The Interplay between l-max, l-min, p-max and p-min Stable Distributions

Size: px
Start display at page:

Download "The Interplay between l-max, l-min, p-max and p-min Stable Distributions"

Transcription

1 DOI: 0.545/mjis Th Itrplay btw lma lmi pma ad pmi Stabl Distributios S Ravi ad TS Mavitha Dpartmt of Studis i Statistics Uivrsity of Mysor Maasagagotri Mysuru Idia. ravi@statistics.uimysor.ac.i Rcivd: July 0 05 Rvisd: Sptmbr 9 05 Accptd: Sptmbr 7 05 Publishd oli: Sptmbr Th Author(s 05. This articl is publishd with op accss at Abstract: Etrm valu laws ar limit laws of liarly ormalizd partial maima of idpdt ad idtically distributd (iid radom variabls (rvs also calld as lma stabl laws. Similar to lma stabl laws w hav th lmi stabl laws which ar th limit laws of ctrd ad scald partial miima pma ad pmi stabl laws which ar rspctivly th limit laws of ormalizd maima ad miima udr powr ormalizatio. I this articl w look at trasformatios btw lma lmi pma ad pmi stabl distributios ad thir domais. Th trasformatios i this articl ar usful i simulatio studis. Mathmatics Subjct Classificatio: Primary 60G70 scodary 60E05. Kywords ad Phrass: lma stabl laws lmi stabl laws pma stabl laws pmi stabl laws domais of attractio.. Itroductio Etrm valu thory is a classical topic i probability thory ad mathmatical statistics. Th fild of trms has attractd th atttio of girs scitists actuaris ad statisticias for may yars. Th fudamtal rsult i trm valu thory is th form of limit distributios for ctrd ad scald maima/miima. Lt b a squc of idpdt idtically distributd (iid radom variabls (rvs with distributio fuctio (df F ad M = ma { }. Suppos that thr ists ormig costats a > 0 ad b R R th ral li such that lim P M b = lim F ( a + b = G( CG ( th st of a Mathmatical Joural of Itrdiscipliary Scics Vol. 4 No. Sptmbr 05 pp

2 Ravi S Mavitha TS all cotiuity poits of a odgrat df G. W th say that th df F blogs to th lma domai of attractio of G ad dot this by F Dl ma ( G. Th limit dfs G ar th wll kow trm valu laws ad G ca b oly o of thr typs of trm valu dfs amly (s for ampl [5]: { } { } < 0 { }} th Frècht law Φ ( = p 0; th Wibull law Ψ ( = p ( ; th Gumbl law Λ( = p p( R whr > 0 is a paramtr ad dfs ar giv hr ad lswhr i this articl oly for valus for which thy blog to (0. Th trm valu dfs G satisfy th stability proprty G ( a+ b = G ( R for costats a > 0 b R ad wr calld lma stabl laws i [7] l stadig for liar maig that ormalizatio is liar. Hr two dfs F ad G ar said to b of th sam typ if F ( = GA ( + B for all for costats A > 0 ad B R. W say that F blogs to th lmi domai of attractio of th odgrat df L udr liar ormalizatio ad dot it by F Dl mi ( L if thr ist ormig costats c > 0 ad d R such that limp m d lim( F( c d L( c = + = C ( L whr m mi Th df L is calld lmi stabl df ad ca b oly o of th followig thr typs of dfs (s for ampl [5]: = { } { } < { } { } gativ Frècht law L ( = p ( 0; gativ Wibull law L ( = p 0 ; gativ Gumbl law L ( = p R. 3 Thr ar svral rfrcs for trm valu distributios udr liar ormalizatio. W am a fw [ 36 9]. Similar to lma ad lmi stabl laws w hav th pma ad pmi stabl laws which ar rspctivly th limit laws of ormalizd partial maima ad partial miima udr powr ormalizatio. A oliar ormalizatio calld th powr ormalizatio was itroducd i [8]. A df F is said to blog to th pma domai of attractio of a odgrat df H udr powr ormalizatio dotd by F Dp ma ( H if thr ist ormig costats > 0 ad > 0 such that lim P M ( M = lim F sig ( sig( = H( CH ( sig ( = 0 or 50

3 accordig as < 0 = 0or > 0 rspctivly. Th df H is calld pma stabl df (s for ampl [7]. It is kow that th pma stabl dfs ca b a ptyp of oly o of th si dfs amly logfrècht law H ( = p {(log } ; logwibull law H ( = p { ( log } 0 < ; ivrs logfrècht law H3 ( = p { ( log( } < 0; ivrs logwibull law H4 ( = p {(log( } <; stadard Frècht law Φ( = Φ( R; stadard Wibull law Ψ( = Ψ ( R whr > 0 is a paramtr. Hr two dfs F ad G ar said to b of th sam ptyp if F( = GA ( B sig( for all for costats A> 0 B> 0. W say that F blogs to th pmi domai of attractio of a odgrat df K udr powr ormalizatio ad dot it by F Dp mi ( K if thr ist ormig costats γ > 0 ad δ > 0 such that lim P m δ sig( = lim F( γ δ { sig( } = K( C(K. γ Th pmi stabl dfs ca b ptyps of th followig si dfs: gativ logfrècht law K ( = p log( ; gativ logwibull law K ( = p log( 0; ivrs gativ logfrècht law K3 ( = p log 0 ; ivrs gativ logwibull law K4 ( p log ; { ( } < { ( } < { ( } < { } = ( stadard gativ Frècht law K ( = L ( R; 5 stadard potial law K ( = L ( R. 6 I this articl w look at trasformatios btw lma lmi pma ad pmi stabl distributios ad thir domais. Eight familis of trmal stabl laws ar cosidrd for study. Th mappig that maps a rv withi o family to a rv withi aothr family is costructd for all pairs of familis. Ad th trasformatios that map a ma/mi stabl rv to a ma/mi stabl rv of a diffrt family ar w. Sctio 3 cotais th rlatioship amog lma lmi pma ad pmi stabl distributios. I Sctio 4 ampls for dfs i th domai of attractio of pma ar giv. For asy udrstadig th itrrlatios ar tabulatd i Tabls through 7. W dot ma( ab = a b for a R b R. Th Itrplay btw lma lmi pma ad pmi Stabl Distributios 5

4 Ravi S Mavitha TS. Itrplay btw lma lmi pma ad pmi stabl distributios I this sctio th rlatioship amog domais of attractio of lma lmi pma ad pmi stabl distributios ar giv as thorms ad th rsults ar tabulatd for asy udrstadig i Tabl. Lt rvs ad Y hav rspctiv dfs F ad G ad a > 0 b a costat clos to th right trmity of th corrspodig df whrvr applicabl. Thorm. (i F Dl ma ( Φ Y = G Dp ma ( H ad Y G D ( H = log( a Y F D (. pma a lma Φa (ii F Dl ma ( Ψ Y = G Dp ma ( H ad Y G D ( H = log( a Y F D (. pma a lma Ψ a (iii F Dl ma ( Λ Y = G Dp ma ( Φ ad Y G D ( Φ = log( a Y F D ( Λ. pma lma (iv F Dl mi ( L Y = G Dp mi ( K3 ad Y G D ( K = log( a Y F D ( L. pmi 3 a lmi a (v F D ( L Y = G D ( K ad lmi pmi 4 Y G D ( K = log( a Y F D ( L. pmi 4 a lmi a (vi F Dl mi ( L3 Y = G Dp mi ( K6 ad Y G D ( K = log( a Y F D ( L. pmi 6 lmi 3. Rmark: Statmts (i (ii ad (iii i th abov thorm ca b provd as i []. W prov (iv ad proofs of (v ad (vi follow o similar lis ad ar omittd. Proof of (iv. Lt F Dl mi ( L with ormig costats c > 0 ad d R. Th df of Y = is giv by G PY P d ( = ( = ( = F(log 0. So with γ = ad δ = c δ δ G γ sig( F(log( γ ( Fc ( log( d ( ( = ( = + δ ( γ = = > 0. Thus lim ( G sig( L (log( K3 ( provig that G Dp mi ( K3. Lt Y G Dp mi ( K3 with ormig costats γ > 0 ad δ > 0. Th = log( a Y has df F ( = P ( = P(log( a Y = G( loga< so that with c = δ c + d δ ad d = log γ ( F( c+ d = ( G( = ( G( γ (. 5

5 Thuslim ( Fc ( + d = K3 ( = L ( provig that F D ( L l mi Thorm.. (i F Dl ma ( Φ Y = G Dp mi ( K. Th Itrplay btw lma lmi pma ad pmi Stabl Distributios (ii F Dl ma ( Ψ Y = G D mi ( K. (iii F Dl ma ( Λ Y = G Dp mi ( K 5. (iv F D ( L Y = G D ( H. lmi pma 3 (v F D ( L Y = G D ( H. lmi pma 4 (vi F D ( L Y = G D (. lmi 3 pma Ψ Rmark: W prov (i ad proofs of (ii ad (iii follow o similar lis ad ar omittd. Ad (iv (v ad (vi ca b provd as i [] ad th dtails ar omittd. Proof of (i: Lt F D lma ( Φ with ormig costats a > 0 ad b R. Th df of Y = is giv by a G ( = PY ( = P( = F(log( < 0. So with γ = ad δ = b lim δ G γ = F ( δ sig( log( γ ( F δ = ( a log( + b < 0. Th lim G γ sig( p ( ( = (log( = K ( < provig that G D ( K Φ. p mi Lt Y G Dp mi ( K with ormig costats γ > 0 ad δ > 0. Th df of = log( Y is giv by F ( = P ( = P(log( Y = G( R so that with a = δ ad a + b δ b = log γ F ( a+ b = G( G( γ (. ( = Φ ( Hc lim F ( a+ b = K ( = ( > 0 provig that F ma ( Φ. D l 53

6 Ravi S Mavitha TS Thorm.3. (i F Dl ma( Φ Y = G Dp mi ( K 3. ad Y G D ( K =log( a Y F D ( Φ. pmi 3 lma (ii F Dl ma( Ψ Y = G Dp mi ( K 4. ad Y G D ( K =log( a Y F D ( Ψ. pmi 4 lma (iii F D ( Λ Y = G D ( K6 ad lma pmi Y G Dp mi( K6 =log( a Y F Dl ma ( Λ. (iv F Dl mi ( L Y = G Dp ma ( H ad Y G D ( H =log( a Y F D ( L. pma lmi (v F Dl mi ( L Y = G Dp ma ( H ad Y G D ( H =log( a Y F D ( L. pma lmi (vi F Dl mi ( L3 Y = G Dp ma ( Φ ad Y G D ( Φ =log( a Y F D ( L3. pma lmi Rmark: W prov (i ad (iv th proofs of (ii ad (iii follow o lis similar to th proof of (i ad proofs of (v ad (vi follow o lis similar to th proof of (iv ad ar omittd. Proof of (i: Lt F D lma ( Φ with ormig costats a > 0 ad b R. Th df of Y = is giv by G ( = PY ( = P( = F( log 0 (. a so that with γ = adδ = b ( = + > ( ( = ( ( G δ F δ F γ log γ ( a ( log b 0. Th lim ( G( γ δ = Φ ( log = K3 ( 0< < provig that G D ( K p mi 3 LtY G Dp mi ( K3. Th df of =log( a Y is giv by F ( = P ( = P( log( a Y = G( log a (. so that with a = log γ b = δ 54

7 ( a b F ( a+ b = ( G ( = ( G( ( < log + γ δ γ a Th lim F ( a b K ( + = = ( 3 Φ > 0 provig that F ma ( D l Φ Proof of (iv: Lt F Dl mi ( L with ormig costats c > 0 ad d R. Th from (. with δ = cad d δ δ γ = G γ F γ F c d ( = = + ( ( log( ( ( ( log > 0. So lim G( = L ( log = H ( > provig that γ δ F Dl ma ( H. LtY G Dp ma ( H with ormig costats > 0 ad > 0. Th from (. with d c Fc d G c d = = ( ( + = ( ( + = G ( log (. So lim Fc ( + d a /δ. ( Th Itrplay btw lma lmi pma ad pmi Stabl Distributios = H ( = L ( < 0 provig (iv. Thorm.4. (i F D ( Y = G D ( H. lma Φ pma 3 (ii F D ( Y = G D ( H. lma Ψ pma 4 (iii F D ( Λ Y = G D ( Ψ. lma pma (iv F D ( L Y = G D ( K. lmi pmi (v F D ( L Y = G D ( K. lmi pmi (vi F D ( L Y = G D ( K. lmi 3 pmi S Rmark: W prov (i ad (iv th proofs of (ii ad (iii follow o lis similar to th proof of (i ad th proofs of (v ad (vi follow o lis similar to th proof of (iv ad ar omittd. 55

8 Ravi S Mavitha TS Proof of (i. Lt F D lma ( Φ with ormig costats a > 0 ad b R. Th df of Y = is giv by G ( = PY ( = P( = F( log( < 0 (.3 b so that with = a = G ( sig( = F ( log( ( = F ( a( log( + b < 0. So lim G ( sig( = Φ( log( = H3 ( < < 0 provig that G D ( H p ma 3. LtY G Dp ma ( H3 with ormig costats > 0 ad > 0. Th df of =log( Y is giv by F ( = P ( = P( log( Y = G( R (.4 so that with a = ad b =log ( a + b F ( a + b = G ( = G ( ( ad lim F ( a b H ( + = = ( Φ > 3 0 provig (i. Proof of (iv: Lt F Dl mi ( L with ormig costats c > 0 ad d R. ( ( = ( ( = δ δ Th from (.3 G γ sig( F log( γ ( d ( Fc ( ( log( + d < 0 so that with γ = δ = c δ lim G( γ sig( L ( log( K ( ( = = < provig that G D ( K. p mi LtY G Dp mi ( K with ormig costats γ > 0 ad δ > 0. + = = ( ( ( c + d Th from (.4 ( Fc ( d ( G( G γ δ so that with c = δ ad d =log γ lim δ( F( c + d = K ( = L ( provig (iv. Th followig tabl summarizs th rlatioship btw domais of attractio of lma lmi pma ad pmi stabl distributios. 56

9 Tabl : Rlatioship btw domais of attractio of lma lmi pma ad pmi stabl distributios. D lma ( Φ Dpma ( H Dpmi ( K3 Dpmi ( K Dpma ( H3 Th Itrplay btw lma lmi pma ad pmi Stabl Distributios D lma ( Ψ Dpma ( H Dpmi ( K4 Dpmi ( K Dpma ( H4 D lma ( Λ D pma ( Φ D ( pmi K 6 D ( pmi K 5 D pma ( Ψ D ( L lmi D pmi (K 3 D pma (H D pma (H 3 D pmi (K D lmi (L D pmi (K 4 D pma (H D pma (H 4 D pmi (K D lmi (L 3 D pmi (K 6 D pma (Φ D pma (Ψ D pmi (K 5 Th tabl is rad as follows: Th try say i row is rad as : If D lma ( Φ th Dp ma ( H Dp mi ( K3 Dp mi ( K ad D ( H pma Trasformatios Th followig tabls giv th itrrlatioship btw lma lmi pma ad pmi stabl distributios. Th tabls may b rad as follows: for ampl i Tabl blow th try say i row 3 ad colum is rad as: If Ψ th Y = Φ ad so o. Tabl. Rlatioship btw lma ad lmi stabl distributios. Φ Ψ Λ L L L 3 Φ Ψ Λ p log log( p p log log( p L log( log( 57

10 Ravi S Mavitha TS L log log L 3 p p p p Tabl 3. Rlatioship amog pma stabl distributios. H H H 3 H 4 Φ Ψ H (log (log (log (log H (log (log (log (log H 3 (log( (log( (log( ( log( H 4 Φ Ψ (log( / / log( / / ( / / ( / (log( (log( / Tabl 4. Rlatioship btw lma/lmi ad pma stabl distributios. H H H 3 H 4 Φ Ψ Φ Ψ ( ( Λ p ( p ( p ( p ( L ( ( 58

11 L L 3 p ( p ( p ( p ( Th Itrplay btw lma lmi pma ad pmi Stabl Distributios Tabl 5. Rlatioship amog pmi stabl distributios. K K K 3 K 4 K 5 K 6 K ( log( (log( (log( (log( K (log( (log( ( log( (log( K 3 (log (log ( log (log K 4 (log log (log (log K 5 ( / / ( / K 6 / ( / / / Tabl 6. Rlatioship btw lma/lmi ad pmi stabl distributios. K K K 3 K 4 K 5 K 6 Φ Ψ ( ( Λ p ( p ( p ( p ( L ( ( 59

12 Ravi S Mavitha TS L L 3 p ( p ( p ( p ( Tabl 7. Rlatioship btw pma ad pmi stabl distributios. K K K 3 K 4 K 5 K 6 H (log (log (log (log H (log (log ( log (log H 3 (log( (log( ( log( (log( H 4 (log( log (log( (log( Φ / / Ψ ( / ( / 4. Som Eampls for pma ad pmi domais. This sctio provids ampls for dfs blogig to domais of attractio of pma stabl laws ad pmi stabl laws. Som ampls of dfs i domai of attractio of lma stabl laws alog with ormig costats ar giv i [4]. O ca gt ampls for lmi by usig th rsult: if F Dl ma ( G with ormig costats a ad b th F Dl mi ( L with ormig costats c = a ad d = b ad with L ( = G(. Eampls for pma domais: Pdfs ar giv with ormig costats ad valu of th paramtr of th limit law whrvr applicabl. 60

13 . Dfs i D ( H : pma a. LogCauchy with pdf f( = ( (log 0< < + = = π π with =. b. LogParto with pdf f( = > = = with + (log =.. Dfs i Dpma ( H : a. Uiform with pdf f( = 0 < < = = with =. b. Bta with pdf f Bab a b a b ( = ( < < > = = 0 0 ( bbab ( with = b. c. Logbta with pdf f a b ( = (log ( log 0< < ab > 0 Bab ( b Th Itrplay btw lma lmi pma ad pmi Stabl Distributios = = bb( ab with = b. 3. Dfs i D ( H pma 3 b a. Ivrs logcauchy with pdf f( = + log < 0 π = = π with = b. Ivrs logparto with pdf f( = < < 0 = = + log with = 6

14 Ravi S Mavitha TS 4. Dfs i D ( H : pma 4 a. Ivrs logbta with pdf a f( = log log Bab ( b < ab > 0 = = ε b with = b. bbab ( 5. Dfs i D pma ( Φ : a. Cauchy with pdf f( = R ( + = = π π. b. Normal with pdf f( = π R { log4π + loglog } { log4π + loglog } log = log. log c. Gamma with pdf f( = > 0 > 0 = (log + ( log Γ( log logγ( = (log + ( logloglog Γ(. d. Loggamma with pdf f( = ( (log > Γ > 0 = = Γ( (log. 6. Dfs i D pma ( Ψ : a. Ivrs loggamma with pdf f( = log ( Γ < < > = 0 0 = ( (log Γ b. Ivrs gamma with pdf f( = Γ( < 0 6

15 = (log + ( log log log Γ( ( = log + ( loglog log Γ(. Rmark: W kow that if F Dp ma ( H with ormig costats > 0 ad > 0 th F Dp mi ( K with ormig costats γ = adδ = ad with K ( = H(. I particular Ki( = Hi( i = 34 ad K5( = Φ( K6( = Ψ (. O ca gt ampls for pmi domai by usig this rsult. Th Itrplay btw lma lmi pma ad pmi Stabl Distributios REFERENCES [] Castillo E. (988. Etrm Valu Thory i Egirig. Acadmic Prss Sa Digo Califoria. [] Christoph G. ad Falk M. (996. A ot o domais of attractio of pma stabl laws. Stat. Probab. Ltt [3] d Haa L. ad Frrira A. (006. Etrm Valu Thory A itroductio. Sprigr. [4] Embrchts P. Klüpplbrg C. ad Mikosch T. (997. Modllig Etrmal Evts. SprigrVrlag Brli. [5] Galambos J. (978. Th Asymptotic Thory of Etrm Ordr Statistics Wily Nw York. [6] Kotz S ad Nadarajah S. (000. Etrm valu distributiosthory ad Applicatios Imprial Collg Prss Lodo. [7] Moha N.R ad Ravi S. (993. Ma domais of attractio of uivariat ad multivariat pma stabl laws. Thory Probab. Appl. 37 No.4 Traslatd from Russia Joural [8] Pachva E. (984. Limit thorms for trm ordr statistics udr oliar ormalizatio I Stability Problms for Stochastic Modls (Lctur Nots i Math. Sprigr Brli [9] Rsick S.I. (987. Etrm Valus Rgular Variatio ad Poit Procsss SprigrVrlag Nw York. 63

On the approximation of the constant of Napier

On the approximation of the constant of Napier Stud. Uiv. Babş-Bolyai Math. 560, No., 609 64 O th approximatio of th costat of Napir Adri Vrscu Abstract. Startig from som oldr idas of [] ad [6], w show w facts cocrig th approximatio of th costat of

More information

Journal of Modern Applied Statistical Methods

Journal of Modern Applied Statistical Methods Joural of Modr Applid Statistical Mthods Volum Issu Articl 6 --03 O Som Proprtis of a Htrogous Trasfr Fuctio Ivolvig Symmtric Saturatd Liar (SATLINS) with Hyprbolic Tagt (TANH) Trasfr Fuctios Christophr

More information

PURE MATHEMATICS A-LEVEL PAPER 1

PURE MATHEMATICS A-LEVEL PAPER 1 -AL P MATH PAPER HONG KONG EXAMINATIONS AUTHORITY HONG KONG ADVANCED LEVEL EXAMINATION PURE MATHEMATICS A-LEVEL PAPER 8 am am ( hours) This papr must b aswrd i Eglish This papr cosists of Sctio A ad Sctio

More information

NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES

NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES Digst Joural of Naomatrials ad Biostructurs Vol 4, No, March 009, p 67-76 NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES A IRANMANESH a*, O KHORMALI b, I NAJAFI KHALILSARAEE c, B SOLEIMANI

More information

Folding of Hyperbolic Manifolds

Folding of Hyperbolic Manifolds It. J. Cotmp. Math. Scics, Vol. 7, 0, o. 6, 79-799 Foldig of Hyprbolic Maifolds H. I. Attiya Basic Scic Dpartmt, Collg of Idustrial Educatio BANE - SUEF Uivrsity, Egypt hala_attiya005@yahoo.com Abstract

More information

1985 AP Calculus BC: Section I

1985 AP Calculus BC: Section I 985 AP Calculus BC: Sctio I 9 Miuts No Calculator Nots: () I this amiatio, l dots th atural logarithm of (that is, logarithm to th bas ). () Ulss othrwis spcifid, th domai of a fuctio f is assumd to b

More information

SOME IDENTITIES FOR THE GENERALIZED POLY-GENOCCHI POLYNOMIALS WITH THE PARAMETERS A, B AND C

SOME IDENTITIES FOR THE GENERALIZED POLY-GENOCCHI POLYNOMIALS WITH THE PARAMETERS A, B AND C Joural of Mathatical Aalysis ISSN: 2217-3412, URL: www.ilirias.co/ja Volu 8 Issu 1 2017, Pags 156-163 SOME IDENTITIES FOR THE GENERALIZED POLY-GENOCCHI POLYNOMIALS WITH THE PARAMETERS A, B AND C BURAK

More information

Restricted Factorial And A Remark On The Reduced Residue Classes

Restricted Factorial And A Remark On The Reduced Residue Classes Applid Mathmatics E-Nots, 162016, 244-250 c ISSN 1607-2510 Availabl fr at mirror sits of http://www.math.thu.du.tw/ am/ Rstrictd Factorial Ad A Rmark O Th Rducd Rsidu Classs Mhdi Hassai Rcivd 26 March

More information

Law of large numbers

Law of large numbers Law of larg umbrs Saya Mukhrj W rvisit th law of larg umbrs ad study i som dtail two typs of law of larg umbrs ( 0 = lim S ) p ε ε > 0, Wak law of larrg umbrs [ ] S = ω : lim = p, Strog law of larg umbrs

More information

International Journal of Advanced and Applied Sciences

International Journal of Advanced and Applied Sciences Itratioal Joural of Advacd ad Applid Scics x(x) xxxx Pags: xx xx Cotts lists availabl at Scic Gat Itratioal Joural of Advacd ad Applid Scics Joural hompag: http://wwwscic gatcom/ijaashtml Symmtric Fuctios

More information

Technical Support Document Bias of the Minimum Statistic

Technical Support Document Bias of the Minimum Statistic Tchical Support Documt Bias o th Miimum Stattic Itroductio Th papr pla how to driv th bias o th miimum stattic i a radom sampl o siz rom dtributios with a shit paramtr (also kow as thrshold paramtr. Ths

More information

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series Chatr Ifiit Sris Pag of Sctio F Itgral Tst Chatr : Ifiit Sris By th d of this sctio you will b abl to valuat imror itgrals tst a sris for covrgc by alyig th itgral tst aly th itgral tst to rov th -sris

More information

Statistics 3858 : Likelihood Ratio for Exponential Distribution

Statistics 3858 : Likelihood Ratio for Exponential Distribution Statistics 3858 : Liklihood Ratio for Expotial Distributio I ths two xampl th rjctio rjctio rgio is of th form {x : 2 log (Λ(x)) > c} for a appropriat costat c. For a siz α tst, usig Thorm 9.5A w obtai

More information

A Note on Quantile Coupling Inequalities and Their Applications

A Note on Quantile Coupling Inequalities and Their Applications A Not o Quatil Couplig Iqualitis ad Thir Applicatios Harriso H. Zhou Dpartmt of Statistics, Yal Uivrsity, Nw Hav, CT 06520, USA. E-mail:huibi.zhou@yal.du Ju 2, 2006 Abstract A rlatioship btw th larg dviatio

More information

10. Joint Moments and Joint Characteristic Functions

10. Joint Moments and Joint Characteristic Functions 0 Joit Momts ad Joit Charactristic Fctios Followig sctio 6 i this sctio w shall itrodc varios paramtrs to compactly rprst th iformatio cotaid i th joit pdf of two rvs Giv two rvs ad ad a fctio g x y dfi

More information

Probability & Statistics,

Probability & Statistics, Probability & Statistics, BITS Pilai K K Birla Goa Campus Dr. Jajati Kshari Sahoo Dpartmt of Mathmatics BITS Pilai, K K Birla Goa Campus Poisso Distributio Poisso Distributio: A radom variabl X is said

More information

Iterative Methods of Order Four for Solving Nonlinear Equations

Iterative Methods of Order Four for Solving Nonlinear Equations Itrativ Mods of Ordr Four for Solvig Noliar Equatios V.B. Kumar,Vatti, Shouri Domii ad Mouia,V Dpartmt of Egirig Mamatis, Formr Studt of Chmial Egirig Adhra Uivrsity Collg of Egirig A, Adhra Uivrsity Visakhapatam

More information

ON RIGHT(LEFT) DUO PO-SEMIGROUPS. S. K. Lee and K. Y. Park

ON RIGHT(LEFT) DUO PO-SEMIGROUPS. S. K. Lee and K. Y. Park Kangwon-Kyungki Math. Jour. 11 (2003), No. 2, pp. 147 153 ON RIGHT(LEFT) DUO PO-SEMIGROUPS S. K. L and K. Y. Park Abstract. W invstigat som proprtis on right(rsp. lft) duo po-smigroups. 1. Introduction

More information

STIRLING'S 1 FORMULA AND ITS APPLICATION

STIRLING'S 1 FORMULA AND ITS APPLICATION MAT-KOL (Baja Luka) XXIV ()(08) 57-64 http://wwwimviblorg/dmbl/dmblhtm DOI: 075/МК80057A ISSN 0354-6969 (o) ISSN 986-588 (o) STIRLING'S FORMULA AND ITS APPLICATION Šfkt Arslaagić Sarajvo B&H Abstract:

More information

Ordinary Differential Equations

Ordinary Differential Equations Basi Nomlatur MAE 0 all 005 Egirig Aalsis Ltur Nots o: Ordiar Diffrtial Equatios Author: Profssor Albrt Y. Tog Tpist: Sakurako Takahashi Cosidr a gral O. D. E. with t as th idpdt variabl, ad th dpdt variabl.

More information

Further Results on Pair Sum Graphs

Further Results on Pair Sum Graphs Applid Mathmatis, 0,, 67-75 http://dx.doi.org/0.46/am.0.04 Publishd Oli Marh 0 (http://www.sirp.org/joural/am) Furthr Rsults o Pair Sum Graphs Raja Poraj, Jyaraj Vijaya Xavir Parthipa, Rukhmoi Kala Dpartmt

More information

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1 DTFT Proprtis Exampl - Dtrmi th DTFT Y of y α µ, α < Lt x α µ, α < W ca thrfor writ y x x From Tabl 3., th DTFT of x is giv by ω X ω α ω Copyright, S. K. Mitra Copyright, S. K. Mitra DTFT Proprtis DTFT

More information

Digital Signal Processing, Fall 2006

Digital Signal Processing, Fall 2006 Digital Sigal Procssig, Fall 6 Lctur 9: Th Discrt Fourir Trasfor Zhg-Hua Ta Dpartt of Elctroic Systs Aalborg Uivrsity, Dar zt@o.aau.d Digital Sigal Procssig, I, Zhg-Hua Ta, 6 Cours at a glac MM Discrt-ti

More information

PROOF OF FIRST STANDARD FORM OF NONELEMENTARY FUNCTIONS

PROOF OF FIRST STANDARD FORM OF NONELEMENTARY FUNCTIONS Intrnational Journal Of Advanc Rsarch In Scinc And Enginring http://www.ijars.com IJARSE, Vol. No., Issu No., Fbruary, 013 ISSN-319-8354(E) PROOF OF FIRST STANDARD FORM OF NONELEMENTARY FUNCTIONS 1 Dharmndra

More information

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120 Tim : hr. Tst Papr 8 D 4//5 Bch - R Marks : SINGLE CORRECT CHOICE TYPE [4, ]. If th compl umbr z sisfis th coditio z 3, th th last valu of z is qual to : z (A) 5/3 (B) 8/3 (C) /3 (D) o of ths 5 4. Th itgral,

More information

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z Sris Expasio of Rciprocal of Gamma Fuctio. Fuctios with Itgrs as Roots Fuctio f with gativ itgrs as roots ca b dscribd as follows. f() Howvr, this ifiit product divrgs. That is, such a fuctio caot xist

More information

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA NE APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA Mirca I CÎRNU Ph Dp o Mathmatics III Faculty o Applid Scincs Univrsity Polithnica o Bucharst Cirnumirca @yahoocom Abstract In a rcnt papr [] 5 th indinit intgrals

More information

Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT) Discrt Fourir Trasorm DFT Major: All Egirig Majors Authors: Duc guy http://umricalmthods.g.us.du umrical Mthods or STEM udrgraduats 8/3/29 http://umricalmthods.g.us.du Discrt Fourir Trasorm Rcalld th xpotial

More information

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling Tripl Play: From D Morga to Stirlig To Eulr to Maclauri to Stirlig Augustus D Morga (186-1871) was a sigificat Victoria Mathmaticia who mad cotributios to Mathmatics History, Mathmatical Rcratios, Mathmatical

More information

CDS 101: Lecture 5.1 Reachability and State Space Feedback

CDS 101: Lecture 5.1 Reachability and State Space Feedback CDS, Lctur 5. CDS : Lctur 5. Rachability ad Stat Spac Fdback Richard M. Murray 7 Octobr 3 Goals: Di rachability o a cotrol systm Giv tsts or rachability o liar systms ad apply to ampls Dscrib th dsig o

More information

Introduction to Extreme Value Theory Laurens de Haan, ISM Japan, Erasmus University Rotterdam, NL University of Lisbon, PT

Introduction to Extreme Value Theory Laurens de Haan, ISM Japan, Erasmus University Rotterdam, NL University of Lisbon, PT Itroductio to Extreme Value Theory Laures de Haa, ISM Japa, 202 Itroductio to Extreme Value Theory Laures de Haa Erasmus Uiversity Rotterdam, NL Uiversity of Lisbo, PT Itroductio to Extreme Value Theory

More information

Hadamard Exponential Hankel Matrix, Its Eigenvalues and Some Norms

Hadamard Exponential Hankel Matrix, Its Eigenvalues and Some Norms Math Sci Ltt Vol No 8-87 (0) adamard Exotial al Matrix, Its Eigvalus ad Som Norms İ ad M bula Mathmatical Scics Lttrs Itratioal Joural @ 0 NSP Natural Scics Publishig Cor Dartmt of Mathmatics, aculty of

More information

Linear Algebra Existence of the determinant. Expansion according to a row.

Linear Algebra Existence of the determinant. Expansion according to a row. Lir Algbr 2270 1 Existc of th dtrmit. Expsio ccordig to row. W dfi th dtrmit for 1 1 mtrics s dt([]) = (1) It is sy chck tht it stisfis D1)-D3). For y othr w dfi th dtrmit s follows. Assumig th dtrmit

More information

Solution to 1223 The Evil Warden.

Solution to 1223 The Evil Warden. Solutio to 1 Th Evil Ward. This is o of thos vry rar PoWs (I caot thik of aothr cas) that o o solvd. About 10 of you submittd th basic approach, which givs a probability of 47%. I was shockd wh I foud

More information

APPENDIX: STATISTICAL TOOLS

APPENDIX: STATISTICAL TOOLS I. Nots o radom samplig Why do you d to sampl radomly? APPENDI: STATISTICAL TOOLS I ordr to masur som valu o a populatio of orgaisms, you usually caot masur all orgaisms, so you sampl a subst of th populatio.

More information

Introduction to Quantum Information Processing. Overview. A classical randomised algorithm. q 3,3 00 0,0. p 0,0. Lecture 10.

Introduction to Quantum Information Processing. Overview. A classical randomised algorithm. q 3,3 00 0,0. p 0,0. Lecture 10. Itroductio to Quatum Iformatio Procssig Lctur Michl Mosca Ovrviw! Classical Radomizd vs. Quatum Computig! Dutsch-Jozsa ad Brsti- Vazirai algorithms! Th quatum Fourir trasform ad phas stimatio A classical

More information

Aotomorphic Functions And Fermat s Last Theorem(4)

Aotomorphic Functions And Fermat s Last Theorem(4) otomorphc Fuctos d Frmat s Last Thorm(4) Chu-Xua Jag P. O. Box 94 Bg 00854 P. R. Cha agchuxua@sohu.com bsract 67 Frmat wrot: It s mpossbl to sparat a cub to two cubs or a bquadrat to two bquadrats or gral

More information

NET/JRF, GATE, IIT JAM, JEST, TIFR

NET/JRF, GATE, IIT JAM, JEST, TIFR Istitut for NET/JRF, GATE, IIT JAM, JEST, TIFR ad GRE i PHYSICAL SCIENCES Mathmatical Physics JEST-6 Q. Giv th coditio φ, th solutio of th quatio ψ φ φ is giv by k. kφ kφ lφ kφ lφ (a) ψ (b) ψ kφ (c) ψ

More information

The Equitable Dominating Graph

The Equitable Dominating Graph Intrnational Journal of Enginring Rsarch and Tchnology. ISSN 0974-3154 Volum 8, Numbr 1 (015), pp. 35-4 Intrnational Rsarch Publication Hous http://www.irphous.com Th Equitabl Dominating Graph P.N. Vinay

More information

Empirical Study in Finite Correlation Coefficient in Two Phase Estimation

Empirical Study in Finite Correlation Coefficient in Two Phase Estimation M. Khoshvisa Griffith Uivrsity Griffith Busiss School Australia F. Kaymarm Massachustts Istitut of Tchology Dpartmt of Mchaical girig USA H. P. Sigh R. Sigh Vikram Uivrsity Dpartmt of Mathmatics ad Statistics

More information

In 1991 Fermat s Last Theorem Has Been Proved

In 1991 Fermat s Last Theorem Has Been Proved I 99 Frmat s Last Thorm Has B Provd Chu-Xua Jag P.O.Box 94Bg 00854Cha Jcxua00@s.com;cxxxx@6.com bstract I 67 Frmat wrot: It s mpossbl to sparat a cub to two cubs or a bquadrat to two bquadrats or gral

More information

Derangements and Applications

Derangements and Applications 2 3 47 6 23 Journal of Intgr Squncs, Vol. 6 (2003), Articl 03..2 Drangmnts and Applications Mhdi Hassani Dpartmnt of Mathmatics Institut for Advancd Studis in Basic Scincs Zanjan, Iran mhassani@iasbs.ac.ir

More information

Lectures 9 IIR Systems: First Order System

Lectures 9 IIR Systems: First Order System EE3054 Sigals ad Systms Lcturs 9 IIR Systms: First Ordr Systm Yao Wag Polytchic Uivrsity Som slids icludd ar xtractd from lctur prstatios prpard by McCllla ad Schafr Lics Ifo for SPFirst Slids This work

More information

CDS 101: Lecture 5.1 Reachability and State Space Feedback

CDS 101: Lecture 5.1 Reachability and State Space Feedback CDS, Lctur 5. CDS : Lctur 5. Rachability ad Stat Spac Fdback Richard M. Murray ad Hido Mabuchi 5 Octobr 4 Goals: Di rachability o a cotrol systm Giv tsts or rachability o liar systms ad apply to ampls

More information

Discrete Fourier Transform. Nuno Vasconcelos UCSD

Discrete Fourier Transform. Nuno Vasconcelos UCSD Discrt Fourir Trasform uo Vascoclos UCSD Liar Shift Ivariat (LSI) systms o of th most importat cocpts i liar systms thory is that of a LSI systm Dfiitio: a systm T that maps [ ito y[ is LSI if ad oly if

More information

SOME PARAMETERS ON EQUITABLE COLORING OF PRISM AND CIRCULANT GRAPH.

SOME PARAMETERS ON EQUITABLE COLORING OF PRISM AND CIRCULANT GRAPH. SOME PARAMETERS ON EQUITABLE COLORING OF PRISM AND CIRCULANT GRAPH. K VASUDEVAN, K. SWATHY AND K. MANIKANDAN 1 Dpartmnt of Mathmatics, Prsidncy Collg, Chnnai-05, India. E-Mail:vasu k dvan@yahoo.com. 2,

More information

Characterizations of Continuous Distributions by Truncated Moment

Characterizations of Continuous Distributions by Truncated Moment Journal o Modrn Applid Statistical Mthods Volum 15 Issu 1 Articl 17 5-016 Charactrizations o Continuous Distributions by Truncatd Momnt M Ahsanullah Ridr Univrsity M Shakil Miami Dad Coll B M Golam Kibria

More information

Character sums over generalized Lehmer numbers

Character sums over generalized Lehmer numbers Ma t al. Joural of Iualitis ad Applicatios 206 206:270 DOI 0.86/s3660-06-23-y R E S E A R C H Op Accss Charactr sums ovr gralizd Lhmr umbrs Yuakui Ma, Hui Ch 2, Zhzh Qi 2 ad Tiapig Zhag 2* * Corrspodc:

More information

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx MONTGOMERY COLLEGE Dpartmt of Mathmatics Rockvill Campus MATH 8 - REVIEW PROBLEMS. Stat whthr ach of th followig ca b itgratd by partial fractios (PF), itgratio by parts (PI), u-substitutio (U), or o of

More information

LECTURE 6 TRANSFORMATION OF RANDOM VARIABLES

LECTURE 6 TRANSFORMATION OF RANDOM VARIABLES LECTURE 6 TRANSFORMATION OF RANDOM VARIABLES TRANSFORMATION OF FUNCTION OF A RANDOM VARIABLE UNIVARIATE TRANSFORMATIONS TRANSFORMATION OF RANDOM VARIABLES If s a rv wth cdf F th Y=g s also a rv. If w wrt

More information

POSTERIOR ESTIMATES OF TWO PARAMETER EXPONENTIAL DISTRIBUTION USING S-PLUS SOFTWARE

POSTERIOR ESTIMATES OF TWO PARAMETER EXPONENTIAL DISTRIBUTION USING S-PLUS SOFTWARE Joural of Rliabilit ad tatistial tudis [IN: 0974-804 Prit 9-5666 Oli] Vol. 3 Issu 00:7-34 POTERIOR ETIMATE OF TWO PARAMETER EXPONENTIAL DITRIBUTION UING -PLU OFTWARE.P. Ahmad ad Bilal Ahmad Bhat. Dartmt

More information

Complex Numbers. Prepared by: Prof. Sunil Department of Mathematics NIT Hamirpur (HP)

Complex Numbers. Prepared by: Prof. Sunil Department of Mathematics NIT Hamirpur (HP) th Topc Compl Nmbrs Hyprbolc fctos ad Ivrs hyprbolc fctos, Rlato btw hyprbolc ad crclar fctos, Formla of hyprbolc fctos, Ivrs hyprbolc fctos Prpard by: Prof Sl Dpartmt of Mathmatcs NIT Hamrpr (HP) Hyprbolc

More information

On the irreducibility of some polynomials in two variables

On the irreducibility of some polynomials in two variables ACTA ARITHMETICA LXXXII.3 (1997) On th irrducibility of som polynomials in two variabls by B. Brindza and Á. Pintér (Dbrcn) To th mmory of Paul Erdős Lt f(x) and g(y ) b polynomials with intgral cofficints

More information

Chapter Taylor Theorem Revisited

Chapter Taylor Theorem Revisited Captr 0.07 Taylor Torm Rvisitd Atr radig tis captr, you sould b abl to. udrstad t basics o Taylor s torm,. writ trascdtal ad trigoomtric uctios as Taylor s polyomial,. us Taylor s torm to id t valus o

More information

Reliability of time dependent stress-strength system for various distributions

Reliability of time dependent stress-strength system for various distributions IOS Joural of Mathmatcs (IOS-JM ISSN: 78-578. Volum 3, Issu 6 (Sp-Oct., PP -7 www.osrjourals.org lablty of tm dpdt strss-strgth systm for varous dstrbutos N.Swath, T.S.Uma Mahswar,, Dpartmt of Mathmatcs,

More information

Normal Form for Systems with Linear Part N 3(n)

Normal Form for Systems with Linear Part N 3(n) Applid Mathmatics 64-647 http://dxdoiorg/46/am7 Publishd Oli ovmbr (http://wwwscirporg/joural/am) ormal Form or Systms with Liar Part () Grac Gachigua * David Maloza Johaa Sigy Dpartmt o Mathmatics Collg

More information

Chapter 11.00C Physical Problem for Fast Fourier Transform Civil Engineering

Chapter 11.00C Physical Problem for Fast Fourier Transform Civil Engineering haptr. Physical Problm for Fast Fourir Trasform ivil Egirig Itroductio I this chaptr, applicatios of FFT algorithms [-5] for solvig ral-lif problms such as computig th dyamical (displacmt rspos [6-7] of

More information

Spectral Synthesis in the Heisenberg Group

Spectral Synthesis in the Heisenberg Group Intrnational Journal of Mathmatical Analysis Vol. 13, 19, no. 1, 1-5 HIKARI Ltd, www.m-hikari.com https://doi.org/1.1988/ijma.19.81179 Spctral Synthsis in th Hisnbrg Group Yitzhak Wit Dpartmnt of Mathmatics,

More information

ln x = n e = 20 (nearest integer)

ln x = n e = 20 (nearest integer) H JC Prlim Solutios 6 a + b y a + b / / dy a b 3/ d dy a b at, d Giv quatio of ormal at is y dy ad y wh. d a b () (,) is o th curv a+ b () y.9958 Qustio Solvig () ad (), w hav a, b. Qustio d.77 d d d.77

More information

The Amoroso Distribution

The Amoroso Distribution Tch. Not 003v (007-08-4) Th Amoroso Distribution Gavin E. Crooks gcrooks@lbl.gov Th Amoroso distribution, is a continuous, univariat, unimodal probability distribution with a smiinfinit rang. A surprisingly

More information

Engineering 323 Beautiful HW #13 Page 1 of 6 Brown Problem 5-12

Engineering 323 Beautiful HW #13 Page 1 of 6 Brown Problem 5-12 Enginring Bautiful HW #1 Pag 1 of 6 5.1 Two componnts of a minicomputr hav th following joint pdf for thir usful liftims X and Y: = x(1+ x and y othrwis a. What is th probability that th liftim X of th

More information

Asymptotic Behaviors for Critical Branching Processes with Immigration

Asymptotic Behaviors for Critical Branching Processes with Immigration Acta Mathmatica Siica, Eglih Sri Apr., 9, Vol. 35, No. 4, pp. 537 549 Publihd oli: March 5, 9 http://doi.org/.7/4-9-744-6 http://www.actamath.com Acta Mathmatica Siica, Eglih Sri Sprigr-Vrlag GmbH Grmay

More information

Numerical Simulation for the 2-D Heat Equation with Derivative Boundary Conditions

Numerical Simulation for the 2-D Heat Equation with Derivative Boundary Conditions IOSR Joural of Applid Chmisr IOSR-JAC -ISSN: 78-576.Volum 9 Issu 8 Vr. I Aug. 6 PP 4-8 www.iosrjourals.org Numrical Simulaio for h - Ha Equaio wih rivaiv Boudar Codiios Ima. I. Gorial parm of Mahmaics

More information

ECE594I Notes set 6: Thermal Noise

ECE594I Notes set 6: Thermal Noise C594I ots, M. odwll, copyrightd C594I Nots st 6: Thrmal Nois Mark odwll Uivrsity of Califoria, ata Barbara rodwll@c.ucsb.du 805-893-344, 805-893-36 fax frcs ad Citatios: C594I ots, M. odwll, copyrightd

More information

(Upside-Down o Direct Rotation) β - Numbers

(Upside-Down o Direct Rotation) β - Numbers Amrican Journal of Mathmatics and Statistics 014, 4(): 58-64 DOI: 10593/jajms0140400 (Upsid-Down o Dirct Rotation) β - Numbrs Ammar Sddiq Mahmood 1, Shukriyah Sabir Ali,* 1 Dpartmnt of Mathmatics, Collg

More information

Supplement to Applications of Distance Correlation to Time Series

Supplement to Applications of Distance Correlation to Time Series arxiv: arxiv:606.0548 Supplmt to Applicatios of Distac Corrlatio to Tim Sris RICHARD A. DAVIS,* MUNEYA MATSUI,** THOMAS MIKOSCH 3, ad PHYLLIS WAN, Dpartmt of Statistics, Columbia Uivrsity, 55 Amstrdam

More information

Blackbody Radiation. All bodies at a temperature T emit and absorb thermal electromagnetic radiation. How is blackbody radiation absorbed and emitted?

Blackbody Radiation. All bodies at a temperature T emit and absorb thermal electromagnetic radiation. How is blackbody radiation absorbed and emitted? All bodis at a tmpratur T mit ad absorb thrmal lctromagtic radiatio Blackbody radiatio I thrmal quilibrium, th powr mittd quals th powr absorbd How is blackbody radiatio absorbd ad mittd? 1 2 A blackbody

More information

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES. 1. Statement of results

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES. 1. Statement of results BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES DONALD M. DAVIS Abstract. If p is a prim and n a positiv intgr, lt ν p (n dnot th xponnt of p in n, and u p (n n/p νp(n th unit part of n. If α

More information

Deift/Zhou Steepest descent, Part I

Deift/Zhou Steepest descent, Part I Lctur 9 Dift/Zhou Stpst dscnt, Part I W now focus on th cas of orthogonal polynomials for th wight w(x) = NV (x), V (x) = t x2 2 + x4 4. Sinc th wight dpnds on th paramtr N N w will writ π n,n, a n,n,

More information

Superposition. Thinning

Superposition. Thinning Suprposition STAT253/317 Wintr 213 Lctur 11 Yibi Huang Fbruary 1, 213 5.3 Th Poisson Procsss 5.4 Gnralizations of th Poisson Procsss Th sum of two indpndnt Poisson procsss with rspctiv rats λ 1 and λ 2,

More information

Chapter (8) Estimation and Confedence Intervals Examples

Chapter (8) Estimation and Confedence Intervals Examples Chaptr (8) Estimatio ad Cofdc Itrvals Exampls Typs of stimatio: i. Poit stimatio: Exampl (1): Cosidr th sampl obsrvatios, 17,3,5,1,18,6,16,10 8 X i i1 17 3 5 118 6 16 10 116 X 14.5 8 8 8 14.5 is a poit

More information

A Prey-Predator Model with an Alternative Food for the Predator, Harvesting of Both the Species and with A Gestation Period for Interaction

A Prey-Predator Model with an Alternative Food for the Predator, Harvesting of Both the Species and with A Gestation Period for Interaction Int. J. Opn Problms Compt. Math., Vol., o., Jun 008 A Pry-Prdator Modl with an Altrnativ Food for th Prdator, Harvsting of Both th Spcis and with A Gstation Priod for Intraction K. L. arayan and. CH. P.

More information

Journal of Modern Applied Statistical Methods May, 2007, Vol. 6, No. 1, /07/$ On the Product of Maxwell and Rice Random Variables

Journal of Modern Applied Statistical Methods May, 2007, Vol. 6, No. 1, /07/$ On the Product of Maxwell and Rice Random Variables Journal of Modrn Applid Statistical Mthods Copyright 7 JMASM, Inc. May, 7, Vol. 6, No., 538 947/7/$95. On th Product of Mawll and Ric Random Variabls Mohammad Shail Miami Dad Collg B. M. Golam Kibria Florida

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordiary Diffrtial Equatio Aftr radig thi chaptr, you hould b abl to:. dfi a ordiary diffrtial quatio,. diffrtiat btw a ordiary ad partial diffrtial quatio, ad. Solv liar ordiary diffrtial quatio with fid

More information

10. Limits involving infinity

10. Limits involving infinity . Limits involving infinity It is known from th it ruls for fundamntal arithmtic oprations (+,-,, ) that if two functions hav finit its at a (finit or infinit) point, that is, thy ar convrgnt, th it of

More information

Performance Rating of the Type 1 Half Logistic Gompertz Distribution: An Analytical Approach

Performance Rating of the Type 1 Half Logistic Gompertz Distribution: An Analytical Approach Amrica Joural of Mathmatics ad Statistics 27, 7(3): 93-98 DOI:.5923/j.ajms.2773. Prformac Ratig of th Typ Half Logistic Gomprtz Distributio: A Aalytical Approach Ogud A. A. *, Osghal O. I., Audu A. T.

More information

For more important questions visit :

For more important questions visit : For mor important qustions visit : www4onocom CHAPTER 5 CONTINUITY AND DIFFERENTIATION POINTS TO REMEMBER A function f() is said to b continuous at = c iff lim f f c c i, lim f lim f f c c c f() is continuous

More information

On a problem of J. de Graaf connected with algebras of unbounded operators de Bruijn, N.G.

On a problem of J. de Graaf connected with algebras of unbounded operators de Bruijn, N.G. O a problm of J. d Graaf coctd with algbras of uboudd oprators d Bruij, N.G. Publishd: 01/01/1984 Documt Vrsio Publishr s PDF, also kow as Vrsio of Rcord (icluds fial pag, issu ad volum umbrs) Plas chck

More information

Asymptotic distribution of products of sums of independent random variables

Asymptotic distribution of products of sums of independent random variables Proc. Idia Acad. Sci. Math. Sci. Vol. 3, No., May 03, pp. 83 9. c Idia Academy of Scieces Asymptotic distributio of products of sums of idepedet radom variables YANLING WANG, SUXIA YAO ad HONGXIA DU ollege

More information

Random Process Part 1

Random Process Part 1 Random Procss Part A random procss t (, ζ is a signal or wavform in tim. t : tim ζ : outcom in th sampl spac Each tim w rapat th xprimnt, a nw wavform is gnratd. ( W will adopt t for short. Tim sampls

More information

Session : Plasmas in Equilibrium

Session : Plasmas in Equilibrium Sssio : Plasmas i Equilibrium Ioizatio ad Coductio i a High-prssur Plasma A ormal gas at T < 3000 K is a good lctrical isulator, bcaus thr ar almost o fr lctros i it. For prssurs > 0.1 atm, collisio amog

More information

SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3

SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3 SOLVED EXAMPLES E. If f() E.,,, th f() f() h h LHL RHL, so / / Lim f() quls - (D) Dos ot ist [( h)+] [(+h) + ] f(). LHL E. RHL h h h / h / h / h / h / h / h As.[C] (D) Dos ot ist LHL RHL, so giv it dos

More information

Lecture 37 (Schrödinger Equation) Physics Spring 2018 Douglas Fields

Lecture 37 (Schrödinger Equation) Physics Spring 2018 Douglas Fields Lctur 37 (Schrödingr Equation) Physics 6-01 Spring 018 Douglas Filds Rducd Mass OK, so th Bohr modl of th atom givs nrgy lvls: E n 1 k m n 4 But, this has on problm it was dvlopd assuming th acclration

More information

Problem Value Score Earned No/Wrong Rec -3 Total

Problem Value Score Earned No/Wrong Rec -3 Total GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING ECE6 Fall Quiz # Writt Eam Novmr, NAME: Solutio Kys GT Usram: LAST FIRST.g., gtiit Rcitatio Sctio: Circl t dat & tim w your Rcitatio

More information

Cramér-Rao Inequality: Let f(x; θ) be a probability density function with continuous parameter

Cramér-Rao Inequality: Let f(x; θ) be a probability density function with continuous parameter WHEN THE CRAMÉR-RAO INEQUALITY PROVIDES NO INFORMATION STEVEN J. MILLER Abstract. W invstigat a on-paramtr family of probability dnsitis (rlatd to th Parto distribution, which dscribs many natural phnomna)

More information

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net Taylor s Thorm & Lagrag Error Bouds Actual Error This is th ral amout o rror, ot th rror boud (worst cas scario). It is th dirc btw th actual () ad th polyomial. Stps:. Plug -valu ito () to gt a valu.

More information

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform Discrt Fourir Trasform Dfiitio - T simplst rlatio btw a lt- squc x dfid for ω ad its DTFT X ( ) is ω obtaid by uiformly sampli X ( ) o t ω-axis btw ω < at ω From t dfiitio of t DTFT w tus av X X( ω ) ω

More information

UNIT 2: MATHEMATICAL ENVIRONMENT

UNIT 2: MATHEMATICAL ENVIRONMENT UNIT : MATHEMATICAL ENVIRONMENT. Itroductio This uit itroducs som basic mathmatical cocpts ad rlats thm to th otatio usd i th cours. Wh ou hav workd through this uit ou should: apprciat that a mathmatical

More information

STAT Homework 1 - Solutions

STAT Homework 1 - Solutions STAT-36700 Homework 1 - Solutios Fall 018 September 11, 018 This cotais solutios for Homework 1. Please ote that we have icluded several additioal commets ad approaches to the problems to give you better

More information

COMPLEX NUMBERS AND ELEMENTARY FUNCTIONS OF COMPLEX VARIABLES

COMPLEX NUMBERS AND ELEMENTARY FUNCTIONS OF COMPLEX VARIABLES COMPLEX NUMBERS AND ELEMENTARY FUNCTIONS OF COMPLEX VARIABLES DEFINITION OF A COMPLEX NUMBER: A umbr of th form, whr = (, ad & ar ral umbrs s calld a compl umbr Th ral umbr, s calld ral part of whl s calld

More information

LINEAR DELAY DIFFERENTIAL EQUATION WITH A POSITIVE AND A NEGATIVE TERM

LINEAR DELAY DIFFERENTIAL EQUATION WITH A POSITIVE AND A NEGATIVE TERM Elctronic Journal of Diffrntial Equations, Vol. 2003(2003), No. 92, pp. 1 6. ISSN: 1072-6691. URL: http://jd.math.swt.du or http://jd.math.unt.du ftp jd.math.swt.du (login: ftp) LINEAR DELAY DIFFERENTIAL

More information

Bayesian Estimations in Insurance Theory and Practice

Bayesian Estimations in Insurance Theory and Practice Advacs i Mathmatical ad Computatioal Mthods Baysia Estimatios i Isurac Thory ad Practic VIERA PACÁKOVÁ Dpartmt o Mathmatics ad Quatitativ Mthods Uivrsity o Pardubic Studtská 95, 53 0 Pardubic CZECH REPUBLIC

More information

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2 MATHEMATIS --RE Itgral alculus Marti Huard Witr 9 Rviw Erciss. Evaluat usig th dfiitio of th dfiit itgral as a Rima Sum. Dos th aswr rprst a ara? a ( d b ( d c ( ( d d ( d. Fid f ( usig th Fudamtal Thorm

More information

Global Chaos Synchronization of the Hyperchaotic Qi Systems by Sliding Mode Control

Global Chaos Synchronization of the Hyperchaotic Qi Systems by Sliding Mode Control Dr. V. Sudarapadia t al. / Itratioal Joural o Computr Scic ad Egirig (IJCSE) Global Chaos Sychroizatio of th Hyprchaotic Qi Systms by Slidig Mod Cotrol Dr. V. Sudarapadia Profssor, Rsarch ad Dvlopmt Ctr

More information

t i Extreme value statistics Problems of extrapolating to values we have no data about unusually large or small ~100 years (data) ~500 years (design)

t i Extreme value statistics Problems of extrapolating to values we have no data about unusually large or small ~100 years (data) ~500 years (design) Extrm valu statistics Problms of xtrapolatig to valus w hav o data about uusually larg or small t i ~00 yars (data h( t i { h( }? max t i wids v( t i ~500 yars (dsig Qustio: Ca this b do at all? How log

More information

Search sequence databases 3 10/25/2016

Search sequence databases 3 10/25/2016 Sarch squnc databass 3 10/25/2016 Etrm valu distribution Ø Suppos X is a random variabl with probability dnsity function p(, w sampl a larg numbr S of indpndnt valus of X from this distribution for an

More information

Chapter 2 The Monte Carlo Method

Chapter 2 The Monte Carlo Method Chapter 2 The Mote Carlo Method The Mote Carlo Method stads for a broad class of computatioal algorithms that rely o radom sampligs. It is ofte used i physical ad mathematical problems ad is most useful

More information

2617 Mark Scheme June 2005 Mark Scheme 2617 June 2005

2617 Mark Scheme June 2005 Mark Scheme 2617 June 2005 Mark Schm 67 Ju 5 GENERAL INSTRUCTIONS Marks i th mark schm ar plicitly dsigatd as M, A, B, E or G. M marks ("mthod" ar for a attmpt to us a corrct mthod (ot mrly for statig th mthod. A marks ("accuracy"

More information

Construction of asymmetric orthogonal arrays of strength three via a replacement method

Construction of asymmetric orthogonal arrays of strength three via a replacement method isid/ms/26/2 Fbruary, 26 http://www.isid.ac.in/ statmath/indx.php?modul=prprint Construction of asymmtric orthogonal arrays of strngth thr via a rplacmnt mthod Tian-fang Zhang, Qiaoling Dng and Alok Dy

More information

Scattering Parameters. Scattering Parameters

Scattering Parameters. Scattering Parameters Motivatio cattrig Paramtrs Difficult to implmt op ad short circuit coditios i high frqucis masurmts du to parasitic s ad Cs Pottial stability problms for activ dvics wh masurd i oopratig coditios Difficult

More information