Minimax Rényi Redundancy

Size: px
Start display at page:

Download "Minimax Rényi Redundancy"

Transcription

1 Miimax Réyi Rdudacy Smih Yagli Pricto Uivrsity Yücl Altuğ Natra, Ic Srgio Vrdú Pricto Uivrsity Abstract Th rdudacy for uivrsal losslss comprssio i Campbll s sttig is charactrizd as a miimax Réyi divrgc, which is show to b qual to th maximal α-mutual iformatio via a gralizd rdudacy-capacity thorm Spcial atttio is placd o th aalysis of th asymptotics of miimax Réyi divrgc, which is dtrmid up to a trm vaishig i bloclgth I INTRODUCTION I variabl lgth sourc codig, xpctd cod lgth is th usual cost fuctio that o aims to miimiz For discrt mmorylss sourcs, asymptotically, th miimal achivabl pr-lttr xpctd cod lgth is qual to th tropy Howvr, if P Y V is a sourc distributio with a uow paramtr ad th codig systm assums a distributio, th o ds to pay a xtra palty for th mismatch giv by D(P Y V ) + o() () I light of (), th covtioal worst-cas masur of rdudacy i uivrsal losslss comprssio is R if D(P Y V ), () th ifimizatio is ovr all distributios o Y, ad th rmum is ovr all possibl valus of th uow paramtr I this zro-sum gam, is chos by th cod dsigr, ad is chos by atur A rlatio btw R ad th maximal mutual iformatio is giv by th Rdudacy-Capacity Thorm (g, [3], ad [4]) that stats that R I(, P Y V ), (3) th rmizatio is ovr all possibl probability distributios o th paramtr spac Through (), () ad (3), w s a plasig rlatioship btw tropy, rlativ tropy ad mutual iformatio i th cotxt of losslss data comprssio Lt Y P Y V, ad ot that D(P Y V ) E ı PY V (Y ), (4) For prfix cods, () is wll ow [, Thorm 543] Morovr, th loss i rat icurrd du to th prfix coditio is ow to b asymptotically gligibl [] th rlativ iformatio btw th probability mass fuctios o th valu st A is dotd by ı P Q (a) log P (a) Q(a) with a A A much mor strigt prformac guarat tha th avrag of rlativ iformatio is its poitwis maximum I particular, if o rplacs (4) with max y ı PY V (y ), th coutrpart of () bcoms th miimax rgrt, r if max ı y Y P Y V (y ), (5) which has foud applicatios i various sttigs, g, [5]-[9] A aalogy to th Rdudacy-Capacity Thorm is giv by [6] r log P Y V (y ) (6) y Y I (, P Y V ), (7) I (P X, P Y X ) dots th α-mutual iformatio of ifiit ordr, whos dfiitio is giv i (30) Th avrag ad poitwis formulatios ar two xtrms of prformac guarats, which ar ot quit suitabl for crtai applicatios For this raso, o ss a compromis btw thos two For xampl, i th coomics litratur, avrag ad poitwis guarats ar rfrrd as ris-utral ad ris-avoidig, rspctivly, ad th otio of ris-avrsio has b itroducd to provid a compromis [0] I this papr, w itroduc th otio of ris-avrsio withi th uivrsal sourc codig cotxt ad w quatify its ffct o th fudamtal limit I th o-uivrsal sttig, i, wh th sourc distributio is ow, a classical rsult of Campbll [] itroducs such a ris-avrs cost fuctio i a discrt mmorylss sttig Spcifically, [] proposs to graliz th covtioal otio of miimizig th xpctd cod lgth with th cost fuctio L (Y ) log E [xp(l(f(y )))], (8) 3 (0, ), f dots th cod, ad l( ) dots th lgth fuctio I this cas, for a discrt mmorylss sourc Y, Campbll [] shows that th miimum pr-lttr cost asymptotically achivabl by prfix cods is giv by th Réyi Ulss othrwis statd, logarithms ad xpotials ar of arbitrary basis throughout this papr 3 Campbll s rsult is still valid wh (, 0) Howvr, such a formulatio corrspods to a ris-sig schm, which falls outsid th philosophy spousd i this papr

2 tropy H + (Y ) Notic that L (Y ) capturs th otio of ris-avrsio through th paramtr sic L (Y ) 0 E [l(f(y ))], (9) L (Y ) max y Y l(f(y )) (0) A atural way to itroduc ris-avrsio i uivrsal sourc codig is to us Campbll s formulatio ad charactriz th palty for th mismatch ai to () Idd, about forty yars aftr Campbll s wor, Sudarsa [, Thorm 8] showd that if o uss L (Y ) as th cost fuctio, th palty paid for uivrsality ca b writt as 4 D +( P + Y V Q + Y ) + o(), () D + (P Q) dots th Réyi divrgc of ordr + (dfid i (9)), ad P Y α dots th scald distributio of P Y : Th distac masur P α Y (y) PY α(y) b Y P Y α () (b) S α (P Q) D α ( P α Q α ) (3) is ow as th Sudarsa divrgc of ordr α btw P ad Q Followig [], th rlvat masur of rdudacy for uivrsal losslss comprssio udr Campbll s prformac critrio is R () if S + (P Y V ) (4) Th covtioal miimax rdudacy i () corrspods to R 0 () whil th miimax rgrt i (5) corrspods to R () Although, i gral, S α (P Q) D α (P Q), w ar abl to stablish a plasig aalog to th classical rdudacy rsults such as (), (3) ad (5), (7): R () if D + (P Y V ) (5) I + (, P Y V ) (6) Not that (5) is aalogous to () with Réyi divrgc rplacig th rlativ tropy Thus, w rfr R () as th miimax Réyi rdudacy Morovr, (6) gralizs th Rdudacy-Capacity Thorm to α-mutual iformatio thrby fidig aothr opratioal maig for th maximal α-mutual iformatio byod thos that hav b show i th litratur o rror probability bouds for data trasmissio (g [3], [4]) Morovr, th α-mutual iformatio smoothly itrpolats btw two xtrms, amly I(, P Y V ) i (3) ad I (, P Y V ) i (7) Fially, (5) ad (6), coupld with Campbll s rsult [], provid a plasig rlatioship btw Réyi tropy, Réyi divrgc ad α-mutual iformatio i th cotxt of uivrsal losslss data comprssio 4 Although it is ot cosidrd hr, Sudarsa s rsult is still valid wh (, 0) Th asymptotic bhaviors of th miimax rdudacy ad miimax rgrt hav also rcivd cosidrabl atttio i th litratur (g, [5], [6], [8], [5]-[0]) sic, i additio to comprssio, thy ar rlvat i applicatios such as machi larig, fiac, prdictio, gamblig, ad so o I particular, Xi ad Barro i thir y cotributios [5], [5] show that R R 0 () r R () π + log Γ (/) Γ(/) log + o(), (7) π + log Γ (/) + o(), (8) Γ(/) ad ar th umbr of obsrvatios ad th alphabt siz, rspctivly, ad o() vaishs as Whil Mrhav [, Thorm ] givs R () + o(), w quatify asymptotically th ffct of th risavrsio paramtr o th fudamtal limit i uivrsal sourc codig by providig a plasig itrpolatio btw (7) ad (8): R () π + log Γ (/) Γ(/) log( + ) + o() (9) II NOTATION, DEFINITIONS AND STATEMENT OF THE A Notatio ad Dfiitios RESULTS Lt Y {,,, } ad dot th ( )-dimsioal simplx of probability mass fuctios dfid o Y by For ach paramtr (,, ), w dfi our obsrvatio modl P Y V : Y such that P Y V (i) i, (0) ad th idpdt idtically distributd (iid) xtsio of this modl P Y V : Y such that P Y V (y ) P Y V (y i ) () t t, () t i j {y j i} dots th umbr of tims i Y appars i th vctor y It ca b vrifid that th dtrmiat of th Fishr iformatio matrix (i ats) of P Y V for th paramtr vctor i is 5 J(, PY V ) i (3) i A importat probability masur o is Jffrys prior [] dfid as PV () J(, P Y V ) / J(ξ, P Y V ) / dξ (4) 5 Not that th Fishr iformatio matrix is ( ) ( ) sic thr ar ( ) fr paramtrs i th modl Nvrthlss, it is otatioally covit to dot th paramtr vctor as if it wr -dimsioal

3 / / D (/,, /) (5) D (α,, α ) dots a spcial form of th Dirichlt itgrals of typ which ca b writt i trms of th Gamma fuctio: D (α,, α ) Γ(α ) Γ(α ) Γ(α + + α ) (6) Th sourc distributio w gt by assumig Jffrys prior o th paramtr spac is rfrrd as Jffrys mixtur which w dot by Q Y (y ) P Y V (y )dpv () (7) D (t + /,, t + /) (8) D (/,, /) For discrt probability masurs P ad Q o th st Y such that Q domiats P, i, P Q, Réyi divrgc of ordr 6 α btw P ad Q is dfid as D α (P Q) D(P Q), α α log E xp((α )ı P Q (Y )), α (, ) max ı P Q(b), α, b Y (9) Y P Giv (P X, P Y X ), a aalogous gralizatio ca b mad for mutual iformatio rsultig i th α- mutual iformatio [4]: I α (P X, P Y X ) I(P X, P Y X ), α if D α (P Y X P X Q Y P X ), α (, ) Q Y log E ss xp ı X;Y (X; Ȳ ), α, X (30) Ȳ P Y, idpdt of X P X, ad w hav usd th covtioal otatio for iformatio dsity ı X;Y (x; y) ı PY Xx P Y (y) B Statmt of th Rsults Thorm Gralizd Rdudacy-Capacity Thorm For ay (0, ), ad positiv itgr R () if D + (P Y V ) (3) I + (, P Y V ) (3) As w show i th proof i Sctio III, (3) is du to th fact that scalig a distributio is a o-to-o opratio that prsrvs mmorylssss whil th miimax thorm for Réyi divrgc [3, Thorm 34] is th gatway to showig th gralizd rdudacy-capacity thorm i (3) 6 W ar ot cocrd with Réyi divrgcs of ordr α (0, ) A mor gral dfiitio ca b foud i [3] Thorm Asymptotic Bhavior of Miimax Réyi Rdudacy For ay (0, ) lim R () π log Γ (/) Γ(/) log( + ) (33) W prov th covrs dirctio for Thorm i Sctio IV Omittd bcaus of th spac costraits, th achivability dirctio uss mthods ai to thos i [5] ad [5], s [4] for a complt proof of Thorm III PROOF OF THEOREM To stablish (3), for ay (0, ), dfi th bijctio f : as f (,, ) +,, +, (34) κ κ b Y P + Y V (b) (35) Th, for ay (,, ) ad y Y, th scald vrsio of th coditioal distributio (s ()) satisfis P + Y V (y ) P + Y V (y i) (36) i P Y V f ()(y i ) (37) i P Y V f ()(y ) (38) Thrfor, for ay giv distributio R Y o Y As a rsult of (40), D + ( P + Y V R Y ) D + (P Y V f ()R Y ) (39) D + (P Y V R Y ) (40) if S + (P Y Q V ) Y if if if D + ( P + Y V Q + Y ) (4) D + (P Y V Q + Y ) (4) D + PY V, (43) (43) follows bcaus vry probability masur i is a scald vrsio of aothr probability masur i To stablish (3), ot that if D + PY V

4 if if E D + PY V ( V ) E D + PY V ( V ) (44) (45) I + (, P Y V ), (46) th xpctatio i (44) is with rspct to V, ad (45) follows from [3, Thorm 34], which holds wh Y is fiit To vrify (46) (s also [3, Propositio ] ad [4, Thorm 5] i th fiit alphabt cas), ot that th α-mutual iformatio ca b writt as I + (, P Y V ) if log E E xp ı PY V (Y ) V, (47) ad ot that if E D + PY V ( V ) if if log if if log E E xp ı PY V (Y ) V E E xp ı PY V (Y ) V (48) (49) D + (P Y V ) (50) E D + (P Y V ( V )) (5) if E D + PY V ( V ), (5) (48) follows from Js s iquality, (49) follows from th fact that th maximi valu is always lss tha or qual to th miimax valu, ad (5) is agai du to [3, Thorm 34] IV PROOF FOR THE CONVERSE OF THEOREM This sctio is dvotd to th proof of i (33) for ay (0, ) Dfi M a (a,, a ) Z + : a i, (53) i M δ M a (a,, a ) Z + : for ay δ (0, ) Cosidr th followig + R () log log t M y Y δ a i i (54) + I +(, P Y V ) (55) P + + Y V (y )d () (56) t t ( t t ) + dp V () + (57) log t M δ t t ( t t ) + dp V () + (58) (55) is du to Thorm, (56) follows from [4, Thorm ] (also s [4, Appdix A]), (57) is du to th suboptimal choic of Jffrys prior, ad (58) follows bcaus M δ M Usig Robbis sharpig [5] of Stirlig s approximatio, ad th fact that t M δ, o ca show that t t H( P y ) (π) i t i (+) δ, (59) th tropy is i ats ad P y dots th mpirical distributio of th vctor y With th aid of (5) ad (6) w ca xprss th itgral i th right sid of (58) as t t + dp V () i Γ(( + )t (60) i + /) D (/,, /) Γ(( + ) + /) Th gamma fuctio gralizatio of Stirlig s approximatio (show to b valid for positiv ral umbrs by Whittar ad Watso [6]) yilds Γ(x) πx x / x ( + r), x > 0, (6) r /(x) I particular, for i,,, Γ(( + )t i + /) π(( + )t i + /) (+)ti (+)ti / ( + r i ), (6) Γ(( + ) + /) π(( + ) + /) (+)+( )/ (+) / ( + r 0 ), (63) r i xp, (64) ( + )t i + 6 r 0 xp (65) ( + ) + 6 It follows from (6) ad (63) that i Γ(( + )t i + /) (+)H( P y ) (π) Γ(( + ) + /) ( + ) (+)ti i + (+)t i ( + ri ) (+)+ + (+) ( + r 0 ) Combiig (60) ad (66), w ca writ t t + dp V () (π) D (/,, /) (+)H( P y ) ( + ) (66)

5 (+)ti i + (+)t i ( + ri ) (+)+ + (+) ( + r 0 ) (π) D (/,, /) + (+)δ + (+) (+)H( P y ) ( + ) (+)δ (+)+ (67) (+)δ+6 (+)+6, (68) (68) is du to th dfiitio of M δ, (54), th fact that for ay positiv costat c, ( + c/x) x is a mooto icrasig fuctio of x, ad th fact that th rror trms (s (64) ad (65)) satisfy i ( + r i) (+)δ+6 (69) + r 0 (+)+6 Uitig th lowr bouds i (58), (59) ad (68), R () log π + log(β(, δ, )) log(d (/,, /)) (70) log( + ) + + log((, δ,, )), β(, δ, ) /, (7) tj t M δ j (, δ,, ) (+) Notic that δ ( + (+)δ + (+) δ + (+) (+)δ+6 ) (+)+6 + (7) lim (, δ,, ), for ay δ (0, ), (73) lim lim β(, δ, ) τ / δ 0 τ / dτ (74) D (/,, /), (75) (73) follows aftr oticig that ach factor of (, δ, ) gos to, ad (74) follows from th dfiitio of th Rima itgral Assmblig (70), (73) ad (75), w obtai i (33) ACKNOWLEDGEMENT This wor has b portd by ARO-MURI cotract umbr W9NF ad i part by th Ctr for Scic of Iformatio, a NSF Scic ad Tchology Ctr udr Grat CCF REFERENCES [] T M Covr ad J A Thomas, Elmts of Iformatio Thory, d d Hobo, NJ: Wily, 006 [] I Kotoyiais ad S Vrdú, Optimal losslss data comprssio: o-asymptotics ad asymptotics, IEEE Trasactios o Iformatio Thory, vol 60, o, pp , Fb 04 [3] R G Gallagr, Sourc codig with sid iformatio ad uivrsal codig, Sptmbr 976, upublishd mauscript Availabl from: [4] B Y Ryabo, Codig of a sourc with uow but ordrd probabilitis, Problms of Iformatio Trasmissio, vol 5, o, pp 34 38, Oct 979 [5] Q Xi ad A R Barro, Asymptotic miimax rgrt for data comprssio, gamblig, ad prdictio, IEEE Trasactios o Iformatio Thory, vol 46, o, pp , Mar 000 [6] Y Shtarov, Uivrsal squtial codig of sigl mssags, Problmy Prdachi Iformatsii, vol 3, o 3, pp 3 7, 987 [7] J Forstr ad M K Warmuth, Rlativ xpctd istataous loss bouds, Joural of Computr ad Systm Scics, vol 64, o, pp 76 0, Fb 00 [8] M Drmota, ad W Szpaowsi, Prcis miimax rdudacy ad rgrt, IEEE Trasactios o Iformatio Thory, vol 50, o, pp , Nov 004 [9] F Liag ad A R Barro, Exact miimax stratgis for prdictiv dsity stimatio, data comprssio, ad modl slctio, IEEE Trasactios o Iformatio Thory, vol 50, o, pp , Nov 004 [0] J W Pratt, Ris avrsio i th small ad i th larg, Ecoomtrica, vol 3, o -, pp 36, Ja-Apr 964 [] L L Campbll, A codig thorm ad Réyi s tropy, Iformatio ad Cotrol, vol 8, o 4, pp 43 49, Aug 965 [] R Sudarsa, Gussig udr sourc ucrtaity, IEEE Trasactios o Iformatio Thory, vol 53, o, pp 69 87, Ja 007 [3] I Csiszár, Gralizd cutoff rats ad Réyi s iformatio masurs, IEEE Trasactios o Iformatio Thory, vol 4, o, pp 6 34, Ja 995 [4] S Vrdú, α-mutual iformatio, i 05 Iformatio Thory ad Applicatios Worshop, Sa Digo, pp 6, 05 [5] Q Xi ad A R Barro, Miimax rdudacy for th class of mmorylss sourcs, IEEE Trasactios o Iformatio Thory, vol 43, o, pp , Mar 997 [6] L D Davisso, R J McElic, M B Pursly, ad M S Wallac, Efficit uivrsal oislss sourc cods, IEEE Trasactios o Iformatio Thory, vol 7, o 3, pp 69 79, May 98 [7] L Györfi, I Páli, ad E C va dr Mul, Thr is o uivrsal sourc cod for a ifiit sourc alphabt, IEEE Trasactios o Iformatio Thory, vol 40, o, pp 67-7, Ja 994 [8] R E Krichvsy, ad V K Trofimov, Th prformac of uivrsal codig, IEEE Trasactios o Iformatio Thory, vol 7, o, pp 99 07, Mar 98 [9] J Rissa, Uivrsal codig, iformatio, prdictio ad stimatio, IEEE Trasactios o Iformatio Thory, vol 30, o 4, pp , Jul 984 [0] J Rissa, Stochastic complxity ad modlig, Aals of Statistics, vol 4, o 3, pp , Sp 986 [] N Mrhav, O optimum stratgis for miimizig th xpotial momts of a loss fuctio, Commuicatios i Iformatio ad Systms, vol, o 4, pp , 0 [] H Jffrys, A ivariat form for th prior probability i stimatio problms, Procdigs of th Royal Socity of Lodo Sris A: Mathmatical ad Physical Scics, vol 86, o 007, pp , Sp 946 [3] T va Erv ad P Harrmoës, Réyi divrgc ad Kullbac-Liblr divrgc, IEEE Trasactios o Iformatio Thory, vol 60, o 7, pp , Jul 04 [4] S Yagli, Y Altuğ, ad S Vrdú, Miimax Réyi rdudacy, [Oli] Availabl: [5] H Robbis, A rmar o Stirlig s formula, Amrica Mathmatical Mothly, vol 6, o, pp 6 9, Ja 955 [6] E T Whittar ad G N Watso, A Cours of Modr Aalysis, 4th d Cambridg, UK: Cambridg Uiv Prss, 963

Minimax Rényi Redundancy

Minimax Rényi Redundancy 07 IEEE Itratioal Symposium o Iformatio Thory ISIT Miimax Réyi Rdudacy Smih Yagli Pricto Uivrsity Yücl Altuğ Natra, Ic Srgio Vrdú Pricto Uivrsity Abstract Th rdudacy for uivrsal losslss comprssio i Campbll

More information

On the approximation of the constant of Napier

On the approximation of the constant of Napier Stud. Uiv. Babş-Bolyai Math. 560, No., 609 64 O th approximatio of th costat of Napir Adri Vrscu Abstract. Startig from som oldr idas of [] ad [6], w show w facts cocrig th approximatio of th costat of

More information

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series Chatr Ifiit Sris Pag of Sctio F Itgral Tst Chatr : Ifiit Sris By th d of this sctio you will b abl to valuat imror itgrals tst a sris for covrgc by alyig th itgral tst aly th itgral tst to rov th -sris

More information

1985 AP Calculus BC: Section I

1985 AP Calculus BC: Section I 985 AP Calculus BC: Sctio I 9 Miuts No Calculator Nots: () I this amiatio, l dots th atural logarithm of (that is, logarithm to th bas ). () Ulss othrwis spcifid, th domai of a fuctio f is assumd to b

More information

Statistics 3858 : Likelihood Ratio for Exponential Distribution

Statistics 3858 : Likelihood Ratio for Exponential Distribution Statistics 3858 : Liklihood Ratio for Expotial Distributio I ths two xampl th rjctio rjctio rgio is of th form {x : 2 log (Λ(x)) > c} for a appropriat costat c. For a siz α tst, usig Thorm 9.5A w obtai

More information

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z Sris Expasio of Rciprocal of Gamma Fuctio. Fuctios with Itgrs as Roots Fuctio f with gativ itgrs as roots ca b dscribd as follows. f() Howvr, this ifiit product divrgs. That is, such a fuctio caot xist

More information

10. Joint Moments and Joint Characteristic Functions

10. Joint Moments and Joint Characteristic Functions 0 Joit Momts ad Joit Charactristic Fctios Followig sctio 6 i this sctio w shall itrodc varios paramtrs to compactly rprst th iformatio cotaid i th joit pdf of two rvs Giv two rvs ad ad a fctio g x y dfi

More information

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling Tripl Play: From D Morga to Stirlig To Eulr to Maclauri to Stirlig Augustus D Morga (186-1871) was a sigificat Victoria Mathmaticia who mad cotributios to Mathmatics History, Mathmatical Rcratios, Mathmatical

More information

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1 Chatr Fiv Mor Dimsios 51 Th Sac R W ar ow rard to mov o to sacs of dimsio gratr tha thr Ths sacs ar a straightforward gralizatio of our Euclida sac of thr dimsios Lt b a ositiv itgr Th -dimsioal Euclida

More information

Restricted Factorial And A Remark On The Reduced Residue Classes

Restricted Factorial And A Remark On The Reduced Residue Classes Applid Mathmatics E-Nots, 162016, 244-250 c ISSN 1607-2510 Availabl fr at mirror sits of http://www.math.thu.du.tw/ am/ Rstrictd Factorial Ad A Rmark O Th Rducd Rsidu Classs Mhdi Hassai Rcivd 26 March

More information

Probability & Statistics,

Probability & Statistics, Probability & Statistics, BITS Pilai K K Birla Goa Campus Dr. Jajati Kshari Sahoo Dpartmt of Mathmatics BITS Pilai, K K Birla Goa Campus Poisso Distributio Poisso Distributio: A radom variabl X is said

More information

PURE MATHEMATICS A-LEVEL PAPER 1

PURE MATHEMATICS A-LEVEL PAPER 1 -AL P MATH PAPER HONG KONG EXAMINATIONS AUTHORITY HONG KONG ADVANCED LEVEL EXAMINATION PURE MATHEMATICS A-LEVEL PAPER 8 am am ( hours) This papr must b aswrd i Eglish This papr cosists of Sctio A ad Sctio

More information

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1 DTFT Proprtis Exampl - Dtrmi th DTFT Y of y α µ, α < Lt x α µ, α < W ca thrfor writ y x x From Tabl 3., th DTFT of x is giv by ω X ω α ω Copyright, S. K. Mitra Copyright, S. K. Mitra DTFT Proprtis DTFT

More information

Discrete Fourier Transform. Nuno Vasconcelos UCSD

Discrete Fourier Transform. Nuno Vasconcelos UCSD Discrt Fourir Trasform uo Vascoclos UCSD Liar Shift Ivariat (LSI) systms o of th most importat cocpts i liar systms thory is that of a LSI systm Dfiitio: a systm T that maps [ ito y[ is LSI if ad oly if

More information

H2 Mathematics Arithmetic & Geometric Series ( )

H2 Mathematics Arithmetic & Geometric Series ( ) H Mathmatics Arithmtic & Gomtric Sris (08 09) Basic Mastry Qustios Arithmtic Progrssio ad Sris. Th rth trm of a squc is 4r 7. (i) Stat th first four trms ad th 0th trm. (ii) Show that th squc is a arithmtic

More information

Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT) Discrt Fourir Trasorm DFT Major: All Egirig Majors Authors: Duc guy http://umricalmthods.g.us.du umrical Mthods or STEM udrgraduats 8/3/29 http://umricalmthods.g.us.du Discrt Fourir Trasorm Rcalld th xpotial

More information

An Introduction to Asymptotic Expansions

An Introduction to Asymptotic Expansions A Itroductio to Asmptotic Expasios R. Shaar Subramaia Asmptotic xpasios ar usd i aalsis to dscrib th bhavior of a fuctio i a limitig situatio. Wh a fuctio ( x, dpds o a small paramtr, ad th solutio of

More information

A Note on Quantile Coupling Inequalities and Their Applications

A Note on Quantile Coupling Inequalities and Their Applications A Not o Quatil Couplig Iqualitis ad Thir Applicatios Harriso H. Zhou Dpartmt of Statistics, Yal Uivrsity, Nw Hav, CT 06520, USA. E-mail:huibi.zhou@yal.du Ju 2, 2006 Abstract A rlatioship btw th larg dviatio

More information

The Interplay between l-max, l-min, p-max and p-min Stable Distributions

The Interplay between l-max, l-min, p-max and p-min Stable Distributions DOI: 0.545/mjis.05.4006 Th Itrplay btw lma lmi pma ad pmi Stabl Distributios S Ravi ad TS Mavitha Dpartmt of Studis i Statistics Uivrsity of Mysor Maasagagotri Mysuru 570006 Idia. Email:ravi@statistics.uimysor.ac.i

More information

A Simple Proof that e is Irrational

A Simple Proof that e is Irrational Two of th most bautiful ad sigificat umbrs i mathmatics ar π ad. π (approximatly qual to 3.459) rprsts th ratio of th circumfrc of a circl to its diamtr. (approximatly qual to.788) is th bas of th atural

More information

Chapter (8) Estimation and Confedence Intervals Examples

Chapter (8) Estimation and Confedence Intervals Examples Chaptr (8) Estimatio ad Cofdc Itrvals Exampls Typs of stimatio: i. Poit stimatio: Exampl (1): Cosidr th sampl obsrvatios, 17,3,5,1,18,6,16,10 8 X i i1 17 3 5 118 6 16 10 116 X 14.5 8 8 8 14.5 is a poit

More information

Journal of Modern Applied Statistical Methods

Journal of Modern Applied Statistical Methods Joural of Modr Applid Statistical Mthods Volum Issu Articl 6 --03 O Som Proprtis of a Htrogous Trasfr Fuctio Ivolvig Symmtric Saturatd Liar (SATLINS) with Hyprbolic Tagt (TANH) Trasfr Fuctios Christophr

More information

STIRLING'S 1 FORMULA AND ITS APPLICATION

STIRLING'S 1 FORMULA AND ITS APPLICATION MAT-KOL (Baja Luka) XXIV ()(08) 57-64 http://wwwimviblorg/dmbl/dmblhtm DOI: 075/МК80057A ISSN 0354-6969 (o) ISSN 986-588 (o) STIRLING'S FORMULA AND ITS APPLICATION Šfkt Arslaagić Sarajvo B&H Abstract:

More information

NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES

NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES Digst Joural of Naomatrials ad Biostructurs Vol 4, No, March 009, p 67-76 NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES A IRANMANESH a*, O KHORMALI b, I NAJAFI KHALILSARAEE c, B SOLEIMANI

More information

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx MONTGOMERY COLLEGE Dpartmt of Mathmatics Rockvill Campus MATH 8 - REVIEW PROBLEMS. Stat whthr ach of th followig ca b itgratd by partial fractios (PF), itgratio by parts (PI), u-substitutio (U), or o of

More information

SOME IDENTITIES FOR THE GENERALIZED POLY-GENOCCHI POLYNOMIALS WITH THE PARAMETERS A, B AND C

SOME IDENTITIES FOR THE GENERALIZED POLY-GENOCCHI POLYNOMIALS WITH THE PARAMETERS A, B AND C Joural of Mathatical Aalysis ISSN: 2217-3412, URL: www.ilirias.co/ja Volu 8 Issu 1 2017, Pags 156-163 SOME IDENTITIES FOR THE GENERALIZED POLY-GENOCCHI POLYNOMIALS WITH THE PARAMETERS A, B AND C BURAK

More information

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges.

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges. Optio Chaptr Ercis. Covrgs to Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Divrgs 8 Divrgs Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Covrgs to Covrgs to 8 Proof Covrgs to π l 8 l a b Divrgt π Divrgt

More information

Digital Signal Processing, Fall 2006

Digital Signal Processing, Fall 2006 Digital Sigal Procssig, Fall 6 Lctur 9: Th Discrt Fourir Trasfor Zhg-Hua Ta Dpartt of Elctroic Systs Aalborg Uivrsity, Dar zt@o.aau.d Digital Sigal Procssig, I, Zhg-Hua Ta, 6 Cours at a glac MM Discrt-ti

More information

Session : Plasmas in Equilibrium

Session : Plasmas in Equilibrium Sssio : Plasmas i Equilibrium Ioizatio ad Coductio i a High-prssur Plasma A ormal gas at T < 3000 K is a good lctrical isulator, bcaus thr ar almost o fr lctros i it. For prssurs > 0.1 atm, collisio amog

More information

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120 Tim : hr. Tst Papr 8 D 4//5 Bch - R Marks : SINGLE CORRECT CHOICE TYPE [4, ]. If th compl umbr z sisfis th coditio z 3, th th last valu of z is qual to : z (A) 5/3 (B) 8/3 (C) /3 (D) o of ths 5 4. Th itgral,

More information

APPENDIX: STATISTICAL TOOLS

APPENDIX: STATISTICAL TOOLS I. Nots o radom samplig Why do you d to sampl radomly? APPENDI: STATISTICAL TOOLS I ordr to masur som valu o a populatio of orgaisms, you usually caot masur all orgaisms, so you sampl a subst of th populatio.

More information

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple 5/24/5 A PROOF OF THE CONTINUED FRACTION EXPANSION OF / Thomas J Oslr INTRODUCTION This ar givs aothr roof for th rmarkabl siml cotiud fractio = 3 5 / Hr is ay ositiv umbr W us th otatio x= [ a; a, a2,

More information

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net Taylor s Thorm & Lagrag Error Bouds Actual Error This is th ral amout o rror, ot th rror boud (worst cas scario). It is th dirc btw th actual () ad th polyomial. Stps:. Plug -valu ito () to gt a valu.

More information

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels LUR 3 illig th bads Occupacy o Availabl rgy Lvls W hav dtrmid ad a dsity o stats. W also d a way o dtrmiig i a stat is illd or ot at a giv tmpratur. h distributio o th rgis o a larg umbr o particls ad

More information

NET/JRF, GATE, IIT JAM, JEST, TIFR

NET/JRF, GATE, IIT JAM, JEST, TIFR Istitut for NET/JRF, GATE, IIT JAM, JEST, TIFR ad GRE i PHYSICAL SCIENCES Mathmatical Physics JEST-6 Q. Giv th coditio φ, th solutio of th quatio ψ φ φ is giv by k. kφ kφ lφ kφ lφ (a) ψ (b) ψ kφ (c) ψ

More information

Hadamard Exponential Hankel Matrix, Its Eigenvalues and Some Norms

Hadamard Exponential Hankel Matrix, Its Eigenvalues and Some Norms Math Sci Ltt Vol No 8-87 (0) adamard Exotial al Matrix, Its Eigvalus ad Som Norms İ ad M bula Mathmatical Scics Lttrs Itratioal Joural @ 0 NSP Natural Scics Publishig Cor Dartmt of Mathmatics, aculty of

More information

Law of large numbers

Law of large numbers Law of larg umbrs Saya Mukhrj W rvisit th law of larg umbrs ad study i som dtail two typs of law of larg umbrs ( 0 = lim S ) p ε ε > 0, Wak law of larrg umbrs [ ] S = ω : lim = p, Strog law of larg umbrs

More information

Solution to 1223 The Evil Warden.

Solution to 1223 The Evil Warden. Solutio to 1 Th Evil Ward. This is o of thos vry rar PoWs (I caot thik of aothr cas) that o o solvd. About 10 of you submittd th basic approach, which givs a probability of 47%. I was shockd wh I foud

More information

Folding of Hyperbolic Manifolds

Folding of Hyperbolic Manifolds It. J. Cotmp. Math. Scics, Vol. 7, 0, o. 6, 79-799 Foldig of Hyprbolic Maifolds H. I. Attiya Basic Scic Dpartmt, Collg of Idustrial Educatio BANE - SUEF Uivrsity, Egypt hala_attiya005@yahoo.com Abstract

More information

ONLINE SUPPLEMENT Optimal Markdown Pricing and Inventory Allocation for Retail Chains with Inventory Dependent Demand

ONLINE SUPPLEMENT Optimal Markdown Pricing and Inventory Allocation for Retail Chains with Inventory Dependent Demand Submittd to Maufacturig & Srvic Opratios Maagmt mauscript MSOM 5-4R2 ONLINE SUPPLEMENT Optimal Markdow Pricig ad Ivtory Allocatio for Rtail Chais with Ivtory Dpdt Dmad Stph A Smith Dpartmt of Opratios

More information

An Introduction to Asymptotic Expansions

An Introduction to Asymptotic Expansions A Itroductio to Asmptotic Expasios R. Shaar Subramaia Dpartmt o Chmical ad Biomolcular Egirig Clarso Uivrsit Asmptotic xpasios ar usd i aalsis to dscrib th bhavior o a uctio i a limitig situatio. Wh a

More information

Technical Support Document Bias of the Minimum Statistic

Technical Support Document Bias of the Minimum Statistic Tchical Support Documt Bias o th Miimum Stattic Itroductio Th papr pla how to driv th bias o th miimum stattic i a radom sampl o siz rom dtributios with a shit paramtr (also kow as thrshold paramtr. Ths

More information

BOUNDS FOR THE COMPONENTWISE DISTANCE TO THE NEAREST SINGULAR MATRIX

BOUNDS FOR THE COMPONENTWISE DISTANCE TO THE NEAREST SINGULAR MATRIX SIAM J. Matrix Aal. Appl. (SIMAX), 8():83 03, 997 BOUNDS FOR THE COMPONENTWISE DISTANCE TO THE NEAREST SINGULAR MATRIX S. M. RUMP Abstract. Th ormwis distac of a matrix A to th arst sigular matrix is wll

More information

International Journal of Advanced and Applied Sciences

International Journal of Advanced and Applied Sciences Itratioal Joural of Advacd ad Applid Scics x(x) xxxx Pags: xx xx Cotts lists availabl at Scic Gat Itratioal Joural of Advacd ad Applid Scics Joural hompag: http://wwwscic gatcom/ijaashtml Symmtric Fuctios

More information

Traveling Salesperson Problem and Neural Networks. A Complete Algorithm in Matrix Form

Traveling Salesperson Problem and Neural Networks. A Complete Algorithm in Matrix Form Procdigs of th th WSEAS Itratioal Cofrc o COMPUTERS, Agios Nikolaos, Crt Islad, Grc, July 6-8, 7 47 Travlig Salsprso Problm ad Nural Ntworks A Complt Algorithm i Matrix Form NICOLAE POPOVICIU Faculty of

More information

Empirical Study in Finite Correlation Coefficient in Two Phase Estimation

Empirical Study in Finite Correlation Coefficient in Two Phase Estimation M. Khoshvisa Griffith Uivrsity Griffith Busiss School Australia F. Kaymarm Massachustts Istitut of Tchology Dpartmt of Mchaical girig USA H. P. Sigh R. Sigh Vikram Uivrsity Dpartmt of Mathmatics ad Statistics

More information

Chapter 11.00C Physical Problem for Fast Fourier Transform Civil Engineering

Chapter 11.00C Physical Problem for Fast Fourier Transform Civil Engineering haptr. Physical Problm for Fast Fourir Trasform ivil Egirig Itroductio I this chaptr, applicatios of FFT algorithms [-5] for solvig ral-lif problms such as computig th dyamical (displacmt rspos [6-7] of

More information

Performance Rating of the Type 1 Half Logistic Gompertz Distribution: An Analytical Approach

Performance Rating of the Type 1 Half Logistic Gompertz Distribution: An Analytical Approach Amrica Joural of Mathmatics ad Statistics 27, 7(3): 93-98 DOI:.5923/j.ajms.2773. Prformac Ratig of th Typ Half Logistic Gomprtz Distributio: A Aalytical Approach Ogud A. A. *, Osghal O. I., Audu A. T.

More information

Bayesian Estimations in Insurance Theory and Practice

Bayesian Estimations in Insurance Theory and Practice Advacs i Mathmatical ad Computatioal Mthods Baysia Estimatios i Isurac Thory ad Practic VIERA PACÁKOVÁ Dpartmt o Mathmatics ad Quatitativ Mthods Uivrsity o Pardubic Studtská 95, 53 0 Pardubic CZECH REPUBLIC

More information

UNIT 2: MATHEMATICAL ENVIRONMENT

UNIT 2: MATHEMATICAL ENVIRONMENT UNIT : MATHEMATICAL ENVIRONMENT. Itroductio This uit itroducs som basic mathmatical cocpts ad rlats thm to th otatio usd i th cours. Wh ou hav workd through this uit ou should: apprciat that a mathmatical

More information

Linear Algebra Existence of the determinant. Expansion according to a row.

Linear Algebra Existence of the determinant. Expansion according to a row. Lir Algbr 2270 1 Existc of th dtrmit. Expsio ccordig to row. W dfi th dtrmit for 1 1 mtrics s dt([]) = (1) It is sy chck tht it stisfis D1)-D3). For y othr w dfi th dtrmit s follows. Assumig th dtrmit

More information

Comparison of Simple Indicator Kriging, DMPE, Full MV Approach for Categorical Random Variable Simulation

Comparison of Simple Indicator Kriging, DMPE, Full MV Approach for Categorical Random Variable Simulation Papr 17, CCG Aual Rport 11, 29 ( 29) Compariso of Simpl Idicator rigig, DMPE, Full MV Approach for Catgorical Radom Variabl Simulatio Yupg Li ad Clayto V. Dutsch Ifrc of coditioal probabilitis at usampld

More information

ECE594I Notes set 6: Thermal Noise

ECE594I Notes set 6: Thermal Noise C594I ots, M. odwll, copyrightd C594I Nots st 6: Thrmal Nois Mark odwll Uivrsity of Califoria, ata Barbara rodwll@c.ucsb.du 805-893-344, 805-893-36 fax frcs ad Citatios: C594I ots, M. odwll, copyrightd

More information

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2 MATHEMATIS --RE Itgral alculus Marti Huard Witr 9 Rviw Erciss. Evaluat usig th dfiitio of th dfiit itgral as a Rima Sum. Dos th aswr rprst a ara? a ( d b ( d c ( ( d d ( d. Fid f ( usig th Fudamtal Thorm

More information

Introduction to Quantum Information Processing. Overview. A classical randomised algorithm. q 3,3 00 0,0. p 0,0. Lecture 10.

Introduction to Quantum Information Processing. Overview. A classical randomised algorithm. q 3,3 00 0,0. p 0,0. Lecture 10. Itroductio to Quatum Iformatio Procssig Lctur Michl Mosca Ovrviw! Classical Radomizd vs. Quatum Computig! Dutsch-Jozsa ad Brsti- Vazirai algorithms! Th quatum Fourir trasform ad phas stimatio A classical

More information

EMPLOYMENT AND THE DISTRIBUTION OF INCOME. Andrés Velasco

EMPLOYMENT AND THE DISTRIBUTION OF INCOME. Andrés Velasco EMPLOYMENT AND THE DISTRIBUTION OF INCOME Adrés Vlasco Ju 2011 Motivatio My xpric as Fiac Miistr Chil: hatd discussios o iquality. But... Focus oly o th wag distributio Discussios o th shap of th wag distributio

More information

A Review of Complex Arithmetic

A Review of Complex Arithmetic /0/005 Rviw of omplx Arithmti.do /9 A Rviw of omplx Arithmti A omplx valu has both a ral ad imagiary ompot: { } ad Im{ } a R b so that w a xprss this omplx valu as: whr. a + b Just as a ral valu a b xprssd

More information

Bipolar Junction Transistors

Bipolar Junction Transistors ipolar Juctio Trasistors ipolar juctio trasistors (JT) ar activ 3-trmial dvics with aras of applicatios: amplifirs, switch tc. high-powr circuits high-spd logic circuits for high-spd computrs. JT structur:

More information

Chapter 4 - The Fourier Series

Chapter 4 - The Fourier Series M. J. Robrts - 8/8/4 Chaptr 4 - Th Fourir Sris Slctd Solutios (I this solutio maual, th symbol,, is usd for priodic covolutio bcaus th prfrrd symbol which appars i th txt is ot i th fot slctio of th word

More information

Global Chaos Synchronization of the Hyperchaotic Qi Systems by Sliding Mode Control

Global Chaos Synchronization of the Hyperchaotic Qi Systems by Sliding Mode Control Dr. V. Sudarapadia t al. / Itratioal Joural o Computr Scic ad Egirig (IJCSE) Global Chaos Sychroizatio of th Hyprchaotic Qi Systms by Slidig Mod Cotrol Dr. V. Sudarapadia Profssor, Rsarch ad Dvlopmt Ctr

More information

On a problem of J. de Graaf connected with algebras of unbounded operators de Bruijn, N.G.

On a problem of J. de Graaf connected with algebras of unbounded operators de Bruijn, N.G. O a problm of J. d Graaf coctd with algbras of uboudd oprators d Bruij, N.G. Publishd: 01/01/1984 Documt Vrsio Publishr s PDF, also kow as Vrsio of Rcord (icluds fial pag, issu ad volum umbrs) Plas chck

More information

Theoretical analysis of cross-validation for estimating the risk of the k-nearest Neighbor classifier

Theoretical analysis of cross-validation for estimating the risk of the k-nearest Neighbor classifier Thortical aalysis of cross-validatio for stimatig th ris of th -Narst Nighbor classifir Alai Cliss, Trista Mary-Huard To cit this vrsio: Alai Cliss, Trista Mary-Huard. Thortical aalysis of cross-validatio

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

They must have different numbers of electrons orbiting their nuclei. They must have the same number of neutrons in their nuclei.

They must have different numbers of electrons orbiting their nuclei. They must have the same number of neutrons in their nuclei. 37 1 How may utros ar i a uclus of th uclid l? 20 37 54 2 crtai lmt has svral isotops. Which statmt about ths isotops is corrct? Thy must hav diffrt umbrs of lctros orbitig thir ucli. Thy must hav th sam

More information

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n 07 - SEQUENCES AND SERIES Pag ( Aswrs at h d of all qustios ) ( ) If = a, y = b, z = c, whr a, b, c ar i A.P. ad = 0 = 0 = 0 l a l

More information

Character sums over generalized Lehmer numbers

Character sums over generalized Lehmer numbers Ma t al. Joural of Iualitis ad Applicatios 206 206:270 DOI 0.86/s3660-06-23-y R E S E A R C H Op Accss Charactr sums ovr gralizd Lhmr umbrs Yuakui Ma, Hui Ch 2, Zhzh Qi 2 ad Tiapig Zhag 2* * Corrspodc:

More information

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform Discrt Fourir Trasform Dfiitio - T simplst rlatio btw a lt- squc x dfid for ω ad its DTFT X ( ) is ω obtaid by uiformly sampli X ( ) o t ω-axis btw ω < at ω From t dfiitio of t DTFT w tus av X X( ω ) ω

More information

Time Dependent Solutions: Propagators and Representations

Time Dependent Solutions: Propagators and Representations Tim Dpdt Solutios: Propagators ad Rprstatios Michal Fowlr, UVa 1/3/6 Itroductio W v spt most of th cours so far coctratig o th igstats of th amiltoia, stats whos tim dpdc is mrly a chagig phas W did mtio

More information

On Deterministic Finite Automata and Syntactic Monoid Size, Continued

On Deterministic Finite Automata and Syntactic Monoid Size, Continued O Dtrmiistic Fiit Automata ad Sytactic Mooid Siz, Cotiud Markus Holzr ad Barbara Köig Istitut für Iformatik, Tchisch Uivrsität Müch, Boltzmastraß 3, D-85748 Garchig bi Müch, Grmay mail: {holzr,koigb}@iformatik.tu-much.d

More information

CDS 101: Lecture 5.1 Reachability and State Space Feedback

CDS 101: Lecture 5.1 Reachability and State Space Feedback CDS, Lctur 5. CDS : Lctur 5. Rachability ad Stat Spac Fdback Richard M. Murray ad Hido Mabuchi 5 Octobr 4 Goals: Di rachability o a cotrol systm Giv tsts or rachability o liar systms ad apply to ampls

More information

Gaps in samples of geometric random variables

Gaps in samples of geometric random variables Discrt Mathmatics 37 7 871 89 Not Gaps i sampls of gomtric radom variabls William M.Y. Goh a, Pawl Hitczko b,1 a Dpartmt of Mathmatics, Drxl Uivrsity, Philadlphia, PA 1914, USA b Dpartmts of Mathmatics

More information

ω (argument or phase)

ω (argument or phase) Imagiary uit: i ( i Complx umbr: z x+ i y Cartsia coordiats: x (ral part y (imagiary part Complx cougat: z x i y Absolut valu: r z x + y Polar coordiats: r (absolut valu or modulus ω (argumt or phas x

More information

Derivation of a Predictor of Combination #1 and the MSE for a Predictor of a Position in Two Stage Sampling with Response Error.

Derivation of a Predictor of Combination #1 and the MSE for a Predictor of a Position in Two Stage Sampling with Response Error. Drivatio of a Prdictor of Cobiatio # ad th SE for a Prdictor of a Positio i Two Stag Saplig with Rspos Error troductio Ed Stak W driv th prdictor ad its SE of a prdictor for a rado fuctio corrspodig to

More information

Partition Functions and Ideal Gases

Partition Functions and Ideal Gases Partitio Fuctios ad Idal Gass PFIG- You v lard about partitio fuctios ad som uss ow w ll xplor tm i mor dpt usig idal moatomic diatomic ad polyatomic gass! for w start rmmbr: Q( N ( N! N Wat ar N ad? W

More information

Theoretical Analysis of Cross-Validation for Estimating the Risk of the k-nearest Neighbor Classifier

Theoretical Analysis of Cross-Validation for Estimating the Risk of the k-nearest Neighbor Classifier Joural of Machi Larig Rsarch 18 018 1-54 Submittd 09/15; Rvisd 07/18; Publishd 11/18 Thortical Aalysis of Cross-Validatio for Estimatig th Ris of th -Narst Nighbor Classifir Alai Cliss Laboratoir d Mathématiqus

More information

6. Comparison of NLMS-OCF with Existing Algorithms

6. Comparison of NLMS-OCF with Existing Algorithms 6. Compariso of NLMS-OCF with Eistig Algorithms I Chaptrs 5 w drivd th NLMS-OCF algorithm, aalyzd th covrgc ad trackig bhavior of NLMS-OCF, ad dvlopd a fast vrsio of th NLMS-OCF algorithm. W also mtiod

More information

Fooling Newton s Method a) Find a formula for the Newton sequence, and verify that it converges to a nonzero of f. A Stirling-like Inequality

Fooling Newton s Method a) Find a formula for the Newton sequence, and verify that it converges to a nonzero of f. A Stirling-like Inequality Foolig Nwto s Mthod a Fid a formla for th Nwto sqc, ad vrify that it covrgs to a ozro of f. ( si si + cos 4 4 3 4 8 8 bt f. b Fid a formla for f ( ad dtrmi its bhavior as. f ( cos si + as A Stirlig-li

More information

15/03/1439. Lectures on Signals & systems Engineering

15/03/1439. Lectures on Signals & systems Engineering Lcturs o Sigals & syms Egirig Dsigd ad Prd by Dr. Ayma Elshawy Elsfy Dpt. of Syms & Computr Eg. Al-Azhar Uivrsity Email : aymalshawy@yahoo.com A sigal ca b rprd as a liar combiatio of basic sigals. Th

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by Dan Klain Vrsion 28928 Corrctions and commnts ar wlcom Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix () A A k I + A + k!

More information

22/ Breakdown of the Born-Oppenheimer approximation. Selection rules for rotational-vibrational transitions. P, R branches.

22/ Breakdown of the Born-Oppenheimer approximation. Selection rules for rotational-vibrational transitions. P, R branches. Subjct Chmistry Papr No and Titl Modul No and Titl Modul Tag 8/ Physical Spctroscopy / Brakdown of th Born-Oppnhimr approximation. Slction ruls for rotational-vibrational transitions. P, R branchs. CHE_P8_M

More information

A GENERALIZED RAMANUJAN-NAGELL EQUATION RELATED TO CERTAIN STRONGLY REGULAR GRAPHS

A GENERALIZED RAMANUJAN-NAGELL EQUATION RELATED TO CERTAIN STRONGLY REGULAR GRAPHS #A35 INTEGERS 4 (204) A GENERALIZED RAMANUJAN-NAGELL EQUATION RELATED TO CERTAIN STRONGLY REGULAR GRAPHS B d Wgr Faculty of Mathmatics ad Computr Scic, Eidhov Uivrsity of Tchology, Eidhov, Th Nthrlads

More information

CDS 101: Lecture 5.1 Reachability and State Space Feedback

CDS 101: Lecture 5.1 Reachability and State Space Feedback CDS, Lctur 5. CDS : Lctur 5. Rachability ad Stat Spac Fdback Richard M. Murray 7 Octobr 3 Goals: Di rachability o a cotrol systm Giv tsts or rachability o liar systms ad apply to ampls Dscrib th dsig o

More information

2617 Mark Scheme June 2005 Mark Scheme 2617 June 2005

2617 Mark Scheme June 2005 Mark Scheme 2617 June 2005 Mark Schm 67 Ju 5 GENERAL INSTRUCTIONS Marks i th mark schm ar plicitly dsigatd as M, A, B, E or G. M marks ("mthod" ar for a attmpt to us a corrct mthod (ot mrly for statig th mthod. A marks ("accuracy"

More information

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia Part B: Trasform Mthods Chaptr 3: Discrt-Tim Fourir Trasform (DTFT) 3. Discrt Tim Fourir Trasform (DTFT) 3. Proprtis of DTFT 3.3 Discrt Fourir Trasform (DFT) 3.4 Paddig with Zros ad frqucy Rsolutio 3.5

More information

Chapter Taylor Theorem Revisited

Chapter Taylor Theorem Revisited Captr 0.07 Taylor Torm Rvisitd Atr radig tis captr, you sould b abl to. udrstad t basics o Taylor s torm,. writ trascdtal ad trigoomtric uctios as Taylor s polyomial,. us Taylor s torm to id t valus o

More information

ln x = n e = 20 (nearest integer)

ln x = n e = 20 (nearest integer) H JC Prlim Solutios 6 a + b y a + b / / dy a b 3/ d dy a b at, d Giv quatio of ormal at is y dy ad y wh. d a b () (,) is o th curv a+ b () y.9958 Qustio Solvig () ad (), w hav a, b. Qustio d.77 d d d.77

More information

Periodic Structures. Filter Design by the Image Parameter Method

Periodic Structures. Filter Design by the Image Parameter Method Prioic Structurs a Filtr sig y th mag Paramtr Mtho ECE53: Microwav Circuit sig Pozar Chaptr 8, Sctios 8. & 8. Josh Ottos /4/ Microwav Filtrs (Chaptr Eight) microwav filtr is a two-port twork us to cotrol

More information

Scattering Parameters. Scattering Parameters

Scattering Parameters. Scattering Parameters Motivatio cattrig Paramtrs Difficult to implmt op ad short circuit coditios i high frqucis masurmts du to parasitic s ad Cs Pottial stability problms for activ dvics wh masurd i oopratig coditios Difficult

More information

How many neutrino species?

How many neutrino species? ow may utrio scis? Two mthods for dtrmii it lium abudac i uivrs At a collidr umbr of utrio scis Exasio of th uivrs is ovrd by th Fridma quatio R R 8G tot Kc R Whr: :ubblcostat G :Gravitatioal costat 6.

More information

5.1 A mutual information bound based on metric entropy

5.1 A mutual information bound based on metric entropy Chapter 5 Global Fao Method I this chapter, we exted the techiques of Chapter 2.4 o Fao s method the local Fao method) to a more global costructio. I particular, we show that, rather tha costructig a local

More information

Steganographic Communication in Ordered Channels

Steganographic Communication in Ordered Channels Stgaographic Commuicatio i Ordrd Chals R. C. Chakiala 1,3, A. Kumarasubramaia 1,3, R. Maokara 1,3, G. Noubir 1,5, C. Padu Raga 2,6, ad R. Sudaram 1,3,4 1 Northastr Uivrsity, Bosto, MA ravich,abish,rajskar,oubir,koods@ccs.u.du

More information

Reliability of time dependent stress-strength system for various distributions

Reliability of time dependent stress-strength system for various distributions IOS Joural of Mathmatcs (IOS-JM ISSN: 78-578. Volum 3, Issu 6 (Sp-Oct., PP -7 www.osrjourals.org lablty of tm dpdt strss-strgth systm for varous dstrbutos N.Swath, T.S.Uma Mahswar,, Dpartmt of Mathmatcs,

More information

Bayesian Test for Lifetime Performance Index of Exponential Distribution under Symmetric Entropy Loss Function

Bayesian Test for Lifetime Performance Index of Exponential Distribution under Symmetric Entropy Loss Function Mathmatics ttrs 08; 4(): 0-4 http://www.scicpublishiggroup.com/j/ml doi: 0.648/j.ml.08040.5 ISSN: 575-503X (Prit); ISSN: 575-5056 (Oli) aysia Tst for iftim Prformac Idx of Expotial Distributio udr Symmtric

More information

PPS (Pottial Path Spac) i y i l j Vij (2) H x PP (Pottial Path ra) (gravity-typ masur) i i i j1 cij (1) D j j c ij ij 4)7) 8), 9) D j V ij j i 198 1)1

PPS (Pottial Path Spac) i y i l j Vij (2) H x PP (Pottial Path ra) (gravity-typ masur) i i i j1 cij (1) D j j c ij ij 4)7) 8), 9) D j V ij j i 198 1)1 1 2 3 1 (68-8552 4 11) E-mail: taimoto@ss.tottori-u.ac.jp 2 (68-8552 4 11) 3 (657-851 1-1) Ky Words: accssibility, public trasportatio plaig, rural aras, tim allocatio, spac-tim prism 197 Hady ad Nimir

More information

Ideal crystal : Regulary ordered point masses connected via harmonic springs

Ideal crystal : Regulary ordered point masses connected via harmonic springs Statistical thrmodyamics of crystals Mooatomic crystal Idal crystal : Rgulary ordrd poit masss coctd via harmoic sprigs Itratomic itractios Rprstd by th lattic forc-costat quivalt atom positios miima o

More information

Cramér-Rao Inequality: Let f(x; θ) be a probability density function with continuous parameter

Cramér-Rao Inequality: Let f(x; θ) be a probability density function with continuous parameter WHEN THE CRAMÉR-RAO INEQUALITY PROVIDES NO INFORMATION STEVEN J. MILLER Abstract. W invstigat a on-paramtr family of probability dnsitis (rlatd to th Parto distribution, which dscribs many natural phnomna)

More information

A Prey-Predator Model with an Alternative Food for the Predator, Harvesting of Both the Species and with A Gestation Period for Interaction

A Prey-Predator Model with an Alternative Food for the Predator, Harvesting of Both the Species and with A Gestation Period for Interaction Int. J. Opn Problms Compt. Math., Vol., o., Jun 008 A Pry-Prdator Modl with an Altrnativ Food for th Prdator, Harvsting of Both th Spcis and with A Gstation Priod for Intraction K. L. arayan and. CH. P.

More information

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES. 1. Statement of results

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES. 1. Statement of results BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES DONALD M. DAVIS Abstract. If p is a prim and n a positiv intgr, lt ν p (n dnot th xponnt of p in n, and u p (n n/p νp(n th unit part of n. If α

More information

Figure 2-18 Thevenin Equivalent Circuit of a Noisy Resistor

Figure 2-18 Thevenin Equivalent Circuit of a Noisy Resistor .8 NOISE.8. Th Nyquist Nois Thorm W ow wat to tur our atttio to ois. W will start with th basic dfiitio of ois as usd i radar thory ad th discuss ois figur. Th typ of ois of itrst i radar thory is trmd

More information

Calculus & analytic geometry

Calculus & analytic geometry Calculus & aalytic gomtry B Sc MATHEMATICS Admissio owards IV SEMESTER CORE COURSE UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION CALICUT UNIVERSITYPO, MALAPPURAM, KERALA, INDIA 67 65 5 School of Distac

More information