BOUNDS FOR THE COMPONENTWISE DISTANCE TO THE NEAREST SINGULAR MATRIX

Size: px
Start display at page:

Download "BOUNDS FOR THE COMPONENTWISE DISTANCE TO THE NEAREST SINGULAR MATRIX"

Transcription

1 SIAM J. Matrix Aal. Appl. (SIMAX), 8():83 03, 997 BOUNDS FOR THE COMPONENTWISE DISTANCE TO THE NEAREST SINGULAR MATRIX S. M. RUMP Abstract. Th ormwis distac of a matrix A to th arst sigular matrix is wll kow to b qual to A /cod(a) for orms big subordiat to a vctor orm. Howvr, thr is o hop to fid a similar formula or v a simpl algorithm for computig th compotwis distac to th arst sigular matrix for gral matrics. This is bcaus Roh ad Poljak [7] showd that this is a NP -hard problm. Dot th miimum Baur-Skl coditio umbr achivabl by colum scalig by κ. Dmml [3] showd that κ is a lowr boud for th compotwis distac to th arst sigular matrix. I this papr w prov that κ is a uppr boud. This xtds ad provs a cojctur by N. J. Higham ad J. Dmml. W giv a xplicit st of xampls showig that a uppr boud caot b bttr tha κ. Asymptotically, w show that +l 2+ε κ is a valid uppr boud. Ky words. compotwis distac, NP-hardss, optimal Baur-Skl coditio umbr AMS subjct classificatios. 65F35, 5A60 0. Itroductio. Lt A b a by matrix ad dot its smallst sigular valu by σ (A). It is wll kow that th distac to th arst sigular matrix i th 2-orm or Frobius orm is qual to σ (A). Mor gral, for ay cosistt matrix orm big subordiat to a vctor orm w hav () mi { δa A + δa sigular } = A = A cod(a). A appropriat δa of rak ca b xplicitly calculatd (cf. [?], [3]). Such a prturbatio dos, i gral, altr ach compot of A. I may practical applicatios, o may b itrstd i lavig spcific compots such as systm zros ualtrd, for xampl, if th matrix ariss from som discrtisatio schm. Mor gral, this lads to th qustio of th compotwis distac to th arst sigular matrix. Th compotwis distac may b wightd by som ogativ matrix E. Mor prcisly, w dfi (2) σ(a, E) := mi { α IR A + Ẽ sigular whr Ẽij α E ij for all i, j }. If o such α xists, w st σ(a, E) :=. For sigular matrics, σ(a, E) = 0 for vry wight matrix E. Spcific valus of E ar E = A for rlativ prturbatios, or E = () for absolut prturbatios. Amog othrs, th compotwis distac to th arst sigular matrix was discussd i [8], [], [0], ad i [3]. I [8] w also fid a first approach towards a stimatio of th arss to sigularity i a orm ot big subordiat to a vctor orm, amly A := max A ij. i,j W caot xpct to fid a formula or v a simpl algorithm forq calculatig σ(a, E). This is bcaus Roh ad Poljak [7] provd that computatio of σ(a, E) is NP -complt. For a outli of thir proof s also [3]. Nvrthlss, w may fid bouds for σ(a, E), ad for classs of matrics v xplicit formulas. Aothr viw of σ(a, E) is th maximum valu such that th itrval matrix [A αe, A+αE] is osigular for α < σ(a, E). Th itrval matrix is dfid as big th st of all matrics à with A ij αe ij Ãij A ij + αe ij for all i, j, or i short otatio A αe à A + αe. Th itrval matrix is calld osigular if vry matrix à [A αe, A+αE] is osigular. I a vry itrstig papr [9], Roh gav 3 cssary ad sufficit critria for [A E, A + E] big osigular. Tchisch Iformatik III, TU Hamburg-Harburg, EißdorfrStraß 38, 207 Hamburg, Grmay

2 A thorough discussio of σ(a, E) ca b foud i th vry itrstig papr [3]. Dmml [3] provd that σ(a, E) is qual to th ivrs of mi κ(ad, ED), th miimum tak ovr all diagoal matrics D, whr κ(a, E) := A E dots th Baur-Skl coditio umbr. For ay p-orm, h provs mi D κ(ad, ED) = ρ( A E), xtdig a rsult by Baur []. I othr words, th miimum Baur-Skl coditio umbr achivabl by colum scalig is qual to th ivrs of ρ( A E). Dmml ad N. J. Higham cojctur that ρ( A E) ad σ(a, E) ar ot too far apart. Thy cojctur for rlativ prturbatios xistc of som costat γ IR, possibly dpdig o th dimsio, with (3) γ σ(a, A ) ρ( A A ). I this papr, our mai goal is to show xistc of such costats γ() ad to driv lowr ad uppr bouds for γ(). First, w show that σ(a, E) σ (A) for E 2 =. A corrspodig rsult for othr orms is giv i 2. Howvr, this boud ca b arbitrarily wak. Followig w giv som w bouds for σ(a, E). I 4 a prturbatio formula for dtrmiats is statd which is th ky to prov a uppr boud of γ(). I 5 w will prov γ. I 6, for arbitrary wight matrics E w prov (4) ρ( A E) σ(a, E) γ() ρ( A E) with γ() = c α for c = 2.4 ad α =.7. Morovr, for w show that for vry ε > 0, α ca b rplacd by +l 2+ε. I viw of γ, w cojctur γ =. I [3], Dmml gav rasos to b itrstd i th compotwis distac to th arst sigular matrix. I 2, w add a lowr ad uppr compotwis rror boud for th solutio of a liar systm Ax = b subjct to compotwis prturbatios of th matrix ad th right had sid. Such uppr bouds ar kow i th litratur ad ar valid for osigular A ad à A E with ρ( A E) <. W driv a compotwis boud for th miimum prturbatio of th solutio subjct to fiit prturbatios of A ad b. (4) shows that thos stimats covr prturbatio matrics à ot too far from th xt sigular matrix. Th papr is orgaizd as follows. I w itroduc th usd otatio. I 2 follows a compotwis lowr ad uppr prturbatio boud for fiit compotwis prturbatios of a liar systm. I 3, lowr bouds o σ(a, E) ar giv. For orthogoal matrics w show that γ (s (4)) is at last of th ordr of. I 4, a Shrma-Morriso-Woodbury lik prturbatio thorm for dtrmiats is giv. I fact, this is a quality for fiit prturbatios of a matrix. I 5 w driv uppr bouds o σ(a, E). For E big of rak, such as for absolut prturbatios, w show γ(), ad for rlativ prturbatios w giv a st of matrics A M (R) with γ() =. For a class of matrics icludig M-matrics wi prov γ() =, i.. σ(a, E) = ρ( A E). I 6 th rsults ar xtdd to obtai a xplicit uppr boud o γ() for gral A ad E, ad i 7 thos bouds ar quatifid ito (4). W clos with th cojctur that (4) is valid for γ() = for all A, E. If this is tru, th st of matrics giv i 5 would imply that iquality (4) with γ() = is sharp.. Notatio. I th followig w list som otatio from matrix thory, cf. for xampl [6], [5]. V (IR) dots th st of vctors with ral compots, M m, (IR) th st of ral m by matrics, ad M (IR) = M, (IR). Th compots of a matrix A M (IR) ar rfrrd by A ij or A i,j. For short otatio, compots of A ar rfrrd by A ij. () dots a vctor with all compots qual to, () M (IR) th matrix with all colums qual to (). Q k dots th st of strictly icrasig squcs of k itgrs chos from {,..., }. For ω Q k, w dot ω = (ω,..., ω k ). For C M (IR), ω Q k, C[ω] M k (IR) dots th k by k submatrix of C lyig i rows ad colums ω. A squc ζ = (i,..., i k ), k of mutually diffrt itgrs i ν {,..., } is 2

3 calld a cycl. W idtify th cycls (i,..., i k ) ad (i p,..., i k, i,..., i p ), whr p k. It is ζ := k. A full cycl ζ o {,..., } is a cycl ζ with ζ =. For C M (IR) ad a cycl ζ = (i,..., i k ) o {,..., }, w put Π ζ (C) := C ii 2... C ik i k C ik i, th cycl product for ζ. Not th last factor i th product. Thrfor, Π ζ (C) / ζ is th gomtric ma of th lmts of th cycl product. Each diagoal lmt C ii is a cycl product, amly of th cycl (i). (Hr our dfiitio diffrs from Egl/Schidr [4]). With o xcptio, throughout th papr, absolut valu ad compariso is usd compotwis. xampl, for A, B M (IR), For A B mas A ij B ij for i, j. Th xcptio ar cycls ζ = (i,..., i k ), whr ζ = k. Th sigular valus of a matrix A M (IR) ar dotd i dcrasig ordr with icrasig idics, i.. σ (A)... σ (A) 0. For A, E M (IR), E 0, σ(a, E) dots th compotwis distac, wightd by E, to th arst sigular matrix (cf. (0.2)). For fiit σ(a, E), th st of all matrics à M (IR) with à A σ(a, E) E is compact. For vry osigular à thr is a ighbourhood of à cosistig oly of osigular matrics. Thrfor σ(a, E) < δa M (IR) : δa = σ(a, E) E ad A + δa sigular, showig that w ar allowd to us a miimum i th dfiitio (0.2) of σ(a, E). ρ dots th spctral radius, whras ρ 0 dots th ral spctral radius: B M (IR) : ρ 0 (B) := max { λ λ IR is a igvalu of B }. If B has o ral igvalus, w st ρ 0 (B) := 0. I dots th idtity matrix of propr dimsio, spcially I k M k (IR) dots th k by k idtity matrix. A sigatur matrix S is a diagoal matrix with diagoal tris + or, i.. S = I. W frqutly us stadard rsults from matrix ad Prro-Frobius thory such as (5) A M k (IR), B M k (IR) Th st of ozro igvalus of AB ad BA ar idtical, cf. Thorm.3.20 i [5], ad A M (IR) ad A 0, x V (IR) with x > 0 (6) mi i (Ax) i x i ρ(a) max i (Ax) i x i. Th lattr ca b foud i [2]. 2. Fiit prturbatios for a liar systm. Calculatig bouds o σ(a, E) ca b motivatd, for xampl, by lookig at liar systms with fiit prturbatios of th iput data. For a liar systm Ax = b cosidr th prturbd systm à x = b with δa := à A, δb := b b, δx := x x. Th for osigular A, (7) A (I + A δa) ( x x) = à ( x x) = b Ãx = δb δa x. If ρ(a δa) <, th I + A δa ad à = A (I + A δa) ar osigular, ad (7) implis (8) δx = (I + A δa) A (δb δa x). 3

4 If ρ ( A A ) < th I A A is a M-matrix. If th prturbatios δa, δb ar compotwis boudd by δa A, δb b th (2.2) implis (9) δx (I A A) A ( b + A x ). For giv wight matrix A, cosidr th st of matrics with compotwis distac from A wightd by A ot gratr tha σ: à U σ (A, A) à A σ A. For σ ρ( A A), Prro-Frobius-Thory yilds ρ(i A Ã) = ρ( A (A Ã)) ρ( A A) <, ad thrfor rgularity of all à U σ(a, A). Th boud (2.3) rquirs A A to b covrgt, whras (8) is valid for ρ(a δa) <. Thrfor w may ask, how far a matrix à with ρ( A à A ) ca b from th arst sigular matrix. A aswr to this qustio shows how strog th assumptio ρ( A A) < is. (0) 3. Lowr bouds o σ(a, E). A simpl ad wll-kow lowr boud o σ(a, E) is ρ( A E) σ(a, E) for all osigular A M (IR), 0 E M (IR). This ca b s usig Prro-Frobius Thory ad ρ( A E) < ρ(a δa) < for all δa E A + δa = A (I + A δa) is osigular. Aothr lowr boud is (cf. [2], Thorm.8, p. 75) () σ (A) σ(a, E). σ (E) This ca b gralizd i th followig way. Thorm 3.. Lt b a matrix orm subordiat to a absolut vctor orm. Th for osigular A M (IR) ad 0 E M (IR), (2) A σ(a, E). E (2) is spcially valid for all p-orms. For absolut orms such as -orm ad -orm, (3) A E ρ( A σ(a, E), E) whras for th 2-orm (4) A 2 E 2 ρ( A E). Proof. To prov (2), lt δa M (IR) with δa σ E for σ < ( A E ). Th vctor orm is absolut implyig x = x ad x y x y for x, y V (IR) (cf. [3], Thorm II..2). Lt x V (IR) with x = ad δa = δa x. Th (5) δa = δa x = δa x σ E x σ E x = σ E < A. For vry 0 y V (IR) holds y A Ay, ad (5) yilds δa y δa y < A y Ay, ad thrfor (A + δa) y 0. 4

5 Thrfor, A + δa is osigular for δa σ E, ad σ < ( A E ), provig (2). For absolut matrix orms, ρ( A E) A E A E provig (3). For th 2-orm holds ρ( A E) A 2 E 2 A F E 2 = A F E 2 A 2 E 2, provig (4) ad th thorm. (3) shows that for absolut matrix orms such as th -orm or -orm, th boud (2) caot b bttr tha (0). Th 2-orm is ot absolut, ad (4) shows that th lowr boud () for σ(a, E) may b bttr up to a factor tha (0). I fact, w ca idtify a class of matrics for which this improvmt is approximatly achivd. Lt Q M (IR) b orthogoal, ad cosidr absolut prturbatios E = (). Th () yilds σ (Q) ( ) = σ(q, E). σ () O th othr had, E = () M (IR) ad x = () V (IR) imply { Q E } ( T ) x = E Q x = Q ij x, i,j ad (6) yilds ρ( Q E) = Q ij. If Q is a orthogoalizd radom matrix with compots uiformly i,j distributd i [, ], th Q ij /2. Thus, for th ratio btw th two lowr bouds () ad (0) w obtai { σ (Q)/σ (E) } / { /ρ( Q E) } 2 /2 =. Th sam huristic holds for E = Q, cf. [2]. For vry Hadamard matrix (H M (IR) with H T H = I) th ratio is qual to. This shds a first light o a possibl quatity γ() such that (4) holds. I 5 w will prov γ(). Exampl 3.2. Th lowr boud () may b arbitrarily wak. Cosidr ( ) 2ε ε A = ad E = A for som ε > 0. ε A is a diagoally domiat M-matrix. As w will s i (5.5), A big M-matrix implis quality i (0), i.. σ(a, A ) = ρ( A A ) = + 0( ε). O th othr had, σ 2 (A)/σ ( A ) = 2ε + 0(ε 2 ) udrstimats σ(a, A ) arbitrarily. This corrspods to σ 2 (A) = 2ε + 0(ε 2 ). That mas, th ormwis distac i th 2- orm or Frobius orm to th arst sigular matrix ca b arbitrarily small compard to a compotwis distac. 4. A prturbatio thorm for dtrmiats. A lowr boud o σ(a, E) is obtaid by provig rgularity of a st of matrics. This was do i 3 by usig spctral proprtis. To obtai a uppr boud o σ(a, E), w may costruct a spcific prturbatio δa with δa σ 0 E, σ 0 IR such that A+δA is sigular. This provs σ(a, E) σ 0. Aothr possibility to obtai a uppr boud o σ(a, E) is th followig. If δa σ 0 E ad dt(a) dt(a + δa) 0, th a cotiuity argumt yilds σ(a, E) σ 0. Thrfor w stat th followig xplicit formula for th rlativ chag of th dtrmiat of a matrix subjct to a rak-k prturbatio. It is a Shrma-Morriso-Woodbury lik prturbatio formula for dtrmiats. Lmma 4.. Lt A M (IR) ad U, V M,k (IR) b giv. Th for osigular A, (6) dt(a + UV T ) = dt(a) dt(i k + V T A U), whr I k dots th k by k idtity matrix. 5

6 Proof. It is dt(a + UV T ) = dt(a) dt(i + A UV T ). Dotig th igvalus of X M (IR) by λ i (X) implis dt(i + A UV T ) = λ i (I + A UV T { ) = + λi (A UV T ) }. i= i= Th st of ozro igvalus of A UV T ad V T A U ar idtical (s (5)), thus provig th lmma. This lmma has a ic ad for itslf itrstig corollary. Corollary 4.2. Lt A M (IR) ad u, v V (IR). Th for osigular A, (7) dt(a + uv T ) = dt(a) ( + v T A u). For arbitrary A M (IR) holds (adj(a) dots th adjoit of A), (8) dt(a + uv T ) = dt(a) + v T adj(a) u. Th corollary shows that th rlativ chag of th dtrmiat is liar for rak- prturbatios of th matrix. Th scod wll-kow formula follows, for xampl, by a cotiuity argumt usig A adj(a) = dt(a) I. 5. Uppr bouds o σ(a, E). Th prturbatio lmma for dtrmiats giv i 4 allows for othr lowr bouds o σ(a, E). Th first rsult ca b foud i [8], Corollary 5., (iii). Thorm 5.. Lt A M (IR) b osigular ad E M (IR) with E 0. Th (9) σ(a, E) { max A E } i ii, whr 0 is itrprtd as. { Proof. St α := max A E } 0 ad lt i b a idx, for which this maximum is achivd. Dot i ii th iν-th compot of A by A iν (20) T i A u = α ν= ad dfi u V (IR) by u ν := α sig(a iν ) E νi. Th A iν E νi =, ad Corollary 4.2 implis dt(a + u T i ) = 0. Now ut i α E yilds σ(a, E) α. Exampl 5.2. Th uppr boud (9) ca b arbitrarily wak. Cosidr ε 0 /ε /ε 0 ε (2) A = ε 0, E = A with /ε /ε A A /ε /ε 0 ε /ε /ε whr th compots of A A ar accurat up to a rlativ rror ε. Th (9) givs σ(a, A ) +0(ε). O th othr had, dt(a + ε δa) = 0 for δa = 0 0 0, showig σ(a, A ) ε. 6,

7 I Thorm 5., a rak- prturbatio is usd to prov (9). I a ormwis ss, th miimum distac to th arst sigular matrix is achivd by a rak- prturbatio. This is o logr tru for compotwis distacs, as will b show by th followig xampl. Exampl 5.3. Accordig to Corollary 4.2, th smallst σ such A + σ is sigular with σ A ad rak() = is giv by σ = ϕ, whr ϕ is a optimal valu of th costrait optimizatio problm ϕ(u, v) := v T A u = Mi! subjct to uv T A. I Exampl 5.2, partitio th vctors u, v V 4 (IR) ito two vctors U i, V i V 2 (IR), i {, 2}, ithr havig 2 compots. That mas u = (U, U 2 ) T, v = (V, V 2 ) T. Lt uv T A, i.. U i V T i ε I ad U i V T j () 22 for i, j 2, i j. Th larg lmts of A ar i th uppr lft ad lowr right 2 by 2 block: ( ) ( ) ( A X Y with X = Y X 2ε ad Y = 4 up to a rlativ rror of th ordr ε. Thrfor v T A u V T XU + V T 2 XU 2 + V T Y U 2 + V T 2 Y U 2ε X ij + 2 Y ij 6 Thrfor, Corollary 4.2 implis that th miimum distac to th arst sigular matrix subjct to rak- prturbatios wightd by A is at last /6 compard to σ(a, A ) ε. This obsrvatio shds light o th difficultis to calculat σ(a, E) or to fid uppr bouds for it. O may dfi th rak-k compotwis distac to th arst sigular matrix as follows σ k (A, E) := mi{ α IR A + Ẽ sigular for Ẽ α E ad rak(ẽ) k }. W us rak(ẽ) k bcaus E may b rak-dficit. W hav just s i Exampl 5.3 that σ 2(A, E)/σ (A, E) may b arbitrarily small. Giv th lowr boud (0), o may ask whthr thr xist fiit costats γ() IR oly dpdig o such that (22) ρ( A E) σ(a, E) γ() ρ( A E) for all osigular A M (IR) ad 0 E M (IR). This qustio has b raisd i [3] ad aswrd for som classs of matrics. Th mai purpos of this papr is to driv bouds for γ(). This will b do by usig Lmma 4.. For this purpos w d th followig rsult by Roh (for otatio s ). Thorm 5.4. (Roh) For osigular A M (IR) ad 0 E M (IR) holds max S,S 2 ρ 0 (S A = σ(a, E), S 2 E) ) whr ρ 0 dots th ral spctral radius ad th maximum is tak ovr all sigatur matrics. itrprtd as. /0 is Proof. cf. [9]. W start with a thorm boudig γ() for gral wight matrics E, ad idtify a class of matrics with γ() =. Thorm 5.5. For osigular A M (IR) ad 0 E M (IR), th followig is tru. i) Assum a matrix S M (IR) of rak xists with 7

8 + if A ij > 0 S ij = if A ij < 0. + or if A ij = 0 Th (22) holds with γ() =. ii) If 0 < η E ij ζ for all i, j, th (22) holds with γ() = ζ/η. Proof. Lt S = uv T with u, v V (IR), u = v = (). Dfiig S = diag(u), S 2 = diag(v), w hav S A S 2 = A ad Roh s charactrizatio i Thorm 5.4 provs th first part. W.l.o.g. assum σ(a, E) <. It is η A max ( A E) ii ad ρ( A E) A E ζ A. i Thus, Thorm 5. provs th scod part ad thrfor th thorm. For importat classs of matrics such as ogativ ivrtibl matrics, amog thm all M-matrics, w alrady hav a prcis formula for σ(a, E): (23) A M IR ogativ ivrtibl, 0 E M (IR) σ(a, E) = ρ( A E). Exampl 5.6. If costats γ() with (22) xist at all, w ca giv a lowr boud o γ() by mas of th followig. Dfi A M (IR) by s 0 A := (24) with s := ( ) Th dtrmiat of A calculats to dt(a) = A ii + ( ) + Π ζ (A) = 2, whr ζ = (,..., ) i= ad ζ (A) = A 2 A A, A. If th lmts of A ar afflictd with rlativ prturbatios, i.. E = A, th oly th s ad s chag. Thrfor, ay à with à A σ A with σ < is osigular, ad thrfor σ(a, A ) =. O th othr had, A A = () ad ρ( A A ) =. This provs th followig lmma. Lmma 5.7. If costats γ() IR with (22) for vry osigular A M (IR) ad 0 E M (IR) xist at all, th γ(). Nxt w show that γ() for E big of rak. For th proof w us Corollary 4.2, which is a cosquc of Lmma 4. for k =. I th rmaiig part of th papr, w will xtd this proof to k > to obtai uppr bouds for γ() ad for gral A, E. Thorm 5.8. Lt osigular A M (IR) ad 0 E M (IR) with E = uv T u, v 0. Th ρ( A E) σ(a, E) ρ( A E). Proof. Accordig to Thorm 5.4 ad usig (.), for som u, v V (IR), (25) σ(a, E) = max S,S 2 ρ 0 (S A S 2 uv T ) = max S,S 2 v T S A S 2 u, whr th maximum is tak ovr all sigatur matrics S, S 2. For ay i, i, w ca choos appropriat sigatur matrics S, S 2 such that v T S A S 2 u v i ( A u) i. Usig (25) this yilds σ(a, E) max i O th othr had, usig (.), v i ( A u) i. 8

9 ρ( A E) = ρ( A uv T ) = v T A u max i v i ( A u) i. Corollary 5.9. For osigular A M (IR) ad absolut prturbatios, i.. E = (), stimatio (22) holds with γ() =. 6. Estimatio of γ(). To mak furthr progrss i th stimatio of γ() w show that for osigular A, σ(a, E) dpds cotiuously o A ad E. Usig this w ca rstrict th class of matrics A ad E to matrics with oly ozro compots. For th proof w ca hardly us a simpl cotiuity argumt o ρ 0 (S A S 2 E) i coctio with Thorm 5.4. This is bcaus th sarch domai is rstrictd by E, ad th (i absolut valu) largst ral igvalu may b multipl ad bcom complx udr arbitrarily small prturbatios. Lmma 6.. For osigular A M (IR), σ(a, E) dpds cotiuously o A ad E. Proof. For σ(a, E) = w show that σ(ã, Ẽ) bcoms uboudd for à A, Ẽ E. A compactss ad cotiuity argumt shows that for vry fiit 0 < c IR: c E : dt(a + ) δ > 0. For vry Ã, Ẽ clos ough to A, E, this implis dt(ã + ẽ) δ/2 > 0 for vry ẽ c Ẽ, ad hc σ(ã, Ẽ) > c. Assum σ := σ(a, E) <. W will show that for small ough ε > 0, thr xists som δ > 0 such that both of th followig statmts ar tru: (26) (27) M (IR) : (σ ε) E dt(a) dt(a + ) > δ, M (IR) : (σ + ε) E ad dt(a) dt(a + ) < δ. (26) is s as follows. For ε > 0, th st of matrics A + with (σ ε) E is ompty ad compact. Hc, dt(a) dt(a + ) achivs a miimum o this st. By dfiitio of σ, this miimum is positiv. To s (27), obsrv that dt(a) dt(a + ) 0 for all σ E. For ay idx pair i, j, th dtrmiat dt(a + ε i T j ) dpds liarly o ε. Now procd as follows. Thr is som such that A + is sigular ad = E. If for a idx pair i, j, th dtrmiat dt(a + ) is idpdt o ij, th rplac ij by 0. At ach stp of this procss, dt(a + ) = 0 ad E. Th dfiitio of σ(a, E) < implis that durig this procss w must arriv at som ad a idx pair k, l, such that dt(a + ) is ot costat wh chagig kl. Th dfiig M (IR) by ij := ij for (i, j) (k, l) ad kl := kl ( + ε ) for small ε > 0 provs (27). Now th cotiuity of th dtrmiat implis for Ã, Ẽ clos ough to A, E, ẽ (σ ε) Ẽ : dt(ã) dt(ã + ẽ) > δ/2 ad ẽ (σ + ε) Ẽ : dt(ã) dt(ã + ẽ) < δ/2, ad thrfor σ(a, E) ε < σ(ã, Ẽ) < σ(a, E) + ε. Corollary 6.2. If (22) holds for ach E > 0, th it holds for ach E 0. Our goal for this chaptr is to prov th followig uppr boud for σ(a, E). Th quatitis ϕ t occurig i this stimatio will b quatifid ad stimatd i 7. Propositio 6.3. Lt A, E M (IR) with A osigular ad E 0 b giv. Dfi rcursivly ϕ :=, ϕ 2 := ad ϕ t IR, 2 < t IN to b th (uiqu) positiv root of (28) t P t (x) IR[x] with P t (x) := x t x t 2 ϕ ν ν x t ν. ν= 9

10 Th (29) σ(a, E) ϕ ρ( A E). Thrfor, th quatitis γ() dfid i (5.4) satisfy (30) γ() =, γ(2) = 2 ad γ() ϕ. Th proof divids ito svral parts ad ds som prparatory lmmata. First, w will costruct a spcific rak-k prturbatio i ordr to b abl to apply Lmma 4. to boud γ() for gral A, E. W us th sam pricipl as i th proof of Thorm 5. adaptd to rak-k prturbatios. Lmma 6.4. Lt osigular A M (IR) ad 0 E M (IR) b giv, ad st C := A E. For k dfi { i i + for i < k (3) := for i = k ad U, V M,k (IR) by U νi := sig(a iν ) E νi ad V µi := δ µi for µ, ν, i k ad th Krockr symbol δ. St C := V T A U. Th i) C C[ω] for ω = (,..., k). ii) C ii = C ii for i k. iii) UV T E. iv) σ(a, E) {ρ 0 ( C)}, whr 0 is itrprtd as. Proof. For i, j k follows (V T A U) ij = ν= µ= V µi A µν U νj ad thrfor C C[ω] ad i). For i k holds C ii = (V T A U) ii = ν= µ= ad thrfor ii). For µ, ν holds (UV T ) νµ = k U νi V µi, i= ν= V µi A µν U νi = A iν E νj = C ij, ν= A iν sig(a iν ) E νi = C ii. such that (UV T ) νµ = E νµ for µ k, ad (UV T ) νµ = 0 for k + µ. This provs iii). For λ := ρ 0 ( C) > 0, it is dt(λ I s C) = 0 for s = or s =. Lmma 4. implis dt(a s λ UV T ) = dt(a) dt(i k s λ V T A U) = 0. Togthr with iii) ad th dfiitio (0.2) of σ(a, E), this provs iv) ad th thorm. Our aim is to costruct a rak-k prturbatio of A with larg ral spctral radius. Th Lmma 4. allows to giv a uppr boud o σ(a, E). A first stp is th followig, first gralizatio of Thorm 5.. It will latr yild th prcis valu for γ(2). Thorm 6.5. Lt A M (IR) b osigular ad E M (IR) with E 0. For C := A E holds (32) σ(a, E) max i,j. Cij C ji 0

11 Proof. For i = j, (32) has b provd i Thorm 5.. Rordrig of idics puts th cycl (i, j), for which th maximum i (6.7) is achivd, ito th cycl (,2), ad Lmma 6.4 provs for i j xistc of a 2 by 2 matrix C = ( α β γ δ) with 0 β = Cij, 0 γ = C ji, α C ii, δ C jj, ad σ(a, E) ρ 0 ( C). If αδ βγ, th C ii C jj C ij C ji ad Thorm 5. yilds (32). Othrwis, dt( C) < 0. Th charactristic polyomial of C is λ 2 trac( C) λ + dt( C), so that th igvalus of C { ar 2 trac( C) ± trac( C) 2 4 dt( C) } { = 2 α + δ ± } (α δ) 2 + 4βγ ar both ral. Th absolut valu of o of thm is ot lss tha βγ, i.. σ(a, E) ρ 0 ( C) (βγ) /2. Th ida of th proof of Thorm 6.5 is th followig: for a giv cycl of C of lgth 2, a suitabl rak-2 prturbatio of A is costructd which allows to prov a uppr boud of σ(a, E) by usig Lmma 6.4. I th followig w will carry this ida to cycls of C of lgth k, k. First, w will idtify a class of matrics for which w ca giv xplicit lowr bouds for thir ral spctral radius. Th class of matrics is costructd i such a way that th matrics giv i Lmma 6.4 ca b usd to boud σ(a, E) from abov. Lmma 6.6. Lt ogativ C M k (IR) ad som 0 < a IR b giv. Dfi ϕ :=, ϕ 2 :=, ad for t > 2 dfi rcursivly ϕ t IR to b th positiv zro of t (33) P t (x) IR[x] with P t (x) := x t x t 2 ϕ ν ν x t ν. Suppos ν= (34) µ < k ω Γ µk : (Π ω (C)) /µ ϕ µ a, ad for ω = (,..., k), (35) Π ω (C) /k ϕ k a. Th, for i dfid as i (6.6) ad vry C M k (IR) with (36) C C ad C ii = C ii for i k, holds ρ 0 ( C) a. Proof. Th proof divids i th followig parts. First, w trasform C ito a stadard form such that all C ii i th cycl (,..., k) i (35) ar qual. Scod, w boud C by a circulat, show rgularity of that matrix ad dt( C λi) 0 for all 0 λ < a. Fially, th sig of th dtrmiat of ay C with (36) is dtrmid, from which th lmma follows. Th cas k = is trivial; for k = 2 th proof of ρ 0 ( C) a is icludd i th proof of Thorm 6.5. Assum k > 2, ad st b := Π ω (C) /k. Dirct computatio shows that ay similarity trasformatio of C by a diagoal matrix D lavs all cycl products ivariat. Thus (34) ad (35) rmai valid for ay diagoal D with positiv diagoal tris. Dfi diagoal D M k (IR) by f i := b C ii ad D ii := k f ν for i k. ν=i W show that w.l.o.g. C ca b rplacd by D CD. W hav f i > 0, ad (6.0) implis D =. It is ( k ) ( k ) (37) (D CD) ii = fν C ii f ν = C ii f i = b. ν=i ν=i

12 If C Mk (IR) is ay matrix satisfyig (36), th D CD D CD, ad (37) yilds (D CD)ii = (D CD) ii = b. Sic th st of igvalus of C ad D CD ar idtical, w ca rstrict our atttio to matrics C M (IR), C 0 ad (38) St (39) C ii = b for i k. C = c, b c,k... c,2 c 2,2 c 2, b c 2,k... c 2,3... c 3, b... c k,k c k,k 2... b b c 0,k... c 0,. Lt µ IN, µ < k b giv ad dfi ω Γ µk by ω = (,..., µ). Th sttig q := a/b, (34) implis c µµ µ i= b (ϕ µ a) µ ad thrfor c µµ b ϕ µ µ q µ. Applyig th sam argumt succssivly for ω = ( i, (i + ) mod µ,..., (i + µ) mod µ ) yilds (40) c i,µ b ϕ µ µ q µ for all 0 i < k, µ < k. Thrfor, (4) C b c c k c 2 c 2 c c k... c 3 c c k c k 2... c k c =: b C with c µ := ϕ µ µ q µ for µ <. Lt C M k (IR) with (36) b giv, ad lt λ IR with 0 λ < a. Nxt w show that all matrics C λi ar osigular. By assumptio (6.) ad usig (6.6), (42) C λi C + λ I b C + λi ad ( C λi) ii = C ii = C ii = b. By (4) ad (33), usig q := a/b ϕ k from (35) ad ϕ 2 =, w hav for k 3, { } { } λ + b k c ν < b q + k ϕ ν ν q ν b ϕ k + k ϕ ν ν ϕ ν k = (43) ν= { = b ϕ k+ k ϕ k 2 k ν= + k ν= ν= } ϕ ν ν ϕ k ν k = b ϕ k+ k ϕ k k = b. This shows that th lmt b = C ii = C ii strictly domiats th sum of th absolut valus of th othr compots i ach row of C + λi ad of C λi. That mas, multiplicatio by a suitabl prmutatio matrix producs a strictly diagoally domiat matrix ad provs rgularity of vry C λi with C satisfyig (36) ad 0 λ < a. W provd that for vry C M k (IR) with (36), th dtrmiat of C λi is ozro for 0 λ < a. Thrfor, th valu of th charactristic polyomial p(λ) = dt(λi C) of C has th sam sig for 0 λ < a. Now p(λ) + for λ +. Thrfor, th lmma is provd if w ca show p(0) < 0, bcaus i this cas th charactristic polyomial must itrsct with th ral axis for som λ a, thus provig ρ 0 ( C) λ a. W alrady provd that vry matrix C satisfyig (36) is osigular. Thrfor 2

13 sig ( p(0) ) = sig ( dt( B) ) for vry matrix B with B C ad B ii = C ii = b. Dfi { C ii for j = i B ij :=. 0 othrwis Th sig ( dt(b) ) = ( ) k+ ad thrfor sig ( p(0) ) = ( ) 2k+ =. Th thorm is provd. Exampl 6.7. O ca show that, at last for odd, th bouds i Lmma 6.6 ar sharp i th ss that thr ar xampls with quality i (34) ad (35) such that C with (36) xists with ρ 0 ( C) = a. Cosidr a b c a b c C := c a b with b := ϕ 3 a ad c := a/ϕ 3 ad C := c a b. b c a b c a Th C = ϕ a = a, C 2 C 2 = ϕ 2 a = a ad (C 2 C 23 C 3 ) /3 = ϕ 3 a. C is a circulat, ad its igvalus comput to P (ε k ), k = 0,, 2 whr ε = 2πi/3 ad P (x) = bx 2 cx a (cf.[6]). It is b c a = b( ϕ 2 2q 2 ϕ q) = b ϕ 3 = a with q := a/b. Th othr two igvalus ar complx, thus ρ 0 ( C) = a. Th xampl xtds to odd IN. Th combiatio of Lmma 6.4, Thorm 6.5, ad Lmma 6.6 givs th ky to costruct a rak-k prturbatio of A to achiv a uppr boud for σ(a, E). Th followig thorm is th gralizatio of Thorms 5. ad 6.5 for cycls of lgth k, k. Thorm 6.8. Lt A, E M (IR) with osigular A ad E 0 b giv ad dfi C := A E. For k ad ay ω Γ k st (44) 0 τ := ( Π ω (C) ) /k. Th for ϕ k dfid as i Lmma 6.6, σ(a, E) ϕ k /τ. I othr words, ϕ k dividd by th gomtric ma of th lmts of ay cycl of C bouds σ(a, E) from abov. Proof. Lt som ω Γ k ad τ from (44) b giv ad st a := τ/ϕ k. If for k = or k = 2 thr xists som ω Γ k with {Π ω (C)} /k ϕ k a, th ϕ = ϕ 2 = ad Thorm 5. ad Thorm 6.5 imply σ(a, E) a = ϕ k /τ. Thrfor, w may assum {Π ω (C)} /k < ϕ k a for all ω Γ k ad k {, 2}. Hc, thr is som m IN, 2 m k such that ad µ < m ω Γ µ : (Π ω (C)) /µ ϕ µ a, ω Γ m : (Π ω (C)) /m ϕ m a. Aftr suitabl rarragmt of idics w may assum ω = (,..., m), ad Lmma 6.4 yilds a matrix C M m (IR) with proprtis i) ad ii) of Lmma 6.4 ad σ(a, E) ρ 0 ( C). But Lmma 6.6 shows for all such matrics ρ 0 ( C) a = τ/ϕ m. Rgardig m k, th thorm is provd if w ca show (45) t IN ϕ t ϕ t+. W kow ϕ = ϕ 2 =, from th dfiitio (6.8) w s ϕ 3 = + 2, ad for t 3 P t+ (x) = x P t (x) ϕ t t. Hc P t+ (ϕ t ) < 0 ad ϕ t+ > ϕ t. Th thorm is provd. Thorm 6.8 rducs th problm of fidig uppr bouds of σ(a, E) to fidig propr cycls of som lgth k of A E with larg gomtric ma corrspodig to a suitabl rak-k prturbatio. This is do i th followig proof of Propositio

14 Proof. of Propositio 6.3. Corollary 6.2 allows us to assum E > 0. Thrfor, A E is positiv, ad Prro-Frobius Thory yilds xistc of a positiv igvctor x V (IR) with A E x = ρ( A E) x, ρ( A E) > 0. Dfi th diagoal matrix D x M (IR) by (D x ) ii := x i. W may rplac A by A D x ad E by E D x, bcaus for ay osigular diagoal matrics D, D 2, σ(a, E) = σ(d AD 2, D ED 2 ). This is bcaus δa σ E iff D δa D 2 σ D ED 2 ad A + δa is sigular iff D AD 2 + D δa D 2 is sigular (cf. [3]). Th C := (A D x ) E D x = D x A E D x ad C () = ρ( A E) (). That mas C is a multipl of a row stochastic matrix. St ρ := ρ( A E). Dot a idx of th maximal compot of C i row i by m i. Th ithr { m i i } = {,..., } or, thr is a cycl m j, m j+,..., m j+k, m j+k = m j of lgth k. That mas, with a suitabl rumbrig, thr is som k IN, k such that for th uppr lft k by k pricipal submatrix of C holds (46) C ii ρ/ for i k, whr i is dfid as i (6.6). Th Thorm 6.8, (6.20) ad (6.2) imply for ω = (,..., k), σ(a, E) ϕ k {Π ω (C)} /k ϕ k /ρ ϕ /ρ. I th rmaiig 7, w will rplac th boud (30) by givig xplicit bouds for γ() oly dpdig o. A asymptotic boud will b giv as wll. 7. Explicit bouds for γ(). Th mai rsult i 6 is th uppr boud (30) i Propositio 6.3. This boud is giv i trms of ϕ k, th positiv zros of th polyomial P t dfid i (28). I th rmaiig part of th papr w will giv bouds o γ() showig th dpdc o by a simpl fuctio. Morovr, th asymptotic bhaviour of γ() for is giv. Th polyomials P t (x) IR[x] dfid i (28) satisfy t (47) P t (x) = x t x t 2 ϕ ν ν x t ν ad P t (ϕ t ) = 0 for t > 2. Thrfor, for 3, (48) ϕ + i= By (6.20), x + (49) x + i= i= ϕ i i ϕ i =. ν= ϕ i i xi is strictly icrasig for x > 0. Hc, for x > 0, ϕ i i x i implis x ϕ, that is ϕ x. W ar aimig o a boud of th form (50) ϕ k c k α for som costats c ad α. To dtrmi c ad α, w otic that if (7.4) is satisfid for k <, th ( ) αi i (5) c α implis ϕ c α. i= This is bcaus th lft had sid of (7.5) yilds c α + i αi αi (c α ) + ϕ i i (c α ) i, i= ad (7.3) implis (c α ) ϕ. i= 4

15 Thrfor, our first stp is to driv uppr bouds for ( ) iα i (52) σ i with σ i :=. i= σ i dpds o ad α. W us th abbrviatio σ i for fixd ad α ad omit xtra paramtrs for bttr radability. I ordr to stimat th sum (52), w will split it ito 3 parts, which will b boudd idividually. For i holds σ i+ σ i = ad thrfor (53) σ i < ( i + ) (i+)α ( ) (i+)α i ( ) α σi+ for i. i For all β IR with < β < ad k := β i=k ad thrfor 2 σ i < σ + σ σ k > ad k β yilds i=k+ i=k ( ) α i = ( ) α σi+ = σ + i { ( σ σ k > ( β α ) (i ) i=k+ σ i. ( ) α ( i + ) (i+)α > i holds k < β k. Th (53) givs ) α } σ i i=k+ i=k+ ( ) α σ i, (i ) { ( ) α } σ i, k By choic, β >, ad α 0 implis ( β α ) >. Thrfor, ( ) ( )α (54) σ i < ( β α ) σ = ( β α ) =: µ i=k ( ) α i α, holds for vry α 0, < β < ad k := β. This is th first part of th sum (7.6) for a suitabl k to b dtrmid. Dfi ( x ) xα ( x ) xα f(x) := with f (x) = {α l x } + α. For x > 0, f(x) has xactly o miimum at x =. Th f(i) = σ i shows (55) σ k σ l for k l, ad σ k σ l for St M := /. Th k = β (56) k i=m k l. satisfis M k, ad (55) implis for 3, ( β σ i (k M) σ k < + ) ( ) β f < β ( ) β f ( ) βα β + =: ν. This is th scod part of th sum (7.6). Fially, (7.9) implis (57) M i= σ i < ( ) α + ( ) 2α 2 + ( ) 3α 3 + ( ) 4α 4 ( ) =: ξ, which is th third part of th sum (7.6). Th iqualitis (54), (56) ad (57) togthr yild (58) α + i= ( ) iα i α + µ + ν + ξ for 3. 5

16 Nxt, w show that all thr squcs µ, ν, ξ ar dcrasig for larg ough. ( + ) is mootoically icrasig for, thrfor for 2, ( ) α ( ) ( )α + µ + µ. Suppos (59) 0 Th for 0, + ( β { ( ) βα }. β ) βα ( + ) ( ) βα β ( + ) ( ) (+) βα β + ( β α ) βα +, ad thrfor ν + ν for 0 with 0 satisfyig (59). Fially, for ad α > 0.25, 4α < 0 ad thrfor ( ) 4α ( ) ( ) 4α ( ) ( + ) 4α 4α ξ + ξ. + Summarizig, this provs th followig lmma. Lmma 7.. Dfi ϕ :=, ϕ 2 := ad rcursivly ϕ to b th positiv zro of P (x) giv i (47). Lt costats c, α IR, α l 2 ad 3 0 IN b giv with ϕ c α for < 0. If a costat β IR, < β < xists such that (59) is satisfid ad µ, ν, ξ dfid i (54), (56), (57) satisfy (60) α + µ + ν + ξ for = 0, th ϕ c α for all IN. Proof. (50) is satisfid for k <, ad (58) ad (7.4) prov th lft had sid of (5) for = 0, ad thrfor (7.4) for k =. Th quatitis α, µ, ν ad ξ ar dcrasig for icrasig. Thus, (7.4) ad thrfor (7.4) is valid for all 0. By assumptio, ϕ c α for < 0 as wll. For xampl, for β := 2.697, α := 0.7 ad 0 := 3000, o chcks by xplicit calculatio ϕ 2.32 α for 0. Th lowr boud (59) for 0 is lss tha 83, µ < 0.992, ν < , ξ < , ad α < for = 0. This provs th followig rsult. Corollary 7.2. For all, ϕ Th diffrc ϕ is lss tha 2.8 for < 20, ad lss tha 2.0 for Summarizig, Corollary 7.2, Propositio 6.3, ad Lmma 5.7 prov th followig rsult. Propositio 7.3. Lt A, E M (IR) with osigular A ad E 0 b giv. Th for all with ρ( A E) σ(a, E) γ() ρ( A E), γ() Th lowr boud for γ() is sharp. Fially, w will show th asymptotic bhaviour of uppr bouds for γ(). Lt α := l(2 + 2η), η > 0. For ay < β < ad, α 0, µ ( β α ) α, ν 0 ad ξ 0. 6

17 For l β := (2 + η)/(2 + 2η), a short computatio yilds ( β α ) α = 2 + η 2 + 4η + 2η 2 <. Hc, for this β ad larg ough 0, (59) holds ad α + µ + ν + ξ < for all 0. Thrfor, for larg ough c with ϕ c α for < 0, Lmma 7. implis that ϕ c α for all IN. Usig α > l 2 provs th followig. Propositio 7.4. Lt γ() b dfid as follows: γ() := if{ σ(a, E) ρ( A E) A M (IR) osigular ad 0 E M (IR) }. Th γ() is fiit for all IN. Morovr, for ay ε > 0 thr xists som 0 IN such that for all 0 holds (6) γ() +l 2+ε. Th lowr boud i (6) is sharp. ) I his papr [3], Dmml showd that for th Baur-Skl coditio umbr κ(a, E) := A E with ay p-orm, p, thr holds ρ( A E) =, mi κ(ad, ED) D whr th miimum is tak ovr all diagoal D. Thus, Propositio 7.3 ad Propositio 7.4 prov that th compotwis rlativ distac to th arst sigular matrix for ay wight matrix E 0 is ot too far from th rciprocal of th smallst coditio umbr achivabl by colum scalig. Th vidc prstd i this papr lads us to th followig cojctur. Cojctur 7.5. For all osigular A M (IR) ad 0 E M (IR) holds (62) ρ( A E) σ(a, E) ρ( A E). If th cojctur is tru, Lmma 5.7 shows that it is sharp. Ackowldgmts. Th author wishs to thak Jiri Roh for may hlpful commts. REFERENCES [] F. Baur, Optimally scald matrics, Numrisch Mathmatik 5, (963), pp [2] L. Collatz, Eischlißugssatz für di charaktristisch Zahl vo Matriz, Math. Z., 48 (942), pp [3] J. Dmml, Th Compotwis Distac to th Narst Sigular Matrix, SIAM J. Matrix Aal. Appl., 3 (992), pp [4] G. Egl ad H. Schidr, Th Hadamard-Fischr Iquality for a Class of Matrics Dfid by Eigvalu Mootoicity, Liar ad Multiliar Algbra 4, (976), pp [5] R. Hor ad C. Johso, Matrix Aalysis, Cambridg Uivrsity Prss, 985. [6] M. Marcus ad H. Mic, A survy of matrix thory ad matrix iqualitis, Dovr publicatios, Nw York, 992. [7] S. Poljak ad J. Roh, Chckig Robust Nosigularity Is NP-Hard, Math. of Cotrol, Sigals, ad Systms 6, (993), pp. 9. [8] J. Roh, Narss of Matrics to Sigularity, KAM Sris o Discrt Mathmatics ad Combiatoris, (988). [9], Systms of Liar Itrval Equatios, Liar Algbra Appl. 26, (989), pp [0], Itrval Matrics: Sigularity ad Ral Eigvalus, SIAM J. Matrix Aal. Appl. 4, (993), pp [] S. Rump, Estimatio of th Ssitivity of Liar ad Noliar Algbraic Problms, Liar Algbra ad its Applicatios 53, (99), pp. 34. [2], Vrificatio Mthods for Ds ad Spars Systms of Equatios, i Topics i Validatd Computatios Studis i Computatioal Mathmatics, J. Hrzbrgr, d., Elsvir, Amstrdam, 994, pp ) Not addd i proof: I th matim it has b show by th author that γ() ( ). 7

18 [3] G. Stwart ad J. Su, Matrix Prturbatio Thory, Acadmic Prss,

PURE MATHEMATICS A-LEVEL PAPER 1

PURE MATHEMATICS A-LEVEL PAPER 1 -AL P MATH PAPER HONG KONG EXAMINATIONS AUTHORITY HONG KONG ADVANCED LEVEL EXAMINATION PURE MATHEMATICS A-LEVEL PAPER 8 am am ( hours) This papr must b aswrd i Eglish This papr cosists of Sctio A ad Sctio

More information

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z Sris Expasio of Rciprocal of Gamma Fuctio. Fuctios with Itgrs as Roots Fuctio f with gativ itgrs as roots ca b dscribd as follows. f() Howvr, this ifiit product divrgs. That is, such a fuctio caot xist

More information

On the approximation of the constant of Napier

On the approximation of the constant of Napier Stud. Uiv. Babş-Bolyai Math. 560, No., 609 64 O th approximatio of th costat of Napir Adri Vrscu Abstract. Startig from som oldr idas of [] ad [6], w show w facts cocrig th approximatio of th costat of

More information

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges.

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges. Optio Chaptr Ercis. Covrgs to Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Divrgs 8 Divrgs Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Covrgs to Covrgs to 8 Proof Covrgs to π l 8 l a b Divrgt π Divrgt

More information

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series Chatr Ifiit Sris Pag of Sctio F Itgral Tst Chatr : Ifiit Sris By th d of this sctio you will b abl to valuat imror itgrals tst a sris for covrgc by alyig th itgral tst aly th itgral tst to rov th -sris

More information

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net Taylor s Thorm & Lagrag Error Bouds Actual Error This is th ral amout o rror, ot th rror boud (worst cas scario). It is th dirc btw th actual () ad th polyomial. Stps:. Plug -valu ito () to gt a valu.

More information

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1 DTFT Proprtis Exampl - Dtrmi th DTFT Y of y α µ, α < Lt x α µ, α < W ca thrfor writ y x x From Tabl 3., th DTFT of x is giv by ω X ω α ω Copyright, S. K. Mitra Copyright, S. K. Mitra DTFT Proprtis DTFT

More information

H2 Mathematics Arithmetic & Geometric Series ( )

H2 Mathematics Arithmetic & Geometric Series ( ) H Mathmatics Arithmtic & Gomtric Sris (08 09) Basic Mastry Qustios Arithmtic Progrssio ad Sris. Th rth trm of a squc is 4r 7. (i) Stat th first four trms ad th 0th trm. (ii) Show that th squc is a arithmtic

More information

Restricted Factorial And A Remark On The Reduced Residue Classes

Restricted Factorial And A Remark On The Reduced Residue Classes Applid Mathmatics E-Nots, 162016, 244-250 c ISSN 1607-2510 Availabl fr at mirror sits of http://www.math.thu.du.tw/ am/ Rstrictd Factorial Ad A Rmark O Th Rducd Rsidu Classs Mhdi Hassai Rcivd 26 March

More information

A Simple Proof that e is Irrational

A Simple Proof that e is Irrational Two of th most bautiful ad sigificat umbrs i mathmatics ar π ad. π (approximatly qual to 3.459) rprsts th ratio of th circumfrc of a circl to its diamtr. (approximatly qual to.788) is th bas of th atural

More information

1985 AP Calculus BC: Section I

1985 AP Calculus BC: Section I 985 AP Calculus BC: Sctio I 9 Miuts No Calculator Nots: () I this amiatio, l dots th atural logarithm of (that is, logarithm to th bas ). () Ulss othrwis spcifid, th domai of a fuctio f is assumd to b

More information

Solution to 1223 The Evil Warden.

Solution to 1223 The Evil Warden. Solutio to 1 Th Evil Ward. This is o of thos vry rar PoWs (I caot thik of aothr cas) that o o solvd. About 10 of you submittd th basic approach, which givs a probability of 47%. I was shockd wh I foud

More information

Hadamard Exponential Hankel Matrix, Its Eigenvalues and Some Norms

Hadamard Exponential Hankel Matrix, Its Eigenvalues and Some Norms Math Sci Ltt Vol No 8-87 (0) adamard Exotial al Matrix, Its Eigvalus ad Som Norms İ ad M bula Mathmatical Scics Lttrs Itratioal Joural @ 0 NSP Natural Scics Publishig Cor Dartmt of Mathmatics, aculty of

More information

Linear Algebra Existence of the determinant. Expansion according to a row.

Linear Algebra Existence of the determinant. Expansion according to a row. Lir Algbr 2270 1 Existc of th dtrmit. Expsio ccordig to row. W dfi th dtrmit for 1 1 mtrics s dt([]) = (1) It is sy chck tht it stisfis D1)-D3). For y othr w dfi th dtrmit s follows. Assumig th dtrmit

More information

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple 5/24/5 A PROOF OF THE CONTINUED FRACTION EXPANSION OF / Thomas J Oslr INTRODUCTION This ar givs aothr roof for th rmarkabl siml cotiud fractio = 3 5 / Hr is ay ositiv umbr W us th otatio x= [ a; a, a2,

More information

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1 Chatr Fiv Mor Dimsios 51 Th Sac R W ar ow rard to mov o to sacs of dimsio gratr tha thr Ths sacs ar a straightforward gralizatio of our Euclida sac of thr dimsios Lt b a ositiv itgr Th -dimsioal Euclida

More information

Discrete Fourier Transform. Nuno Vasconcelos UCSD

Discrete Fourier Transform. Nuno Vasconcelos UCSD Discrt Fourir Trasform uo Vascoclos UCSD Liar Shift Ivariat (LSI) systms o of th most importat cocpts i liar systms thory is that of a LSI systm Dfiitio: a systm T that maps [ ito y[ is LSI if ad oly if

More information

NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES

NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES Digst Joural of Naomatrials ad Biostructurs Vol 4, No, March 009, p 67-76 NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES A IRANMANESH a*, O KHORMALI b, I NAJAFI KHALILSARAEE c, B SOLEIMANI

More information

Statistics 3858 : Likelihood Ratio for Exponential Distribution

Statistics 3858 : Likelihood Ratio for Exponential Distribution Statistics 3858 : Liklihood Ratio for Expotial Distributio I ths two xampl th rjctio rjctio rgio is of th form {x : 2 log (Λ(x)) > c} for a appropriat costat c. For a siz α tst, usig Thorm 9.5A w obtai

More information

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n 07 - SEQUENCES AND SERIES Pag ( Aswrs at h d of all qustios ) ( ) If = a, y = b, z = c, whr a, b, c ar i A.P. ad = 0 = 0 = 0 l a l

More information

10. Joint Moments and Joint Characteristic Functions

10. Joint Moments and Joint Characteristic Functions 0 Joit Momts ad Joit Charactristic Fctios Followig sctio 6 i this sctio w shall itrodc varios paramtrs to compactly rprst th iformatio cotaid i th joit pdf of two rvs Giv two rvs ad ad a fctio g x y dfi

More information

Chapter (8) Estimation and Confedence Intervals Examples

Chapter (8) Estimation and Confedence Intervals Examples Chaptr (8) Estimatio ad Cofdc Itrvals Exampls Typs of stimatio: i. Poit stimatio: Exampl (1): Cosidr th sampl obsrvatios, 17,3,5,1,18,6,16,10 8 X i i1 17 3 5 118 6 16 10 116 X 14.5 8 8 8 14.5 is a poit

More information

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120 Tim : hr. Tst Papr 8 D 4//5 Bch - R Marks : SINGLE CORRECT CHOICE TYPE [4, ]. If th compl umbr z sisfis th coditio z 3, th th last valu of z is qual to : z (A) 5/3 (B) 8/3 (C) /3 (D) o of ths 5 4. Th itgral,

More information

Law of large numbers

Law of large numbers Law of larg umbrs Saya Mukhrj W rvisit th law of larg umbrs ad study i som dtail two typs of law of larg umbrs ( 0 = lim S ) p ε ε > 0, Wak law of larrg umbrs [ ] S = ω : lim = p, Strog law of larg umbrs

More information

Digital Signal Processing, Fall 2006

Digital Signal Processing, Fall 2006 Digital Sigal Procssig, Fall 6 Lctur 9: Th Discrt Fourir Trasfor Zhg-Hua Ta Dpartt of Elctroic Systs Aalborg Uivrsity, Dar zt@o.aau.d Digital Sigal Procssig, I, Zhg-Hua Ta, 6 Cours at a glac MM Discrt-ti

More information

Lectures 9 IIR Systems: First Order System

Lectures 9 IIR Systems: First Order System EE3054 Sigals ad Systms Lcturs 9 IIR Systms: First Ordr Systm Yao Wag Polytchic Uivrsity Som slids icludd ar xtractd from lctur prstatios prpard by McCllla ad Schafr Lics Ifo for SPFirst Slids This work

More information

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia Part B: Trasform Mthods Chaptr 3: Discrt-Tim Fourir Trasform (DTFT) 3. Discrt Tim Fourir Trasform (DTFT) 3. Proprtis of DTFT 3.3 Discrt Fourir Trasform (DFT) 3.4 Paddig with Zros ad frqucy Rsolutio 3.5

More information

On a problem of J. de Graaf connected with algebras of unbounded operators de Bruijn, N.G.

On a problem of J. de Graaf connected with algebras of unbounded operators de Bruijn, N.G. O a problm of J. d Graaf coctd with algbras of uboudd oprators d Bruij, N.G. Publishd: 01/01/1984 Documt Vrsio Publishr s PDF, also kow as Vrsio of Rcord (icluds fial pag, issu ad volum umbrs) Plas chck

More information

Chapter Taylor Theorem Revisited

Chapter Taylor Theorem Revisited Captr 0.07 Taylor Torm Rvisitd Atr radig tis captr, you sould b abl to. udrstad t basics o Taylor s torm,. writ trascdtal ad trigoomtric uctios as Taylor s polyomial,. us Taylor s torm to id t valus o

More information

A GENERALIZED RAMANUJAN-NAGELL EQUATION RELATED TO CERTAIN STRONGLY REGULAR GRAPHS

A GENERALIZED RAMANUJAN-NAGELL EQUATION RELATED TO CERTAIN STRONGLY REGULAR GRAPHS #A35 INTEGERS 4 (204) A GENERALIZED RAMANUJAN-NAGELL EQUATION RELATED TO CERTAIN STRONGLY REGULAR GRAPHS B d Wgr Faculty of Mathmatics ad Computr Scic, Eidhov Uivrsity of Tchology, Eidhov, Th Nthrlads

More information

An Introduction to Asymptotic Expansions

An Introduction to Asymptotic Expansions A Itroductio to Asmptotic Expasios R. Shaar Subramaia Asmptotic xpasios ar usd i aalsis to dscrib th bhavior of a fuctio i a limitig situatio. Wh a fuctio ( x, dpds o a small paramtr, ad th solutio of

More information

APPENDIX: STATISTICAL TOOLS

APPENDIX: STATISTICAL TOOLS I. Nots o radom samplig Why do you d to sampl radomly? APPENDI: STATISTICAL TOOLS I ordr to masur som valu o a populatio of orgaisms, you usually caot masur all orgaisms, so you sampl a subst of th populatio.

More information

Calculus & analytic geometry

Calculus & analytic geometry Calculus & aalytic gomtry B Sc MATHEMATICS Admissio owards IV SEMESTER CORE COURSE UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION CALICUT UNIVERSITYPO, MALAPPURAM, KERALA, INDIA 67 65 5 School of Distac

More information

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013 18.782 Introduction to Arithmtic Gomtry Fall 2013 Lctur #20 11/14/2013 20.1 Dgr thorm for morphisms of curvs Lt us rstat th thorm givn at th nd of th last lctur, which w will now prov. Thorm 20.1. Lt φ:

More information

FORBIDDING RAINBOW-COLORED STARS

FORBIDDING RAINBOW-COLORED STARS FORBIDDING RAINBOW-COLORED STARS CARLOS HOPPEN, HANNO LEFMANN, KNUT ODERMANN, AND JULIANA SANCHES Abstract. W cosidr a xtrmal problm motivatd by a papr of Balogh [J. Balogh, A rmark o th umbr of dg colorigs

More information

2617 Mark Scheme June 2005 Mark Scheme 2617 June 2005

2617 Mark Scheme June 2005 Mark Scheme 2617 June 2005 Mark Schm 67 Ju 5 GENERAL INSTRUCTIONS Marks i th mark schm ar plicitly dsigatd as M, A, B, E or G. M marks ("mthod" ar for a attmpt to us a corrct mthod (ot mrly for statig th mthod. A marks ("accuracy"

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by Dan Klain Vrsion 28928 Corrctions and commnts ar wlcom Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix () A A k I + A + k!

More information

STIRLING'S 1 FORMULA AND ITS APPLICATION

STIRLING'S 1 FORMULA AND ITS APPLICATION MAT-KOL (Baja Luka) XXIV ()(08) 57-64 http://wwwimviblorg/dmbl/dmblhtm DOI: 075/МК80057A ISSN 0354-6969 (o) ISSN 986-588 (o) STIRLING'S FORMULA AND ITS APPLICATION Šfkt Arslaagić Sarajvo B&H Abstract:

More information

Introduction to Quantum Information Processing. Overview. A classical randomised algorithm. q 3,3 00 0,0. p 0,0. Lecture 10.

Introduction to Quantum Information Processing. Overview. A classical randomised algorithm. q 3,3 00 0,0. p 0,0. Lecture 10. Itroductio to Quatum Iformatio Procssig Lctur Michl Mosca Ovrviw! Classical Radomizd vs. Quatum Computig! Dutsch-Jozsa ad Brsti- Vazirai algorithms! Th quatum Fourir trasform ad phas stimatio A classical

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

INTRODUCTION TO SAMPLING DISTRIBUTIONS

INTRODUCTION TO SAMPLING DISTRIBUTIONS http://wiki.stat.ucla.du/socr/id.php/socr_courss_2008_thomso_econ261 INTRODUCTION TO SAMPLING DISTRIBUTIONS By Grac Thomso INTRODUCTION TO SAMPLING DISTRIBUTIONS Itro to Samplig 2 I this chaptr w will

More information

15/03/1439. Lectures on Signals & systems Engineering

15/03/1439. Lectures on Signals & systems Engineering Lcturs o Sigals & syms Egirig Dsigd ad Prd by Dr. Ayma Elshawy Elsfy Dpt. of Syms & Computr Eg. Al-Azhar Uivrsity Email : aymalshawy@yahoo.com A sigal ca b rprd as a liar combiatio of basic sigals. Th

More information

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform Discrt Fourir Trasform Dfiitio - T simplst rlatio btw a lt- squc x dfid for ω ad its DTFT X ( ) is ω obtaid by uiformly sampli X ( ) o t ω-axis btw ω < at ω From t dfiitio of t DTFT w tus av X X( ω ) ω

More information

EEO 401 Digital Signal Processing Prof. Mark Fowler

EEO 401 Digital Signal Processing Prof. Mark Fowler EEO 401 Digital Signal Procssing Prof. Mark Fowlr Dtails of th ot St #19 Rading Assignmnt: Sct. 7.1.2, 7.1.3, & 7.2 of Proakis & Manolakis Dfinition of th So Givn signal data points x[n] for n = 0,, -1

More information

Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT) Discrt Fourir Trasorm DFT Major: All Egirig Majors Authors: Duc guy http://umricalmthods.g.us.du umrical Mthods or STEM udrgraduats 8/3/29 http://umricalmthods.g.us.du Discrt Fourir Trasorm Rcalld th xpotial

More information

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling Tripl Play: From D Morga to Stirlig To Eulr to Maclauri to Stirlig Augustus D Morga (186-1871) was a sigificat Victoria Mathmaticia who mad cotributios to Mathmatics History, Mathmatical Rcratios, Mathmatical

More information

CDS 101: Lecture 5.1 Reachability and State Space Feedback

CDS 101: Lecture 5.1 Reachability and State Space Feedback CDS, Lctur 5. CDS : Lctur 5. Rachability ad Stat Spac Fdback Richard M. Murray ad Hido Mabuchi 5 Octobr 4 Goals: Di rachability o a cotrol systm Giv tsts or rachability o liar systms ad apply to ampls

More information

Session : Plasmas in Equilibrium

Session : Plasmas in Equilibrium Sssio : Plasmas i Equilibrium Ioizatio ad Coductio i a High-prssur Plasma A ormal gas at T < 3000 K is a good lctrical isulator, bcaus thr ar almost o fr lctros i it. For prssurs > 0.1 atm, collisio amog

More information

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero.

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero. SETION 6. 57 6. Evaluation of Dfinit Intgrals Exampl 6.6 W hav usd dfinit intgrals to valuat contour intgrals. It may com as a surpris to larn that contour intgrals and rsidus can b usd to valuat crtain

More information

CDS 101: Lecture 5.1 Reachability and State Space Feedback

CDS 101: Lecture 5.1 Reachability and State Space Feedback CDS, Lctur 5. CDS : Lctur 5. Rachability ad Stat Spac Fdback Richard M. Murray 7 Octobr 3 Goals: Di rachability o a cotrol systm Giv tsts or rachability o liar systms ad apply to ampls Dscrib th dsig o

More information

NET/JRF, GATE, IIT JAM, JEST, TIFR

NET/JRF, GATE, IIT JAM, JEST, TIFR Istitut for NET/JRF, GATE, IIT JAM, JEST, TIFR ad GRE i PHYSICAL SCIENCES Mathmatical Physics JEST-6 Q. Giv th coditio φ, th solutio of th quatio ψ φ φ is giv by k. kφ kφ lφ kφ lφ (a) ψ (b) ψ kφ (c) ψ

More information

On Deterministic Finite Automata and Syntactic Monoid Size, Continued

On Deterministic Finite Automata and Syntactic Monoid Size, Continued O Dtrmiistic Fiit Automata ad Sytactic Mooid Siz, Cotiud Markus Holzr ad Barbara Köig Istitut für Iformatik, Tchisch Uivrsität Müch, Boltzmastraß 3, D-85748 Garchig bi Müch, Grmay mail: {holzr,koigb}@iformatik.tu-much.d

More information

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2 MATHEMATIS --RE Itgral alculus Marti Huard Witr 9 Rviw Erciss. Evaluat usig th dfiitio of th dfiit itgral as a Rima Sum. Dos th aswr rprst a ara? a ( d b ( d c ( ( d d ( d. Fid f ( usig th Fudamtal Thorm

More information

Chapter 10. The singular integral Introducing S(n) and J(n)

Chapter 10. The singular integral Introducing S(n) and J(n) Chaptr Th singular intgral Our aim in this chaptr is to rplac th functions S (n) and J (n) by mor convnint xprssions; ths will b calld th singular sris S(n) and th singular intgral J(n). This will b don

More information

The Interplay between l-max, l-min, p-max and p-min Stable Distributions

The Interplay between l-max, l-min, p-max and p-min Stable Distributions DOI: 0.545/mjis.05.4006 Th Itrplay btw lma lmi pma ad pmi Stabl Distributios S Ravi ad TS Mavitha Dpartmt of Studis i Statistics Uivrsity of Mysor Maasagagotri Mysuru 570006 Idia. Email:ravi@statistics.uimysor.ac.i

More information

Further Results on Pair Sum Graphs

Further Results on Pair Sum Graphs Applid Mathmatis, 0,, 67-75 http://dx.doi.org/0.46/am.0.04 Publishd Oli Marh 0 (http://www.sirp.org/joural/am) Furthr Rsults o Pair Sum Graphs Raja Poraj, Jyaraj Vijaya Xavir Parthipa, Rukhmoi Kala Dpartmt

More information

Probability & Statistics,

Probability & Statistics, Probability & Statistics, BITS Pilai K K Birla Goa Campus Dr. Jajati Kshari Sahoo Dpartmt of Mathmatics BITS Pilai, K K Birla Goa Campus Poisso Distributio Poisso Distributio: A radom variabl X is said

More information

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx MONTGOMERY COLLEGE Dpartmt of Mathmatics Rockvill Campus MATH 8 - REVIEW PROBLEMS. Stat whthr ach of th followig ca b itgratd by partial fractios (PF), itgratio by parts (PI), u-substitutio (U), or o of

More information

Basic Polyhedral theory

Basic Polyhedral theory Basic Polyhdral thory Th st P = { A b} is calld a polyhdron. Lmma 1. Eithr th systm A = b, b 0, 0 has a solution or thr is a vctorπ such that π A 0, πb < 0 Thr cass, if solution in top row dos not ist

More information

Iterative Methods of Order Four for Solving Nonlinear Equations

Iterative Methods of Order Four for Solving Nonlinear Equations Itrativ Mods of Ordr Four for Solvig Noliar Equatios V.B. Kumar,Vatti, Shouri Domii ad Mouia,V Dpartmt of Egirig Mamatis, Formr Studt of Chmial Egirig Adhra Uivrsity Collg of Egirig A, Adhra Uivrsity Visakhapatam

More information

International Journal of Advanced and Applied Sciences

International Journal of Advanced and Applied Sciences Itratioal Joural of Advacd ad Applid Scics x(x) xxxx Pags: xx xx Cotts lists availabl at Scic Gat Itratioal Joural of Advacd ad Applid Scics Joural hompag: http://wwwscic gatcom/ijaashtml Symmtric Fuctios

More information

ln x = n e = 20 (nearest integer)

ln x = n e = 20 (nearest integer) H JC Prlim Solutios 6 a + b y a + b / / dy a b 3/ d dy a b at, d Giv quatio of ormal at is y dy ad y wh. d a b () (,) is o th curv a+ b () y.9958 Qustio Solvig () ad (), w hav a, b. Qustio d.77 d d d.77

More information

ONLINE SUPPLEMENT Optimal Markdown Pricing and Inventory Allocation for Retail Chains with Inventory Dependent Demand

ONLINE SUPPLEMENT Optimal Markdown Pricing and Inventory Allocation for Retail Chains with Inventory Dependent Demand Submittd to Maufacturig & Srvic Opratios Maagmt mauscript MSOM 5-4R2 ONLINE SUPPLEMENT Optimal Markdow Pricig ad Ivtory Allocatio for Rtail Chais with Ivtory Dpdt Dmad Stph A Smith Dpartmt of Opratios

More information

A Note on Quantile Coupling Inequalities and Their Applications

A Note on Quantile Coupling Inequalities and Their Applications A Not o Quatil Couplig Iqualitis ad Thir Applicatios Harriso H. Zhou Dpartmt of Statistics, Yal Uivrsity, Nw Hav, CT 06520, USA. E-mail:huibi.zhou@yal.du Ju 2, 2006 Abstract A rlatioship btw th larg dviatio

More information

ECE594I Notes set 6: Thermal Noise

ECE594I Notes set 6: Thermal Noise C594I ots, M. odwll, copyrightd C594I Nots st 6: Thrmal Nois Mark odwll Uivrsity of Califoria, ata Barbara rodwll@c.ucsb.du 805-893-344, 805-893-36 fax frcs ad Citatios: C594I ots, M. odwll, copyrightd

More information

Folding of Hyperbolic Manifolds

Folding of Hyperbolic Manifolds It. J. Cotmp. Math. Scics, Vol. 7, 0, o. 6, 79-799 Foldig of Hyprbolic Maifolds H. I. Attiya Basic Scic Dpartmt, Collg of Idustrial Educatio BANE - SUEF Uivrsity, Egypt hala_attiya005@yahoo.com Abstract

More information

Technical Support Document Bias of the Minimum Statistic

Technical Support Document Bias of the Minimum Statistic Tchical Support Documt Bias o th Miimum Stattic Itroductio Th papr pla how to driv th bias o th miimum stattic i a radom sampl o siz rom dtributios with a shit paramtr (also kow as thrshold paramtr. Ths

More information

Figure 2-18 Thevenin Equivalent Circuit of a Noisy Resistor

Figure 2-18 Thevenin Equivalent Circuit of a Noisy Resistor .8 NOISE.8. Th Nyquist Nois Thorm W ow wat to tur our atttio to ois. W will start with th basic dfiitio of ois as usd i radar thory ad th discuss ois figur. Th typ of ois of itrst i radar thory is trmd

More information

Section 6.1. Question: 2. Let H be a subgroup of a group G. Then H operates on G by left multiplication. Describe the orbits for this operation.

Section 6.1. Question: 2. Let H be a subgroup of a group G. Then H operates on G by left multiplication. Describe the orbits for this operation. MAT 444 H Barclo Spring 004 Homwork 6 Solutions Sction 6 Lt H b a subgroup of a group G Thn H oprats on G by lft multiplication Dscrib th orbits for this opration Th orbits of G ar th right costs of H

More information

Chapter 4 - The Fourier Series

Chapter 4 - The Fourier Series M. J. Robrts - 8/8/4 Chaptr 4 - Th Fourir Sris Slctd Solutios (I this solutio maual, th symbol,, is usd for priodic covolutio bcaus th prfrrd symbol which appars i th txt is ot i th fot slctio of th word

More information

COMPUTING FOLRIER AND LAPLACE TRANSFORMS. Sven-Ake Gustafson. be a real-valued func'cion, defined for nonnegative arguments.

COMPUTING FOLRIER AND LAPLACE TRANSFORMS. Sven-Ake Gustafson. be a real-valued func'cion, defined for nonnegative arguments. 77 COMPUTNG FOLRER AND LAPLACE TRANSFORMS BY MEANS OF PmER SERES EVALU\TON Sv-Ak Gustafso 1. NOTATONS AND ASSUMPTONS Lt f b a ral-valud fuc'cio, dfid for ogativ argumts. W shall discuss som aspcts of th

More information

arxiv: v1 [math.fa] 18 Feb 2016

arxiv: v1 [math.fa] 18 Feb 2016 SPECTRAL PROPERTIES OF WEIGHTE COMPOSITION OPERATORS ON THE BLOCH AN IRICHLET SPACES arxiv:60.05805v [math.fa] 8 Fb 06 TE EKLUN, MIKAEL LINSTRÖM, AN PAWE L MLECZKO Abstract. Th spctra of ivrtibl wightd

More information

ECE602 Exam 1 April 5, You must show ALL of your work for full credit.

ECE602 Exam 1 April 5, You must show ALL of your work for full credit. ECE62 Exam April 5, 27 Nam: Solution Scor: / This xam is closd-book. You must show ALL of your work for full crdit. Plas rad th qustions carfully. Plas chck your answrs carfully. Calculators may NOT b

More information

ω (argument or phase)

ω (argument or phase) Imagiary uit: i ( i Complx umbr: z x+ i y Cartsia coordiats: x (ral part y (imagiary part Complx cougat: z x i y Absolut valu: r z x + y Polar coordiats: r (absolut valu or modulus ω (argumt or phas x

More information

MATH 681 Notes Combinatorics and Graph Theory I. ( 4) n. This will actually turn out to be marvelously simplifiable: C n = 2 ( 4) n n + 1. ) (n + 1)!

MATH 681 Notes Combinatorics and Graph Theory I. ( 4) n. This will actually turn out to be marvelously simplifiable: C n = 2 ( 4) n n + 1. ) (n + 1)! MATH 681 Nots Combiatorics ad Graph Thory I 1 Catala umbrs Prviously, w usd gratig fuctios to discovr th closd form C = ( 1/ +1) ( 4). This will actually tur out to b marvlously simplifiabl: ( ) 1/ C =

More information

cycle that does not cross any edges (including its own), then it has at least

cycle that does not cross any edges (including its own), then it has at least W prov th following thorm: Thorm If a K n is drawn in th plan in such a way that it has a hamiltonian cycl that dos not cross any dgs (including its own, thn it has at last n ( 4 48 π + O(n crossings Th

More information

UNIT 2: MATHEMATICAL ENVIRONMENT

UNIT 2: MATHEMATICAL ENVIRONMENT UNIT : MATHEMATICAL ENVIRONMENT. Itroductio This uit itroducs som basic mathmatical cocpts ad rlats thm to th otatio usd i th cours. Wh ou hav workd through this uit ou should: apprciat that a mathmatical

More information

LINEAR DELAY DIFFERENTIAL EQUATION WITH A POSITIVE AND A NEGATIVE TERM

LINEAR DELAY DIFFERENTIAL EQUATION WITH A POSITIVE AND A NEGATIVE TERM Elctronic Journal of Diffrntial Equations, Vol. 2003(2003), No. 92, pp. 1 6. ISSN: 1072-6691. URL: http://jd.math.swt.du or http://jd.math.unt.du ftp jd.math.swt.du (login: ftp) LINEAR DELAY DIFFERENTIAL

More information

Chapter 11.00C Physical Problem for Fast Fourier Transform Civil Engineering

Chapter 11.00C Physical Problem for Fast Fourier Transform Civil Engineering haptr. Physical Problm for Fast Fourir Trasform ivil Egirig Itroductio I this chaptr, applicatios of FFT algorithms [-5] for solvig ral-lif problms such as computig th dyamical (displacmt rspos [6-7] of

More information

SCHUR S THEOREM REU SUMMER 2005

SCHUR S THEOREM REU SUMMER 2005 SCHUR S THEOREM REU SUMMER 2005 1. Combinatorial aroach Prhas th first rsult in th subjct blongs to I. Schur and dats back to 1916. On of his motivation was to study th local vrsion of th famous quation

More information

3.4 Properties of the Stress Tensor

3.4 Properties of the Stress Tensor cto.4.4 Proprts of th trss sor.4. trss rasformato Lt th compots of th Cauchy strss tsor a coordat systm wth bas vctors b. h compots a scod coordat systm wth bas vctors j,, ar gv by th tsor trasformato

More information

Time Dependent Solutions: Propagators and Representations

Time Dependent Solutions: Propagators and Representations Tim Dpdt Solutios: Propagators ad Rprstatios Michal Fowlr, UVa 1/3/6 Itroductio W v spt most of th cours so far coctratig o th igstats of th amiltoia, stats whos tim dpdc is mrly a chagig phas W did mtio

More information

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation.

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation. Lur 7 Fourir Transforms and th Wav Euation Ovrviw and Motivation: W first discuss a fw faturs of th Fourir transform (FT), and thn w solv th initial-valu problm for th wav uation using th Fourir transform

More information

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 12

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 12 REVIEW Lctur 11: Numrical Fluid Mchaics Sprig 2015 Lctur 12 Fiit Diffrcs basd Polyomial approximatios Obtai polyomial (i gral u-qually spacd), th diffrtiat as dd Nwto s itrpolatig polyomial formulas Triagular

More information

Derangements and Applications

Derangements and Applications 2 3 47 6 23 Journal of Intgr Squncs, Vol. 6 (2003), Articl 03..2 Drangmnts and Applications Mhdi Hassani Dpartmnt of Mathmatics Institut for Advancd Studis in Basic Scincs Zanjan, Iran mhassani@iasbs.ac.ir

More information

Function Spaces. a x 3. (Letting x = 1 =)) a(0) + b + c (1) = 0. Row reducing the matrix. b 1. e 4 3. e 9. >: (x = 1 =)) a(0) + b + c (1) = 0

Function Spaces. a x 3. (Letting x = 1 =)) a(0) + b + c (1) = 0. Row reducing the matrix. b 1. e 4 3. e 9. >: (x = 1 =)) a(0) + b + c (1) = 0 unction Spacs Prrquisit: Sction 4.7, Coordinatization n this sction, w apply th tchniqus of Chaptr 4 to vctor spacs whos lmnts ar functions. Th vctor spacs P n and P ar familiar xampls of such spacs. Othr

More information

An Introduction to Asymptotic Expansions

An Introduction to Asymptotic Expansions A Itroductio to Asmptotic Expasios R. Shaar Subramaia Dpartmt o Chmical ad Biomolcular Egirig Clarso Uivrsit Asmptotic xpasios ar usd i aalsis to dscrib th bhavior o a uctio i a limitig situatio. Wh a

More information

Deift/Zhou Steepest descent, Part I

Deift/Zhou Steepest descent, Part I Lctur 9 Dift/Zhou Stpst dscnt, Part I W now focus on th cas of orthogonal polynomials for th wight w(x) = NV (x), V (x) = t x2 2 + x4 4. Sinc th wight dpnds on th paramtr N N w will writ π n,n, a n,n,

More information

Chapter 3 Fourier Series Representation of Periodic Signals

Chapter 3 Fourier Series Representation of Periodic Signals Chptr Fourir Sris Rprsttio of Priodic Sigls If ritrry sigl x(t or x[] is xprssd s lir comitio of som sic sigls th rspos of LI systm coms th sum of th idividul rsposs of thos sic sigls Such sic sigl must:

More information

A Propagating Wave Packet Group Velocity Dispersion

A Propagating Wave Packet Group Velocity Dispersion Lctur 8 Phys 375 A Propagating Wav Packt Group Vlocity Disprsion Ovrviw and Motivation: In th last lctur w lookd at a localizd solution t) to th 1D fr-particl Schrödingr quation (SE) that corrsponds to

More information

Cramér-Rao Inequality: Let f(x; θ) be a probability density function with continuous parameter

Cramér-Rao Inequality: Let f(x; θ) be a probability density function with continuous parameter WHEN THE CRAMÉR-RAO INEQUALITY PROVIDES NO INFORMATION STEVEN J. MILLER Abstract. W invstigat a on-paramtr family of probability dnsitis (rlatd to th Parto distribution, which dscribs many natural phnomna)

More information

Time regularity of solutions to linear equations with Lévy noise in infinite dimensions

Time regularity of solutions to linear equations with Lévy noise in infinite dimensions Tim rgularity of solutios to liar quatios with Lévy ois i ifiit dimsios S. Pszat Faculty of Applid Mathmatics, AG Uivrsity of Scic ad Tchology, Kraków, Polad, E-mail adrss: apszat@cyf-kr.du.pl. J. Zabczyk

More information

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels LUR 3 illig th bads Occupacy o Availabl rgy Lvls W hav dtrmid ad a dsity o stats. W also d a way o dtrmiig i a stat is illd or ot at a giv tmpratur. h distributio o th rgis o a larg umbr o particls ad

More information

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II COLLECTION OF SUPPLEMENTARY PROBLEMS I. CHAPTER 6 --- Trscdtl Fuctios CALCULUS II A. FROM CALCULUS BY J. STEWART:. ( How is th umbr dfid? ( Wht is pproimt vlu for? (c ) Sktch th grph of th turl potil fuctios.

More information

DFT: Discrete Fourier Transform

DFT: Discrete Fourier Transform : Discrt Fourir Trasform Cogruc (Itgr modulo m) I this sctio, all lttrs stad for itgrs. gcd m, = th gratst commo divisor of ad m Lt d = gcd(,m) All th liar combiatios r s m of ad m ar multils of d. a b

More information

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J.

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J. Probability and Stochastic Procsss: A Frindly Introduction for Elctrical and Computr Enginrs Roy D. Yats and David J. Goodman Problm Solutions : Yats and Goodman,4.3. 4.3.4 4.3. 4.4. 4.4.4 4.4.6 4.. 4..7

More information

Limiting value of higher Mahler measure

Limiting value of higher Mahler measure Limiting valu of highr Mahlr masur Arunabha Biswas a, Chris Monico a, a Dpartmnt of Mathmatics & Statistics, Txas Tch Univrsity, Lubbock, TX 7949, USA Abstract W considr th k-highr Mahlr masur m k P )

More information

Gaps in samples of geometric random variables

Gaps in samples of geometric random variables Discrt Mathmatics 37 7 871 89 Not Gaps i sampls of gomtric radom variabls William M.Y. Goh a, Pawl Hitczko b,1 a Dpartmt of Mathmatics, Drxl Uivrsity, Philadlphia, PA 1914, USA b Dpartmts of Mathmatics

More information

SOME IDENTITIES FOR THE GENERALIZED POLY-GENOCCHI POLYNOMIALS WITH THE PARAMETERS A, B AND C

SOME IDENTITIES FOR THE GENERALIZED POLY-GENOCCHI POLYNOMIALS WITH THE PARAMETERS A, B AND C Joural of Mathatical Aalysis ISSN: 2217-3412, URL: www.ilirias.co/ja Volu 8 Issu 1 2017, Pags 156-163 SOME IDENTITIES FOR THE GENERALIZED POLY-GENOCCHI POLYNOMIALS WITH THE PARAMETERS A, B AND C BURAK

More information

+ x. x 2x. 12. dx. 24. dx + 1)

+ x. x 2x. 12. dx. 24. dx + 1) INTEGRATION of FUNCTION of ONE VARIABLE INDEFINITE INTEGRAL Fidig th idfiit itgrals Rductio to basic itgrals, usig th rul f ( ) f ( ) d =... ( ). ( )d. d. d ( ). d. d. d 7. d 8. d 9. d. d. d. d 9. d 9.

More information