Supplement to Applications of Distance Correlation to Time Series

Size: px
Start display at page:

Download "Supplement to Applications of Distance Correlation to Time Series"

Transcription

1 arxiv: arxiv: Supplmt to Applicatios of Distac Corrlatio to Tim Sris RICHARD A. DAVIS,* MUNEYA MATSUI,** THOMAS MIKOSCH 3, ad PHYLLIS WAN, Dpartmt of Statistics, Columbia Uivrsity, 55 Amstrdam Av, Nw York, NY 007, USA. * rdavis@stat.columbia.du; phyllis@stat.columbia.du Dpartmt of Busiss Admiistratio, Naza Uivrsity, 8 Yamazato-cho, Showa-ku, Nagoya , Japa. ** mmuya@gmail.com 3 Dpartmt of Mathmatics, Uivrsity of Cophag, Uivrsittspark 5, DK-00 Cophag, Dmark mikosch@math.ku.dk Kywords: Auto- ad cross-distac corrlatio fuctio, tstig idpdc, tim sris, strog mixig, rgodicity, Fourir aalysis, U-statistics, AR procss, rsiduals. This supplmt provids th omittd tchical dtails to th proofs of Thorm 4. ad Lmma 4., i Davis t al. 06). Th sttig, otatio, quatio rfrc umbrs ar rtaid from th mai papr. For covic, th corrspodig rsults i Davis t al. 06) usig th sam rfrc umbrs ar statd bfor th proofs. Th Rmarks 3.4 ad 3.9 from th mai papr hav also b duplicatd hr. Proof of Thorm 4. For th covic of th radr, w rcall two rmarks from Davis t al. 06) which ar mtiod i th proof. Rmark 3.4. If X j ) ad Y j ) ar two idpdt iid squcs th th statmt of Thorm 3. ) rmais valid if for som α 0, ], E[ X α ] + E[ Y α ] < ad s α ) t α ) µds, dt) <. 3.8) R p+q Rmark 3.9. From th proof of Thorm 3. th ctral limit thorm for th multivariat mpirical charactristic fuctio) it follows that G h has covariac fuctio Γs, t), s, t )) = covg h s, t), G h s, t )) = E [ i s,x0 φ X s) ) i t,yh φ Y t) ) j Z i s,x j φ X s ) ) i t,y j+h φ Y t ) )]. 3.9) imsart-bj vr. 04/0/6 fil: DistCorBroulli_sup_r.tx dat: Fbruary 5, 07

2 Davis R.A., Matsui M., Mikosch T. ad Wa P. I th spcial cas wh X t ) ad Y t ) ar idpdt squcs G h is th sam across all h with covariac fuctio Γs, t), s, t )) = φ X s s ) φ X s)φ X s ) ) φ Y t t ) φ Y t)φ Y t ) ). Sic G h is ctrd Gaussia its squard L -orm G h µ has a wightd χ -distributio; s Kuo 975), Chaptr. Th distributio of G h µ is ot tractabl ad thrfor o ds rsamplig mthods for dtrmiig its quatils. Thorm 4.. Cosidr a causal ARp) procss with iid ois Z t ). Assum R [ s ) t ) µds, dt) + s + t ) s t > )µds, dt) <. 4.7). If σ = VarZ) <, th T Ẑ,µh) d G h + ξ h µ, ad RẐ,µh) d G h + ξ h µ T Z µ 0), 4.8) whr G h, ξ h ) ar joitly Gaussia limit radom filds o R. Th covariac structur of G h is spcifid i Rmark 3.9 abov for th squc Z t, Z t+h )), ξ h ad th joit limit structur of G h, ξ h ) ar giv i Lmma 4. blow.. If Z is i th domai of attractio of a stabl law of idx α 0, ), i.., P Z > x) = x α Lx) for x > 0 ad L ) is a slowly varyig fuctio at, ad PZ > x) P Z > x) p ad PZ < x) P Z > x) p as x for som p [0, ] Fllr 97), p. 33). Th w hav T Ẑ,µh) d G h µ ad RẐ,µh) d G h µ T Z µ 0), 4.9) whr G h is a Gaussia limit radom fild o R. Th covariac structur of G h is spcifid i Rmark 3.9 for th squc Z t, Z t+h )). W proof th rsult for th rsiduals calculatd from last squar stimats LSEs). O may show that th sam rsult holds for maximum liklihood ad Yul-Walkr stimats. W rcall th rlvat asymptotic rsults for th last squars stimator from Sctio 4 i Davis t al. 06); w us th sam rfrc umbrs for mathmatical formulæ as i Davis t al. 06). Th last-squars stimator ϕ of ϕ satisfis th rlatio ϕ ϕ = Γ,p t=p+ X t Z t, imsart-bj vr. 04/0/6 fil: DistCorBroulli_sup_r.tx dat: Fbruary 5, 07

3 Supplmt to Applicatios of Distac Corrlatio to Tim Sris 3 whr Γ,p = X T t X t. t=p+ If σ = varz t ) <, w hav by th rgodic thorm, Γ,p a.s. Γ p = γ X j k) ) j,kp, whr γ Xh) = covx 0, X h ), h Z. 4.) Causality of th procss implis that th partial sum t=p+ X t Z t is a martigal ad applyig th martigal ctral limit thorm yilds ϕ ϕ ) d Q, 4.) whr Q is N0, σ Γ p ) distributd. Kpig this i mid, w start with a joit ctral limit thorm for C Z Lmma 4... For vry h 0, Cosidr a iid squc Z t ) with fiit variac. C Z, ϕ ϕ ) d Gh, Q), ad ϕ. whr th covrgc is i CK) R p, K R is a compact st, G h is th limit procss of C Z with covariac structur spcifid i Rmark 3.9 for th squc Z t, Z t+h )), Q is th limit i 4.), G h, Q) ar ma-zro ad joitly Gaussia with covariac matrix covg h s, t), Q) = φ Zs) φ Zt) Γ p Ψ h, s, t R, 4.4) whr Ψ h = ψ h j ),...,p ad φ Z is th first drivativ of φ Z.. For vry h 0, C Z, CẐ C Z ) d Gh, ξ h ), whr G h, Q) ar spcifid i 4.4) ad ξ h s, t) = tφ Z t) φ Zs)Ψ T h Q, s, t) K, 4.5) th covrgc is i CK, R ), K R is a compact st. I particular, w hav C Ẑ d Gh + ξ h. 4.6) imsart-bj vr. 04/0/6 fil: DistCorBroulli_sup_r.tx dat: Fbruary 5, 07

4 4 Davis R.A., Matsui M., Mikosch T. ad Wa P. Proof of part ). W obsrv that, uiformly for s, t) K, C Z s, t) = +itz j+h isz j = φ Z s) ) itz j+h φ Z t) ) φ Z s) ) itz j+h itz j φ Z t) ) + O P ). I viw of th fuctioal ctral limit thorm for th mpirical charactristic fuctio of a iid squc s Csörgő 98a,98b)) w hav uiformly for s, t) K, C Z s, t) = φ Z s) ) itz j+h φ Z t) ) + O P / ) = I s, t) + O P / ). Thrfor it suffics to study th covrgc of th fiit-dimsioal distributios of I, ϕ ϕ) ). I viw of 4.) it suffics to show th covrgc of th fiitdimsioal distributios of I, / ) X ) j Z j. This covrgc follows by a applicatio of th martigal ctral limit thorm ad th Cramér-Wold dvic. It rmais to dtrmi th limitig covariac structur, takig ito accout th causality of th procss X t ). W hav cov I, X j Z j ) = E [ k= φ Z s) ) itz j+h φ Z t) ) X k Z k ]. By causality, X k ad Z j ar idpdt for k < j. Hc E[ φ Z s)) itz j+h φ Z t))x l k Z l ] is o-zro if ad oly if l = j + h ad k h, rsultig i E [ iszj φ Z s) ) itz j+h φ Z t) ) X l k Z l ] This implis 4.4). = E [ X j+h k φ Z s) )] E [ Z j+h itz j+h φ Z t) )] = ψ h k E [ Z isz φ Z s) )] E [ Z itz φ Z t) )] = ψ h k ie [ Z isz] ie [ Z itz] = ψ h k φ Zs) φ Zt). imsart-bj vr. 04/0/6 fil: DistCorBroulli_sup_r.tx dat: Fbruary 5, 07

5 Supplmt to Applicatios of Distac Corrlatio to Tim Sris 5 Proof of part ). W obsrv that, uiformly for s, t) K, CẐ s, t) C Z s, t) = isz j+itz j+h i ϕ ϕ) T sx j +tx j+h ) ) + + iϕ ϕ) T sx j ) iϕ ϕ) T sx j + itz j+h ) iϕ ϕ) T tx j+h itz j+h + O P ) S.) = E s, t) + E s, t) + E 3 s, t) + O P ). S.) Writ Ẽ s, t) = i ϕ ϕ) T sx j + t X j+h ) +itz j+h. I viw of th uiform rgodic thorm, 4.) ad th causality of X t ) w hav Ẽ s, t) d iq T E [ sx 0 + tx h ) isz+tz h+) ] S.3) = tφ Z t)φ Zs)Ψ T h Q = ξ h s, t), whr th covrgc is i CK). By virtu of part ) ad th mappig thorm w hav th joit covrgc C Z, Ẽ) d G h, ξ h ) i CK, R ). Dotig th sup-orm i CK) by, it rmais to show that E + E 3 + E Ẽ ) P 0. Th proof for E ad E 3 is aalogous to S.3) by obsrvig that th limitig xpctatio is zro. W hav by a Taylor xpasio for som positiv costat c, E s, t) Ẽs, t) c ϕ ϕ) sup s,t) K 3/ I th last stp w usd th uiform rgodic thorm ad 4.). sx j + tx j+h P 0. Proof of Thorm 4.). W procd as i th proof of Thorm 3.. By virtu of 4.6) ad th cotiuous mappig thorm w hav CẐ s, t) µds, dt) d Gs, t) + ξ h s, t) µds, dt),. K δ K δ Thus it rmais to show that lim lim sup P δ 0 K c δ ) CẐ s, t) µds, dt) > ε = 0, ε > 0. S.4) imsart-bj vr. 04/0/6 fil: DistCorBroulli_sup_r.tx dat: Fbruary 5, 07

6 6 Davis R.A., Matsui M., Mikosch T. ad Wa P. Followig th lis of th proof of Thorm 3., w hav lim lim sup E[ C Z s, t) ] µds, dt) = 0 ; δ 0 K c δ s also Rmark 3.4. Thus it suffics to show lim lim sup P ) CẐ s, t) C Z s, t)) µds, dt) > ε = 0, ε > 0. δ 0 K c δ For covic w rdfi C Z = iszj+itz j+h This vrsio dos ot chag prvious rsults for C Z. Usig tlscopig sums, w hav for = p h, CẐ s, t) C Z s, t)) = + A j B j U j B j + A j V j A j =: B j 6 I j s, t), iszj U j whr, supprssig th dpdc o s, t i th otatio, U j = iszj φ Z s), V j = itz j+h φ Z t), itz j+h. B j V j A j A j = isϕ ϕ) X j ), B j = itz j+h isϕ ϕ) X j+h ). Writ K = ϕ ϕ) ad c > 0 for ay positiv costat which may diffr from li to li. By Taylor xpasios w hav I s, t) c c mi s t K 3/ ) A j B j s ϕ ϕ X j ) t ϕ ϕ X ) j+h ) X j X j+h, s K t K X j, X j+h )). imsart-bj vr. 04/0/6 fil: DistCorBroulli_sup_r.tx dat: Fbruary 5, 07

7 Supplmt to Applicatios of Distac Corrlatio to Tim Sris 7 Th quatitis K ar stochastically boudd. From rgodic thory, X j = O P ) ad 3/ X j X j+h = o P ). Hc I s, t) mis, t, st) ) O P ) s ) t ) + s + t ) s t ) ) O P ), whr th trm O P ) dos ot dpd o s ad t. Thus w coclud for k = that ) lim lim sup P I k s, t) µds, dt) > ε = 0, ε > 0. S.5) δ 0 A similar argumt yilds I s, t) c j,k=p+ j,k=p+ K c δ A j B k mi st K 5/ s ϕ ϕ X j ) t ϕ ϕ X k+h ) s K mis, t, st) ) O P ). j,k=p+ X j X k+h, X j, t K Th S.5) holds for k =. Taylor xpasios also yild I 3 s, t) c j,k=p+ j,k=p+ U j B k mit, st) ) O P ). k=p+ ) ) X k+h s Z j + E Z )) t ϕ ϕ X k+h ) This provs S.5) for k = 3. By a symmtry argumt but with th corrspodig boud imsart-bj vr. 04/0/6 fil: DistCorBroulli_sup_r.tx dat: Fbruary 5, 07

8 8 Davis R.A., Matsui M., Mikosch T. ad Wa P. mis, st) ) O P ), S.5) for k = 4 follows as wll. By Taylor xpasio, w also hav I 5 s, t) c U j B j mit, st) ) O P ). s Z j + E Z )) t ϕ ϕ X j+h ) W may coclud that S.5) holds for k = 5. Th cas k = 6 follows i a similar way with th corrspodig boud mis, st) ) O P ). Proof of Thorm 4.). W follow th proof of Thorm 4.) by first showig that C Ẑ d Gh S.6) i CK) for K R compact, ad th S.4). Th covrgc C Z d G h i CK) cotius to hold as i th proof of Thorm 4.) sic th coditios i Csörgő 98a,98b) ar satisfid if som momt of Z is fiit. For S.6) it suffics to show that C Ẑ C Z ) p 0 S.7) i CK). Rcallig th dcompositio S.), w ow ca show dirctly that p sup s, t M Ei s, t) 0 for ay M > 0 ad i =,, 3, which implis S.7). W focus oly o th cas i = to illustrat th mthod; th cass i =, 3 ar aalogous. W obsrv that for δ > 0, sup E s, t) sup ϕ ϕ s, t M s, t M M δ ϕ ϕ δ sx j + t X j+h X j. S.8) O th othr had, udr th coditios of Thorm 4.) Haa ad Katr 977) showd for δ > α, /δ a.s. ϕ ϕ) 0. For α, ), E[ X ] < ad sic w ca choos δ = such that /δ + / =. Th rgodic thorm fially yilds that th right-had sid i S.8) covrgs to zro a.s. As rgards th cas α 0, ], w hav E[ X α γ ] < for ay small γ ad [ E /δ / X j α γ] α γ)/δ+/)+ E[ X α γ ] 0. imsart-bj vr. 04/0/6 fil: DistCorBroulli_sup_r.tx dat: Fbruary 5, 07

9 Supplmt to Applicatios of Distac Corrlatio to Tim Sris 9 If w choos δ clos to α ad γ clos to zro th right-had sid i S.8) covrgs to zro i probability. Usig th sam bouds as i part ), but writig this tim K = /δ ϕ ϕ, w hav I s, t) c mi s t K / /δ t K /δ / j=0 X j X j+h, s K /δ / X j, X j )) c mi s t, s, t ) max K / /δ X j X j+h, K /δ / j=0 X j ). Th sam argumt as abov shows that /δ / j=0 X j = O P ) for δ clos to α. Sic X j X j+h Xj + X j+h a similar argumt shows that / /δ X j X j+h = O P ). Ths facts stablish S.5) for k =. Th sam argumts show that bouds aalogous to part ) ca b drivd for I k s, t) for k =,..., 6. W omit furthr dtails. j=0 Rfrcs Aaroso, J., Burto, R., Dhlig, H., Gilat D., Hill, T. ad Wiss, B. 996) Strog laws of L- ad U-statistics. Tras. Amr. Math. Soc. 348, Bickl, P.J. ad Wichura, M.J. 97) Covrgc critria for multiparamtr stochastic procsss ad som applicatios. A. Statist. 4, Billigsly, P. 999) Covrgc of Probability Masurs, d d. Wily, Nw York. Brockwll, P. ad Davis, R.A. 99) Tim Sris: Thory ad Mthods. Sprigr, Nw York. Csörgő, S. 98a) Limit bhaviour of th mpirical charactristic fuctio. A. Probab. 9, Csörgő, S. 98b) Multivariat charactristic fuctios ad tail bhaviour. Z. Wahrsch. vrw. Gbit 55, Csörgő, S. 98c) Multivariat mpirical charactristic fuctios. Z. Wahrsch. vrw. Gb. 55, Davis, R.A., Matsui, M., Mikosch, T. ad Wa, P. 06) Applicatios of distac corrlatio to tim sris. Submittd to Broulli. Doukha, P. 994) Mixig: Proprtis ad Exampls. Sprigr-Vrlag, Nw York. Duck, J., Edlma, D., Gitig, T., ad Richards, D. 04) Th affily ivariat distac corrlatio. Broulli 0, imsart-bj vr. 04/0/6 fil: DistCorBroulli_sup_r.tx dat: Fbruary 5, 07

10 0 Davis R.A., Matsui M., Mikosch T. ad Wa P. Fllr, W. 97) A Itroductio to Probability Thory ad its Applicatios. Vol. II, d d. Wily, Nw York. Furvrgr, A. ad Murika, R.A. 977) Th mpirical charactristic fuctio ad its applicatios. A. Statist. 5, Furvrgr, A. 993) A cosistt tst for bivariat dpdc. It. Stat. Rv. 6, Fokiaos, K. ad Pitsillou, M. 06) Cosistt tstig for pairwis dpdc i tim sris. Tchomtrics, to appar. Haa, E.J. ad Katr, M. 977) Autorgrssiv procsss with ifiit variac. J. Appl. Probab. 4, Hasltt, J. ad Raftry, A.E. 989) Spac-tim modllig with log-mmory dpdc: Assssig Irlad s wid powr rsourc. J. R. Stat. Soc. Sr. C. Appl. Stat. 38, 50. Hlávka, Z., Hušková, M. ad Mitais, S.G. 0) Tsts for idpdc i oparamtric htroscdastic rgrssio modls. J. Multivariat Aal. 0, Ibragimov, I.A. ad Liik, Yu.V. 97) Idpdt ad Statioary Squcs of Radom Variabls. Woltrs Noordhoff, Groig. Krgl, U. 985) Ergodic Thorms. With a supplmt by Atoi Brul. Waltr d Gruytr, Brli. Kuo, H.H. 975) Gaussia Masurs i Baach Spacs. Lctur. Nots i Math Sprigr, Brli. Lyos, R. 03) Distac covariac i mtric spacs. A. Probab. 4, Mitais, S.G. ad Iliopoulos, G. 008) Fourir mthods for tstig multivariat idpdc. Comput. Statist. Data Aal. 5, Mitais, S.G., Ngatchou-Wadji, J. ad Taufr, E. 05) Goodss-of-fit tsts for multivariat stabl distributios basd o th mpirical charactristic fuctio. J. Multivariat Aal. 40, 7 9. Politis, D.N., Romao, J.P. ad Wolf, M. 999) Subsamplig. Sprigr, Nw York. Rémillard, B. 009) Discussio of: Browia distac covariac. A. Statist. 3, Sjdiovic, D., Sriprumbudur, B., Grtto, A. ad Fukumizu, K. 03) Equivalc of distac-basd ad RKHS-basd statistics i hypothsis tstig. A. Statist. 4, Székly, G.J., Rizzo, M.L. ad Bakirov, N.K. 007) Masurig ad tstig dpdc by corrlatio of distacs. A. Statist. 35, Székly, G.J. ad Rizzo, M.L. 009) Browia distac covariac. A. Appl. Stat. 3, Székly, G.J. ad Rizzo, M.L. 04) Partial distac corrlatio with mthods for dissimilaritis. A. Statist. 4, Zhou, Z. 0) Masurig o liar dpdc i tim-sris, a distac corrlatio approach. J. Tim Sris Aal. 33, imsart-bj vr. 04/0/6 fil: DistCorBroulli_sup_r.tx dat: Fbruary 5, 07

Law of large numbers

Law of large numbers Law of larg umbrs Saya Mukhrj W rvisit th law of larg umbrs ad study i som dtail two typs of law of larg umbrs ( 0 = lim S ) p ε ε > 0, Wak law of larrg umbrs [ ] S = ω : lim = p, Strog law of larg umbrs

More information

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series Chatr Ifiit Sris Pag of Sctio F Itgral Tst Chatr : Ifiit Sris By th d of this sctio you will b abl to valuat imror itgrals tst a sris for covrgc by alyig th itgral tst aly th itgral tst to rov th -sris

More information

On the approximation of the constant of Napier

On the approximation of the constant of Napier Stud. Uiv. Babş-Bolyai Math. 560, No., 609 64 O th approximatio of th costat of Napir Adri Vrscu Abstract. Startig from som oldr idas of [] ad [6], w show w facts cocrig th approximatio of th costat of

More information

A Note on Quantile Coupling Inequalities and Their Applications

A Note on Quantile Coupling Inequalities and Their Applications A Not o Quatil Couplig Iqualitis ad Thir Applicatios Harriso H. Zhou Dpartmt of Statistics, Yal Uivrsity, Nw Hav, CT 06520, USA. E-mail:huibi.zhou@yal.du Ju 2, 2006 Abstract A rlatioship btw th larg dviatio

More information

The Interplay between l-max, l-min, p-max and p-min Stable Distributions

The Interplay between l-max, l-min, p-max and p-min Stable Distributions DOI: 0.545/mjis.05.4006 Th Itrplay btw lma lmi pma ad pmi Stabl Distributios S Ravi ad TS Mavitha Dpartmt of Studis i Statistics Uivrsity of Mysor Maasagagotri Mysuru 570006 Idia. Email:ravi@statistics.uimysor.ac.i

More information

Statistics 3858 : Likelihood Ratio for Exponential Distribution

Statistics 3858 : Likelihood Ratio for Exponential Distribution Statistics 3858 : Liklihood Ratio for Expotial Distributio I ths two xampl th rjctio rjctio rgio is of th form {x : 2 log (Λ(x)) > c} for a appropriat costat c. For a siz α tst, usig Thorm 9.5A w obtai

More information

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z Sris Expasio of Rciprocal of Gamma Fuctio. Fuctios with Itgrs as Roots Fuctio f with gativ itgrs as roots ca b dscribd as follows. f() Howvr, this ifiit product divrgs. That is, such a fuctio caot xist

More information

Applications of Distance Correlation to Time Series

Applications of Distance Correlation to Time Series Applications of Distance Correlation to Time Series Richard A. Davis, Columbia University Muneya Matsui, Nanzan University Thomas Mikosch, University of Copenhagen Phyllis Wan, Columbia University May

More information

Restricted Factorial And A Remark On The Reduced Residue Classes

Restricted Factorial And A Remark On The Reduced Residue Classes Applid Mathmatics E-Nots, 162016, 244-250 c ISSN 1607-2510 Availabl fr at mirror sits of http://www.math.thu.du.tw/ am/ Rstrictd Factorial Ad A Rmark O Th Rducd Rsidu Classs Mhdi Hassai Rcivd 26 March

More information

PURE MATHEMATICS A-LEVEL PAPER 1

PURE MATHEMATICS A-LEVEL PAPER 1 -AL P MATH PAPER HONG KONG EXAMINATIONS AUTHORITY HONG KONG ADVANCED LEVEL EXAMINATION PURE MATHEMATICS A-LEVEL PAPER 8 am am ( hours) This papr must b aswrd i Eglish This papr cosists of Sctio A ad Sctio

More information

Lectures 9 IIR Systems: First Order System

Lectures 9 IIR Systems: First Order System EE3054 Sigals ad Systms Lcturs 9 IIR Systms: First Ordr Systm Yao Wag Polytchic Uivrsity Som slids icludd ar xtractd from lctur prstatios prpard by McCllla ad Schafr Lics Ifo for SPFirst Slids This work

More information

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple 5/24/5 A PROOF OF THE CONTINUED FRACTION EXPANSION OF / Thomas J Oslr INTRODUCTION This ar givs aothr roof for th rmarkabl siml cotiud fractio = 3 5 / Hr is ay ositiv umbr W us th otatio x= [ a; a, a2,

More information

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx MONTGOMERY COLLEGE Dpartmt of Mathmatics Rockvill Campus MATH 8 - REVIEW PROBLEMS. Stat whthr ach of th followig ca b itgratd by partial fractios (PF), itgratio by parts (PI), u-substitutio (U), or o of

More information

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1 DTFT Proprtis Exampl - Dtrmi th DTFT Y of y α µ, α < Lt x α µ, α < W ca thrfor writ y x x From Tabl 3., th DTFT of x is giv by ω X ω α ω Copyright, S. K. Mitra Copyright, S. K. Mitra DTFT Proprtis DTFT

More information

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net Taylor s Thorm & Lagrag Error Bouds Actual Error This is th ral amout o rror, ot th rror boud (worst cas scario). It is th dirc btw th actual () ad th polyomial. Stps:. Plug -valu ito () to gt a valu.

More information

A Simple Proof that e is Irrational

A Simple Proof that e is Irrational Two of th most bautiful ad sigificat umbrs i mathmatics ar π ad. π (approximatly qual to 3.459) rprsts th ratio of th circumfrc of a circl to its diamtr. (approximatly qual to.788) is th bas of th atural

More information

10. Joint Moments and Joint Characteristic Functions

10. Joint Moments and Joint Characteristic Functions 0 Joit Momts ad Joit Charactristic Fctios Followig sctio 6 i this sctio w shall itrodc varios paramtrs to compactly rprst th iformatio cotaid i th joit pdf of two rvs Giv two rvs ad ad a fctio g x y dfi

More information

Probability & Statistics,

Probability & Statistics, Probability & Statistics, BITS Pilai K K Birla Goa Campus Dr. Jajati Kshari Sahoo Dpartmt of Mathmatics BITS Pilai, K K Birla Goa Campus Poisso Distributio Poisso Distributio: A radom variabl X is said

More information

Empirical Study in Finite Correlation Coefficient in Two Phase Estimation

Empirical Study in Finite Correlation Coefficient in Two Phase Estimation M. Khoshvisa Griffith Uivrsity Griffith Busiss School Australia F. Kaymarm Massachustts Istitut of Tchology Dpartmt of Mchaical girig USA H. P. Sigh R. Sigh Vikram Uivrsity Dpartmt of Mathmatics ad Statistics

More information

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges.

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges. Optio Chaptr Ercis. Covrgs to Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Divrgs 8 Divrgs Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Covrgs to Covrgs to 8 Proof Covrgs to π l 8 l a b Divrgt π Divrgt

More information

An Introduction to Asymptotic Expansions

An Introduction to Asymptotic Expansions A Itroductio to Asmptotic Expasios R. Shaar Subramaia Asmptotic xpasios ar usd i aalsis to dscrib th bhavior of a fuctio i a limitig situatio. Wh a fuctio ( x, dpds o a small paramtr, ad th solutio of

More information

STIRLING'S 1 FORMULA AND ITS APPLICATION

STIRLING'S 1 FORMULA AND ITS APPLICATION MAT-KOL (Baja Luka) XXIV ()(08) 57-64 http://wwwimviblorg/dmbl/dmblhtm DOI: 075/МК80057A ISSN 0354-6969 (o) ISSN 986-588 (o) STIRLING'S FORMULA AND ITS APPLICATION Šfkt Arslaagić Sarajvo B&H Abstract:

More information

1985 AP Calculus BC: Section I

1985 AP Calculus BC: Section I 985 AP Calculus BC: Sctio I 9 Miuts No Calculator Nots: () I this amiatio, l dots th atural logarithm of (that is, logarithm to th bas ). () Ulss othrwis spcifid, th domai of a fuctio f is assumd to b

More information

Digital Signal Processing, Fall 2006

Digital Signal Processing, Fall 2006 Digital Sigal Procssig, Fall 6 Lctur 9: Th Discrt Fourir Trasfor Zhg-Hua Ta Dpartt of Elctroic Systs Aalborg Uivrsity, Dar zt@o.aau.d Digital Sigal Procssig, I, Zhg-Hua Ta, 6 Cours at a glac MM Discrt-ti

More information

APPENDIX: STATISTICAL TOOLS

APPENDIX: STATISTICAL TOOLS I. Nots o radom samplig Why do you d to sampl radomly? APPENDI: STATISTICAL TOOLS I ordr to masur som valu o a populatio of orgaisms, you usually caot masur all orgaisms, so you sampl a subst of th populatio.

More information

ln x = n e = 20 (nearest integer)

ln x = n e = 20 (nearest integer) H JC Prlim Solutios 6 a + b y a + b / / dy a b 3/ d dy a b at, d Giv quatio of ormal at is y dy ad y wh. d a b () (,) is o th curv a+ b () y.9958 Qustio Solvig () ad (), w hav a, b. Qustio d.77 d d d.77

More information

On a problem of J. de Graaf connected with algebras of unbounded operators de Bruijn, N.G.

On a problem of J. de Graaf connected with algebras of unbounded operators de Bruijn, N.G. O a problm of J. d Graaf coctd with algbras of uboudd oprators d Bruij, N.G. Publishd: 01/01/1984 Documt Vrsio Publishr s PDF, also kow as Vrsio of Rcord (icluds fial pag, issu ad volum umbrs) Plas chck

More information

NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES

NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES Digst Joural of Naomatrials ad Biostructurs Vol 4, No, March 009, p 67-76 NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES A IRANMANESH a*, O KHORMALI b, I NAJAFI KHALILSARAEE c, B SOLEIMANI

More information

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA NE APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA Mirca I CÎRNU Ph Dp o Mathmatics III Faculty o Applid Scincs Univrsity Polithnica o Bucharst Cirnumirca @yahoocom Abstract In a rcnt papr [] 5 th indinit intgrals

More information

Chapter Taylor Theorem Revisited

Chapter Taylor Theorem Revisited Captr 0.07 Taylor Torm Rvisitd Atr radig tis captr, you sould b abl to. udrstad t basics o Taylor s torm,. writ trascdtal ad trigoomtric uctios as Taylor s polyomial,. us Taylor s torm to id t valus o

More information

Chapter 10. The singular integral Introducing S(n) and J(n)

Chapter 10. The singular integral Introducing S(n) and J(n) Chaptr Th singular intgral Our aim in this chaptr is to rplac th functions S (n) and J (n) by mor convnint xprssions; ths will b calld th singular sris S(n) and th singular intgral J(n). This will b don

More information

NET/JRF, GATE, IIT JAM, JEST, TIFR

NET/JRF, GATE, IIT JAM, JEST, TIFR Istitut for NET/JRF, GATE, IIT JAM, JEST, TIFR ad GRE i PHYSICAL SCIENCES Mathmatical Physics JEST-6 Q. Giv th coditio φ, th solutio of th quatio ψ φ φ is giv by k. kφ kφ lφ kφ lφ (a) ψ (b) ψ kφ (c) ψ

More information

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II COLLECTION OF SUPPLEMENTARY PROBLEMS I. CHAPTER 6 --- Trscdtl Fuctios CALCULUS II A. FROM CALCULUS BY J. STEWART:. ( How is th umbr dfid? ( Wht is pproimt vlu for? (c ) Sktch th grph of th turl potil fuctios.

More information

CDS 101: Lecture 5.1 Reachability and State Space Feedback

CDS 101: Lecture 5.1 Reachability and State Space Feedback CDS, Lctur 5. CDS : Lctur 5. Rachability ad Stat Spac Fdback Richard M. Murray 7 Octobr 3 Goals: Di rachability o a cotrol systm Giv tsts or rachability o liar systms ad apply to ampls Dscrib th dsig o

More information

ONLINE SUPPLEMENT Optimal Markdown Pricing and Inventory Allocation for Retail Chains with Inventory Dependent Demand

ONLINE SUPPLEMENT Optimal Markdown Pricing and Inventory Allocation for Retail Chains with Inventory Dependent Demand Submittd to Maufacturig & Srvic Opratios Maagmt mauscript MSOM 5-4R2 ONLINE SUPPLEMENT Optimal Markdow Pricig ad Ivtory Allocatio for Rtail Chais with Ivtory Dpdt Dmad Stph A Smith Dpartmt of Opratios

More information

UNIVERSALITY LIMITS INVOLVING ORTHOGONAL POLYNOMIALS ON AN ARC OF THE UNIT CIRCLE

UNIVERSALITY LIMITS INVOLVING ORTHOGONAL POLYNOMIALS ON AN ARC OF THE UNIT CIRCLE UNIVERSALITY LIMITS INVOLVING ORTHOGONAL POLYNOMIALS ON AN ARC OF THE UNIT CIRCLE DORON S. LUBINSKY AND VY NGUYEN A. W stablish uivrsality limits for masurs o a subarc of th uit circl. Assum that µ is

More information

Derivation of a Predictor of Combination #1 and the MSE for a Predictor of a Position in Two Stage Sampling with Response Error.

Derivation of a Predictor of Combination #1 and the MSE for a Predictor of a Position in Two Stage Sampling with Response Error. Drivatio of a Prdictor of Cobiatio # ad th SE for a Prdictor of a Positio i Two Stag Saplig with Rspos Error troductio Ed Stak W driv th prdictor ad its SE of a prdictor for a rado fuctio corrspodig to

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 21 11/27/2013

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 21 11/27/2013 MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 21 11/27/2013 Fuctioal Law of Large Numbers. Costructio of the Wieer Measure Cotet. 1. Additioal techical results o weak covergece

More information

H2 Mathematics Arithmetic & Geometric Series ( )

H2 Mathematics Arithmetic & Geometric Series ( ) H Mathmatics Arithmtic & Gomtric Sris (08 09) Basic Mastry Qustios Arithmtic Progrssio ad Sris. Th rth trm of a squc is 4r 7. (i) Stat th first four trms ad th 0th trm. (ii) Show that th squc is a arithmtic

More information

CDS 101: Lecture 5.1 Reachability and State Space Feedback

CDS 101: Lecture 5.1 Reachability and State Space Feedback CDS, Lctur 5. CDS : Lctur 5. Rachability ad Stat Spac Fdback Richard M. Murray ad Hido Mabuchi 5 Octobr 4 Goals: Di rachability o a cotrol systm Giv tsts or rachability o liar systms ad apply to ampls

More information

Ordinary Differential Equations

Ordinary Differential Equations Basi Nomlatur MAE 0 all 005 Egirig Aalsis Ltur Nots o: Ordiar Diffrtial Equatios Author: Profssor Albrt Y. Tog Tpist: Sakurako Takahashi Cosidr a gral O. D. E. with t as th idpdt variabl, ad th dpdt variabl.

More information

Kolmogorov-Smirnov type Tests for Local Gaussianity in High-Frequency Data

Kolmogorov-Smirnov type Tests for Local Gaussianity in High-Frequency Data Proceedigs 59th ISI World Statistics Cogress, 5-30 August 013, Hog Kog (Sessio STS046) p.09 Kolmogorov-Smirov type Tests for Local Gaussiaity i High-Frequecy Data George Tauche, Duke Uiversity Viktor Todorov,

More information

arxiv: v1 [math.fa] 18 Feb 2016

arxiv: v1 [math.fa] 18 Feb 2016 SPECTRAL PROPERTIES OF WEIGHTE COMPOSITION OPERATORS ON THE BLOCH AN IRICHLET SPACES arxiv:60.05805v [math.fa] 8 Fb 06 TE EKLUN, MIKAEL LINSTRÖM, AN PAWE L MLECZKO Abstract. Th spctra of ivrtibl wightd

More information

Hadamard Exponential Hankel Matrix, Its Eigenvalues and Some Norms

Hadamard Exponential Hankel Matrix, Its Eigenvalues and Some Norms Math Sci Ltt Vol No 8-87 (0) adamard Exotial al Matrix, Its Eigvalus ad Som Norms İ ad M bula Mathmatical Scics Lttrs Itratioal Joural @ 0 NSP Natural Scics Publishig Cor Dartmt of Mathmatics, aculty of

More information

TESTING FOR THE BUFFERED AUTOREGRESSIVE PROCESSES (SUPPLEMENTARY MATERIAL)

TESTING FOR THE BUFFERED AUTOREGRESSIVE PROCESSES (SUPPLEMENTARY MATERIAL) TESTING FOR THE BUFFERED AUTOREGRESSIVE PROCESSES SUPPLEMENTARY MATERIAL) By Ke Zhu, Philip L.H. Yu ad Wai Keug Li Chiese Academy of Scieces ad Uiversity of Hog Kog APPENDIX: PROOFS I this appedix, we

More information

International Journal of Advanced and Applied Sciences

International Journal of Advanced and Applied Sciences Itratioal Joural of Advacd ad Applid Scics x(x) xxxx Pags: xx xx Cotts lists availabl at Scic Gat Itratioal Joural of Advacd ad Applid Scics Joural hompag: http://wwwscic gatcom/ijaashtml Symmtric Fuctios

More information

Discrete Fourier Transform. Nuno Vasconcelos UCSD

Discrete Fourier Transform. Nuno Vasconcelos UCSD Discrt Fourir Trasform uo Vascoclos UCSD Liar Shift Ivariat (LSI) systms o of th most importat cocpts i liar systms thory is that of a LSI systm Dfiitio: a systm T that maps [ ito y[ is LSI if ad oly if

More information

Page 1. Before-After Control-Impact (BACI) Power Analysis For Several Related Populations (Variance Known) Richard A. Hinrichsen. September 24, 2010

Page 1. Before-After Control-Impact (BACI) Power Analysis For Several Related Populations (Variance Known) Richard A. Hinrichsen. September 24, 2010 Pag for-aftr Cotrol-Impact (ACI) Powr Aalysis For Svral Rlatd Populatios (Variac Kow) Richard A. Hirichs Sptmbr 4, Cavat: This primtal dsig tool is a idalizd powr aalysis built upo svral simplifyig assumptios

More information

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform Discrt Fourir Trasform Dfiitio - T simplst rlatio btw a lt- squc x dfid for ω ad its DTFT X ( ) is ω obtaid by uiformly sampli X ( ) o t ω-axis btw ω < at ω From t dfiitio of t DTFT w tus av X X( ω ) ω

More information

Calculus & analytic geometry

Calculus & analytic geometry Calculus & aalytic gomtry B Sc MATHEMATICS Admissio owards IV SEMESTER CORE COURSE UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION CALICUT UNIVERSITYPO, MALAPPURAM, KERALA, INDIA 67 65 5 School of Distac

More information

Gaps in samples of geometric random variables

Gaps in samples of geometric random variables Discrt Mathmatics 37 7 871 89 Not Gaps i sampls of gomtric radom variabls William M.Y. Goh a, Pawl Hitczko b,1 a Dpartmt of Mathmatics, Drxl Uivrsity, Philadlphia, PA 1914, USA b Dpartmts of Mathmatics

More information

Iterative Methods of Order Four for Solving Nonlinear Equations

Iterative Methods of Order Four for Solving Nonlinear Equations Itrativ Mods of Ordr Four for Solvig Noliar Equatios V.B. Kumar,Vatti, Shouri Domii ad Mouia,V Dpartmt of Egirig Mamatis, Formr Studt of Chmial Egirig Adhra Uivrsity Collg of Egirig A, Adhra Uivrsity Visakhapatam

More information

Time regularity of solutions to linear equations with Lévy noise in infinite dimensions

Time regularity of solutions to linear equations with Lévy noise in infinite dimensions Tim rgularity of solutios to liar quatios with Lévy ois i ifiit dimsios S. Pszat Faculty of Applid Mathmatics, AG Uivrsity of Scic ad Tchology, Kraków, Polad, E-mail adrss: apszat@cyf-kr.du.pl. J. Zabczyk

More information

Lecture 20: Multivariate convergence and the Central Limit Theorem

Lecture 20: Multivariate convergence and the Central Limit Theorem Lecture 20: Multivariate covergece ad the Cetral Limit Theorem Covergece i distributio for radom vectors Let Z,Z 1,Z 2,... be radom vectors o R k. If the cdf of Z is cotiuous, the we ca defie covergece

More information

Introduction to Extreme Value Theory Laurens de Haan, ISM Japan, Erasmus University Rotterdam, NL University of Lisbon, PT

Introduction to Extreme Value Theory Laurens de Haan, ISM Japan, Erasmus University Rotterdam, NL University of Lisbon, PT Itroductio to Extreme Value Theory Laures de Haa, ISM Japa, 202 Itroductio to Extreme Value Theory Laures de Haa Erasmus Uiversity Rotterdam, NL Uiversity of Lisbo, PT Itroductio to Extreme Value Theory

More information

SOME IDENTITIES FOR THE GENERALIZED POLY-GENOCCHI POLYNOMIALS WITH THE PARAMETERS A, B AND C

SOME IDENTITIES FOR THE GENERALIZED POLY-GENOCCHI POLYNOMIALS WITH THE PARAMETERS A, B AND C Joural of Mathatical Aalysis ISSN: 2217-3412, URL: www.ilirias.co/ja Volu 8 Issu 1 2017, Pags 156-163 SOME IDENTITIES FOR THE GENERALIZED POLY-GENOCCHI POLYNOMIALS WITH THE PARAMETERS A, B AND C BURAK

More information

Supplemental Material for "Automated Estimation of Vector Error Correction Models"

Supplemental Material for Automated Estimation of Vector Error Correction Models Supplmtal Matrial for "Automatd Estimatio of Vctor Error Corrctio Modls" ipg Liao Ptr C. B. Pillips y Tis Vrsio: Sptmbr 23 Abstract Tis supplmt icluds two sctios. Sctio cotais t proofs of som auxiliary

More information

Cramér-Rao Inequality: Let f(x; θ) be a probability density function with continuous parameter

Cramér-Rao Inequality: Let f(x; θ) be a probability density function with continuous parameter WHEN THE CRAMÉR-RAO INEQUALITY PROVIDES NO INFORMATION STEVEN J. MILLER Abstract. W invstigat a on-paramtr family of probability dnsitis (rlatd to th Parto distribution, which dscribs many natural phnomna)

More information

Technical Support Document Bias of the Minimum Statistic

Technical Support Document Bias of the Minimum Statistic Tchical Support Documt Bias o th Miimum Stattic Itroductio Th papr pla how to driv th bias o th miimum stattic i a radom sampl o siz rom dtributios with a shit paramtr (also kow as thrshold paramtr. Ths

More information

Journal of Modern Applied Statistical Methods

Journal of Modern Applied Statistical Methods Joural of Modr Applid Statistical Mthods Volum Issu Articl 6 --03 O Som Proprtis of a Htrogous Trasfr Fuctio Ivolvig Symmtric Saturatd Liar (SATLINS) with Hyprbolic Tagt (TANH) Trasfr Fuctios Christophr

More information

Bayesian Test for Lifetime Performance Index of Exponential Distribution under Symmetric Entropy Loss Function

Bayesian Test for Lifetime Performance Index of Exponential Distribution under Symmetric Entropy Loss Function Mathmatics ttrs 08; 4(): 0-4 http://www.scicpublishiggroup.com/j/ml doi: 0.648/j.ml.08040.5 ISSN: 575-503X (Prit); ISSN: 575-5056 (Oli) aysia Tst for iftim Prformac Idx of Expotial Distributio udr Symmtric

More information

COMPUTING FOLRIER AND LAPLACE TRANSFORMS. Sven-Ake Gustafson. be a real-valued func'cion, defined for nonnegative arguments.

COMPUTING FOLRIER AND LAPLACE TRANSFORMS. Sven-Ake Gustafson. be a real-valued func'cion, defined for nonnegative arguments. 77 COMPUTNG FOLRER AND LAPLACE TRANSFORMS BY MEANS OF PmER SERES EVALU\TON Sv-Ak Gustafso 1. NOTATONS AND ASSUMPTONS Lt f b a ral-valud fuc'cio, dfid for ogativ argumts. W shall discuss som aspcts of th

More information

Bipolar Junction Transistors

Bipolar Junction Transistors ipolar Juctio Trasistors ipolar juctio trasistors (JT) ar activ 3-trmial dvics with aras of applicatios: amplifirs, switch tc. high-powr circuits high-spd logic circuits for high-spd computrs. JT structur:

More information

An Introduction to Asymptotic Expansions

An Introduction to Asymptotic Expansions A Itroductio to Asmptotic Expasios R. Shaar Subramaia Dpartmt o Chmical ad Biomolcular Egirig Clarso Uivrsit Asmptotic xpasios ar usd i aalsis to dscrib th bhavior o a uctio i a limitig situatio. Wh a

More information

Bayesian Estimations in Insurance Theory and Practice

Bayesian Estimations in Insurance Theory and Practice Advacs i Mathmatical ad Computatioal Mthods Baysia Estimatios i Isurac Thory ad Practic VIERA PACÁKOVÁ Dpartmt o Mathmatics ad Quatitativ Mthods Uivrsity o Pardubic Studtská 95, 53 0 Pardubic CZECH REPUBLIC

More information

Fooling Newton s Method a) Find a formula for the Newton sequence, and verify that it converges to a nonzero of f. A Stirling-like Inequality

Fooling Newton s Method a) Find a formula for the Newton sequence, and verify that it converges to a nonzero of f. A Stirling-like Inequality Foolig Nwto s Mthod a Fid a formla for th Nwto sqc, ad vrify that it covrgs to a ozro of f. ( si si + cos 4 4 3 4 8 8 bt f. b Fid a formla for f ( ad dtrmi its bhavior as. f ( cos si + as A Stirlig-li

More information

Mixing time with Coupling

Mixing time with Coupling Mixig im wih Couplig Jihui Li Mig Zhg Saisics Dparm May 7 Goal Iroducio o boudig h mixig im for MCMC wih couplig ad pah couplig Prsig a simpl xampl o illusra h basic ida Noaio M is a Markov chai o fii

More information

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels LUR 3 illig th bads Occupacy o Availabl rgy Lvls W hav dtrmid ad a dsity o stats. W also d a way o dtrmiig i a stat is illd or ot at a giv tmpratur. h distributio o th rgis o a larg umbr o particls ad

More information

Linear Algebra Existence of the determinant. Expansion according to a row.

Linear Algebra Existence of the determinant. Expansion according to a row. Lir Algbr 2270 1 Existc of th dtrmit. Expsio ccordig to row. W dfi th dtrmit for 1 1 mtrics s dt([]) = (1) It is sy chck tht it stisfis D1)-D3). For y othr w dfi th dtrmit s follows. Assumig th dtrmit

More information

STA Object Data Analysis - A List of Projects. January 18, 2018

STA Object Data Analysis - A List of Projects. January 18, 2018 STA 6557 Jauary 8, 208 Object Data Aalysis - A List of Projects. Schoeberg Mea glaucomatous shape chages of the Optic Nerve Head regio i aimal models 2. Aalysis of VW- Kedall ati-mea shapes with a applicatio

More information

ECE 330:541, Stochastic Signals and Systems Lecture Notes on Limit Theorems from Probability Fall 2002

ECE 330:541, Stochastic Signals and Systems Lecture Notes on Limit Theorems from Probability Fall 2002 ECE 330:541, Stochastic Sigals ad Systems Lecture Notes o Limit Theorems from robability Fall 00 I practice, there are two ways we ca costruct a ew sequece of radom variables from a old sequece of radom

More information

15/03/1439. Lectures on Signals & systems Engineering

15/03/1439. Lectures on Signals & systems Engineering Lcturs o Sigals & syms Egirig Dsigd ad Prd by Dr. Ayma Elshawy Elsfy Dpt. of Syms & Computr Eg. Al-Azhar Uivrsity Email : aymalshawy@yahoo.com A sigal ca b rprd as a liar combiatio of basic sigals. Th

More information

Application of Distance Covariance to Extremes and Time Series and Inference for Linear Preferential Attachment Networks

Application of Distance Covariance to Extremes and Time Series and Inference for Linear Preferential Attachment Networks Applicatio of Distace Covariace to Extremes ad Time Series ad Iferece for Liear Preferetial Attachmet Networks Phyllis Wa Submitted i partial fulfillmet of the requiremets for the degree of Doctor of Philosophy

More information

Einstein Equations for Tetrad Fields

Einstein Equations for Tetrad Fields Apiron, Vol 13, No, Octobr 006 6 Einstin Equations for Ttrad Filds Ali Rıza ŞAHİN, R T L Istanbul (Turky) Evry mtric tnsor can b xprssd by th innr product of ttrad filds W prov that Einstin quations for

More information

Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT) Discrt Fourir Trasorm DFT Major: All Egirig Majors Authors: Duc guy http://umricalmthods.g.us.du umrical Mthods or STEM udrgraduats 8/3/29 http://umricalmthods.g.us.du Discrt Fourir Trasorm Rcalld th xpotial

More information

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 12

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 12 REVIEW Lctur 11: Numrical Fluid Mchaics Sprig 2015 Lctur 12 Fiit Diffrcs basd Polyomial approximatios Obtai polyomial (i gral u-qually spacd), th diffrtiat as dd Nwto s itrpolatig polyomial formulas Triagular

More information

Problem Value Score Earned No/Wrong Rec -3 Total

Problem Value Score Earned No/Wrong Rec -3 Total GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING ECE6 Fall Quiz # Writt Eam Novmr, NAME: Solutio Kys GT Usram: LAST FIRST.g., gtiit Rcitatio Sctio: Circl t dat & tim w your Rcitatio

More information

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n 07 - SEQUENCES AND SERIES Pag ( Aswrs at h d of all qustios ) ( ) If = a, y = b, z = c, whr a, b, c ar i A.P. ad = 0 = 0 = 0 l a l

More information

Frequency Measurement in Noise

Frequency Measurement in Noise Frqucy Masurmt i ois Porat Sctio 6.5 /4 Frqucy Mas. i ois Problm Wat to o look at th ct o ois o usig th DFT to masur th rqucy o a siusoid. Cosidr sigl complx siusoid cas: j y +, ssum Complx Whit ois Gaussia,

More information

ω (argument or phase)

ω (argument or phase) Imagiary uit: i ( i Complx umbr: z x+ i y Cartsia coordiats: x (ral part y (imagiary part Complx cougat: z x i y Absolut valu: r z x + y Polar coordiats: r (absolut valu or modulus ω (argumt or phas x

More information

Introduction to Quantum Information Processing. Overview. A classical randomised algorithm. q 3,3 00 0,0. p 0,0. Lecture 10.

Introduction to Quantum Information Processing. Overview. A classical randomised algorithm. q 3,3 00 0,0. p 0,0. Lecture 10. Itroductio to Quatum Iformatio Procssig Lctur Michl Mosca Ovrviw! Classical Radomizd vs. Quatum Computig! Dutsch-Jozsa ad Brsti- Vazirai algorithms! Th quatum Fourir trasform ad phas stimatio A classical

More information

t i Extreme value statistics Problems of extrapolating to values we have no data about unusually large or small ~100 years (data) ~500 years (design)

t i Extreme value statistics Problems of extrapolating to values we have no data about unusually large or small ~100 years (data) ~500 years (design) Extrm valu statistics Problms of xtrapolatig to valus w hav o data about uusually larg or small t i ~00 yars (data h( t i { h( }? max t i wids v( t i ~500 yars (dsig Qustio: Ca this b do at all? How log

More information

Random Process Part 1

Random Process Part 1 Random Procss Part A random procss t (, ζ is a signal or wavform in tim. t : tim ζ : outcom in th sampl spac Each tim w rapat th xprimnt, a nw wavform is gnratd. ( W will adopt t for short. Tim sampls

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling Tripl Play: From D Morga to Stirlig To Eulr to Maclauri to Stirlig Augustus D Morga (186-1871) was a sigificat Victoria Mathmaticia who mad cotributios to Mathmatics History, Mathmatical Rcratios, Mathmatical

More information

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation.

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation. Lur 7 Fourir Transforms and th Wav Euation Ovrviw and Motivation: W first discuss a fw faturs of th Fourir transform (FT), and thn w solv th initial-valu problm for th wav uation using th Fourir transform

More information

Lecture 8: Convergence of transformations and law of large numbers

Lecture 8: Convergence of transformations and law of large numbers Lecture 8: Covergece of trasformatios ad law of large umbers Trasformatio ad covergece Trasformatio is a importat tool i statistics. If X coverges to X i some sese, we ofte eed to check whether g(x ) coverges

More information

ON A CONJECTURE OF RYSElt AND MINC

ON A CONJECTURE OF RYSElt AND MINC MA THEMATICS ON A CONJECTURE OF RYSElt AND MINC BY ALBERT NIJE~HUIS*) AND HERBERT S. WILF *) (Communicatd at th mting of January 31, 1970) 1. Introduction Lt A b an n x n matrix of zros and ons, and suppos

More information

An almost sure invariance principle for trimmed sums of random vectors

An almost sure invariance principle for trimmed sums of random vectors Proc. Idia Acad. Sci. Math. Sci. Vol. 20, No. 5, November 200, pp. 6 68. Idia Academy of Scieces A almost sure ivariace priciple for trimmed sums of radom vectors KE-ANG FU School of Statistics ad Mathematics,

More information

Precise Rates in Complete Moment Convergence for Negatively Associated Sequences

Precise Rates in Complete Moment Convergence for Negatively Associated Sequences Commuicatios of the Korea Statistical Society 29, Vol. 16, No. 5, 841 849 Precise Rates i Complete Momet Covergece for Negatively Associated Sequeces Dae-Hee Ryu 1,a a Departmet of Computer Sciece, ChugWoo

More information

ST5215: Advanced Statistical Theory

ST5215: Advanced Statistical Theory ST525: Advaced Statistical Theory Departmet of Statistics & Applied Probability Tuesday, September 7, 2 ST525: Advaced Statistical Theory Lecture : The law of large umbers The Law of Large Numbers The

More information

Poisson Arrival Process

Poisson Arrival Process 1 Poisso Arrival Procss Arrivals occur i) i a mmorylss mar ii) [ o arrival durig Δ ] = λδ + ( Δ ) P o [ o arrival durig Δ ] = 1 λδ + ( Δ ) P o P j arrivals durig Δ = o Δ for j = 2,3, ( ) o Δ whr lim =

More information

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES. 1. Statement of results

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES. 1. Statement of results BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES DONALD M. DAVIS Abstract. If p is a prim and n a positiv intgr, lt ν p (n dnot th xponnt of p in n, and u p (n n/p νp(n th unit part of n. If α

More information

Page 1 BACI. Before-After-Control-Impact Power Analysis For Several Related Populations (Variance Known) October 10, Richard A.

Page 1 BACI. Before-After-Control-Impact Power Analysis For Several Related Populations (Variance Known) October 10, Richard A. Pag BACI Bfor-Aftr-Cotrol-Impact Powr Aalysis For Svral Rlatd Populatios (Variac Kow) Octobr, 3 Richard A. Hirichs Cavat: This study dsig tool is for a idalizd powr aalysis built upo svral simplifyig assumptios

More information

ECE594I Notes set 6: Thermal Noise

ECE594I Notes set 6: Thermal Noise C594I ots, M. odwll, copyrightd C594I Nots st 6: Thrmal Nois Mark odwll Uivrsity of Califoria, ata Barbara rodwll@c.ucsb.du 805-893-344, 805-893-36 fax frcs ad Citatios: C594I ots, M. odwll, copyrightd

More information

Chapter (8) Estimation and Confedence Intervals Examples

Chapter (8) Estimation and Confedence Intervals Examples Chaptr (8) Estimatio ad Cofdc Itrvals Exampls Typs of stimatio: i. Poit stimatio: Exampl (1): Cosidr th sampl obsrvatios, 17,3,5,1,18,6,16,10 8 X i i1 17 3 5 118 6 16 10 116 X 14.5 8 8 8 14.5 is a poit

More information

Asymptotic Behaviors for Critical Branching Processes with Immigration

Asymptotic Behaviors for Critical Branching Processes with Immigration Acta Mathmatica Siica, Eglih Sri Apr., 9, Vol. 35, No. 4, pp. 537 549 Publihd oli: March 5, 9 http://doi.org/.7/4-9-744-6 http://www.actamath.com Acta Mathmatica Siica, Eglih Sri Sprigr-Vrlag GmbH Grmay

More information

This section is optional.

This section is optional. 4 Momet Geeratig Fuctios* This sectio is optioal. The momet geeratig fuctio g : R R of a radom variable X is defied as g(t) = E[e tx ]. Propositio 1. We have g () (0) = E[X ] for = 1, 2,... Proof. Therefore

More information

2617 Mark Scheme June 2005 Mark Scheme 2617 June 2005

2617 Mark Scheme June 2005 Mark Scheme 2617 June 2005 Mark Schm 67 Ju 5 GENERAL INSTRUCTIONS Marks i th mark schm ar plicitly dsigatd as M, A, B, E or G. M marks ("mthod" ar for a attmpt to us a corrct mthod (ot mrly for statig th mthod. A marks ("accuracy"

More information

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2 MATHEMATIS --RE Itgral alculus Marti Huard Witr 9 Rviw Erciss. Evaluat usig th dfiitio of th dfiit itgral as a Rima Sum. Dos th aswr rprst a ara? a ( d b ( d c ( ( d d ( d. Fid f ( usig th Fudamtal Thorm

More information