier Research: F Mathematics ad Decisio Scieces Volume 15 Issue 3 Versio 1.0 Year 2015 Type : Double Blid Peer Reviewed Iteratioal Research Joural Publisher: Global Jourals Ic.

### MBACATÓLICA. Quantitative Methods. Faculdade de Ciências Económicas e Empresariais UNIVERSIDADE CATÓLICA PORTUGUESA 9. SAMPLING DISTRIBUTIONS

MBACATÓLICA Quatitative Methods Miguel Gouveia Mauel Leite Moteiro Faculdade de Ciêcias Ecoómicas e Empresariais UNIVERSIDADE CATÓLICA PORTUGUESA 9. SAMPLING DISTRIBUTIONS MBACatólica 006/07 Métodos Quatitativos

### Section 14. Simple linear regression.

Sectio 14 Simple liear regressio. Let us look at the cigarette dataset from [1] (available to dowload from joural s website) ad []. The cigarette dataset cotais measuremets of tar, icotie, weight ad carbo

### Modeling and Estimation of a Bivariate Pareto Distribution using the Principle of Maximum Entropy

Sri Laka Joural of Applied Statistics, Vol (5-3) Modelig ad Estimatio of a Bivariate Pareto Distributio usig the Priciple of Maximum Etropy Jagathath Krisha K.M. * Ecoomics Research Divisio, CSIR-Cetral

### Direction: This test is worth 150 points. You are required to complete this test within 55 minutes.

Term Test 3 (Part A) November 1, 004 Name Math 6 Studet Number Directio: This test is worth 10 poits. You are required to complete this test withi miutes. I order to receive full credit, aswer each problem

### Modied moment estimation for the two-parameter Birnbaum Saunders distribution

Computatioal Statistics & Data Aalysis 43 (23) 283 298 www.elsevier.com/locate/csda Modied momet estimatio for the two-parameter Birbaum Sauders distributio H.K.T. Ng a, D. Kudu b, N. Balakrisha a; a Departmet

### Extreme Value Charts and Analysis of Means (ANOM) Based on the Log Logistic Distribution

Joural of Moder Applied Statistical Methods Volume 11 Issue Article 0 11-1-01 Extreme Value Charts ad Aalysis of Meas (ANOM) Based o the Log Logistic istributio B. Sriivasa Rao R.V.R & J.C. College of

### Review Questions, Chapters 8, 9. f(y) = 0, elsewhere. F (y) = f Y(1) = n ( e y/θ) n 1 1 θ e y/θ = n θ e yn

Stat 366 Lab 2 Solutios (September 2, 2006) page TA: Yury Petracheko, CAB 484, yuryp@ualberta.ca, http://www.ualberta.ca/ yuryp/ Review Questios, Chapters 8, 9 8.5 Suppose that Y, Y 2,..., Y deote a radom

### Asymptotics. Hypothesis Testing UMP. Asymptotic Tests and p-values

of the secod half Biostatistics 6 - Statistical Iferece Lecture 6 Fial Exam & Practice Problems for the Fial Hyu Mi Kag Apil 3rd, 3 Hyu Mi Kag Biostatistics 6 - Lecture 6 Apil 3rd, 3 / 3 Rao-Blackwell

### POWER COMPARISON OF EMPIRICAL LIKELIHOOD RATIO TESTS: SMALL SAMPLE PROPERTIES THROUGH MONTE CARLO STUDIES*

Kobe Uiversity Ecoomic Review 50(2004) 3 POWER COMPARISON OF EMPIRICAL LIKELIHOOD RATIO TESTS: SMALL SAMPLE PROPERTIES THROUGH MONTE CARLO STUDIES* By HISASHI TANIZAKI There are various kids of oparametric

### Lecture 7: Properties of Random Samples

Lecture 7: Properties of Radom Samples 1 Cotiued From Last Class Theorem 1.1. Let X 1, X,...X be a radom sample from a populatio with mea µ ad variace σ

### STATISTICAL INFERENCE

STATISTICAL INFERENCE POPULATION AND SAMPLE Populatio = all elemets of iterest Characterized by a distributio F with some parameter θ Sample = the data X 1,..., X, selected subset of the populatio = sample

### Modified Lilliefors Test

Joural of Moder Applied Statistical Methods Volume 14 Issue 1 Article 9 5-1-2015 Modified Lilliefors Test Achut Adhikari Uiversity of Norther Colorado, adhi2939@gmail.com Jay Schaffer Uiversity of Norther

### (7 One- and Two-Sample Estimation Problem )

34 Stat Lecture Notes (7 Oe- ad Two-Sample Estimatio Problem ) ( Book*: Chapter 8,pg65) Probability& Statistics for Egieers & Scietists By Walpole, Myers, Myers, Ye Estimatio 1 ) ( ˆ S P i i Poit estimate:

### The standard deviation of the mean

Physics 6C Fall 20 The stadard deviatio of the mea These otes provide some clarificatio o the distictio betwee the stadard deviatio ad the stadard deviatio of the mea.. The sample mea ad variace Cosider

### The new class of Kummer beta generalized distributions

The ew class of Kummer beta geeralized distributios Rodrigo Rossetto Pescim 12 Clarice Garcia Borges Demétrio 1 Gauss Moutiho Cordeiro 3 Saralees Nadarajah 4 Edwi Moisés Marcos Ortega 1 1 Itroductio Geeralized

### Unbiased Estimation. February 7-12, 2008

Ubiased Estimatio February 7-2, 2008 We begi with a sample X = (X,..., X ) of radom variables chose accordig to oe of a family of probabilities P θ where θ is elemet from the parameter space Θ. For radom

### STAC51: Categorical data Analysis

STAC51: Categorical data Aalysis Mahida Samarakoo Jauary 28, 2016 Mahida Samarakoo STAC51: Categorical data Aalysis 1 / 35 Table of cotets Iferece for Proportios 1 Iferece for Proportios Mahida Samarakoo

### Output Analysis (2, Chapters 10 &11 Law)

B. Maddah ENMG 6 Simulatio Output Aalysis (, Chapters 10 &11 Law) Comparig alterative system cofiguratio Sice the output of a simulatio is radom, the comparig differet systems via simulatio should be doe

### Control chart for number of customers in the system of M [X] / M / 1 Queueing system

Iteratioal Joural of Iovative Research i Sciece, Egieerig ad Techology (A ISO 3297: 07 Certified Orgaiatio) Cotrol chart for umber of customers i the system of M [X] / M / Queueig system T.Poogodi, Dr.

### Record Values from T-X Family of. Pareto-Exponential Distribution with. Properties and Simulations

Applied Mathematical Scieces, Vol. 3, 209, o., 33-44 HIKARI Ltd, www.m-hikari.com https://doi.org/0.2988/ams.209.879 Record Values from T-X Family of Pareto-Epoetial Distributio with Properties ad Simulatios