Prednášky z regresných modelov

Size: px
Start display at page:

Download "Prednášky z regresných modelov"

Transcription

1 Prednášky z regresných modelov Odhadovanie parametrov strednej hodnoty a štatistická optimalizácia experimentu Prednášky Andreja Pázmana spracované v spolupráci s Vladimírom Lackom Univerzita Komenského v Bratislave 2012

2 c prof. RNDr. Andrej Pázman, DrSc., RNDr. Vladimír Lacko Recenzenti: Júlia Volaufová, Professor Louisiana State University, Health Sciences Center New Orleans, LA, USA doc. Mgr. Radoslav Harman, PhD. Fakulta matematiky, fyziky a informatiky UK Bratislava, Slovenská Republika Zodpovedná redaktorka: Mgr. Erika Myslivcová Foto na obálke: Mgr. Ladislav Petruš Napísané v L A TEXu Všetky práva vyhradené. Toto dielo ani žiadna jeho čast nesmie byt prekladaná a akýmkol vek spôsobom reprodukovaná bez predchádzajúceho súhlasu autorov. Vydala Univerzita Komenského v Bratislave vo Vydavatel stve UK ako vysokoškolskú učebnicu. Vytlačilo Polygrafické stredisko UK v náklade 100 kusov. Vydanie prvé, počet strán 140. AH XXXX. VH XXXX. ISBN

3 Obsah Predslov Prehl ad symbolov iii vii 1 Maticová príprava Stĺpcový priestor a jadro matice g-inverzia Projekčné matice Cvičenia Lineárny regresný model Motivačné príklady Geometria modelu a metóda najmenších štvorcov Gaussova-Markovova veta Vlastnosti lineárneho modelu v prípade normálne rozdelených chýb Základná veta lineárneho regresného modelu Oblasti spol ahlivosti Pás spol ahlivosti Testovanie submodelov Poznámky o robustnosti odhadov a diagnostike modelu Cvičenia Nelineárny regresný model Príklady nelineárnych regresných modelov a úvod do kapitoly Symbolika a výpočty derivácií Nelineárny regresný model a jeho geometria Lokálna linearizácia nelineárneho regresného modelu Existencia a jednoznačnost odhadu metódou najmenších štvorcov v nelineárnom modeli Algoritmy hl adania lokálnych miním v metóde najmenších štvorcov Gaussova-Newtonova a s ňou súvisiace metódy

4 ii OBSAH 3.7 Konzistencia a asymptotická normalita odhadov metódou najmenších štvorcov v nelineárnej regresii Miery nelinearity (krivosti) v nelineárnej regresii Iné aspekty krivosti Oblasti spol ahlivosti Asymptotický elipsoid spol ahlivosti Oblast spol ahlivosti v prípade rovinnej plochy stredných hodnôt a normálnych chýb Konštrukcia oblasti spol ahlivosti lokálnou linearizáciou v každom bode θ Konštrukcia oblasti spol ahlivosti založená na vierohodnosti Hustota pravdepodobnosti odhadu ˆθ v prípade normálne rozdelených chýb meraní Cvičenia Navrhovanie optimálnych experimentov v lineárnom regresnom modeli Úvod a základná schéma Úvahy o konvexných množinách Elipsoid koncentrácie a usporiadanie návrhov Kritériá optimality experimentu Elfvingova množina Vlastnosti kritérií optimality D-optimalita c-optimalita A-optimalita E-optimalita G-optimalita Spojitost kritérií v nekonečne O konvexných funkciách Nutné a postačujúce podmienky optimality návrhu Algoritmy výpočtu optimálneho návrhu Cvičenia Navrhovanie optimálnych experimentov v nelineárnom regresnom modeli Úvod Lokálne kritériá optimality Priemerovacie (AVE) kritériá optimality Minimaxné kritériá optimality Kritériá určené apriór. distribučnými funkciami lokálnych kritérií 126 Literatúra 129

5 Predslov Regresné modely patria medzi najpoužívanejšie modely v štatistickej praxi, čo bol dostatočný dôvod na zaradenie takejto prednášky do magisterského štúdia pravdepodobnosti a štatistiky na Fakulte matematiky, fyziky a informatiky UK. Prednáška z regresných modelov, ktorú od začiatku 90. rokov viedol prvý z autorov a ktorá tvorí základ tohto textu, sa postupne vyvíjala, a teda zvládnutel nost tejto učebnice je dobre preverená. Učebný text vznikol pôvodne z iniciatívy druhého z autorov, ktorý prednášku absolvoval ako študent magisterského štúdia v akademickom roku 2009/2010 a elektronicky ju zaznamenal. Text bol postupne modifikovaný, pribudli cvičenia, na ktoré v prednášanom kurze nebol priestor, ako aj ilustrácie z dielne druhého z autorov. K zvýšeniu kvality publikácie prispeli aj podrobné posudky oboch recenzentov, profesorky Júlie Volaufovej a docenta Radoslava Harmana, ktorých rozsiahlu prácu si vysoko ceníme a touto cestou im d akujeme. Napriek miernym zmenám sme sa však snažili, aby si text zachoval ráz prednášky. Pozitívne ohlasy zo strany pedagógov, akým je napríklad profesor Lubomír Kubáček z Univerzity Palackého v Olomouci, ale hlavne zo strany študentov nás utvrdzujú v tom, že tento text má šancu byt prínosom vo vysokoškolskom vzdelávaní. Predpokladom porozumenia vykladanej látky sú vedomosti z oblasti pravdepodobnosti a štatistiky, lineárnej algebry a geometrie a matematickej analýzy na úrovni bakalárskeho štúdia matematických študijných programov. Prvé dve kapitoly sú čiastočne podriadené ostatným trom kapitolám o nelineárnej regresii a optimálnom navrhovaní experimentov, ktoré tvoria jadro textu a ktoré sa opierajú aj o výskumné skúsenosti prvého z autorov v tejto oblasti. Poznatky sa snažíme predostriet súčasne z geometrického, algebraického a štatistického hl adiska. Takýto prístup umožňuje čitatel ovi l ahko pochopit problém cez jednoduché geometrické predstavy, čo často vedie k priamočiarym výpočtovým metódam a k interpretácii výsledkov. Kapitola 1 vyžaduje skúsenost s maticovým počtom a text pozostáva z nie celkom bežne používaných tvrdení lineárnej algebry, ktoré v d alších kapitolách rutinne využívame. Mohlo by sa zdat, že by bolo vhodnejšie zaradit tieto tvrdenia o maticiach na miesto ich prvého využitia, skúsenost však ukazuje, že je pedagogicky výhodné začat cyklus prednášok pomerne l ahko pochopitel nými a študentom čiastočne známymi tvrdeniami z lineárnej algebry. Nie-

6 iv PREDSLOV ktoré tvrdenia, najmä o derivovaní maticových funkcií, sme však zámerne ponechali až na miesta ich prvého využitia. V kapitole 2 o lineárnom regresnom modeli sa sústredíme len na modely s pevnými (t. j. nenáhodnými) parametrami strednej hodnoty. Posolstvom kapitoly sú dva hlavné výsledky: Gaussova-Markovova veta, ktorá je formulovaná aj pre singulárne modely, a štatistické vlastnosti odhadu metódou najmenších štvorcov v modeli s normálne rozdelenými chybami (tzv. Základná veta lineárneho modelu ) s využitím pri konštrukcii oblastí spol ahlivosti a pri testovaní modelov. Gaussovu-Markovovu vetu zdôrazňujeme hlavne pre neskoršiu formuláciu kritérií optimality v 4. kapitole. S dôsledkami Základnej vety lineárneho modelu sa čitatel mohol stretnút aj na bakalárskych kurzoch o teórii náhodného výberu či analýze variancií, kde sa však ocitol v záplave tradičných sumačných formúl. Jedným z ciel ov kapitoly 2 je preto aj určitá dodatočná strešná konštrukcia tejto teórie, založená na geometrii lineárneho regresného modelu, ktorá je de facto vel mi jednoduchá. Aj ked text nevyžaduje skúsenosti z iných, pokročilých prednášok zo štatistiky, predbežné znalosti z euklidovskej geometrie a maticového počtu sú podstatné. Metódy diagnostiky modelov a alternatívne (napríklad robustné) odhady sa tu spomínajú len okrajovo. O geometriu sa vo vel kej miere opierame v 3. kapitole o nelineárnom regresnom modeli. Výklad by bolo, samozrejme, možné podat aj čisto algebraicky, no bez použitia pojmov ako plocha stredných hodnôt, dotyková rovina a projektor na túto rovinu, krivka a jej dĺžka a podobne by bol takýto výklad vel mi t ažkopádny. Fráza vediet znamená vidiet sa tu uplatňuje v plnom rozsahu, navyše geometrické predstavy sú l ahšie a dlhodobejšie pamätatel né než algebraické formulky. Náročnejšia geometria, ako Riemannovská geometria plôch a kriviek v euklidovských priestoroch, sa tu využíva pri problémoch jednoznačnosti odhadov, pri odvodení mier nelinearity modelu a hustoty pravdepodobnosti odhadov metódou najmenších štvorcov v modeloch s normálnymi chybami. Nepredpokladáme však, že čitatel má väčšie skúsenosti s diferenciálnou geometriou, práve naopak, teóriu budujeme na základe elementárnych, takmer stredoškolských geometrických predstáv. Pri analytickej formulácii sa však nemôžeme vyhnút značnému využívaniu derivácií, nikde však nepotrebujeme riešit diferenciálne rovnice. Napriek tomu, že mnohé pojmy sú vysvetlené už v úvodných častiach textu, vybranú symboliku využívanú v častiach o nelineárnom regresnom modeli vysvetl ujeme z pedagogických dôvodov až na začiatku 3. kapitoly. Nebýva zvykom zarad ovat do kurzov regresnej analýzy aj state o navrhovaní experimentov, ktoré čitatel nájde v 4. a 5. kapitole. Táto problematika je však dnes už taká rozpracovaná, že sa dá vyložit v klasickej učebnicovej štruktúre. Dostupné monografie [F72; S80; P86; PU93; AD92], či slovenský variant [P80], ktoré vznikli z výskumnej činnosti, nie sú vhodnými učebnými textami. Ambíciou tejto publikácie je túto medzeru vyplnit. Obsah 4. kapitoly

7 PREDSLOV v sa výrazne opiera o využívanie elementov konvexnej analýzy, avšak skúsenosti ukazujú, že študenti často nemajú v tomto smere dostatočnú prípravu. Text preto obsahuje viacero tvrdení podobného charakteru ako v konvexnej analýze, ale špecializované na modely optimalizácie experimentov. Pri výklade sa opät snažíme využívat geometrickú interpretáciu, najvýraznejšie sa to prejavuje v časti o elipsoide koncentrácie a následnom odvodení najznámejších kritérií optimality, či pri využití povestnej Elfvingovej množiny, ktorú možno nazvat malým geometrickým zázrakom teórie optimálneho navrhovania experimentov. Ťažisko predložených poznatkov však spočíva v konvexnej štruktúre kritérií optimality a v elegantných tvrdeniach o nutných a postačujúcich podmienkach optimality, resp. približnej optimality návrhu experimentu, z ktorých vyplývajú aj niektoré optimalizačné algoritmy. V Bratislave 4. októbra 2012 Autori

8

9 Prehl ad symbolov definičná rovnost N množina prirodzených čísel R pole reálnych čísel R n n-rozmerný lineárny priestor nad R R n m n m-rozmerný priestor matíc nad R (a, b) otvorený interval [a, b] uzavretý interval (a, b], [a, b) sprava, resp. zl ava uzavretý interval x, y,... vektory x i i-ta zložka vektora x 1 vektor, ktorého všetky zložky sú jednotky 0 vektor, ktorého všetky zložky sú nuly.,. skalárny súčin A,B,... matice A ij, {A} ij ij-ty prvok matice A A i i-ty riadok matice A A j j-ty stĺpec matice A tr(a) stopa matice A r(a) hodnost matice A det(a) determinant matice A A T transpozícia matice A A 1 inverzia matice A A g-inverzie (zovšeobecnená inverzia) matice A A + Mooreova-Penroseova g-inverzia matice A A B Loewnerovo usporiadanie matíc, u u T Au u T Bu diag(a 1,...,a n ) diagonálna matica s prvkami a 1,...,a n na diagonále I jednotková matica e (i) i-ty stĺpec matice I P projekčná matica, projektor M(A) stĺpcový priestor generovaný maticou A

10 viii PREHL AD SYMBOLOV K (A) jadro matice A N najčastejšie označuje počet pozorovaní v experimente m počet neznámych parametrov strednej hodnoty θ = (θ 1,...,θ m ) T neznáme parametre v regresnom modeli ˆθ = (ˆθ 1,..., ˆθ m ) T odhady neznámych parametrov ξ, η návrhy experimentu X množina možných pokusov/bodov merania v experimente Ξ množina všetkých návrhov experimentu N(µ,Σ) normálne rozdelenie so strednou hodnotou µ a kovariančnou maticou Σ χ 2 n chí-kvadrát rozdelenie s n stupňami vol nosti F n,m Fisherovo rozdelenie s n a m stupňami vol nosti F n,m (p) kvantilová funkcia Fisherovho rozdelenia s n a m stupňami vol nosti Pr symbol označujúci pravdepodobnost E[.] stredná hodnota Var[.] variancia, resp. kovariančná matica Cov[.,.] kovariancia M,M(ξ) informačná matica, resp. informačná matica zodpovedajúca návrhu ξ M množina všetkých informačných matíc v experimente Φ(M) funkcia určujúca kritérium optimality Φ(M) gradient funkcie Φ v bode M { Φ(M)} ij ij-ty prvok gradientu funkcie Φ v bode M Φ(M, M) smerová derivácia funkcie Φ v bode M a v smere M prázdna množina co(.) konvexný obal množiny int(θ) vnútro množiny Θ Θ uzáver množiny Θ f g( ) f(g( )), zložená funkcia MNŠ metóda najmenších štvorcov

11 KAPITOLA 1 Maticová príprava Skôr ako sa začneme zaoberat teóriou regresných modelov, musíme si zopakovat a doplnit vedomosti z lineárnej algebry a geometrie, ktoré sú nevyhnutné pre jej zvládnutie. Predpokladáme, že čitatel má absolvovaný kurz lineárnej algebry v rozsahu bakalárskeho štúdia matematiky [K03; Z11]. To znamená, že dobre pozná pojem matice, súčtu a súčinu matíc, transpozície, inverzie a stopy matice, determinantu, vlastných čísel a vlastných vektorov a pod. Niektoré tvrdenia, o ktorých predpokladáme, že ich čitatel už ovláda, sú zložitejšie než vety, ktorých dôkazy tu predkladáme. Týka sa to hlavne využitia vlastných vektorov a vlastných čísel. Avšak nami zvolený výber podrobne prebraných tvrdení nie je náhodný, ale je motivovaný geometrickým prístupom k maticiam, ako aj d alším rutinným používaním výsledkov týchto tvrdení. Hlbší výklad teórie matíc v rozsahu potrebnom pre štatistiku môže čitatel nájst v monografii [H00]. 1.1 Stĺpcový priestor a jadro matice Nech A je l ubovol ná matica typu m n. Potom symbolom M(A) označujeme stĺpcový priestor matice A, t. j. M(A) {Au : u R n }. Symbolom K (A) označujeme jadro matice (kernel), t. j. Lema 1.1. Platí K (A) {v R n : Av = 0}. K (A T ) = [M(A)] {v R n : u M(A) u T v = 0}.

12 2 1. MATICOVÁ PRÍPRAVA Dôkaz. x K (A T ) A T x = 0 v v T A T x = 0 v (Av) T x = 0 x [M(A)]. Je zrejmé, že pre každú maticu A platí, že A = 0 u,v u T Av = 0. O niečo silnejšie tvrdenie môžeme vyslovit pre symetrickú maticu A, t. j. takú, že A = A T. Lema 1.2. Nech A je symetrická matica. Potom A = 0 u u T Au = 0. Dôkaz. Platnost implikácie je zrejmá, preto dokážeme iba opačný smer. Nech pre každé u a v platí, že (u + v) T A(u + v) = 0, (u v) T A(u v) = 0. Odčítaním predchádzajúcich rovníc dostaneme, že u T Av = 0. Ked že vektory u a v boli l ubovol né, potom nutne A = 0. Matica A R n n sa nazýva kladne semidefinitná, ak pre každé u R n platí u T Au 0. Ak navyše platí u T Au = 0 u = 0, potom je matica A kladne definitná. Lema 1.3. Nech C je symetrická kladne definitná matica, a nech rozmer matice A je taký, že súčin A T CA má zmysel. Potom Dôkaz. Nech x M(A T CA). Potom M(A T ) = M(A T CA). x M(A T CA) v x = A T CAv }{{} = A T u x M(A T ). u Teda M(A T CA) M(A T ). Teraz, nech x K (A T CA). Potom x K (A T CA) A T CAx = 0 0 = x T A T CAx = (Ax) T C(Ax). Ked že C je kladne definitná, tak Ax = 0, t. j. x K (A). Teda z lemy 1.1 dostávame [M(A T CA)] = K (A T CA) K (A) = [M(A T )]. Ukázali sme, že [M(A T CA)] [M(A T )]. Odstránením sa inklúzia obráti, čo dokazuje lemu.

13 KAPITOLA 2 Lineárny regresný model Alternatívny názov tejto kapitoly by mohol byt Základné aspekty lineárneho modelu trochu inak. Predpokladáme, že čitatel už má určité skúsenosti s lineárnym modelom z iných prednášok alebo literatúry, avšak v princípe kapitolu možno naštudovat bez predbežných znalostí o lineárnom modeli. Pokial by sa chcel čitatel podrobnejšie oboznámit s klasickým prístupom k lineárnemu modelu alebo s jeho aplikáciami (napr. analýza rozptylu alebo faktorová analýza), odporúčame do češtiny preloženú knihu C. R. Raa [R78], českú knihu K. Zváru [Z89], d alej učebnice J. Anděla [A85] a F. Lamoša a R. Potockého [LP98], a z anglickej literatúry odporúčame monografiu J. H. Stapletona [S95]. Rozbor lineárnych a kvadratických štatistických metód je v monografii L. Kubáčka, L. Kubáčkovej a J. Volaufovej [K95]. Problematika lineárnych regresných modelov je široká, pretože ide o najviac používané modely v aplikáciách. Náš výklad je však cielene zúžený a opiera sa aj o geometrickú intuíciu. Výklad kapitoly obsahuje dva základné výsledky: Gaussovu-Markovovu vetu a to, čo tu nazývame Základná veta lineárneho regresného modelu. Tieto vety sú východiskom pre kapitoly o nelineárnom regresnom modeli a navrhovaní experimentov. Mimo tohto trendu je čast 2.5, ktorá naznačuje možnosti diagnostikovania odchýlok od modelu a alternatívneho odhadovania parametrov. 2.1 Motivačné príklady Príklad 2.1. Pre dráhu vol ne padajúceho telesa platí s(t) = s 0 + v 0 t + gt 2 /2. Označme y i nameraný údaj v čase t i, t. j. y i = s(t i ) + ε i, pričom pre chyby merania platí E[ε i ] = 0, Var[ε i ] = σ 2 a Cov[ε i, ε j ] = 0 pre i j. Potom dostávame model y i = s 0 + v 0 t i + g t2 i 2 + ε i,

14 10 2. LINEÁRNY REGRESNÝ MODEL kde hodnoty parametrov s 0, v 0 a g sú neznáme. Vidíme, že parametre v modeli vystupujú lineárne. Neznámou je aj hodnota parametra σ 2, ktorý má však v modeli úplne inú úlohu (charakterizuje presnost našich meraní). Príklad 2.2. Majme merania (x i, y i ) (i = 1,...,N), ktorých závislost chceme modelovat polynómom k-teho stupňa, t. j. y i = θ 0 + θ 1 x i + + θ k x k i + ε i, i = 1,...,N. Uvedený model môžeme zapísat vektorovo y 1 1 x 1 x k 1 θ 0 ε 1 y 2 1 x 2 x k 2 θ 1 ε 2. = ,.... y N }{{} y θ k 1 x N }{{ x k N }}{{} F θ ε N }{{} ε teda y = Fθ + ε, kde E[ε] = 0 a Var[ε] = σ 2 I, pričom σ 2 je tiež neznáme. Príklad 2.3. Prospech y i študenta i závisí od faktorov x, z, w, nejakým neznámym funkčným vzt ahom h(x i, z i, w i ), ktorý chceme zistit aspoň približne z dát x i, z i, w i, y i, i = 1,...,N, kde N je počet všetkých študentov. Presnejšie, prospech i-teho študenta sa potom rovná y i = h(x i, z i, w i ) + ε i, kde ε i je realizácia nejakej náhodnej veličiny vyjadrujúcej vplyv iných (podružných) faktorov. Označme x, y a z priemerné hodnoty čísel x i, y i a z i, i = 1,...,N. Z Taylorovho rozvoja v bode x, z, w dostávame približne E[y] = h(x, z, w) h(x,z, w) }{{} + θ 1 + h(x,z, w) w } {{ } θ 4 h(x,z, w) h(x,z, w) (x x) + (z z) } x {{}} z {{} θ 2 θ 3 (w w) + 2 h(x,z, w) (x x)(z z), } x z {{} θ 5 prípadne uvedieme d alšie členy druhého alebo vyšších rádov. Podotýkame, že príliš malý počet členov vedie k nedostatočnej aproximácii funkcie h(x, z, w), avšak príliš vel ký počet členov vedie k narastaniu disperzie odhadu tejto funkcie. Princíp testovania správneho počtu členov uvádzame v časti Náš model môžeme teda prepísat v tvare y i = θ 1 + θ 2 (x i x) + θ 3 (z i z) + θ 4 (w i w) + θ 5 (x i x)(z i z) + ε i, opät teda dostávame lineárny model s neznámymi parametrami θ 1,...,θ 5. Pritom ε i môžeme považovat za nezávislé s tou istou (neznámou) varianciou Var[ε i ] = σ 2.

15 2.2 GEOMETRIA MODELU A METÓDA NAJMENŠÍCH ŠTVORCOV 11 R N y Fˆθ = Py M(F) = {Fu : u R m } Obrázok 2.1: Ku geometrickej interpretácii modelu a metódy najmenších štvorcov. 2.2 Geometria modelu a metóda najmenších štvorcov V d alšom texte uvažujeme lineárny regresný model v tvare y = Fθ + ε, E[ε] = 0, Var[ε] = σ 2 W, (2.1) kde y R N je vektor nameraných dát, θ R m je vektor neznámych parametrov (ktorý budeme odhadovat ), F je známa matica plánu, W je známa kladne definitná matica, a σ 2 je neznáma konštanta. Vektorový parameter θ = (θ 1,......,θ m ) T je parameter strednej hodnoty a predpokladom θ R m vyjadrujeme, že apriori o ňom nič nevieme. Naproti tomu σ 2 je tiež neznámy parameter, o ktorom predpokladáme iba to, že σ 2 > 0, má však úplne inú úlohu. Je to parameter presnosti našich pozorovaní. V nami uvažovanom modeli je dôležité, že σ 2 nezávisí od parametra θ. Odhad ˆθ hl adáme najčastejšie (váženou) metódou najmenších štvorcov ˆθ = arg min θ R m(y Fθ)T C(y Fθ) = arg min θ R m y Fθ 2 C 1, (2.2) kde C je nejaká kladne definitná matica. Ak C = I, potom minimalizujeme výraz y Fθ 2 I = y Fθ 2 = N i=1 (y i F i θ) 2, kde F i značí i-ty riadok matice F. Geometrická interpretácia MNŠ je nasledujúca: Zrejme E θ [y] = Fθ. To znamená, že {E θ [y] : θ R m } = {Fθ : θ R m } = M(F) tvorí lineárny priestor, ktorý nazývame rovinou stredných hodnôt. Potom odhad MNŠ je ortogonálna projekcia vektora y na M(F) vzhl adom na skalárny súčin a, b C 1 = a T Cb,

16 12 2. LINEÁRNY REGRESNÝ MODEL čiže spomedzi všetkých bodov Fθ hl adáme taký, ktorý je najbližšie k y. To je práve päta kolmice, teda Fˆθ = Py, kde P je ortogonálny projektor. Z vety 1.12 vyplýva, že Fˆθ = Py = F(F T CF) F T Cy. Tejto rovnici vyhovuje každé riešenie tvaru ˆθ = (F T CF) F T Cy, (2.3) kde použitá g-inverzia je l ubovol ná. V prípade, že F má plnú hodnost (a teda namiesto g-inverzie je inverzia), dostávame jednoznačný odhad ˆθ. V opačnom prípade je jednoznačne daná iba päta kolmice Fˆθ. Všimnime si, že uvedená geometrická interpretácia modelu (2.1) ukazuje, že lineárny model možno zovšeobecnit. Možno ho totiž zapísat v tvare y = µ + ε, E[ε] = 0, Var[ε] = σ 2 W, kde predpoklady na σ 2 a W ostávajú nezmenené a predpokladáme, že µ V, kde V je daná lineárna varieta (lineárnou varietou rozumieme podmnožinu R N s vlastnost ou µ 1, µ 2 V µ 1 + µ 2 V). Špeciálne, v modeli (2.1) je V zhodné s rovinou stredných hodnôt, teda V = M(F). Príkladom takého všeobecnejšieho lineárneho modelu je y = Fθ + b + ε, kde matica F a vektor b sú dané. Potom V = {Fθ + b : θ R m }. Jednoduchou transformáciou y = y b dostávame model y = Fθ +ε známy z (2.1). Iný príklad je model s podmienkami y = Fθ + ε, Bθ = 0, kde B je daná matica. Ide teda o model (2.1), kde parameter θ je viazaný lineárnymi podmienkami. V tomto prípade V = {Fθ : θ R m, Bθ = 0}. V princípe sa možno aj v tomto prípade vrátit k modelu (2.1) a to tak, že vo V zvolíme lineárnu bázu v 1,...,v r, kde r je dimenzia variety V. Teda, každé µ V sa dá zapísat v tvare µ = r i=1 α iv i, kde α i R. Pomocou takto vytvorených nových parametrov α 1,...,α r môžeme model s podmienkami zapísat v tvare y = Vα + ε, kde V = (v 1,...,v r ). V aplikáciách sa však takáto reparametrizácia θ α nepoužíva, zaužívanejšie techniky možno nájst v literatúre, napr. [R78] alebo [S94]. Z uvedených úvah vidno, že pri výklade podstatných vlastností odhadov MNŠ stačí, ked sa obmedzíme na výklad modelu (2.1). Vrát me sa teraz k metóde najmenších štvorcov v nami uvažovanom modeli (2.1). Uvedené odvodenie odhadu (2.3) je len intuitívne, dokážeme to

17 VLASTNOSTI LIN. MODELU V PRÍPADE NORMÁLNE ROZDELENÝCH CHÝB 25 parameter stupeň pri komponente 3 4 konštanta sin(t) cos(t) sin(2t) cos(2t) sin(3t) cos(3t) s Tabul ka 2.1: Odhady parametrov v trigonometrickej regresii v príklade Príklad Obrázok 2.2 znázorňuje nasledujúcu situáciu: Každých 0.1 sekundy zaznamenávame periodický signál, pričom vykonáme dovedna 200 meraní. Prirodzený spôsob ako takýto signál modelovat je použit trigonometrickú regresiu konečného stupňa (ako aproximáciu periodickej funkcie Fourierovým radom). V tabul ke 2.1 sú porovnané odhady v prípade trigonometrickej regresie stupňa 3 a 4. Na obrázku 2.2 je plnou čiarou vyznačený odhad krivky pre stupeň 3 a súčasne aj pre stupeň 4, ktoré sa prakticky zhodujú. Prerušovanou čiarou je znázornený skutočný priebeh krivky. Tmavosivý pás vyznačuje pás spol ahlivosti pre nami odhadnutú krivku stupňa 3 a svetlosivá oblast spolu s tmavosivou zodpovedá pásu spol ahlivosti odhadnutej krivky v prípade stupňa 4. Všimnime si, že v prípade regresie stupňa 4 sa nám odhady príliš nezmenili, no výrazne sa rozšíril pás spol ahlivosti, a teda klesla presnost odhadu Testovanie submodelov Príklad Uvažujme model y = Gβ + ε v tvare y ij = β 1 + β 2 x i + β 3 x 2 i + ε ij, i = 1,...,N, (2.10) kde i = 1,...,I, j = 1,...,J a x i sú body z intervalu [a, b]. Index j tu označuje opakovanie merania v tom istom bode x i. Teda celkový počet meraní je N = = I J. Chyby meraní ε ij majú nulovú strednú hodnotu, sú nekorelované a majú konštantnú varianciu σ 2. Otázka je, či tento model dobre vystihuje dané dáta. Zo Základnej vety lineárneho modelu vyplýva, že y Gˆβ 2 /σ 2 χ 2 N 3, čo by nám malo umožnit testovat model (2.10). Problém však je, že nepoznáme σ 2, a preto jeho odhad v rámci modelu s 2 = y Gˆβ 2 /(N 3) nemôžeme použit. Musíme preto σ 2 odhadovat pomocou iného modelu. V našom prípade takýmto pomocným modelom je model y ij = µ i + ε ij, i = 1,...,I, j = 1,...,J,

18 26 2. LINEÁRNY REGRESNÝ MODEL y(x), η(x,θ) x Obrázok 2.2: K príkladu Plná čiara je odhadnutá krivka pre parametre trigonometrickej regresie stupňa 3 a prerušovaná čiara zodpovedá skutočnej krivke. Tmavosivý pás je príslušný pás spol ahlivosti pre odhadnutú krivku a svetlosivé rozšírenie nám dáva pás spol ahlivosti v prípade regresie stupňa 4. Body v grafe zodpovedajú nameraným hodnotám. kde µ i = E[y ij ], j = 1,...,J. V tomto modeli µ = (µ 1,...,µ I ) T je nový vektor neznámych parametrov. Zdôrazňujeme, že hodnoty y ij a chyby ε ij ostávajú nezmenené, t. j. také ako v pôvodnom modeli. Kým v pôvodnom modeli sú stredné hodnoty µ i previazané cez β 1 +β 2 x i +β 3 x 2 i, v novom modeli previazané nie sú, t. j. nový model ponúka viac hypotetických možností pre strednú hodnotu pozorovaných veličín. Súčasne nový model je určite správny, pretože oprávnene predpokladáme, že opakované merania majú tú istú strednú hodnotu µ i. Vrát me sa k všeobecnej situácii. Označme testovaný model ako a pomocný model ako y = Gβ + ε, β R k, y = Fθ + ε, θ R m. Zdôrazňujeme, že v oboch modeloch ide o tie isté vektory nameraných údajov y a tie isté vektory chýb ε, pričom ε N(0, σ 2 W). Predpokladáme, že vzt ah medzi modelmi môžeme geometricky vyjadrit pomocou priestorov stredných hodnôt takto: {Gβ : β R k } {Fθ : θ R m }.

19 KAPITOLA 3 Nelineárny regresný model 3.1 Príklady nelineárnych regresných modelov a úvod do kapitoly Príklad 3.1. Pre výchylku kmitajúceho hmotného bodu (gulička na pružine) v čase t platí s(t) = exp{ βt}a sin(ωt + ϕ), kde β > 0 je koeficient tlmenia, A > 0 je počiatočná amplitúda kmitania, uhlová rýchlost ω > 0 predstavuje ako rýchlo pružina kmitá a ϕ [0, 2π) je počiatočná fáza. V časoch t i, i = 1,...,N, meriame hodnoty y i = s(t i ) + ε i, kde ε i sú chyby meraní, o ktorých predpokladáme, že ich štatistické vlastnosti sú nezávislé od hodnoty neznámych parametrov β, A, ω, ϕ. Teda vlastnosti chýb sa v podstate zhodujú s vlastnost ami chýb v lineárnom modeli, avšak neznáme parametre teraz vystupujú nelineárne. Otázkou je, či by sme priebeh funkcie s(t) v predchádzajúcom príklade nemali radšej aproximovat polynómom dostatočne vysokého rádu. V tom prípade by sa nelineárny regresný model nahradil lineárnym, a teda teoretická i výpočtová stránka problému by sa značne zjednodušila. Tento postup nemusí byt výhodný. S rastúcim počtom parametrov klesá presnost odhadu krivky s(t) a, čo je ešte dôležitejšie, kým pôvodné parametre majú pre fyzika výpovednú hodnotu, parametre polynómu žiadnu výpovednú hodnotu nemajú. Príklad 3.2. Majme diferenciálnu rovnicu opisujúcu nejaký fyzikálny jav d 2 z(t) dt 2 + a dz(t) dt + bz(t) + c = 0

20 36 3. NELINEÁRNY REGRESNÝ MODEL s neznámymi parametrami a, b, c R. V riešení z(t) vystupujú neznáme parametre nelineárne. Model sa následne kalibruje na reálnych dátach, t. j. na základe pozorovaní y i hodnoty z(t i ) v časoch t i, i = 1,...,N sa hl adajú odhady parametrov a, b, c, čo vedie na úlohu nelineárnej regresie. Príklad 3.3. Je zaujímavé, že aj v aplikačných modeloch, kde, na rozdiel od fyziky, používané modely nie sú a priori teoreticky zdôvodnené, sa s obl ubou používajú aj nelineárne modely. Ako príklad uvádzame model rastu počtu baktérií v potravine [BR94]. Počet baktérií y i v čase x i je náhodný a je tu modelovaný vzt ahom kde E[y i ] = ln(θ 1 ) + θ 2 x i + ln[a(x i, θ)] ln[b(x i, θ)], i = 1,...,N, A(x,θ) = exp{ θ 2 x} + exp{θ 2 θ 3 } exp{ θ 2 x θ 2 θ 3 }, B(x,θ) = 1 + (exp{θ 2 A(x,θ)} 1) θ 1 θ 4. Tu θ 1 je počiatočný počet baktérií, θ 2 je maximálna rýchlost nárastu počtu baktérií, θ 3 je čas zanedbatel nej kazivosti potraviny a θ 4 je počet baktérií v úplne pokazenej potravine. Príklad 3.4. Ako posledný príklad uvedieme Michaelisov-Mentenov model, pozri [MM13], s ktorým sa v tejto kapitole ešte niekol kokrát stretneme. Ide o jednoduchý a azda najznámejší model opisujúci kinetiku enzýmov. Presnejšie, model opisuje rýchlost prebiehajúcej reakcie medzi enzýmom a substrátom. Ak x je koncentrácia substrátu, potom rýchlost reakcie je v x = v maxx K M + x. Všimnime si, že rýchlost reakcie sa zvyšuje so zvyšujúcou sa koncentráciou x substrátu. Asymptoticky dosahuje táto rýchlost hodnotu v max, ked sa na substrát naviaže všetok enzým. Konštanta K M, tzv. Michaelisova konštanta, zodpovedá koncentrácii substrátu, pri ktorej sa rýchlost reakcie rovná 1 2 v max. Hodnoty v max a K M sú neznáme, a treba ich určit na základe meraní rýchlosti v xi pri rôznych koncentráciách x i. Čo bude predmetom kapitoly o nelineárnych regresných modeloch? Podobne ako v kapitole 2, chceme riešit úlohu odhadu parametra θ metódou najmenších štvorcov (metódou maximálnej vierohodnosti v prípade normálnych chýb). Ukazuje sa, že to je omnoho t ažšie. Nielenže nemáme explicitné vzorce pre takéto odhady a treba použit iteračné počítačové metódy, ale d alšie značné t ažkosti vznikajú, ked príslušná informačná matica modelu je singulárna. Aj otázka existencie a jednoznačnosti odhadu je komplikovanejšia.

21 LOKÁLNA LINEARIZÁCIA NELINEÁRNEHO REGRESNÉHO MODELU 43 R N y T (ˆθ) η(ˆθ) E = {η(θ) : θ Θ} Obrázok 3.1: Ak ˆθ je odhad MNŠ v nelineárnej regresii, potom spomedzi všetkých bodov η(θ) z plochy stredných hodnôt {η(θ) : θ Θ} je najbližšie k bodu y bod η(ˆθ). Odhad ˆθ parametra θ musí zrejme spĺňat rovnost 0 = θ y η(θ) 2 W θ=ˆθ = 2 η(θ)t θ W 1 [η(ˆθ) y], θ=ˆθ čo znamená kolmost reziduálneho vektora ν = y η(ˆθ) na dotykové vektory η(ˆθ) θ 1,..., η(ˆθ) θ m, a teda aj na priestor L (ˆθ). 3.4 Lokálna linearizácia nelineárneho regresného modelu V niektorých inžinierskych aplikáciách je známa približná hodnota θ parametra modelu. Označme θ skutočnú hodnotu parametra, pričom sa predpokladá, že θ nie je príliš vzdialené od θ a parameter σ 2 nie je príliš vel ký. Čo to znamená príliš vzdialené a príliš vel ké vysvetlíme neskôr. Potom skutočný

22 44 3. NELINEÁRNY REGRESNÝ MODEL y {η(θ) : θ Θ} η( θ) η(θ ) η(ˆθ) F ( θ θ ) + η(θ ) Obrázok 3.2: Linearizácia nelineárneho regresného modelu. model (3.1) môžeme aproximovat jeho linearizáciou v okolí θ, t. j. y. = η(θ ) + η(θ ) θ T (θ θ ) + ε. Ak označíme y = y η(θ ) a F = η(θ ), tak môžeme uvažovat aproximatívny model v tvare θ T y = F (θ θ ) + ε. (3.3) Pre odhad MNŠ v tomto modeli θ = arg min θ R m y F (θ θ ) 2 W platí θ θ = [(F ) T W 1 F ] 1 (F ) T W 1 y. (3.4) Situácia je graficky znázornená na obrázku 3.2 pre prípad dim(θ) = 1. Veta 3.9. V prípade normálne rozdelených chýb a známeho σ 2 Fisherova informačná matica v bode θ v pôvodnom modeli (3.1) je 1 η T (θ ) σ 2 W 1 η(θ ) θ θ T 1 σ 2M(θ ), a táto sa zhoduje s Fisherovou informačnou maticou v linearizovanom modeli (3.3). Dôkaz. Cvičenie 3.3. Pozrime sa, aká je presnost odhadu θ určeného vzt ahom (3.4), ak platí model (3.1). Presnejšie, analyzujme jeho varianciu a strednú hodnotu. Za predpokladu správnosti modelov (3.1) alebo (3.3) zhodne platí Var[ θ] = σ 2 [(F ) T W 1 F ] 1 = σ 2 M 1 (θ ).

23 76 3. NELINEÁRNY REGRESNÝ MODEL 3.10 Hustota pravdepodobnosti odhadu ˆθ v prípade normálne rozdelených chýb meraní V predchádzajúcej časti sme ukázali, ako možno pomocou oblasti spol ahlivosti charakterizovat presnost odhadu MNŠ ˆθ. Iný spôsob je možný pomocou aproximačných vzt ahov pre hustotu pravdepodobnosti odhadu ˆθ. V časti 3.7 sme ukázali, že pri dostatočne vel kom počte nezávislých meraní možno túto hustotu aproximovat hustotou normálneho rozdelenia N( θ, σ 2 M 1 ( θ)), kde θ je skutočná hodnota parametra θ. V tejto časti čiastočne odvodíme vzt ah, ktorý vel mi dobre aproximuje hustotu pravdepodobnosti náhodného vektora ˆθ v modeli y = η(θ) + ε, ε N(0, σ 2 W), pri l ubovol nom počte pozorovaní N. Zvlášt dobrá je táto aproximácia, ked dim(θ) = 1, alebo ak dim(θ) je malé a sú splnené d alšie podmienky modelu, ktoré naznačíme v texte. Diskutovaná aproximácia hustoty pravdepodobnosti má tvar q(ˆθ θ) det[q(ˆθ, = θ)] { (2π) m/2 σ m det 1/2 [M(ˆθ)] exp 1 } P(ˆθ)[η(ˆθ) η( θ)] 2σ 2W 2, (3.25) kde Q(ˆθ, θ) = M(ˆθ) + [η(ˆθ) η( θ)] T W 1 [I P(ˆθ)] 2 η(ˆθ) θ θ T. Tento vzt ah bol prvýkrát odvodený v článku [P84]. O rok neskôr bol získaný ten istý vzt ah asymptotickými metódami [H85] pre N, ale pri podstatne rýchlejšej konvergencii, než je tá, pomocou ktorej získame asymptotickú normalitu hustoty pravdepodobnosti odhadu MNŠ (veta 3.22). My odvodíme vzt ah (3.25) pre dim(θ) = 1, všeobecný prípad je podstatne zložitejší a možno ho nájst v [P84; P93]. Hodnota distribučnej funkcie náhodnej veličiny ˆθ v bode t sa približne rovná (pozri obrázok 3.10) {. F(t) = Pr{y D(t)} = Pr y : [y η(t)] T W 1 η(t) } < 0 t { } = Pr y : [y η( θ)] T W 1 n(t) < [η(t) η( θ)] T W 1 n(t) kde = [η(t) η( θ)] T W 1 n(t) n(t) = 1 (2π) 1/2 σ exp η(t) t η(t) t W. { u2 2σ 2 } du,

24 HUSTOTA ODHADU MNŠ V PRÍPADE NORMÁLNE ROZDELENÝCH CHÝB 77 η( θ) D(t) η(t) n(t) {η(θ) : θ Θ} Obrázok 3.10: Geometria odvodenia hustoty pravdepodobnosti odhadu MNŠ pre dim(θ) = 1. Posledná rovnost platí preto, že náhodná veličina z = [y η( θ)] T W 1 n(t) je lineárnou funkciou vektora y, teda je normálne rozdelená, pričom E[z] = [E[y] η( θ)] T W 1 n(t) = 0, Var[z] = n T (t)w 1 Var[y]W 1 n(t) = σ 2. Derivovaním funkcie F(t) dostaneme požadovanú hustotu q(t θ). Skutočne, { df(t) = exp 1 } dt 2σ 2[η(t) η( θ)] T W 1 n(t)n T (t)w 1 [η(t) η( θ)] d ( ) [η(t) η( θ)] T W 1 1 n(t) dt (2π) 1/2 σ a využijeme, že n(t)n T (t)w 1 = P(t) a že η(t) d [η(t) η( θ)] T W 1 t dt = = η T (t) t W 1 η(t) t ( η T (t) t W Q(t, θ) M 1/2 (t), 1 η(t) t ) 1/2 + η(t) t W [η(t) η( θ)] T W 1 [ pretože v prípade dim(θ) = 1 je M(θ) = η(t) t I η(t) t η(t) t W 2. W η(t) T t η(t) t 2 W W 1 ] 2 η(t) t 2 Je geometricky jasné, v čom spočíva aproximácia pri tomto odvodení hustoty. Pre blízke body t 1, t 2 sa hranice polpriestorov D(t 1 ) a D(t 2 ) pretínajú, čo sme zanedbali. Problém s touto aproximáciou vzniká, ak má model

25 KAPITOLA 4 Navrhovanie optimálnych experimentov v lineárnom regresnom modeli 4.1 Úvod a základná schéma V tejto kapitole sa budeme zaoberat možnost ami zvýšenia presnosti odhadov v experimentoch opísaných lineárnym modelom. Z kapitoly 2 je zrejmé, že túto presnost môžeme zvýšit zväčšením počtu meraní v experimente. Základná schéma bude predpokladat, že celkový počet meraní (resp. celkové náklady na experiment) je daný. Optimalizácia experimentu sa teda dosiahne vhodnou vol bou pokusov zaradených do experimentu. Vo všeobecnosti tu vznikajú dva problémy: čo považovat za mieru presnosti celého experimentu a ako docielit, aby táto miera presnosti bola čo najväčšia. Prvý problém vedie k úvahám o vol be tzv. kritérií optimality experimentu. Druhý problém vedie k matematickej teórii a algoritmom, ktoré nám umožňujú vypočítat optimálny návrh experimentu. Špeciálne budeme zist ovat, aké sú nutné a postačujúce podmienky optimality a aké výpočtové postupy možno použit na získanie (približne) optimálnych experimentov. Ukazuje sa, že ku značnému zjednodušeniu problému dochádza, ak za návrh experimentu považujeme relatívne frekvencie jednotlivých pokusov. V takom prípade netreba vopred stanovit celkový počet pokusov. Pretože relatívna frekvencia je pravdepodobnostná miera, množina všetkých takto formulovaných návrhov experimentu vytvára konvexnú množinu. Navyše sa ukazuje, že najpoužívanejšie štatisticky zdôvodnené kritériá optimality sú konvexnými funkciami na tejto množine. Matematicky ide teda o špeciálny prípad konvexnej optimalizácie, ktorá má vel mi dobré vlastnosti. Je vhodné, ak čitatel už má určité skúsenosti s konvexnými funkciami a množinami, ale nie je to nutné. Pokial je to možné, všetky potrebné poznatky odvodzujeme a opät je tu vel - mi nápomocná geometrická intuícia (napr. pri interpretácii kritérií optimality

26 84 4. NAVRHOVANIE OPTIMÁLNYCH EXPERIMENTOV V LINEÁR. REG. MODELI pomocou elipsoidu koncentrácie alebo pri tzv. Elfvingovej množine). Myslíme si, že je dôležité, že sa poslucháč dozvie nielen nové štatistické poznatky o lineárnom modeli, ale získa aj vedomosti o základoch konvexnej analýzy. Myšlienka navrhovania štatistického experimentu je taká stará ako štatistika sama. Napríklad pri navrhovaní experimentov spracovaných pomocou variančnej analýzy bol najdôležitejší prínos R. A. Fishera [F35]. Optimalizácia experimentov, ako ju poznáme dnes, sa začala vyvíjat v rokoch minulého storočia. Priekopnícke boli práce J. Kiefera [KW59] a G. Elfvinga [E52], učebnice k tejto problematike sa objavili až neskôr. Najznámejšie sú [F72; S80; P86; PU93; AD92] a d alšie vznikajú dodnes. Príklady reálneho použitia metód navrhovania experimentu možno nájst v [AD92; FP68] a v slovenskej publikácii [PM86]. Ani jedna z týchto kníh nie je však vhodná ako učebnica pre vysokoškolské štúdium matematickej štatistiky, túto medzeru sa snaží zaplnit predkladaný text, ktorý by mal byt vhodnou prípravou pre prípadné podrobnejšie štúdium i aplikácie. Príklad 4.1. Majme laboratórne váhy a tri predmety A, B, C s neznámymi hmotnost ami α, β a γ. Váhy majú systematickú chybu δ, náhodnú chybu ε N(0, σ 2 I) a máme povolené 4 pokusy. Uvažujme model merania y 1 = δ + ε 1, (prázdna váha) y 2 = δ + α + ε 2, (predmet A) y 3 = δ + β + ε 3, (predmet B) y 2 = δ + γ + ε 4, (predmet C), t. j. najprv zist ujeme systematickú chybu a potom vážime každý predmet zvlášt. Takýto postup váženia sa zdá byt prirodzený. Pol ahky zistíme, že odhady MNŠ hmotností jednotlivých telies sú ˆα = y 2 y 1, ˆβ = y 3 y 1 a ˆγ = = y 4 y 1. Teda E[ˆα] = E[y 2 y 1 ] = δ + α δ = α. To znamená, že odhad je nevychýlený, nevychýlenost dostaneme obdobne aj pre ostatné parametre. Variancia prvého odhadu je Var[ˆα] = Var[y 2 y 1 ] = Var[y 2 ] + Var[y 1 ] = 2σ 2, a rovnako dostaneme, že odhady ˆβ aj ˆγ majú varianciu 2σ 2. Teraz sa pozrime na inú, neintuitívnu schému merania: y 1 = δ + α + β + γ + ε 1, (všetky predmety) y 2 = δ + α + ε 2, (predmet A) y 3 = δ + β + ε 3, (predmet B) y 2 = δ + γ + ε 4, (predmet C) čiže namiesto merania systematickej chyby odvážime všetky predmety naraz. Riešením sústavy opät dostaneme nevychýlené odhady MNŠ ˆα = (y 1 + y 2 y 3 y 4 )/2, ˆβ = (y 1 + y 3 y 2 y 4 )/2 a ˆγ = (y 1 + y 4 y 2 y 3 )/2. Pozrime sa však na varianciu týchto odhadov. Var[ˆα] = (σ 2 + σ 2 + σ 2 + σ 2 )/4 = σ 2 (podobne aj ostatné odhady), čiže takáto schéma merania nám dá odhady, ktoré majú o polovicu nižšiu varianciu.

27 VLASTNOSTI KRITÉRIÍ OPTIMALITY t2 h αh t t 0 t t 1 2 t2 co ( {(t, 1 2 t2 ), t [0, 100]} {( t, 1 2 t2 ), t [0, 100] ) Obrázok 4.5: K príkladu o Elfvingovej vete pre model y = v 0 t at2, t [0,100]. 4.6 Vlastnosti kritérií optimality D-optimalita Kritérium D-optimality má výnimočné postavenie medzi ostatnými kritériami optimality, a to ako pre niektoré výnimočné vlastnosti, tak aj pre jeho popularitu v aplikáciách. Budeme uvažovat kriteriálnu funkciu pre D-optimalitu v tvare Φ[M] = ln[det(m)]. Veta Kritérium D-optimality je konvexná funkcia, ktorá je rýdzo konvexná na množine kladne definitných matíc. Dôkaz. Chceme dokázat, že Φ[(1 α) M + αm] (1 α)φ[ M] + αφ[m]. Ak je niektorá z matíc M,M singulárna, potom dostávame na pravej strane +. Preto uvažujme, že sú obe matice kladne definitné. Z lemy 1.5 a z faktu [U T ] 1 = [U 1 ] T vyplýva, že M = V T V a M = V T ΛV, kde V = U 1 je regulárna m m matica a Λ je diagonálna matica s kladnými prvkami λ 1,...,λ m na diagonále. Počítajme: Φ[(1 α) M [ ( )] + αm] = ln det V T [(1 α)i + αλ]v = ln[det(v T V)] ln[det((1 α)i + αλ)]

28 NAVRHOVANIE OPTIMÁLNYCH EXPERIMENTOV V LINEÁR. REG. MODELI = ln[det(v T V)] m ln[(1 α) + αλ i ] i=1 m m ln[det(v T V)] (1 α) ln(1) α ln(λ i ) i=1 i=1 = ln[det(v T V)] (1 α)ln[det(i)] α ln[det(λ)] = (1 α)ln[det(v T V)det(I)] α ln[det(v T V)det(Λ)] = (1 α)ln[det( M)] α ln[det(m)] = (1 α)φ[ M] + αφ[m], pričom nerovnost je ostrá, ak 0 < α < 1, pretože logaritmus je rýdzo konkávna funkcia. V dôkaze sme využili, že det(v T V)det(Λ) = det(v T )det(v)det(λ) = det(v T ΛV). Dôsledok D-optimálna informačná matica je jediná. (Optimálny návrh nie je určený jednoznačne, pretože rôzne návrhy môžu dat rovnakú informačnú maticu.) Dôkaz. Sporom. Nech M M sú D-optimálne matice. Potom ln[det(m)] = ln[det( M)] ln[det(m )] M. Z rýdzej konvexnosti D-optimality vyplýva: ln[det( 1 2 M M)] < 1 2 ln[det(m)] 1 ln[det( M)] 2 = ln[det(m)] = ln[det( M)], čo je spor, lebo sme našli D-optimálnejšiu informačnú maticu 1 2 M+ 1 2 M. Veta Kritérium D-optimality je spojitá funkcia. Dôkaz. Determinant je spojitá funkcia, lebo je to polynóm prvkov matice, a rovnako je spojitou funkciou aj logaritmus. Zložením spojitých funkcií dostaneme opät spojitú funkciu. Definícia Nech Φ[M] je nejaká diferencovatel ná reálna funkcia na otvorenej podmnožine R m m. Potom gradient funkcie Φ je matica Φ typu m m v tvare { Φ[M]} ij = Φ[M] M ij, i, j = 1,...,m. Je zrejmé, že derivovanie je možné len na otvorenej podmnožine množiny všetkých matíc typu m m. Tu je užitočná nasledujúca lema.

29 KAPITOLA 5 Navrhovanie optimálnych experimentov v nelineárnom regresnom modeli 5.1 Úvod Podobne ako v prípade lineárneho modelu, aj v prípade nelineárnych modelov X predstavuje množinu možných pokusov a našou úlohou je hl adat optimálny návrh (x 1,...,x N ) o rozsahu N bodov. Tentoraz však predpokladáme, že pozorovania vychádzajú z nelineárneho modelu y x = η(x,θ) + ε x, pričom E[ε x ] = 0 a Var[ε x ] = σ 2. Vychádzame z nasledujúcej tézy: Množstvo informácie o parametri θ, ktoré získame z meraní, vel mi závisí od polohy skutočnej hodnoty θ parametra θ. Problém sa dá vysvetlit jednoducho geometricky. Vzhl adom na nelinearitu modelu (pozri čast 3.8 o mierach nelinearity) je zrejmé, že ak rozdelíme parametrický priestor Θ na diely rovnakého objemu, tak obrazy týchto dielov na ploche stredných hodnôt {η(θ) : θ Θ} nebudú mat rovnaký objem vzhl adom na Lebesgueovu mieru na ploche stredných hodnôt (čiže niektoré budú väčšie a iné menšie). A teda koncentrácia hustoty odhadu ˆθ okolo θ závisí od polohy θ, a preto aj presnost odhadu bude závisiet od θ. Grafická interpretácia uvedeného argumentu je ilustrovaná na obrázku 5.1. Z uvedenej tézy vyplýva, že pri navrhovaní experimentov v nelineárnych modeloch potrebujeme aj apriórnu vedomost o θ. To však môže byt vel ký problém. Druhý problém, ktorý vychádza z nelinearity modelu, je spôsob ohodnotenia kvality návrhu, t. j. sformulovanie vhodných kritérií optimality. Prakticky

30 NAVRHOVANIE OPTIMÁLNYCH EXPERIMENTOV V NELIN. REG. MODELI η( θ 1 ) {η(θ) : θ Θ} η( θ 2 ) f(ˆθ) θ 1 θ2 ˆθ Obrázok 5.1: Závislost koncentrácie hustoty f(ˆθ) od polohy θ. Čierne bodky vyznačujú delenie plochy stredných hodnôt {η(θ) : θ Θ} pri rovnomernom delení priestoru parametra Θ. Štvorce predstavujú pozorované vektory y v jednotlivých experimentoch a päty kolmíc z týchto vektorov na plochu stredných hodnôt predstavujú body η(ˆθ). Dole sú naznačené výsledné hustoty odhadov MNŠ ˆθ. sa skoro vždy vychádza z asymptotickej normality odhadu MNŠ. Pre pripomenutie, veta o asymptotickej normalite hovorí, že pre vel ké N približne platí ( ˆθ N θ, σ 2 1 ) N M 1 (ξ, θ), (5.1) kde M(ξ, θ) = x X f(x, θ)f T (x, θ)ξ(x) a f(x,θ) = η(x,θ) θ. Budeme sa zaoberat štyrmi základnými prístupmi k formuláciám kritérií optimality: lokálne kritériá, priemerovacie kritériá, minimaxné kritériá, kritériá určené apriórnymi distribučnými funkciami lokálnych kritérií. 5.2 Lokálne kritériá optimality V prípade lokálnych kritérií optimality predpokladáme, že poznáme hodnotu θ parametra θ, ktorá je blízka skutočnej hodnote θ. To znamená, že pri asymptotickom prístupe v (5.1) nahradíme M(ξ, θ) maticou M(ξ,θ ) =

31 Literatúra [A85] [AD92] [BR94] [B74] [BW80] [BW88] Anděl, J.: Matematická statistika. Praha : SNTL/Bratislava : Alfa, Atkinson, A. C. Donev, A. N.: Optimum Experimental Designs. Oxford : Oxford University Press, Baranyi, J. Roberts, T. A.: A dynamic approach to predicting bacterial growth in food. International Journal of Food Microbiology 23 (1994), Bard, Y.: Nonlinear Parametric Estimation. New York : Academic Press, Bates, D. M. Watts, D. G.: Relative Curvature Measures of Nonlinearity. Journal of the Royal Statistical Society. Series B 40 (1980), Bates, D. M. Watts, D. G.: Nonlinear Regression Analysis and its Applications. New York : Wiley, [DM74] Demjanov, V. F. Malozemov, V. N.: Introduction to Minimax. New York : Dover, [DS98] [E52] [F72] [FP68] [F35] Draper, N. R. Smith, H.: Applied Regression Analysis. 3. vydanie. New York : Wiley, Elfving, G.: Optimum allocation in linear regression. Annals of Mathematical Statistics 23 (1952), Fedorov, V. V.: Theory of Optimal Experiments. New York : Academic Press, Fedorov, V. V. Pázman, A.: Design of Physical experiments (Statistical methods). Fortschritte der Physik 16 (1968), Fisher, R. A.: The Design of Experiments. Oxford : Oliver&Boyd, 1935.

32 130 LITERATÚRA [G87] Gallant, A. R.: Nonlinear Statistical Models. New York : Wiley, [H04] [HJ08] Harman, R.: Minimal efficiency of designs under the class of orthogonally invariant information criteria. Metrika 60 (2004), Harman, R. Jurík, T.: Computing c-optimal experimental designs using the simplex method of linear programming. Computational Statistics & Data Analysis 53 (2008), [H00] Harville, D. A.: Matrix Algebra From a Statistician s Perspective. 3. vydanie. New York : Springer, [H85] [JP11] [J69] [KW59] [K03] [K92] [K95] [LP98] Hougaard, P.: Saddlepoint approximations for curved exponential families. Statistics & Probability Letters 3 (1985), Janková, K. Pázman, A.: Pravdepodobnost a štatistika. Bratislava : Univerzita Komenského v Bratislave, Jennrich, R. L.: Asymptotic properties of nonlinear least squares estimation. Annals of Mathematical Statistics 40 (1969), Kiefer, J. Wolfowitz, J.: Optimum designs in regression problems. Annals of Mathematical Statistics 30 (1959), Korbaš, J.: Lineárna algebra a geometria I. Bratislava : Univerzita Komenského v Bratislave, Koutková, H.: On estimable and locally estimable functions in the nonlinear regression model. Kybernetika 28 (1992), Kubáček, L. Kubáčková, L. Volaufová, J.: Statistical Models with Linear Structures. Bratislava : Veda, Lamoš, F. Potocký, R.: Pravdepodobnost a matematická štatistika: Štatistické analýzy. Bratislava : Univerzita Komenského v Bratislave, [MM13] Menten, L. Michaelis, M. I.: Die Kinetik der Invertinwirkung. Biochem. Z. 49 (1913), [MP98] [P80] [P84] Müller, Ch. H. Pázman, A.: Applications of necessary and sufficient conditions for maximum efficient design. Metrika 48 (1998), Pázman, A.: Základy optimalizácie experimentu. Bratislava : Veda, Pázman, A.: Probability distribution of the multivariate nonlienar least squares estimates. Kybernetika 20 (1984),

33 LITERATÚRA 131 [P86] Pázman, A.: Foundations of Optimum Experimental Design. Dordrech : Reidel (Kluwer Group) v koprodukcii s vydavatel stvom Veda, [P93] Pázman A.: Nonlinear Statistical Models. Dordrecht : Kluwer, [PM86] [PP92] [PP07] [PB94] [PP12] [PU93] [R78] [R88] [R83] [R70] [SW03] Pázman, A. Mikulecká, J. Raffaj, V. Tokošová, M.: Riešené situácie z navrhovania experimentov. Bratislava : Alfa, Pázman, A. Pronzato, L.: Nonlinear experimental design based on the distribution of estimators. Journal of Statistical Planning and Inference 33 (1992), Pázman, A. Pronzato, L.: Quantile and probability-level criteria for nonlinear experimental design. Advances in Model-Oriented Design and Analysis (Eds. J. Lopéz-Fidalgo, J. M. Rodríguez-Díaz, B. Torsney), Heildelberg : Springer, Potocký, R. Ban, T. V.: Confidence region and the problem of reparametrization in nonlinear regression. Tatra Mountains Mathematical Publications 7 (1996), Pronzato, L. Pázman, A.: Design of experiments in nonlinear models. New York : Springer, v tlači Pukelsheim, F.: Optimal Design of Experiments. New York : Wiley, Rao, C. R.: Lineární metody statistické indukce a jejich aplikace. Praha : Academie, Rao, C. R.: Methodology based on the L 1 -norm, in statistical inference, Sankhyā Ser. A 50 (1988), Ratkowsky, D. A.: Nonlinear Regression Modeling. New York : Marcel Dekker, Rockafellar, R. T.: Convex Analysis. New Jersey : Princeton University Press, Seber, G. A. F. Wild, C. J.: Nonlinear Regression. New Jersey : Wiley, [S95] Stapleton, J. H.: Linear Statistical Models. New York : Wiley, [S02] Štulajter, F.: Predictions in Time Series Using Regression Models. New York : Springer, [S80] Silvey, D. D.: Optimal Design. London : Chapman and Hall, 1980.

34 132 LITERATÚRA [S94] [WP97] [Z11] Silvey, D. D.: Statistical Inference. London : Chapman and Hall, Walter, E. Pronzato, L.: Identification of Parametric Models from Experimental Data. Heidelberg : Springer, Zlatoš, P.: Lineárna algebra a geometria. Bratislava : Marenčin PT, [Z89] Zvára, K.: Regresní analýza. Praha : Academie, 1989.

Jádrové odhady gradientu regresní funkce

Jádrové odhady gradientu regresní funkce Monika Kroupová Ivana Horová Jan Koláček Ústav matematiky a statistiky, Masarykova univerzita, Brno ROBUST 2018 Osnova Regresní model a odhad gradientu Metody pro odhad vyhlazovací matice Simulace Závěr

More information

Metódy vol nej optimalizácie

Metódy vol nej optimalizácie Matematické programovanie Metódy vol nej optimalizácie p. 1/35 Informácie o predmete Informácie o predmete p. 2/35 Informácie o predmete METÓDY VOL NEJ OPTIMALIZÁCIE Prednášajúca: M. Trnovská (M 267) Cvičiaci:

More information

Teória grafov. RNDr. Milan Stacho, PhD.

Teória grafov. RNDr. Milan Stacho, PhD. Teória grafov RNDr. Milan Stacho, PhD. Literatúra Plesník: Grafové algoritmy, Veda Bratislava 1983 Sedláček: Úvod do teórie grafů, Academia Praha 1981 Bosák: Grafy a ich aplikácie, Alfa Bratislava 1980

More information

Modely, metódy a algoritmy pre analýzu longitudinálnych dát

Modely, metódy a algoritmy pre analýzu longitudinálnych dát Vedecká rada Fakulty matematiky, fyziky a informatiky Univerzity Komenského v Bratislave Mgr Gejza Wimmer Autoreferát dizertačnej práce Modely, metódy a algoritmy pre analýzu longitudinálnych dát pre získanie

More information

Matematická analýza II.

Matematická analýza II. V. Diferenciálny počet (prezentácia k prednáške MANb/10) doc. RNDr., PhD. 1 1 ondrej.hutnik@upjs.sk umv.science.upjs.sk/analyza Prednáška 8 6. marca 2018 It has apparently not yet been observed, that...

More information

PSEUDOINVERZNÁ MATICA

PSEUDOINVERZNÁ MATICA PSEUDOINVERZNÁ MATICA Jozef Fecenko, Michal Páleš Abstrakt Cieľom príspevku je podať základnú informácie o pseudoinverznej matici k danej matici. Ukázať, že bázický rozklad matice na súčin matíc je skeletným

More information

Fakulta Matematiky, Fyziky a Informatiky Univerzita Komenského, Bratislava THEILOVA REGRESIA

Fakulta Matematiky, Fyziky a Informatiky Univerzita Komenského, Bratislava THEILOVA REGRESIA Fakulta Matematiky, Fyziky a Informatiky Univerzita Komenského, Bratislava THEILOVA REGRESIA Róbert Tóth Bratislava 2013 Fakulta Matematiky, Fyziky a Informatiky Univerzita Komenského, Bratislava THEILOVA

More information

Jádrové odhady regresní funkce pro korelovaná data

Jádrové odhady regresní funkce pro korelovaná data Jádrové odhady regresní funkce pro korelovaná data Ústav matematiky a statistiky MÚ Brno Finanční matematika v praxi III., Podlesí 3.9.-4.9. 2013 Obsah Motivace Motivace Motivace Co se snažíme získat?

More information

Maticové algoritmy I maticová algebra operácie nad maticami súčin matíc

Maticové algoritmy I maticová algebra operácie nad maticami súčin matíc Maticové algoritmy I maticová algebra operácie nad maticami súčin matíc priesvitka Maurits Cornelis Escher (898-97) Ascending and Descending, 960, Lithograph priesvitka Matice V mnohých prípadoch dáta

More information

Errors-in-variables models

Errors-in-variables models Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE Ida Fürjesová Errors-in-variables models Katedra pravděpodobnosti a matematické statistiky Vedoucí bakalářské práce: RNDr. Michal

More information

Kapitola S5. Skrutkovica na rotačnej ploche

Kapitola S5. Skrutkovica na rotačnej ploche Kapitola S5 Skrutkovica na rotačnej ploche Nech je rotačná plocha určená osou rotácie o a meridiánom m. Skrutkový pohyb je pohyb zložený z rovnomerného rotačného pohybu okolo osi o a z rovnomerného translačného

More information

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY HADAMARDOVE MATICE A ICH APLIKÁCIE V OPTIMÁLNOM DIZAJNE BAKALÁRSKA PRÁCA 2012 Samuel ROSA UNIVERZITA KOMENSKÉHO V BRATISLAVE

More information

Lucia Fuchsová Charakteristiky pravděpodobnostních

Lucia Fuchsová Charakteristiky pravděpodobnostních Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE Lucia Fuchsová Charakteristiky pravděpodobnostních předpovědí Katedra pravděpodobnosti a matematické statistiky Vedoucí bakalářské

More information

ADM a logika. 4. prednáška. Výroková logika II, logický a sémantický dôsledok, teória a model, korektnosť a úplnosť

ADM a logika. 4. prednáška. Výroková logika II, logický a sémantický dôsledok, teória a model, korektnosť a úplnosť ADM a logika 4. prednáška Výroková logika II, logický a sémantický dôsledok, teória a model, korektnosť a úplnosť 1 Odvodzovanie formúl výrokovej logiky, logický dôsledok, syntaktický prístup Logický dôsledok

More information

Appendix. Title. Petr Lachout MFF UK, ÚTIA AV ČR

Appendix. Title. Petr Lachout MFF UK, ÚTIA AV ČR Title ROBUST - Kráĺıky - únor, 2010 Definice Budeme se zabývat optimalizačními úlohami. Uvažujme metrický prostor X a funkci f : X R = [, + ]. Zajímá nás minimální hodnota funkce f na X ϕ (f ) = inf {f

More information

Samuel Flimmel. Univerzita Karlova v Praze Matematicko-fyzikální fakulta. Katedra pravděpodobnosti a matematické statistiky

Samuel Flimmel. Univerzita Karlova v Praze Matematicko-fyzikální fakulta. Katedra pravděpodobnosti a matematické statistiky Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE Samuel Flimmel Log-optimální investování Katedra pravděpodobnosti a matematické statistiky Vedoucí bakalářské práce: doc. RNDr.

More information

Matematika 17. a 18. storočia

Matematika 17. a 18. storočia Matematika 17. a 18. storočia René Descartes Narodený : 31 Marec 1596 v La Haye (teraz Descartes),Touraine, France Zomrel : 11 Feb 1650 v Stockholm, Sweden Riešenie kvadratických rovníc podľa Descarta

More information

Štatisticky tolerančný interval nazýva ISO Statistics. Vocabulary and symbols. Part 1: Probability and general statistical terms ako štatistick

Štatisticky tolerančný interval nazýva ISO Statistics. Vocabulary and symbols. Part 1: Probability and general statistical terms ako štatistick Použitie štatistických tolerančných intervalov v riadení kvality Ivan Janiga Katedra matematiky SjF STU v Bratislave Štatisticky tolerančný interval nazýva ISO 3534-1 Statistics. Vocabulary and symbols.

More information

Obsah. 2 Určenie objemu valčeka Teoretický úvod Postup merania a spracovanie výsledkov... 10

Obsah. 2 Určenie objemu valčeka Teoretický úvod Postup merania a spracovanie výsledkov... 10 Obsah 1 Chyby merania 1 1.1 áhodné a systematické chyby.................... 1 1.2 Aritmetický priemer a stredná kvadratická chyba......... 1 1.3 Rozdelenie nameraných dát..................... 3 1.4 Limitné

More information

Dokonalé a spriatelené čísla

Dokonalé a spriatelené čísla Dokonalé a spriatelené čísla 1. kapitola. Niektoré poznatky z teorie čísel In: Tibor Šalát (author): Dokonalé a spriatelené čísla. (Slovak). Praha: Mladá fronta, 1969. pp. 5 17. Persistent URL: http://dml.cz/dmlcz/403668

More information

Odhady veľkosti pokrytí náhodne indukovaných podgrafov n-rozmernej hyperkocky

Odhady veľkosti pokrytí náhodne indukovaných podgrafov n-rozmernej hyperkocky KATEDRA INFORMATIKY FAKULTA MATEMATIKY FYZIKY A INFORMATIKY UNIVERZITA KOMENSKÉHO Odhady veľkosti pokrytí náhodne indukovaných podgrafov nrozmernej hyperkocky Diplomová práca Bc. Ján Kliman študijný odbor:

More information

PROGRAM VZDELÁVACEJ ČINNOSTI. Anotácia predmetu

PROGRAM VZDELÁVACEJ ČINNOSTI. Anotácia predmetu PROGRAM VZDELÁVACEJ ČINNOSTI Číslo predmetu : 3I0107 Názov predmetu : Štatistické a numerické metódy Typ predmetu : Povinný Študijný odbor: EF Zameranie: Ročník : 1. Ing. Semester : zimný Počet hodín týždenne

More information

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY. Robustné metódy vo faktorovej analýze

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY. Robustné metódy vo faktorovej analýze UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY Robustné metódy vo faktorovej analýze DIPLOMOVÁ PRÁCA Bratislava 2013 Bc. Zuzana Kuižová UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA

More information

ŠTEFAN GUBO. Riešenie úloh nelineárnej regresie pomocou tabuľkového kalkulátora. Solution of nonlinear regression tasks using spredsheet application

ŠTEFAN GUBO. Riešenie úloh nelineárnej regresie pomocou tabuľkového kalkulátora. Solution of nonlinear regression tasks using spredsheet application Wydawnictwo UR 2016 ISSN 2080-9069 ISSN 2450-9221 online Edukacja Technika Informatyka nr 1/15/2016 www.eti.rzeszow.pl DOI: 10.15584/eti.2016.1.27 ŠTEFAN GUBO Riešenie úloh nelineárnej regresie pomocou

More information

1 Matice a ich vlastnosti

1 Matice a ich vlastnosti Pojem sústavy a jej riešenie 1 Matice a ich vlastnosti 11 Sústavy lineárnych rovníc a matice Príklad 11 V množine reálnych čísel riešte sústavu rovníc x - 2y + 4z + t = -6 2x + 3y - z + 2t = 13 2x + 5y

More information

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY Vlastnosti spektrahedrálnych mnoºín a ich aplikácie v nelineárnej optimalizácii DIPLOMOVÁ PRÁCA 2016 Bc. Andrej Iring UNIVERZITA

More information

Univerzita Karlova v Praze Matematicko-fyzikální fakulta. Michal Kesely. Katedra matematické analýzy. Studijní program: Obecná matematika

Univerzita Karlova v Praze Matematicko-fyzikální fakulta. Michal Kesely. Katedra matematické analýzy. Studijní program: Obecná matematika Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE Michal Kesely Slavné neřešitelné problémy Katedra matematické analýzy Vedoucí bakalářské práce: RNDr. Dalibor Pražák, Ph.D. Studijní

More information

Optimal experimental design, an introduction, Jesús López Fidalgo

Optimal experimental design, an introduction, Jesús López Fidalgo Optimal experimental design, an introduction Jesus.LopezFidalgo@uclm.es University of Castilla-La Mancha Department of Mathematics Institute of Applied Mathematics to Science and Engineering Books (just

More information

METRICKÉ ÚLOHY V PRIESTORE

METRICKÉ ÚLOHY V PRIESTORE 1. ÚVOD METRICKÉ ÚLOHY V PRIESTORE Monika ĎURIKOVIČOVÁ 1 Katedra Matematiky, Strojnícka fakulta STU, Abstrakt: Popisujeme možnosti použitia programového systému Mathematica pri riešení špeciálnych metrických

More information

Ing. Tomasz Kanik. doc. RNDr. Štefan Peško, CSc.

Ing. Tomasz Kanik. doc. RNDr. Štefan Peško, CSc. Ing. Tomasz Kanik Školiteľ: doc. RNDr. Štefan Peško, CSc. Pracovisko: Študijný program: KMMOA, FRI, ŽU 9.2.9 Aplikovaná informatika 1 identifikácia problémovej skupiny pacientov, zlepšenie kvality rozhodovacích

More information

Kapitola P2. Rozvinuteľné priamkové plochy

Kapitola P2. Rozvinuteľné priamkové plochy Kapitola P2 Rozvinuteľné priamkové plochy 1 Priamková plocha je rozvinuteľná, ak na nej ležia iba torzálne priamky. Rozvinuteľné priamkové plochy rozdeľujeme na: rovinu, valcové plochy, kužeľové plochy,

More information

PROBABILITY AND STATISTICS Vol. III - Statistical Experiments and Optimal Design - Andrej Pázman STATISTICAL EXPERIMENTS AND OPTIMAL DESIGN

PROBABILITY AND STATISTICS Vol. III - Statistical Experiments and Optimal Design - Andrej Pázman STATISTICAL EXPERIMENTS AND OPTIMAL DESIGN STATISTICAL EXPERIMENTS AND OPTIMAL DESIGN Andrej Pázman Comenius University, Bratislava, Slovakia Keywords: Experiment design, linear statistical model, nonlinear regression, least squares, information

More information

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY REKURENTNÉ POSTUPNOSTI

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY REKURENTNÉ POSTUPNOSTI UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY Evidenčné číslo: 74b93af3-8dd5-43d9-b3f2-05523e0ba177 REKURENTNÉ POSTUPNOSTI 2011 András Varga UNIVERZITA KOMENSKÉHO V BRATISLAVE

More information

Algoritmy metód vnútorného bodu v lineárnom programovaní

Algoritmy metód vnútorného bodu v lineárnom programovaní UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY Algoritmy metód vnútorného bodu v lineárnom programovaní RIGORÓZNA PRÁCA 14 Mgr. Marek KABÁT UNIVERZITA KOMENSKÉHO V BRATISLAVE

More information

Kľúčové slová: SAR, šum spekl noise, evolučná PDR, lineárna difúzia, Perona-Malikova rovnica, štatistickéfiltre, Leeho filter

Kľúčové slová: SAR, šum spekl noise, evolučná PDR, lineárna difúzia, Perona-Malikova rovnica, štatistickéfiltre, Leeho filter Kľúčové slová: SAR, šum spekl noise, evolučná PDR, lineárna difúzia, Perona-Malikova rovnica, štatistickéfiltre, Leeho filter Tvorba šumu spekl radarový senzor vysiela elektromagneticlý pulz a meria odraz

More information

Radka Sabolová Znaménkový test

Radka Sabolová Znaménkový test Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE Radka Sabolová Znaménkový test Katedra pravděpodobnosti a matematické statistiky Vedoucí bakalářské práce: Mgr. Martin Schindler

More information

A geometric characterization of c-optimal designs for heteroscedastic regression

A geometric characterization of c-optimal designs for heteroscedastic regression A geometric characterization of c-optimal designs for heteroscedastic regression Holger Dette Ruhr-Universität Bochum Fakultät für Mathematik 44780 Bochum, Germany e-mail: holger.dette@rub.de Tim Holland-Letz

More information

Prednáška 3. Optimalizačné metódy pre funkcie n-premenných. Študujme reálnu funkciu n-premenných. f: R R

Prednáška 3. Optimalizačné metódy pre funkcie n-premenných. Študujme reálnu funkciu n-premenných. f: R R Prednáška 3 Optimalizačné metódy pre funkcie n-premenných Študujme reálnu funkciu n-premenných n f: R R Našou úlohou bude nájsť také x opt R n, pre ktoré má funkcia f minimum x opt = arg min ( f x) Túto

More information

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UIVERZITA KOMESKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A IFORMATIKY VÝPOČET FOURIEROVÝCH RADOV POMOCOU DISKRÉTEJ FOURIEROVEJ TRASFORMÁCIE BAKALÁRSKA PRÁCA 2013 Andrej ZUBAL UIVERZITA KOMESKÉHO V BRATISLAVE

More information

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY. Kritéria nezápornosti Fourierových radov BAKALÁRSKA PRÁCA

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY. Kritéria nezápornosti Fourierových radov BAKALÁRSKA PRÁCA UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY Kritéria nezápornosti Fourierových radov BAKALÁRSKA PRÁCA Bratislava 2014 Andrej Iring UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA

More information

Bootstrap metody II Kernelové Odhady Hustot

Bootstrap metody II Kernelové Odhady Hustot Bootstrap metody II Kernelové Odhady Hustot Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České

More information

EXTREME SEVERAL-DAY PRECIPITATION TOTALS AT HURBANOVO DURING THE TWENTIETH CENTURY

EXTREME SEVERAL-DAY PRECIPITATION TOTALS AT HURBANOVO DURING THE TWENTIETH CENTURY Rožnovský, J., Litschmann, T. (ed.): XIV. Česko-slovenská bioklimatologická konference, Lednice na Moravě 2.-4. září 2, ISBN -85813-99-8, s. 9-19 EXTREME SEVERAL-DAY PRECIPITATION TOTALS AT HURBANOVO DURING

More information

MASARYKOVA UNIVERZITA ÚSTAV MATEMATIKY A STATISTIKY

MASARYKOVA UNIVERZITA ÚSTAV MATEMATIKY A STATISTIKY MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA ÚSTAV MATEMATIKY A STATISTIKY Diplomová práce BRNO 2014 MICHAL KOVÁČIK MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA ÚSTAV MATEMATIKY A STATISTIKY Metody testování

More information

Matematická analýza II.

Matematická analýza II. V. Diferenciálny počet (prezentácia k prednáške MANb/10) doc. RNDr., PhD. 1 1 ondrej.hutnik@upjs.sk umv.science.upjs.sk/analyza Prezentácie k prednáškam čast II 21. februára 2018 The extent of this calculus

More information

SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE FAKULTA CHEMICKEJ A POTRAVINÁRSKEJ TECHNOLÓGIE ÚSTAV INFORMATIZÁCIE, AUTOMATIZÁCIE A MATEMATIKY

SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE FAKULTA CHEMICKEJ A POTRAVINÁRSKEJ TECHNOLÓGIE ÚSTAV INFORMATIZÁCIE, AUTOMATIZÁCIE A MATEMATIKY SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE FAKULTA CHEMICKEJ A POTRAVINÁRSKEJ TECHNOLÓGIE ÚSTAV INFORMATIZÁCIE, AUTOMATIZÁCIE A MATEMATIKY OPTIMÁLNE RIADENIE PROCESOV BAKALARÁSKA PRÁCA FCHPT-5415-17457

More information

COMENIUS UNIVERSITY IN BRATISLAVA FACULTY OF MATHEMATICS, PHYSICS AND INFORMATICS

COMENIUS UNIVERSITY IN BRATISLAVA FACULTY OF MATHEMATICS, PHYSICS AND INFORMATICS COMENIUS UNIVERSITY IN BRATISLAVA FACULTY OF MATHEMATICS, PHYSICS AND INFORMATICS ULTIMATE EFFICIENCY OF DESIGNS FOR MULTIVARIATE ORNSTEIN-UHLENBECK PROCESSES MASTER S THESIS 2014 Bc. Michal Hojčka COMENIUS

More information

PROGRAMY NA SPRACOVANIE A VIZUALIZÁCIU EXPERIMENTÁLNYCH DÁT

PROGRAMY NA SPRACOVANIE A VIZUALIZÁCIU EXPERIMENTÁLNYCH DÁT PROGRAMY NA SPRACOVANIE A VIZUALIZÁCIU EXPERIMENTÁLNYCH DÁT Ladislav ŠEVČOVIČ http://people.tuke.sk/ladislav.sevcovic Strana 1 z 20 Strana 2 z 20 V prezentácii sú použité názvy programových produktov,

More information

2-UMA-115 Teória množín. Martin Sleziak

2-UMA-115 Teória množín. Martin Sleziak 2-UMA-115 Teória množín Martin Sleziak 23. septembra 2010 Obsah 1 Úvod 4 1.1 Predhovor...................................... 4 1.2 Sylaby a literatúra................................. 5 1.2.1 Literatúra..................................

More information

The influence of input data design on terrain morphometric parameters quality and accuracy

The influence of input data design on terrain morphometric parameters quality and accuracy The influence of input data design on terrain morphometric parameters quality and accuracy Mgr. Radoslav Bonk bonk@fns.uniba.sk Katedra fyzickej geografie a geoekológie, Prírodovedecká fakulta Univerzity

More information

On construction of constrained optimum designs

On construction of constrained optimum designs On construction of constrained optimum designs Institute of Control and Computation Engineering University of Zielona Góra, Poland DEMA2008, Cambridge, 15 August 2008 Numerical algorithms to construct

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

DEA modely a meranie eko-efektívnosti

DEA modely a meranie eko-efektívnosti Fakulta matematiky, fyziky a informatiky Univerzita Komenského v Bratislave DEA modely a meranie eko-efektívnosti 2008 Veronika Lennerová DEA modely a meranie eko-efektívnosti DIPLOMOVÁ PRÁCA Diplomant:

More information

Oddělení technické informatiky Technická univerzita v Liberci

Oddělení technické informatiky Technická univerzita v Liberci Outline Július 1,2 1 Ústav informatiky AV ČR, v.v.i. www.cs.cas.cz/stuller stuller@cs.cas.cz 2 Fakulta mechatroniky, informatiky a mezioborových studíı Oddělení technické informatiky Technická univerzita

More information

Súťaž PALMA junior a programovanie v jazyku Python

Súťaž PALMA junior a programovanie v jazyku Python Súťaž PALMA junior a programovanie v jazyku Python Ján Guniš Ľubomír Šnajder Prírodovedecká fakulta Univerzity P. J. Šafárika v Košiciach DidInfo + DidactIG 2017, Banská Bystrica Obsah Súťaž PALMA junior

More information

Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCA. Bc. Roman Cinkais. Aplikace samoopravných kódů v steganografii

Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCA. Bc. Roman Cinkais. Aplikace samoopravných kódů v steganografii Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCA Bc. Roman Cinkais Aplikace samoopravných kódů v steganografii Katedra algebry Vedúcí diplomovej práce: prof. RNDr. Aleš Drápal,

More information

Aplikácie teórie množín Martin Sleziak 24. februára 2015

Aplikácie teórie množín Martin Sleziak 24. februára 2015 Aplikácie teórie množín Martin Sleziak 24. februára 2015 Obsah 1 Úvod 5 1.1 Sylaby a literatúra................................. 5 1.1.1 Literatúra.................................. 5 1.1.2 Sylaby predmetu..............................

More information

FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITY KOMENSKÉHO V BRATISLAVE

FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITY KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITY KOMENSKÉHO V BRATISLAVE PÍSOMNÁ PRÁCA K DIZERTAČNEJ SKÚŠKE 2005 Zuzana Holeščáková FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITY KOMENSKÉHO V BRATISLAVE

More information

Optimal designs for estimating the slope in nonlinear regression

Optimal designs for estimating the slope in nonlinear regression Optimal designs for estimating the slope in nonlinear regression Holger Dette Ruhr-Universität Bochum Fakultät für Mathematik 44780 Bochum, Germany e-mail: holger.dette@rub.de Viatcheslav B. Melas St.

More information

Heteroscedastic T-Optimum Designs for Multiresponse Dynamic Models

Heteroscedastic T-Optimum Designs for Multiresponse Dynamic Models Heteroscedastic T-Optimum Designs for Multiresponse Dynamic Models Dariusz Uciński 1 and Barbara Bogacka 2 1 Institute of Control and Computation Engineering, University of Zielona Góra, ul. Podgórna 50,

More information

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica Lubomír Kubáček; Eva Tesaříková Underparametrization of weakly nonlinear regression models Acta Universitatis Palackianae

More information

1 Úvod Úvod Sylaby a literatúra Označenia a pomocné tvrdenia... 4

1 Úvod Úvod Sylaby a literatúra Označenia a pomocné tvrdenia... 4 Obsah 1 Úvod 3 1.1 Úvod......................................... 3 1. Sylaby a literatúra................................. 3 1.3 Označenia a omocné tvrdenia.......................... 4 Prvočísla 6.1 Deliteľnosť......................................

More information

The Golden Ratio and Signal Quantization

The Golden Ratio and Signal Quantization The Golden Ratio and Signal Quantization Tom Hejda, tohecz@gmail.com based on the work of Ingrid Daubechies et al. Doppler Institute & Department of Mathematics, FNSPE, Czech Technical University in Prague

More information

P a g e 5 1 of R e p o r t P B 4 / 0 9

P a g e 5 1 of R e p o r t P B 4 / 0 9 P a g e 5 1 of R e p o r t P B 4 / 0 9 J A R T a l s o c o n c l u d e d t h a t a l t h o u g h t h e i n t e n t o f N e l s o n s r e h a b i l i t a t i o n p l a n i s t o e n h a n c e c o n n e

More information

České vysoké učení technické v Praze

České vysoké učení technické v Praze České vysoké učení technické v Praze Fakulta elektrotechnická Katedra řídicí techniky Odhad kovariančných matíc šumu lineárneho stochastického systému Diplomová práca Vypracoval: Peter Matisko Školiteľ:

More information

FAKULTA HUMANITNÝCH VIED, ŽILINSKÁ UNIVERZITA V ŽILINE INFORMAČNÝ LIST PREDMETU. Názov: Matematická analýza 1 (povinný) Zabezpečuje:

FAKULTA HUMANITNÝCH VIED, ŽILINSKÁ UNIVERZITA V ŽILINE INFORMAČNÝ LIST PREDMETU. Názov: Matematická analýza 1 (povinný) Zabezpečuje: Názov: Matematická analýza 1 (povinný) prof. RNDr. Miroslava Růžičková, CSc. Semester: 1. rok štúdia: 1. Týždenný: 4 2 0 Za semester: 52 26 0 Prerekvizity: Stredoškolská matematika v rozsahu osnov gymnázií.

More information

Fakulta matematiky, fyziky a informatiky Univerzity Komenského v Bratislave. Písomná práca k dizertačnej skúške

Fakulta matematiky, fyziky a informatiky Univerzity Komenského v Bratislave. Písomná práca k dizertačnej skúške Fakulta matematiky, fyziky a informatiky Univerzity Komenského v Bratislave Písomná práca k dizertačnej skúške Marec 2007 Tomáš Jurík Fakulta matematiky, fyziky a informatiky Univerzity Komenského v Bratislave

More information

NEISTOTY. Základné pojmy a definície z oblasti neistôt meraní

NEISTOTY. Základné pojmy a definície z oblasti neistôt meraní NEISTOTY Základné pojmy a definície z oblasti neistôt meraní Ladislav Ševčovič Košice 23. septembra 2007 OBSAH 1 Základné pojmy a definície z oblasti neistôt meraní 3 2 Chyby elektrických meracích prístrojov

More information

ON THE REGULARIZATION OF SINGULAR C-OPTIMAL

ON THE REGULARIZATION OF SINGULAR C-OPTIMAL LABORATOIRE INFORMATIQUE, SIGNAUX ET SYSTÈMES DE SOPHIA ANTIPOLIS UMR 6070 ON THE REGULARIZATION OF SINGULAR C-OPTIMAL DESIGNS Luc Pronzato Equipe SYSTEMES Rapport de recherche ISRN I3S/RR 2008-15 FR Septembre

More information

Solution Methods for Beam and Frames on Elastic Foundation Using the Finite Element Method

Solution Methods for Beam and Frames on Elastic Foundation Using the Finite Element Method Solution Methods for Beam and Frames on Elastic Foundation Using the Finite Element Method Spôsoby riešenie nosníkov a rámov na pružnom podklade pomocou metódy konečných prvkov Roland JANČO 1 Abstract:

More information

Efficient algorithms for calculating optimal designs in pharmacokinetics and dose finding studies

Efficient algorithms for calculating optimal designs in pharmacokinetics and dose finding studies Efficient algorithms for calculating optimal designs in pharmacokinetics and dose finding studies Tim Holland-Letz Ruhr-Universität Bochum Medizinische Fakultät 44780 Bochum, Germany email: tim.holland-letz@rub.de

More information

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV TELEKOMUNIKACÍ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF TELECOMMUNICATIONS

More information

Stavba Lobačevského planimetrie

Stavba Lobačevského planimetrie Stavba Lobačevského planimetrie Riešenie úloh In: Ján Gatial (author); Milan Hejný (author): Stavba Lobačevského planimetrie. (Slovak). Praha: Mladá fronta, 1969. pp. 78 109. Persistent URL: http://dml.cz/dmlcz/403691

More information

MATEMATIKA I a jej využitie v ekonómii

MATEMATIKA I a jej využitie v ekonómii Katedra matematiky a teoretickej informatiky Fakulta elektrotechniky a informatiky Technická Univerzita v Košiciach MATEMATIKA I a jej využitie v ekonómii Monika Molnárová Košice 2012 Katedra matematiky

More information

Vyučovanie analytickej geometrie s podporou informačných a komunikačných technológií

Vyučovanie analytickej geometrie s podporou informačných a komunikačných technológií Vyučovanie analytickej geometrie s podporou informačných a komunikačných technológií Teaching Analytic Geometry using Information and Communication Technologies Abstract The paper proposes an innovative

More information

One-step ahead adaptive D-optimal design on a finite design. space is asymptotically optimal

One-step ahead adaptive D-optimal design on a finite design. space is asymptotically optimal Author manuscript, published in "Metrika (2009) 20" DOI : 10.1007/s00184-008-0227-y One-step ahead adaptive D-optimal design on a finite design space is asymptotically optimal Luc Pronzato Laboratoire

More information

História nekonečne malej veličiny PROJEKTOVÁ PRÁCA. Martin Čulen. Alex Fleško. Konzultant: Vladimír Repáš

História nekonečne malej veličiny PROJEKTOVÁ PRÁCA. Martin Čulen. Alex Fleško. Konzultant: Vladimír Repáš História nekonečne malej veličiny PROJEKTOVÁ PRÁCA Martin Čulen Alex Fleško Konzultant: Vladimír Repáš Škola pre mimoriadne nadané deti a Gymnázium, Skalická 1, Bratislava BRATISLAVA 2013 1. Obsah 1. Obsah

More information

Predikcia úmrtnosti na Slovensku

Predikcia úmrtnosti na Slovensku 1 Ak nie je uvedené inak, zdrojom grafov v tomto príspevku sú štatistické tabuľky úmrtnosti v SR a výpočty autora. 2 Viac o SVD nájdeme napríklad na http://www.ling.ohiostate.edu/~kbaker/pubs/singular_value_decomposition_tutorial.pdf

More information

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY MODELOVANIE NEZAMESTNANOSTI PRE REGIÓNY Bc.

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY MODELOVANIE NEZAMESTNANOSTI PRE REGIÓNY Bc. UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY MODELOVANIE NEZAMESTNANOSTI PRE REGIÓNY NUTS 2 KRAJÍN EÚ DIPLOMOVÁ PRÁCA 2017 Bc. Bystrík KUBALA UNIVERZITA KOMENSKÉHO V BRATISLAVE

More information

Statistika pro informatiku

Statistika pro informatiku Statistika pro informatiku prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Katedra teoretické informatiky FIT České vysoké učení technické v Praze MI-SPI, ZS 2011/12, Přednáška 1 Evropský sociální

More information

Analýza multispektrálnych dát z konfokálnej mikroskopie. DIPLOMOVÁ PRÁCA

Analýza multispektrálnych dát z konfokálnej mikroskopie. DIPLOMOVÁ PRÁCA Analýza multispektrálnych dát z konfokálnej mikroskopie. DIPLOMOVÁ PRÁCA Kamil Paulíny UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY FYZIKY A INFORMATIKY KATEDRA APLIKOVANEJ INFORMATIKY Študijný

More information

Optimum Designs for the Equality of Parameters in Enzyme Inhibition Kinetic Models

Optimum Designs for the Equality of Parameters in Enzyme Inhibition Kinetic Models Optimum Designs for the Equality of Parameters in Enzyme Inhibition Kinetic Models Anthony C. Atkinson, Department of Statistics, London School of Economics, London WC2A 2AE, UK and Barbara Bogacka, School

More information

MEDZINÁRODNÝ VEDECKÝ ČASOPIS MLADÁ VEDA / YOUNG SCIENCE

MEDZINÁRODNÝ VEDECKÝ ČASOPIS MLADÁ VEDA / YOUNG SCIENCE MEDZINÁRODNÝ VEDECKÝ ČASOPIS MLADÁ VEDA / YOUNG SCIENCE November 2014 (číslo 3) Ročník druhý ISSN 1339-3189 Kontakt: info@mladaveda.sk, tel.: +421 908 546 716, www.mladaveda.sk Fotografia na obálke: Kuala

More information

GRAFICKÉ ZOBRAZENIE MATEMATICKÝCH FUNKCIÍ DRAWING OF MATHEMATICS FUNCTIONS GRAPHS

GRAFICKÉ ZOBRAZENIE MATEMATICKÝCH FUNKCIÍ DRAWING OF MATHEMATICS FUNCTIONS GRAPHS GRAFICKÉ ZOBRAZENIE MATEMATICKÝCH FUNKCIÍ DRAWING OF MATHEMATICS FUNCTIONS GRAPHS Dana ORSZÁGHOVÁ (SR) ABSTRACT Graphs of functions are the topic that is the part of mathematics study. The graphics software

More information

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY MOCNINOVÉ RADY A ICH VYUšITIE BAKALÁRSKA PRÁCA 04 Sára MINÁROVÁ UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY

More information

Kybernetika. Peter Hudzovič Súčasná kontrola stability a kvality impulznej regulácie. Terms of use:

Kybernetika. Peter Hudzovič Súčasná kontrola stability a kvality impulznej regulácie. Terms of use: Kybernetika Peter Hudzovič Súčasná kontrola stability a kvality impulznej regulácie Kybernetika, Vol. 3 (1967), No. 2, (175)--194 Persistent URL: http://dml.cz/dmlcz/125051 Terms of use: Institute of Information

More information

Univerzita Karlova v Praze. Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE. Matúš Kepič

Univerzita Karlova v Praze. Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE. Matúš Kepič Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE Matúš Kepič Webová aplikace pro výuku goniometrických funkcí, rovnic a nerovnic Katedra didaktiky matematiky Vedoucí diplomové práce:

More information

Katedra matematiky a teoretickej informatiky Fakulta elektrotechniky a informatiky

Katedra matematiky a teoretickej informatiky Fakulta elektrotechniky a informatiky Katedra matematiky a teoretickej informatiky Fakulta elektrotechniky a informatiky Technická univerzita v Košiciach MTEMTIK I a jej využitie v ekonómii Zbierka riešených a neriešených úloh nna Grinčová

More information

ODHAD PARAMETROV VŠEOBECNÉHO PARETOVHO ROZDELENIA SOFTVÉROM EVA V PROSTREDÍ JAZYKA R.

ODHAD PARAMETROV VŠEOBECNÉHO PARETOVHO ROZDELENIA SOFTVÉROM EVA V PROSTREDÍ JAZYKA R. ODHAD PARAMETROV VŠEOBECNÉHO PARETOVHO ROZDELENIA SOFTVÉROM EVA V PROSTREDÍ JAZYKA R. Abstrakt V prípade výskyt extrémnych hodnôt v databáze údajov je možné na ich popísanie zvoliť model prekročenia prah

More information

Penalized D-optimal design for dose finding

Penalized D-optimal design for dose finding Penalized for dose finding Luc Pronzato Laboratoire I3S, CNRS-Univ. Nice Sophia Antipolis, France 2/ 35 Outline 3/ 35 Bernoulli-type experiments: Y i {0,1} (success or failure) η(x,θ) = Prob(Y i = 1 x

More information

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY DETEKOVANIE KOMUNÍT V SOCIÁLNYCH SIEŤACH Patricia SVITKOVÁ

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY DETEKOVANIE KOMUNÍT V SOCIÁLNYCH SIEŤACH Patricia SVITKOVÁ UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY DETEKOVANIE KOMUNÍT V SOCIÁLNYCH SIEŤACH BAKALÁRSKA PRÁCA 2017 Patricia SVITKOVÁ UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY,

More information

ANALYSIS OF EXTREME HYDROLOGICAL EVENTS ON THE DANUBE USING THE PEAK OVER THRESHOLD METHOD

ANALYSIS OF EXTREME HYDROLOGICAL EVENTS ON THE DANUBE USING THE PEAK OVER THRESHOLD METHOD See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/245419546 ANALYSIS OF EXTREME HYDROLOGICAL EVENTS ON THE DANUBE USING THE PEAK OVER THRESHOLD

More information

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY MODELOVANIE VEKU ÁUT V PREVÁDZKE

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY MODELOVANIE VEKU ÁUT V PREVÁDZKE UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY MODELOVANIE VEKU ÁUT V PREVÁDZKE Bakalárska práca 2011 Andrej Horský UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY

More information

Silne korelované elektrónové a spinové systémy

Silne korelované elektrónové a spinové systémy Silne korelované elektrónové a spinové systémy Akreditačný seminár P. Farkašovský, H. Čenčariková, J. Jurečková Ústav experimentálnej fyziky SAV, Košice 1. 6. 216 Kolektív Kolektív: (1%) Hana Čenčariková

More information

Segmentace textury. Jan Kybic

Segmentace textury. Jan Kybic Segmentace textury Případová studie Jan Kybic Zadání Mikroskopický obrázek segmentujte do tříd: Příčná vlákna Podélná vlákna Matrice Trhliny Zvolená metoda Deskriptorový popis Učení s učitelem ML klasifikátor

More information

ENTROPIA. Claude Elwood Shannon ( ), USA A Mathematical Theory of Communication, 1948 LOGARITMUS

ENTROPIA. Claude Elwood Shannon ( ), USA A Mathematical Theory of Communication, 1948 LOGARITMUS LOGARITMUS ENTROPIA Claude Elwood Shao (96-00), USA A Mathematcal Theory of Commucato, 948 7. storoče Naer, Brggs, orovae číselých ostuostí: artmetcká ostuosť 3 0 3 4 5 6 geometrcká ostuosť /8 /4 / 4 8

More information

RIEŠENIE PROBLÉMOV METÓDOU MONTE CARLO V TABUĽKOVOM KALKULÁTORE MS EXCEL ÚVOD

RIEŠENIE PROBLÉMOV METÓDOU MONTE CARLO V TABUĽKOVOM KALKULÁTORE MS EXCEL ÚVOD South Bohemia Mathematical Letters Volume 23, (2015), No. 1, 18-27. RIEŠENIE PROBLÉMOV METÓDOU MONTE CARLO V TABUĽKOVOM KALKULÁTORE MS EXCEL ŠTEFAN GUBO ABSTRAKT. Metóda Monte Carlo patrí medzi metódy

More information

Moderné vzdelávanie pre vedomostnú spoločnosť/projekt je spolufinancovaný zo zdrojov EÚ. Základné pojmy pravdepodobnosti

Moderné vzdelávanie pre vedomostnú spoločnosť/projekt je spolufinancovaný zo zdrojov EÚ. Základné pojmy pravdepodobnosti Moderné vzdelávanie pre vedomostnú spoločnosť/projekt je spolufinancovaný zo zdrojov EÚ Základné pojmy pravdepodobnosti Náhoda Pod náhodou možno rozumieť množstvo drobných faktorov, ktoré sa nedajú identifikovať.

More information

RESEARCH REPORT. ÚTIA AVČR, v.v.i., P.O.Box 18, Prague, Czech Republic Fax: (+420) ,

RESEARCH REPORT. ÚTIA AVČR, v.v.i., P.O.Box 18, Prague, Czech Republic Fax: (+420) , Akademie věd České republiky Ústav teorie informace a automatizace, v.v.i. Academy of Sciences of the Czech Republic Institute of Information Theory and Automation RESEARCH REPORT Jan Šindelář, Václav

More information

Katedra Informatiky Fakulta Matematiky, Fyziky a Informatiky Univerzita Komenského, Bratislava. Multiparty Communication Complexity (Master thesis)

Katedra Informatiky Fakulta Matematiky, Fyziky a Informatiky Univerzita Komenského, Bratislava. Multiparty Communication Complexity (Master thesis) Katedra Informatiky Fakulta Matematiky, Fyziky a Informatiky Univerzita Komenského, Bratislava Multiparty Communication Complexity (Master thesis) František Ďuriš Study programme: 921 Informatics Supervisor:

More information

VIACKRITERIÁLNE (MULTIKRITERIÁLNE) ROZHODOVANIE (ROZHODOVACIA ANALÝZA)

VIACKRITERIÁLNE (MULTIKRITERIÁLNE) ROZHODOVANIE (ROZHODOVACIA ANALÝZA) VIACKRITERIÁLNE (MULTIKRITERIÁLNE) ROZHODOVANIE (ROZHODOVACIA ANALÝZA) Metódy rozhodovacej analýzy Existuje viacej rozličných metód, ktoré majú v zásade rovnaký princíp - posúdenie niekoľkých variantov

More information