UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

Size: px
Start display at page:

Download "UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY"

Transcription

1 UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY MOCNINOVÉ RADY A ICH VYUšITIE BAKALÁRSKA PRÁCA 04 Sára MINÁROVÁ

2 UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY MOCNINOVÉ RADY A ICH VYUšITIE BAKALÁRSKA PRÁCA tudijný program: tudijný odbor: koliace pracovisko: Vedúci práce: Ekonomická a nan ná matematika 4 Aplikovaná matematika Katedra aplikovanej matematiky a ²tatistiky RNDr. ubica Kossaczká, CSc. Bratislava 04 Sára MINÁROVÁ

3

4 Po akovanie Na tomto mieste sa chcem ve mi pekne po akova mojej ²kolite ke RNDr. ubici Kossaczkej, CSc. za priate ský prístup, ústretovos a odborné rady, ktoré mi ve mi pomohli k vypracovaniu tejto bakalárskej práce.

5 Abstrakt v ²tátnom jazyku MINÁROVÁ, Sára: Mocninové rady a ich vyuºitie [Bakalárska práca], Univerzita Komenského v Bratislave, Fakulta matematiky, fyziky a informatiky, Katedra aplikovanej matematiky a ²tatistiky, ²kolite : RNDr. ubica Kossaczká, CSc., Bratislava, 04, 39 strán. V na²ej práci sa zaoberáme problematikou mocninových radov a ich vyuºitím v praxi. Na²ím cie om je preh benie poznatkov z tejto oblasti a ich roz²írenie. Práca je rozdelená na pä kapitol. V prvej zavedieme pojmy, ktoré sú nevyhnutné pre al²iu prácu. Pomocou teórie z prvej kapitoly odvodzujeme vlastnosti exponenciálnych, logaritmických a trigonometrických funkcií, ktoré sa asto pouºívajú v praxi. Posledná kapitola ponúka nieko ko ukáºok pouºitia v praxi. Cie om práce je ponúknu dôkazy uvedených vlastností aj itate ovi, ktorý nemá vy²²ie matematické vzdelanie. K ú ové slová: mocninové rady, exponenciálna funkcia, logaritmická funkcia, trigonometrické funkcie

6 Abstract MINÁROVÁ, Sára: Power series and their application [Bachelor Thesis], Comenius University in Bratislava, Faculty of Mathematics, Physics and Informatics, Department of Applied Mathematics and Statistics; Supervisor: RNDr. ubica Kossaczká, CSc., Bratislava, 04, 39 p. In our thesis we deal with the theory and practical application of power series. Our goal is to broaden our knowledge in this topic. The thesis is divided into ve chapters. In the rst chapter we dene terms necessary for later understanding. Using power series, we derive all the well-known properties of exponential, logarhithmic and trigonometric functions. In the last chapter we present a few practical examples of use. Also, we want to oer the results of our work to a reader, who has no further education in mathematics. Keywords: power series, exponential function, logarhithmic function, trigonometric functions

7 OBSAH OBSAH Obsah Úvod 8 Mocninové rady 0 Exponenciálna a logaritmická funkcia 8 3 Trigonometrická funkcia 3 4 Algebraická úplnos komplexného po a 9 5 Rie²ené príklady 3 Záver 38 Zoznam pouºitej literatúry 39 7

8 ÚVOD ÚVOD Úvod Pojmom mocninový rad sa v matematike ozna uje rad funkcií vyjadrený v nasledovnom tvare: f(x) = a 0 +a (x p) +a (x p) +...+a n (x p) n +... = a n (x p) n. Pri výpo toch sa ve mi asto pouºíva ²peciálny tvar mocninového radu: ak v predchádzajúcom výraze poloºíme p=0, dostávame rad f(x) = a 0 +a x+a x +...+a n x n +... = a n x n, ktorý sa nazýva Maclaurinov. Moºno sa to na prvý poh ad nezdá, ale mocninové rady majú vo svete vedy významné postavenie. Sú ve mi dobrým výpo tovým nástrojom s vysokým stup om presnosti. Pomocou nich je moºné vyjadri mnohé fyzikálne veli iny, napríklad tlak, hustotu i rýchlos. Mocninové rady sú asto potrebné aj pri rie²ení diferenciálnych rovníc. Mnohé typy rovníc sú najjednoduch²ie rie²ite né práve generovaním rie²enia v tvare mocninového radu. Z matematického h adiska sú rady uºito né napríklad kvôli tomu, ºe sú diferencovate né a integrovate né, o vyuºívajú vo svoj prospech mnohé al²ie vedy, najmä fyzika. al²ie spôsoby vyuºitia uvádza napríklad práca [3]: Mocninové rady sa pouºívajú pri rozli ných typoch úloh, napríklad pribliºný výpo et funk ných hodnôt elementárnych funkcií, výpo et limit a integrálov a rie²enie diferenciálnych rovníc. V prvej kapitole práca oboznamuje itate a so základnými pojmami, ktoré je potrebné pozna pri ítaní al²ích kapitol, ktoré sa uº venujú konkrétnym typom funkcií. Druhá kapitola sa zaoberá exponenciálnymi a logaritmickými funkciami. Pomocou mocninových radov sa dajú pomerne jednoducho dokáza vlastnosti, ktoré sa beºne pouºívajú pri výpo toch. Tretia kapitola je venovaná trigonometrickým funkciám sínus a kosínus. Tieto funkcie sa dajú denova pomocou exponenciálnej funkcie komplexného ísla a z tejto denície dostaneme aj rozvoj do mocninového radu. Pouºitím vlastností exponenciálnej funkcie, ktoré odvodíme v druhej kapitole, dokáºeme aj známe vlastnosti trigonometrických funkcií. tvrtá kapitola sa zaoberá dôkazom úplnosti komplexného po a. Pole (vo v²eobecnosti) je mnoºina, na ktorej je denovaná operácia s ítania a násobenia. Platia tu komutatívny, distributívny a asociatívny zákon. Komplexné pole má navy²e nieko ko al²ích 8

9 ÚVOD ÚVOD vlastností. Tie uvedieme na za iatku kapitoly. Nieko ko ukáºok praktického pouºitia sa nachádza v poslednej kapitole. Zaoberáme sa najmä výpo tami limít, pri týchto výpo toch sú mocninové rady celkom uºito né, najmä ak si nie sme istí, ktorú metódu pouºi. alej vieme takto s ítava nekone né rady alebo dokazova existenciu derivácií do ur itého rádu. 9

10 MOCNINOVÉ RADY Mocninové rady V úvodnej kapitole denujeme základné pojmy, s ktorými budeme pracova vo v²etkých ostatných kapitolách. V²etky uvedené pojmy sa vz ahujú na mnoºinu reálnych aj komplexných ísel, my sa budeme venova prevaºne reálnym hodnotám. Denícia.. (pod a [8]) Pojmom mocninový rad sa v matematike ozna uje rad funkcií vyjadrený v nasledovnom tvare: f(x) = a 0 + a (x p) + a (x p) a n (x p) n +... = a n (x p) n. () Pri výpo toch sa ve mi asto pouºíva ²peciálny tvar mocninového radu: ak v predchádzajúcom výraze poloºíme p = 0, dostávame rad f(x) = a 0 + a x + a x a n x n +... = a n x n. () Tento rad sa nazýva Maclaurinov. Denícia.. (pod a [8]) Funkcia f(x) sa nazýva analytická, ak je moºné zapísa ju v tvare: f(x) = c n (x a) n (3) Ak () konverguje pre v²etky x ( R, R) pre R kladné (niekedy môºe nasta aj prípad R=+ ), hovoríme, ºe f sa dá rozvinú do mocninového radu v okolí bodu x = 0. Analogicky, ak () konverguje pre x a < R, povieme, ºe f je rozvinutá do mocninového radu v okolí bodu x = a. Bez ujmy na v²eobecnosti vä ²inou uvaºujeme prípad a = 0. O chví u sformulujeme a dokáºeme tvrdenie, ºe ak mocninový rad konverguje pre x < R, potom konverguje rovnomerne na intervale [ R + ε, R ε]. K tomu budeme potrebova vetu o rovnomernej konvergencii, ktorú uvedieme bez dôkazu. Veta.3. (o rovnomernej konvergencii)(pod a []) Predpokladajme, ºe {f n } je postupnos funkcií diferencovate ná na intervale [a, b] a {f n (x 0 )} konverguje na [a, b] pre nejaké x 0. Ak {f n} konverguje rovnomerne na [a, b], potom postupnos {f n } rovnomerne konverguje na [a, b] k funkcii f: 0

11 MOCNINOVÉ RADY f (x) = lim n f n(x) (a x b) Veta.4. (pod a [8]) Predpokladajme, ºe rad konverguje pre x < R. Denujme: c n x n (4) f(x) = c n x n (5) pre x < R. Potom (3) rovnomerne konverguje na intervale [ R + ε, R ε] pre kaºdé ε > 0. Funkcia f je spojitá a diferencovate ná na intervale ( R, R) a platí: pre x < R. Dôkaz. f (x) = nc n x n (6) Nech ε > 0. Pre x R ε máme: c n x n c n (R ε) n. Ke ºe rad c n (R ε) n konverguje absolútne (kaºdý mocninový rad konverguje absolútne vo vnútri intervalu konvergencie) a postupnos c n x n je ohrani ená, (3) konverguje rovnomerne na intervale [ R + ε, R ε] Vieme, ºe n n pre n. Potom platí: lim sup x n n cn = lim sup x n cn, teda rady (5) a (6) majú rovnaký interval konvergencie. Ke ºe (6) je mocninový rad, rovnomerne konverguje na intervale [ R + ε, R ε] pre kaºdé ε > 0, môºeme pouºi vetu.3 pre rady namiesto postupnosti funkcií. Z vety vyplýva, ºe (5) platí, ak x R ε. Ak v²ak máme dané x sp ajúce x < R, vieme nájs také ε > 0, ºe x R ε. Z toho vyplýva, ºe (6) platí pre x R ε. Spojitos f vyplýva z existencie prvej derivácie f. Dôsledok.5. (pod a [8]) Pod a predpokladov predchádzajúcej vety má f derivácie v²etkých rádov na intervale ( R, R), ktoré sú dané:

12 MOCNINOVÉ RADY f (k) (x) = n(n )...(n k + )c n x n k (7) n=k V bode 0 môºeme deriváciu ekvivalentne vyjadri v tvare Dôkaz. f (k) (0) = k!c k. (8) Rovnicu (7) dostaneme, ak aplikujeme predchádzajúcu vetu na funkcie f, f, f a al²ie derivácie. Ak poloºíme v (7) x = 0, dostaneme (8). Pozrime sa bliº²ie na (8). Ukazuje, ºe koecienty rozvoja funkcie f do mocninového radu sú dané funkciou f a jej hodnotami v potrebných bodoch. Koecienty sú v²ak dané, hodnoty f v strede intervalu konvergencie sa dajú vy íta priamo z mocninového radu. Je potrebné si v²imnú, ºe aj ke má funkcia f derivácie v²etkých rádov, výraz c n x n, kde c n vypo ítame z (8), nemusí nutne konvergova k f(x) pre kaºdé x 0. V tomto prípade funkciu nevieme rozvinú do mocninového radu v bode x = 0. Ak rad (4) konverguje v koncovom bode (ozna me ho R), potom funkcia f je spojitá nielen na intervale ( R, R), ale aj v bode x = R. Vyplýva to z Abelovej vety. Pre zjednodu²enie poloºme R =. Veta.6. (pod a [8]) Predpokladajme, ºe c n konverguje a c n x n konverguje na intervale (, ). Poloºme Potom platí: Dôkaz. = n= f(x) = c n x n ( < x < ). lim f(x) = c n. (9) x Poloºme s n = c c n, pri om s = 0. Potom platí: m c n x n = m (s n s n )x n = m s n x n m s n x n = m s n x n x m s n x n = m s n x n x m s n x n = ( x) m s n x n + s m x m.

13 MOCNINOVÉ RADY Pre x < nech m. Dostávame: c n x n = f(x) = ( x) s n x n. (0) Nech s = lim n s n a ε > 0 je dané. Zvolíme N také, aby pre kaºdé n > N platilo: Ke ºe z (0) dostávame: = ( x) s s n < ε. ( x) x n = ( x < ), f(x) s = c n x n s = ( x) s n x n s = = ( x)s n x n ( x) s x n = ( x) (s n s)x n = N s n s x n + ( x) s n s x n ( x) n=n ak x > δ (pre vhodne zvolené δ > 0). Ako zvoli δ? N s n s x n + ε < ε, Výraz s n s konverguje, to znamená, ºe sa dá zhora ohrani i nejakou kladnou kon- ²tantou K. H adáme δ tak, aby platilo: Z toho dostávame: Z toho vyplýva (9). Veta.7. (pod a [8]) ( x) ( x) N s n s x n < ε N (s n s) x n ( x)n K < ε x < ε NK x < δ < ε NK Majme dvojitú postupnos {a ij }, i =,,..., j =,,... Predpokladajme, ºe platí: a ij = b i, i =,,... () j= 3

14 MOCNINOVÉ RADY a nech b i konverguje. Potom platí: a ij = i= j= a ij () j= i= Dôkaz. Nech E je spo ítate ná mnoºina obsahujúca prvky x 0, x, x,... a predpokladajme, ºe x n x 0 pre n. Zavedieme nasledovné ozna enie: f i (x 0 ) = a ij (3) j= n f i (x n ) = a ij (4) j= g(x) = f i (x), x E (5) i= Vieme, ºe funkcia môºe by spojitá len v bodoch, ktoré sú sú as ou jej deni ného oboru. Pre v²etky body x n x 0 platí, ºe sú izolovanými bodmi deni ného oboru f i. Vieme, ºe x n x 0, o znamená, ºe po ínajúc nejakým bodom x t budú v²etky nasledujúce body leºa v okolí x 0. Z rovníc (3), (4) a () a z denície spojitosti potom vyplýva, ºe kaºdá z funkcií f i je spojitá. Môºeme poveda, ºe platí nerovnos f i (x) b i pre x E (f i je kone ným sú tom koecientov a ij, b i je nekone ným sú tom, takºe obsahuje najmenej to ko s ítancov ako f i ): n n f i (x n ) = a ij a ij b i j= j= f i (x 0 ) = a ij j= a ij = b i j= Z toho vyplýva, ºe (5) konverguje rovnomerne a g je spojitá v bode x 0. Teda máme: i= a ij = j= i= f i (x 0 ) = g(x 0 ) = lim g(x n ) = lim n n n = lim a ij = n j= i= j= i= i= a ij. f i (x n ) = lim n i= n a ij = Posledná rovnos platí, pretoºe rad a ij konverguje pre kaºdé j (indexov j je kone ne ve a). i= j= 4

15 MOCNINOVÉ RADY Veta.8. (Taylorova veta) (pod a [8]) Predpokladajme, ºe rad f(x) = c n x n konverguje pre x < R. Ak R < a < R, potom funkciu f vieme rozvinú do mocninového radu v okolí bodu x = a. Tento mocninový rad bude konvergova pre x a < R a a platí: f(x) = f (n) (a) (x a) n ( x a < R a ) (6) n! Dôkaz. Pouºijeme binomickú vetu: n ( ) n f(x) = c n [(x a) + a] n = c n a n m (x a) m = m [ m=0 = ] ) cn a n m (x a) m. m=0 n=m ( n m K poslednej rovnosti: kombina né íslo ( n m) je pre n < m denované ako 0, iºe sta í, ke v druhej sume s ítame leny s indexom m a vy²²ím - tie s niº²ím indexom jednoducho vypadnú. Potom môºeme pouºi vetu.7, ke ºe jej predpoklady sú splnené. Dostali sme poºadovaný rozvoj funkcie do mocninového radu okolo bodu a. E²te treba ukáza, ºe nezáleºí na tom, cez ktorý index budeme najprv s itova, i n alebo m. Pod a vety.7 je táto operácia v poriadku, ak rad m=0 n ( ) n c n a n m (x a) m (7) m konverguje. Výraz (7) je v²ak ekvivalentný s nasledujúcim: c n ( x a + a ) n, (8) a (8) koverguje, ak platí podmienka x a + a < R. Poºadovaný tvar koecientov v (6) dostávame z (8). Treba si v²imnú, ºe rad intervale danom podmienkou x a < R a. (6) môºe konvergova aj na ²ir²om intervale ako na Ak dva mocninové rady konvergujú na intervale ( R, R) k rovnakej funkcii, z (8) vyplýva, ºe sú identické, teda majú rovnaké koecienty. Toto tvrdenie hne dokáºeme. Veta.9. (pod a [8]) Predpokladajme, ºe rady a n x n a b n x n konvergujú na intervale S = ( R, R). 5

16 MOCNINOVÉ RADY Ozna me E mnoºinu v²etkých x S takých, ºe platí: a n x n = b n x n (9) Ak E má hromadný bod na intervale S, potom a n = b n pre n = 0,,..., teda (9) platí pre v²etky x S. (Bod p E nazývame hromadným bodom mnoºiny E, ak kaºdé jeho okolie obsahuje bod q p taký, ºe q E.) Dôkaz. Ozna me c n = a n b n a zave me funkciu f: f(x) = c n x n (x S). (0) Chceme dokáza, ºe f(x) = 0 na mnoºine E. Mnoºinu v²etkých hromadných bodov E na S ozna me A, mnoºina B nech pozostáva zo v²etkých ostatných bodov S. Mnoºina B je otvorená. Zdôvodníme to pomocou denície hromadného bodu. Otvorená mnoºina má tú vlastnos, ºe kaºdý jej bod je vnútorný - teda pre kaºdý bod existuje okolie, ktoré celé patrí do tejto mnoºiny. Nech existuje bod x 0 taký, ºe x 0 B. Z toho, ako sme ur ili mnoºinu B, vyplýva, ºe f(x 0 ) 0. Potom existuje okolie bodu x 0, kde f(x) 0 pre v²etky body x z tohto okolia - to vyplýva zo spojitosti funkcie f. Mnoºina B je teda otvorená. Predpokladajme, ºe aj A je otvorená. Potom A a B sú disjunktné otvorené mnoºiny, z oho vyplýva, ºe sú aj oddelené (mnoºiny sú oddelené práve vtedy, ak platí: Ā B = = A B). Ke ºe S = A B, jedna z mnoºín A, B musí by prázdna. Pod a predpokladov vety je A neprázdna. Z toho vyplýva, ºe B je prázdna a teda A = S. Funkcia f je spojitá na S, o znamená, ºe A E. Teda E = S a zo vz ahu (8) dostávame, ºe nutne platí c n = 0 pre v²etky n = 0,,..., o sme chceli dokáza. Dôkaz v²ak e²te nie je úplne dokon ený, vy²²ie sme predpokladali, ºe mnoºina A je otvorená, ale zatia sme to nepotvrdili. Ak x 0 A, z vety.8 máme: f(x) = d n (x x 0 ) n ( x x 0 < R x 0 ). () Tvrdíme, ºe d n = 0 pre kaºdé n. Pouºijeme dôkaz sporom: nech k je najmen²ie nezáporné celé íslo, pre ktoré d k 0. Potom platí: f(x) = (x x 0 ) k g(x) ( x x 0 < R x 0 ), () 6

17 MOCNINOVÉ RADY kde g(x) = d k+m (x x 0 ) m. (3) m=0 Ke ºe funkcia g je spojitá v bode x 0 a g(x 0 ) = d k 0, existuje také δ > 0, ºe g(x) 0, ak x x 0 < δ. Môºeme to tvrdi na základe vz ahu (): f(x) 0 za podmienky 0 < x x 0 < δ. Týmto sa v²ak dostávame do sporu s tvrdením, ºe x 0 je hromadný bod mnoºiny E. Dokázali sme, ºe d n = 0 pre v²etky n. To znamená, ºe f(x) = 0 v okolí bodu x 0 (resp. pre v²etky x, ktoré sp ajú ()). Z toho vyplýva, ºe mnoºina A je otvorená a tým je dôkaz ukon ený. 7

18 EXPONENCIÁLNA A LOGARITMICKÁ FUNKCIA Exponenciálna a logaritmická funkcia Na mnoºine komplexných ísel denujme E(z) = z n n! (4) Vypo ítame polomer konvergencie tohto radu pomocou Cauchy-Hadamardovej vety (pod a [4, str. 9], [7, str. 67]): lim sup n n an = lim sup n n zn n! = z n n! 0 pre dostato ne ve ké n Pod a tvrdenia vety môºeme poveda, ºe polomer konvergencie radu je R =. Tvrdenie o sú ine radov hovorí, ºe sú in dvoch konvergentných radov konverguje, ak aspo jeden z pôvodných radov (teda inite ov) konverguje absolútne (pod a [4]). Vynásobíme dva rady E(z), E(w), ktoré sp ajú (4): E(z)E(w) = z n n! m=0 w m m! = n k=0 = z k w n k k!(n k)! = (z+w) n n!, z oho dostávame vz ah, ktorý platí pre v²etky komplexné z, w: n! n k=0 ( ) n z k w n k = k E(z + w) = E(z)E(w) (5) Ak aplikujeme predchádzajúci vz ah na dvojicu komplexných ísel z, z, dostávame: E(z)E( z) = E(z z) = E(0) = (6) Tvrdenie.. (pod a [8]) Z (4) a (6) vyplývajú viaceré vlastnosti: (4): x > 0 : E(x) > 0; (6): E(x) > 0 pre v²etky reálne x (4): ak x +, potom aj E(x) + ; (6): ak x, potom E(x) 0 pre v²etky reálne x (4): z 0 < x < y vyplýva E(x) < E(y); (6): E( y) < E( x), teda E je rastúca funkcia na celej mnoºine R 8

19 EXPONENCIÁLNA A LOGARITMICKÁ FUNKCIA Dôsledkom vz ahu (5) sú nasledovné rovnosti: E (z) = lim h 0 E(z + h) E(z) h Posledná rovnos vyplýva priamo z (4). = E(z) lim h 0 E(h) h = E(z) (7) Ak vo vz ahu (5) nepouºijeme iba dve komplexné ísla, ale namiesto z, w zoberieme z, z,...,z n, dostaneme: E(z z n ) = E(z )... E(z n ) (8) Zvo me z =... = z n =. Vieme, ºe E() = e. V aka predchádzajúcemu vz ahu môºeme tvrdi, ºe platí Ak p = n, kde n, m sú kladné celé ísla, potom platí: m E(n) = e n (n =,, 3,...). (9) [E(p)] m = E(mp) = E(n) = e n, (30) teda E(p) = e p (p > 0, p Q). (3) Zo vz ahu (6) vyplýva, ºe E( p) = e p. Môºeme teda tvrdi, ºe (3) platí pre kaºdé racionálne íslo p. Denujme x y = sup x p y R, x >, (3) p Q kde p je racionálne íslo ostro men²ie ako y. Potom z postupnosti x R : e x = sup e p (p < x, p Q), (33) spojitosti a monotónnosti funkcie E spolu s (3) vyplýva fakt, ºe E(x) = e x (34) pre v²etky reálne x. Z (34) vidíme, pre o sa E nazýva exponenciálna funkcia. V matematike sa pre funkciu e x pouºíva aj ekvivalentný zápis exp(x), najmä vtedy, ke je x zloºitej²ia funkcia. Vrátime sa k pôvodnému ozna eniu e x a pozrieme sa, o sme zatia dokázali. 9

20 EXPONENCIÁLNA A LOGARITMICKÁ FUNKCIA Veta.. (pod a [8]) Nech funkcia e x je denovaná na R vz ahmi (4) a (34). Potom platí: e x je spojitá a diferencovate ná pre v²etky x R (e x ) = e x e x > 0 pre v²etky x e x je rýdzo rastúca funkcia premennej x e x+y = e x e y lim x e x = +, lim x e x = 0 lim x x n e x = 0 pre kaºdé n - túto vlastnos interpretujeme tak, ºe e x sa pre x blíºi k nekone nu rýchlej²ie ako hociktorá mocnina x Dôkaz. pre kladné x: V²etky vlastnosti okrem poslednej sme uº dokázali. Zo vz ahu (4) máme e x > Po drobných úpravách dostávame výraz x n e x < xn+ (n + )!. (n + )!, x z ktorého uº vyplýva posledná vlastnos, teda veta je dokázaná. Funkcia E je rýdzo rastúca a diferencovate ná na R, existuje k nej teda inverzná funkcia, ozna me ju L. Funkcia L bude tieº rýdzo rastúca a diferencovate ná. Jej de- ni ný obor bude E(R), teda mnoºina v²etkých kladných ísel. Môºeme ju denova dvoma spôsobmi: E(L(y)) = y (y > 0), (35) alebo L(E(x)) = x (x R). (36) Po zderivovaní (36) dostaneme: L (E(x)) E(x) =. Ak ozna íme y = E(x), dostávame vz ah L (y) = (y > 0). (37) y 0

21 EXPONENCIÁLNA A LOGARITMICKÁ FUNKCIA Ke poloºíme v rovnici (36) x = 0, vidíme, ºe L() = 0. Potom z (37) vyplýva: L(y) = y dx x (38) Vz ah (38) je asto povaºovaný za základný kame teórie exponenciálnej a logaritmickej funkcie. Ozna me u = E(x), v = E(y). Dosadením do rovnice (5) dostávame vz ah L(uv) = L(E(x) E(y)) = L(E(x + y)) = x + y, teda platí L(uv) = L(u) + L(v). (39) Získali sme tak jednu zo známych vlastností logaritmickej funkcie, ktorá je ve mi praktická hlavne pri ru nom po ítaní. (Funkcia L(x) je vo v²eobecnosti ekvivalentná funkcii log x). Na základe vy²²ie uvedených vlastností a pomocou. môºeme kon²tatova : ln x + pre x, ln x pre x 0. Tvrdenie.3. (Vlastnosti logaritmu)(pod a [8]) Platí: x n = E(nL(x)), (40) nesmieme v²ak zabudnú na podmienky: x > 0 a n N. Nech m je prirodzené íslo, analogicky na základe predo²lého vz ahu platí: x m = E ( m L(x) ). (4) Dôkaz. za sebou: (40) dokáºeme ve mi jednoducho, sta í, ak vynásobíme n rovnakých lenov E(nL(x)) = E(L(x)) E(L(x))... E(L(x)) = x n Na základe predchádzajúceho vz ahu môºeme dokáza aj (4): ( ) m ( ( )) ( E m L(x) = E L(x)... E m m L(x) = E m L(x) ) m L(x) = = E (L(x)) = x,

22 EXPONENCIÁLNA A LOGARITMICKÁ FUNKCIA z toho vyplýva: ( E( m L(x))) m = x, E( m L(x)) = x m. Tvrdenie je dokázané. Nech m n = α Q, m Z, n N. Spojením rovníc (40) a (4) dostávame al²iu známu rovnos, ktorá platí pre ubovo né α. )) ( ( ( ( )))) x m n = E (m (L(x n ) = E m L E n L(x) = E ( m ) = E n L(x) ( m ) n L(x) = x α = E(αL(x)) = e α ln x (4) Denujme pod a (4) x α pre kaºdé reálne α a x > 0. Vzh adom na to, ºe funkcie E aj L sú spojité a monotónne, môºeme poveda, ºe táto denícia je ekvivalentná s tou, ktorú sme zaviedli pôvodne. Po zderivovaní (4) dostávame: Vz ah x > 0 : (x α ) = E(αL(x)) α x = αxα (43) (43) sme zatia pouºívali iba pre celé ísla α. Problém by mohol nasta napríklad v prípade, ºe by sme (43) chceli dokáza priamo z denície derivácie, funkcia x α by bola denovaná pomocou (3) a α by bolo iracionálne íslo. Známy vzorec pre integrovanie funkcie x α dostaneme z (43) pre α a z (37) pre α =. Ukáºeme e²te jednu vlastnos funkcie logaritmus, ktorá bude plati pre kaºdé α > 0: lim x x α ln x = 0 (44) Táto rovnos nám hovorí, ºe logaritmus sa pre x blíºi k nekone nu pomal²ie ako hocijaká kladná mocnina x. Nech 0 < ε < α a x >. Potom platí: x x x α ln x = x α t dt < x α t ε dt = x α xε ε < xε α ε Priamo z toho uº vyplýva (44). Ako alternatívny dôkaz môºeme pouºi vetu., ke by sme pomocou poslednej vlastnosti derivovali (44).

23 3 TRIGONOMETRICKÁ FUNKCIA 3 Trigonometrická funkcia Pre komplexné x denujme: C(x) = [E(ix) + E( ix)], S(x) = [E(ix) E( ix)]. (45) i Ukáºeme, ºe funkcie C(x) a S(x) sú ekvivalentné s funkciami cos x a sin x, aj ke tieto funkcie sú vä ²inou denované geometricky pomocou strán v trojuholníku. Zo vz ahu (4) vieme, ºe E( z) = E(z). Okrem toho, zo vz ahu (45) vyplýva, ºe funkcie C(x) a S(x) dávajú pre reálne x reálne funk né hodnoty, o sa dá pomerne jednoducho ukáza. Kaºdé komplexné íslo z sa dá napísa v tvare z = a + bi, komplexne zdruºené íslo bude potom z = a bi, kde a, b sú reálne ísla. V na²om prípade máme ix = a + bi, ix = a bi. C(x) = (E(ix) + E( ix)) = Podobne pre funkciu S(x): S(x) = i (E(ix) E( ix)) = i ( ) E(ix) + E(ix) = (a + bi + a bi) = a ( ) E(ix) E(ix) = (a + bi (a bi)) = b i Ke ºe a, b sú reálne ísla, potom nutne platí, ºe hodnoty C(x) a S(x) budú reálne pre reálne x. Taktieº platí: E(ix) = C(x) + is(x). (46) Teda C(x) a S(x) tvorí reálnu, resp. imaginárnu as funkcie E(ix) pre x R. Z (6) máme: E(ix) = E(ix)E(ix) = E(ix)E(ix) = E(ix)E( ix) =, ix = ix práve pre reálne x. Teda E(ix) = x R. (47) Zo vz ahu (45) vidno, ºe C(0) =, S(0) = 0 a na základe (7) platí: C (x) = S(x), S (x) = C(x). (48) Platnos predchádzajúcich dvoch vz ahov za dá jednoducho ukáza. 3

24 3 TRIGONOMETRICKÁ FUNKCIA C (x) = (E (ix) i i E( ix)) = i (E(ix) E( ix)) = i = S(x) (E(ix) E( ix)) = S (x) = (i i E (ix) + i E ( ix)) = (i E(ix) + i E( ix)) = i = (E(ix) + E( ix)) = C(x) Tvrdenie 3.. (pod a [8]) Existujú také kladné ísla x, pre ktoré C(x) = 0. Dôkaz. Pouºijeme dôkaz sporom - predpokladajme, ºe také íslo neexistuje. Ke ºe C(0) =, z toho vyplýva, ºe C(x) > 0 pre v²etky x > 0. Potom zo spojitosti (48) vyplýva, ºe S (x) > 0, teda funkcia S je ostro rastúca. Okrem toho, ke ºe S(0) = 0, pre x > 0 musí plati, ºe S(x) > 0. Zvo me ísla x, y tak, aby platilo 0 < x < y. Potom: S(x)(y x) < y x S(t)dt = y x C (t)dt = C(x) C(y). (49) Posledná nerovnos vyplýva z (47) a (46) a z faktu, ºe C(t) pre ubovo né t. Ke ºe S(x) > 0, vz ah (49) nemôºe plati pre ve ké hodnoty y. Dostávame sa k sporu. Ozna me x 0 najmen²ie kladné íslo, pre ktoré C(x 0 ) = 0. Na základe tvrdenia dokázaného vy²²ie a faktu, ºe C(0) 0, môºeme tvrdi, ºe také íslo existuje. Pomocou x 0 denujeme íslo π: π := x 0 (50) Potom nutne C( π) = 0 a zo (47) vyplýva, ºe S( π ) = sa rovná jednému z ísel,. Ke ºe S (x) = C(x) > 0 na intervale (0, π ), to znamená, ºe S je na tomto intervale rastúca. Potom S( π ) =. Z toho vyplýva 0 = ( π ) C = 0 ( E (i π ) ( ) + E i π )) ( E i π ) ( = E i π ) Podobne pre funkciu S: ( π ) S = = i ( ( E i π ) ( E i π )) 4

25 i = ( ( E i π ) ( E i π )) 3 TRIGONOMETRICKÁ FUNKCIA Do posledného vz ahu, ktorý vznikol po rozpísaní S( π ), dosadíme výraz, ktorý vzni- kol pri práci s výrazom C( π ): i = ( ( E i π ) ( + E i π )) ( = E i π ) ( E i π ) = i Teda dostávame: a taktieº teda E ( i π ) = i, E(πi) =, E(πi) = ; (5) E(z + πi) = E(z) (z C). (5) Veta 3.. (pod a [8]) Platí:. Funkcia E je periodická s periódou πi.. Funkcie C a S sú periodické s periódou π. 3. Ak 0 < t < π, potom E(it). 4. Ak z je také komplexné íslo, ºe z =, na intervale [0, π) existuje práve jedno t také, ºe E(it) = z. Dôkaz. Pod a (5) platí vlastnos. Vlastnos vyplýva z a (45). Uvedommne si, ºe ak E(πi) =, potom aj E( πi) = - po vynásobení E(πi) a E( πi) dostaneme výsledok E(0) =. ƒiºe platí E(πi) = E( πi) =. Z toho vyplýva: C(x) = [E(ix) + E( ix)] C(x + π) = [E(i(x + π)) + E( i(x + π))] = [E(ix + πi) + E( ix πi)] = = [E(ix) E(πi) + E( ix) E( πi)] = [E(ix) + E( ix)] = C(x) Dokázali sme, ºe funkcia C(x) je periodická s periódou π. Analogický postup pouºijeme aj pri dôkaze pre funkciu S(x). 5

26 3 TRIGONOMETRICKÁ FUNKCIA S(x) = [E(ix) E( ix)] i S(x + π) = [E(i(x + π)) E( i(x + π))] = [E(ix + πi) E( ix πi)] = i i = [E(ix) E(πi) E( ix) E( πi)] = [E(ix) E( ix)] = S(x) i i Týmto sme dokázali vlastnos. Nech 0 < t < π, potom 4t (0, π) a E(it) = x + iy, kde x, y R. Vlastnos 3 dokáºeme sporom - budeme predpoklada, ºe E(4it) =. Na základe predchádzajúcich vz ahov môºeme tvrdi, ºe 0 < x <, resp. 0 < y <. V²imnime si nasledujúci výraz: E(4it) = (x + iy) 4 = x 4 6x y + y 4 + 4ixy(x y ) Ak je E(4it) reálne íslo, nutne musí plati, ºe x y = 0. Pod a (47) v²ak platí, ºe x + y =, z toho vyplývajú rovnosti x = y =. Dosadíme: Dokázali sme 3. E(4it) = (x + iy) 4 = ( + i) = = Ak 0 t < t < π, potom pod a 3 platí: E(it )[E(it )] = E(it it ) Z toho vyplýva jednozna nos v asti 4. Potrebujeme teda dokáza e²te existenciu. Zvo me také z, ºe z =. Môºeme napísa z = x+iy, x, y R. Najprv predpokladajme, ºe x 0 a y 0. Funkcia C je na intervale [0, π ] klesajúca a dosahuje hodnoty od po 0. Preto existuje t [0, π ] také, ºe C(t) = x. Ke ºe C + S = a S 0 na [0, π ], znamená to, ºe z = E(it). Ak x < 0 a y 0, predchádzajúce podmienky sú splnené ( ) pre iz. Vieme, ºe existuje πi také t [0, π], pre ktoré iz = E(it) a ke ºe i = E, dostávame vz ah: ( ( z = E i t + π )). Ostáva nám e²te prípad y < 0. Z predchádzajúcich prípadov vieme, ºe existuje t [0, π] také, ºe z = E(it). Teda platí: z = E(it) = E(i(t + π)). Tým sme dokázali 4 a teda je aj celý dôkaz ukon ený. 6

27 3 TRIGONOMETRICKÁ FUNKCIA Denujeme krivku γ: γ(t) = E(it) (0 t π) (53) Z vlastnosti 4, vz ahu (47) a denície (53) vyplýva, ºe γ je jednoduchá uzavretá krivka, ktorej rozpätie je jednotková kruºnica v rovine. Ke ºe γ (t) = ie(it), d ºku krivky γ vypo ítame pod a nasledujúceho vz ahu: π 0 γ (t) dt = π. Takýto výsledok sa dal o akáva - π je obvod kruhu s polomerom. Môºeme teda poveda, ºe íslo π denované vz ahom (50) má presne ten geometrický význam, ktorý poznáme z praxe. Podobne, bod γ(t) ur uje kruºnicový oblúk d ºky t 0, ak t postupne narastá od 0 do t 0. Vezmime si trojuholník s vrcholmi z = 0, z = γ(t 0 ), z 3 = C(t 0 ). Môºeme si v²imnú, ºe funkcie C(t) a S(t) sú naozaj identické s funkciami cos t, resp. sin t, ak sú funkcie sin a cos denované ako pomer istých strán v pravouhlom trojuholníku. Rozvoj funkcií cos x a sin x do radov je známy a asto sa pouºíva v praxi. Nie je aºké získa tieto rady priamo z denície. Na to, aby sme získali rozvoj funkcií cos x a sin x, budeme ur ite potrebova vidie, ako vyzerajú funkcie E(ix), E( ix): E(ix) = (ix) n n! = + ix! + i x + i3 x 3 + i4 x = + ix! 3! 4!! x! ix3 + x4 3! 4! +... ( ix) n E( ix) = n! = + ix + i x + i3 x 3 + i4 x = ix!! 3! 4!! x! + ix3 3! + x4 4! +... Dosadíme do denície: = C(x) = [E(ix) + E( ix)] = ix3 + x4 + ix! 3! 4! ( ) = x + x4...! 4! ( + ix! x x + ix3 + x4!! 3! ) +... = 4! = x! + x4 4!... 7

28 3 TRIGONOMETRICKÁ FUNKCIA = i = i S(x) = [E(ix) E( ix)] = i ( x ix3 + x4... ix!! 3! 4! ( ) 0 + ix 0 ix =! 3! i ( + ix ( ix ix3 3! +... x + ix3 + x4!! 3! ))... = 4! ) = x x ! Základné vlastnosti trigonometrických funkcií sme odvodili zo vz ahov (45) a (4), ale vôbec sme sa nezaoberali pojmom uhol. Z toho vyplýva, ºe k funkciám sínus a kosínus nemusíme nutne pouºi práve geometrický prístup. 8

29 4 ALGEBRAICKÁ ÚPLNOS KOMPLEXNÉHO PO A 4 Algebraická úplnos komplexného po a V poslednej teoretickej asti práce sa budeme zaobera faktom, ºe komplexné pole je algebraicky úplné - znamená to, ºe kaºdý nekon²tantný polynóm s komplexnými koecientami má aspo jeden komplexný kore (toto tvrdenie poznáme aj pod názvom základná veta algebry, viac napríklad v publikácii [6, str. ]). Po om nazývame mnoºinu, na ktorej sú denované operácie s ítania a násobenia, ku kaºdému nenulovému prvku existuje inverzný a na tejto mnoºine platí asociatívny, komutatívny a distributívny zákon. Komplexné pole (ozna me ho C) je navy²e determinované nasledovnými vlastnos ami (pod a [6]): obsahuje mnoºinu reálnych ísel (R) ako podpole, obsahuje prvok i, pre ktorý platí i = a je minimálne spomedzi v²etkých polí s týmito vlastnos ami ( iºe ak máme ubovo né pole P s predchádzajúcimi dvoma vlastnos ami, potom nutne P = C). Predtým, ako v²ak za neme dokazova samotný fakt algebraickej úplnosti komplexného po a, uvedieme jednu vetu, ktorú budeme v dôkaze potrebova. Veta 4.. (pod a [8, kapitola 4, str. 89]) Predpokladajme, ºe f je spojitá funkcia na kompaktnom metrickom priestore X. Ozna me: M = sup f(p), p X m = inf p X f(p). Potom existujú také body p, q X také, ºe f(p) = M a f(q) = m. Ekvivalentná formulácia vety by mohla znie napríklad takto: Existujú body p, q X také, ºe f(q) f(x) f(p) pre v²etky x X, teda f dosahuje svoje maximum (v bode p) a minimum (v bode q). Veta vlastne hovorí, ºe M je najlep²ia horná hranica pre v²etky ísla f(p) pre p X a m je najlep²ia dolná hranica pre tú istú mnoºinu ísel. Veta 4.. (pod a [8]) Nech a 0, a,..., a n sú komplexné ísla, n a a n 0. Uvaºujme polynóm: P (z) = n a k z k. Potom existuje komplexné íslo z, pre ktoré platí: P (z) = 0. 9 k=0

30 4 ALGEBRAICKÁ ÚPLNOS KOMPLEXNÉHO PO A Dôkaz. Bez ujmy na v²eobecnosti predpokladajme, ºe a n =. Ak by to neplatilo, v prípade potreby sta í polynóm íslom a n vydeli (dostaneme tak normovaný polynóm). Platí, ºe ak vynásobíme polynóm nenulovým íslom, jeho korene sa nezmenia (pod a [6, str. ]). Zave me ozna enie: Nech z = R. Potom platí: µ = inf P (z), (54) z C P (z) R n [ a n R... a 0 R n] (55) ahko vidno, ºe pravá strana (55) sa blíºi k nekone nu pre R. Teda existuje také R 0, ºe P (z) > µ pre z > R 0. Funkcia P je spojitá na kruhu so stredom v bode 0 a polomerom R 0. Na základe vety 4. môºeme tvrdi, ºe existuje z 0, pre ktoré platí, ºe P (z 0 ) = µ. Aby sme dokázali, ºe P (z) má komplexný kore, sta í, ak dokáºeme, ºe µ = 0. Tvrdenie dokáºeme sporom. Ak µ 0, denujme Q(z) = P (z + z 0). Potom Q je P (z 0 ) nekon²tantný polynóm, Q(0) = a Q(z) pre v²etky z. Existuje kladné celé íslo k ( k n) tak, ºe platí: Q(z) = + b k z k b n z n (b k 0). (56) Pod a poslednej vlastnosti z vety 3. existuje také reálne íslo θ, ºe platí: e ikθ b k = b k. (57) Ak zvolíme r > 0 a r k b k <, z (57) vyplýva: + b k r k e ikθ = r k b k, teda platí Q(re iθ ) r { k b k r b k+... r n k b n }. Pre dostato né malé hodnoty r je výraz v zátvorke kladný, o si odporuje s nerovnos ou Q(re iθ ) <. Z toho vyplýva, ºe µ = 0 a P (z 0 ) = 0. 30

31 5 RIE ENÉ PRÍKLADY 5 Rie²ené príklady Ako sme uº spomínali v úvode, mocninové rady majú ve a rôznych vyuºití. V tejto kapitole sa zameriame na dôkaz existencie derivácií, výpo et limít a s ítavanie nekone ných radov. Vyrie²ime vybrané príklady z 8. kapitoly publikácie [8]. Príklad 5.. Denujme: e x x 0 f(x) = 0 x = 0 Ukáºte, ºe f má derivácie v²ekých rádov v bode x = 0 a f (n) (0) = 0 pre n =,, 3,... Rie²enie: = 0, o sa rovná funk - Najprv treba overi spojitos funkcie. ahko vidíme, ºe lim e x x 0 nej hodnote v bode 0. Existenciu derivácií v²etkých rádov dokáºeme pomocou matematickej indukcie. V²imnime si, ºe jednoduch²ie bude pouºi iný zápis funkcie, ktorý je ekvivalentný zápisu zo zadania: f(x) = e x Najprv budeme ru ne derivova a na základe odpozorovaného tvaru derivácií vyslovíme induk ný predpoklad. f (x) = e x x 3 = f(x) P (x ) f (x) = e x ( 6)x 4 + (x 3 ) e x = f(x) P (x ) (P, P sú polynómy, no ich explicitný tvar nie je pre nás v tejto chvíli dôleºitý.) Moºno teda predpoklada : f (n) (x) = e x P m (x ), (58) kde P m je nejaký polynóm. Vidíme, ºe pre n = rovnos platí. Pomocou matematickej indukcie ukáºeme, ºe ak rovnos platí pre n N, potom: f (n+) (x) = e x P m (x ). Po ítajme: f (n+) (x) = ( f (n) (x) ) = (e x (P m (x ))) = = e x x 3 P m (x ) + e x (P m (x )) 3

32 5 RIE ENÉ PRÍKLADY Teraz ozna me: Q m (x) = P m (x ) = a 0 + a x a m x m Potom platí: Q m(x) = a x ( m) a m x m = P m (x ) a teda môºeme tvrdi : kde P m f (n+) (x) = e x x 3 P m x + e x P m (x ) = = e x ( x 3 P m (x ) + P m (x )) = e x P m (x ), je nejaký polynóm. Teda sme dokázali (58). V²imnime si, ºe z (58) vyplýva: lim f (n) (x) = lim x 0 n N, ak poloºíme t = x. Posledná rovnos vyplýva z toho, ºe platí: a teda aj lim t + lim t t n e t = 0 t n e t = 0. x 0 e x P m (x P m (t) ) = lim = 0 t ± e t Na základe vy²²ie uvedeného teda platí, ºe lim x 0 f (n) (x) = 0. Teraz z denície spojitosti a pomocou matematickej indukcie dokáºeme, ºe ak f (n) (0) = 0, tak aj f (n+) (0) = 0. f (n+) (0) = lim x 0 f (n) (x) f (n) (0) x = lim x 0 f (n) (x) x = lim x 0 f (n+) (x) = 0 Predposledná rovnos vznikla v aka pouºitiu L'Hospitalovho pravidla. V príklade sme pracovali s funkciou, ktorá nie je analytická - síce má derivácie v²etkých rádov, ale jej Taylorov rozvoj v okolí bodu 0 dá nulovú funkciu. Nasledujúci príklad sa venuje s ítavaniu nekone ných radov Príklad 5.. Nech a ij je zloºka v i-tom riadku a j-tom st pci: a platí: 0 i < j a ij = i = j j i i > j 3

33 5 RIE ENÉ PRÍKLADY Dokáºte: (a) i (b) j a ij = j a ij = 0 i Rie²enie: (a) a ij = + i ( ) i i + ( ) = j= ( ) i a ij = = = i j i= (b) S ítavame najprv prvky v st pcoch. Vyberme si jeden ubovo ný st pec (teda zvo me j pevné): ( a ij = ) = + = 0 i Zistili ( sme, ºe ) sú et prvkov v kaºdom st pci je 0. Teda platí: a ij = 0 = 0 j i j al²ie dva príklady sa venujú výpo tu limít rôznych funkcií. Zistili sme, ºe by sa dali jednoducho vyrie²i pouºitím L'Hospitalovho pravidla, ale to nie je na²ím zámerom. Príklad 5.3. Dokáºte platnos nasledujúcich vz ahov: (a) lim x 0 b x b (b) lim x 0 log( + x) x = ln b (b > 0), =, (c) lim x 0 ( + x) /x = e, (d) lim n ( + x n) n = e x. Rie²enie: (a) b x = E(xL(b)) = e x ln b b x e x ln b lim = lim ln b x 0 x x 0 x ln b = lim ln b e x ln b ln b x 0 x ln b Aplikujeme na posledný zlomok L'Hospitalovo pravidlo a dostávame: ln b e x ln b ln b lim = lim ln b e x ln b = lnb x 0 ln b x 0 33

34 5 RIE ENÉ PRÍKLADY (b) Pouºijeme substitúciu: ln( + x) = t x = e t ln( + x) t lim = lim x 0 x t 0 e t = lim t t 0 E(t) Opä aplikujeme L'Hospitalovo pravidlo. Dostávame: lim t 0 E(t) = ( ) = lim exp ln( + x) x 0 x (c) lim x 0 ( + x) x Pod a (b): výraz ( ln( + x) x ) sa blíºi k íslu, teda lim x 0 e = e (d) Pôvodný výraz prepí²eme do ekvivalentného tvaru: ( lim + x [ n ( = lim + n n) x ) ] n x x n n Pod a (c) sa výraz v hranatej zátvorke blíºi k íslu e. Teda limita pôvodnej funkcie bude e x. V nasledujúcom príklade budeme potrebova pouºi rozvoj funkcií tg x a ln(+x) do Maclaurinovho radu. Tvary mocninových radov nie je aºké získa priamo z Taylorovej vety (.8), ak poloºíme a = 0: f(x) = f(0) + f (0) x + f (0)! x + f (3) (0) 3! x + tg (3) (0) 3! x f (n) (0) n! x tg (n) (0) n! x n +... tg x = tg (0) + tg (0) x + tg (0) x n +... =! sin(0) cos(0) 0 + x x 6 sin (0) + cos (0) +... = x + x3 cos (0)! cos 4 (0) 3! cos 4 (0) 3 + O(x3 ) Podobne pre ln( + x): f(x) = f(0) + f (0) x + f (0)! x + f (0) 3! x 3 + O(x 3 ) ln( + x) = ln( + 0) + +0 x!(+0) x + 3!(+0) 3 x 3 + O(x 3 ) = x x + x3 3 + O(x3 ) Rozvoj v takomto tvare bude pre na²e výpo ty sta i. Príklad 5.4. Nájdite nasledujúce limity: e ( + x) x (a) lim x 0 x 34

35 5 RIE ENÉ PRÍKLADY n ) (b) lim (n n n ln n tg x x (c) lim x 0 x( cos x) (d) lim x 0 x sin x tg x x Rie²enie: (a) Funkciu prepí²eme do iného tvaru: e ( + x) x e e ln( x) x ln(+x) lim = lim = lim x 0 x x 0 x x Následne pouºijeme L'Hospitalovo pravidlo. Dostávame: x x 0 e e ( lim e x ln(+x) x 0 x + x ) ln( + x) x Pre vä ²iu preh adnos zave me ozna enie: A = e x ln(+x), B = x +x x ln( + x) Pod a 5.3(b): lim e x ln(+x) = lim e ln(+x) x = e x 0 x 0 B = x + x x ln( + x) = ( x + x ( ) x = ( x3 3 +O(x3 ) x +x + x+ x = x(+x) x + x 3 + O(x) = x = x Teda môºeme ( kon²tatova : lim B = lim x 0 x 0 + x + x ) 3 + O(x) e ( + x) Z toho vyplýva: lim x 0 x (b) lim n x +x + x x ) ln( + x) = ) 3 + O(x ) = x + x + O(x) = + x + O(x) x(+x) 3 +x 3 = + = = lim A lim B = e x 0 x 0 ) ( n ] n n [n n n n = lim = lim ln n n ln n n ln n V tejto chvíli je vhodné pouºi substitúciu: ln n = x n Ke ºe n, potom x 0, pretoºe n ide do nuly rýchlej²ie ako ln n do nekone na. Pod a 5.3(a) máme: e x lim = ln e = x 0 x ( ) e n ln n ( ) = e e n ln n = lim n ln n n 35

36 5 RIE ENÉ PRÍKLADY (c) lim x 0 tg x x x( cos x) = lim x 0 x + x3 x + 3 O(x3 ) x ( ( x )) + O(x3 ) = lim x 0 x O(x3 ) x 3 + O(x3 ) = + O(x3 ) 3 x 3 + = O(x3 ) x 3 = 3 x sin x x (d) lim x 0 tg x x = ( x x3 6 ) + O(x 3 ) x + x3 3 x + O(x3 ) = x O(x3 ) x O(x3 ) = + O(x3 ) 6 x 3 + = O(x3 ) 3 x 3 Príklad 5.5. Nech f(x) f(y) = f(x + y) x, y R. (a) Ak predpokladáme, ºe f je diferencovate ná a nenulová, dokáºte: f(x) = e cx, kde c je kon²tanta. (b) Dokáºte rovnaký výsledok iba za predpokadu, ºe f je spojitá. Rie²enie: (a) Najprv si uvedomme, ºe platí: f(x) = f(x + 0) = f(x) f(0) Vieme, ºe f je diferencovate ná. Môºeme teda z denície vypo íta jej deriváciu: f f(x + y) f(x) f(x) f(y) f(x) f(0) f(y) f(0) (x) = lim = lim = f(x) lim = y 0 y y 0 y y 0 y = f(x) f (0) Dostali sme diferenciálnu rovnicu: f = f (0) f, ktorú môºeme prepísa do tvaru: f = k f. Ak f (0) = 0, potom f (x) = 0 Ak f (0) 0, môºeme poveda : x, teda f je kon²tantná funkcia. f = f (0) f Vznikla nám diferenciálna rovnica. rádu a môºeme ju rie²i metódou separácie premenných: f (t) f(t) = f (0) x 0 f (t) f(t) dt = f (0) x ln f(x) f(0) = f (0) x 36

37 5 RIE ENÉ PRÍKLADY Dostávame výsledok: f(x) = f(0) e f (0) x Vieme, ºe f(x) = f(x) f(0), teda f(0) =. Získaný výsledok môºeme teda prepísa do ekvivalentného tvaru: f(x) = e f (0) x, pri om f (0) je kon²tanta. Tým je dôkaz ukon ený. (b) Kaºdé reálne íslo má tú vlastnos, ºe v jeho ubovo ne malom okolí sa nachádza nejaké racionálne íslo. Túto skuto nos vyuºijeme pri dôkaze druhého tvrdenia. Môºeme tvrdi : f( ) = f() f()... f() = f( n ) Taktieº vidíme, ºe f() > 0: f( + 0) = f() f(0) f(0) =, f() = f ( + ( ) = f ) > 0 ( ) Chceme dokáza nasledovnú rovnos : f = f() m Platí: m f() = f ( m + m ) ( ) ( ) ( ) ( ) m = f f... f = f m m m m m ( n f = f m) f() = f ( ) m ( ) f = f() m m m ( m ) ( ) n ( ) n = f = f() n m = f() m m m Teda f(x) = f() x pre x Q. al²ia vlastnos reálnych ísel je tá, ºe existujú racionálne ísla, ktoré k nemu konvergujú. Nech q n je racionálne, potom môºeme tvrdi : f(x) = lim qn x f(q n) = lim qn x f()qn = f() x Ozna me f() := e c. Tento výraz je kladný, takºe ozna enie je korektné. Teda platí: f(x) = f() x = e cx 37

38 ZÁVER ZÁVER Záver Cie om bakalárskej práce bolo preh adne spracova teóriu mocninových radov a pomocou základných poznatkov odvodi vlastnosti al²ích funkcií. Vychádzali sme prevaºne z publikácie [8]. V prvej asti sme uviedli základné pojmy, ktoré by si mal prípadný itate osvoji, aby porozumel, odkia pochádzajú známe vlastnosti exponenciálnej funkcie, logaritmickej funkcie a trigonometrických funkcií. V poslednej kapitole práca ponúka aj nieko ko príkladov, ktoré môºu by uºito né ako ukáºka vyuºitia problematiky mocninových radov v praxi. Prínosom pre autora bolo najmä osvojenie si vedomostí známych z predchádzajúcich rokov ²túdia, ale taktieº nadobudnutie nových poznatkov a lep²ie pochopenie vlastností uvedených funkcií, ktoré sa v praxi asto vyuºívajú, ale asi len málo udí vie, ºe sa dajú dokáza práve pomocou mocninových radov. Uº v úvode sme zdôraznili, ºe mocninové rady sú ve mi vhodným nástrojom pre mnohé al²ie vedy. Majú v²ak aj svoje úskalia. Prípady, ºe sa s radmi aºko pracuje, v praxi nie sú vôbec ojedinelé - existujú funkcie, ktorých rozvoj do radu je ve mi aºké nájs, prípadne konvergujú na ve mi malej mnoºine. O nevýhodách a odchýlkach vznikajúcich pouºívaním radov hovorí napríklad lánok [5]. 38

39 ZOZNAM POUšITEJ LITERATÚRY ZOZNAM POUšITEJ LITERATÚRY Zoznam pouºitej literatúry [] Kollár, M.: Predná²ky z matematickej analýzy, FMFI UK, Bratislava, 0 [] Kossaczká, : Osobná komunikácia, FMFI UK, Bratislava, 03 [3] Ko²ut, L.: Postupnosti a rady funkcií, bakalárska práca, P F MUNI, Brno, 006, 34-38, dostupné na internete (..03): [4] Kubá ek, Z., Valá²ek, J.: Matematická analýza II., dostupné na internete (.5.04): [5] Leavitt, J. A.: Methods and Applications of Power Series, dostupný na internete (..03): 4/S pdf [6] Mac Lane, S., Birkho, G.: Algebra, ALFA, vydavate stvo technickej a ekonomickej literatúry, Bratislava 974 [7] Privalov, I. I.: Analytické funkce, ƒeskoslovenské akademie v d, Praha 955 [8] Rudin, W.: Principles of mathematical analysis, McGraw-Hill, Inc.,

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY. Kritéria nezápornosti Fourierových radov BAKALÁRSKA PRÁCA

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY. Kritéria nezápornosti Fourierových radov BAKALÁRSKA PRÁCA UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY Kritéria nezápornosti Fourierových radov BAKALÁRSKA PRÁCA Bratislava 2014 Andrej Iring UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA

More information

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY ZNÁME NEROVNOSTI V MATEMATIKE BAKALÁRSKA PRÁCA 014 Zuzana FRONCOVÁ UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY

More information

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY Vlastnosti spektrahedrálnych mnoºín a ich aplikácie v nelineárnej optimalizácii DIPLOMOVÁ PRÁCA 2016 Bc. Andrej Iring UNIVERZITA

More information

Matematická analýza II.

Matematická analýza II. V. Diferenciálny počet (prezentácia k prednáške MANb/10) doc. RNDr., PhD. 1 1 ondrej.hutnik@upjs.sk umv.science.upjs.sk/analyza Prednáška 8 6. marca 2018 It has apparently not yet been observed, that...

More information

The Golden Ratio and Signal Quantization

The Golden Ratio and Signal Quantization The Golden Ratio and Signal Quantization Tom Hejda, tohecz@gmail.com based on the work of Ingrid Daubechies et al. Doppler Institute & Department of Mathematics, FNSPE, Czech Technical University in Prague

More information

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY MATEMATIKA NA POH ADNICIACH BAKALÁRSKA PRÁCA 2014 Katarína IVANOVÁ UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY

More information

Kapitola S5. Skrutkovica na rotačnej ploche

Kapitola S5. Skrutkovica na rotačnej ploche Kapitola S5 Skrutkovica na rotačnej ploche Nech je rotačná plocha určená osou rotácie o a meridiánom m. Skrutkový pohyb je pohyb zložený z rovnomerného rotačného pohybu okolo osi o a z rovnomerného translačného

More information

Teória grafov. RNDr. Milan Stacho, PhD.

Teória grafov. RNDr. Milan Stacho, PhD. Teória grafov RNDr. Milan Stacho, PhD. Literatúra Plesník: Grafové algoritmy, Veda Bratislava 1983 Sedláček: Úvod do teórie grafů, Academia Praha 1981 Bosák: Grafy a ich aplikácie, Alfa Bratislava 1980

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

ADM a logika. 4. prednáška. Výroková logika II, logický a sémantický dôsledok, teória a model, korektnosť a úplnosť

ADM a logika. 4. prednáška. Výroková logika II, logický a sémantický dôsledok, teória a model, korektnosť a úplnosť ADM a logika 4. prednáška Výroková logika II, logický a sémantický dôsledok, teória a model, korektnosť a úplnosť 1 Odvodzovanie formúl výrokovej logiky, logický dôsledok, syntaktický prístup Logický dôsledok

More information

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY REKURENTNÉ POSTUPNOSTI

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY REKURENTNÉ POSTUPNOSTI UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY Evidenčné číslo: 74b93af3-8dd5-43d9-b3f2-05523e0ba177 REKURENTNÉ POSTUPNOSTI 2011 András Varga UNIVERZITA KOMENSKÉHO V BRATISLAVE

More information

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY FYZIKY A INFORMATIKY

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY FYZIKY A INFORMATIKY UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY FYZIKY A INFORMATIKY 80e687db-77df-4b93-992e-b291c6457462 Vyuºitie SATsolverov pri rie²ení aºkých úloh 2011 Matú² Kukan UNIVERZITA KOMENSKÉHO V BRATISLAVE

More information

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY VZ AHY SPEKTIER MATICE A JEJ PODMATÍC Bakalárska práca 2013 Viktor GREGOR UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY,

More information

FILTRÁCIA GEODETICKÝCH DÁT NA POVRCHU ZEME POMOCOU NELINEÁRNYCH DIFÚZNYCH ROVNÍC

FILTRÁCIA GEODETICKÝCH DÁT NA POVRCHU ZEME POMOCOU NELINEÁRNYCH DIFÚZNYCH ROVNÍC Úvod FILTRÁCIA GEODETICKÝCH DÁT NA POVRCHU ZEME POMOCOU NELINEÁRNYCH DIFÚZNYCH ROVNÍC Martin Tunega, Róbert ƒunderlík, Karol Mikula V lánku vytvoríme metódu kone ných objemov na numerické rie²enie parabolických

More information

COMENIUS UNIVERSITY IN BRATISLAVA FACULTY OF MATHEMATICS, PHYSICS AND INFORMATICS

COMENIUS UNIVERSITY IN BRATISLAVA FACULTY OF MATHEMATICS, PHYSICS AND INFORMATICS COMENIUS UNIVERSITY IN BRATISLAVA FACULTY OF MATHEMATICS, PHYSICS AND INFORMATICS A PRIORI ESTIMATES OF SOLUTIONS OF SUPERLINEAR ELLIPTIC AND PARABOLIC PROBLEMS Dissertation thesis 015 Július Pa uta COMENIUS

More information

Metódy vol nej optimalizácie

Metódy vol nej optimalizácie Matematické programovanie Metódy vol nej optimalizácie p. 1/35 Informácie o predmete Informácie o predmete p. 2/35 Informácie o predmete METÓDY VOL NEJ OPTIMALIZÁCIE Prednášajúca: M. Trnovská (M 267) Cvičiaci:

More information

1 Matice a ich vlastnosti

1 Matice a ich vlastnosti Pojem sústavy a jej riešenie 1 Matice a ich vlastnosti 11 Sústavy lineárnych rovníc a matice Príklad 11 V množine reálnych čísel riešte sústavu rovníc x - 2y + 4z + t = -6 2x + 3y - z + 2t = 13 2x + 5y

More information

Ranking accounting, banking and finance journals: A note

Ranking accounting, banking and finance journals: A note MPRA Munich Personal RePEc Archive Ranking accounting, banking and finance ournals: A note George Halkos and Nickolaos Tzeremes University of Thessaly, Department of Economics January 2012 Online at https://mpra.ub.uni-muenchen.de/36166/

More information

Aplikácie subriemannovskej geometrie

Aplikácie subriemannovskej geometrie UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY Aplikácie subriemannovskej geometrie Luká² Tomek 2011 Aplikácie subriemannovskej geometrie DIPLOMOVÁ PRÁCA (Eviden né íslo:

More information

Matematika 17. a 18. storočia

Matematika 17. a 18. storočia Matematika 17. a 18. storočia René Descartes Narodený : 31 Marec 1596 v La Haye (teraz Descartes),Touraine, France Zomrel : 11 Feb 1650 v Stockholm, Sweden Riešenie kvadratických rovníc podľa Descarta

More information

PSEUDOINVERZNÁ MATICA

PSEUDOINVERZNÁ MATICA PSEUDOINVERZNÁ MATICA Jozef Fecenko, Michal Páleš Abstrakt Cieľom príspevku je podať základnú informácie o pseudoinverznej matici k danej matici. Ukázať, že bázický rozklad matice na súčin matíc je skeletným

More information

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY DIPLOMOVÁ PRÁCA ZDENKA ZUBÁƒOVÁ

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY DIPLOMOVÁ PRÁCA ZDENKA ZUBÁƒOVÁ UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY DIPLOMOVÁ PRÁCA 2011 ZDENKA ZUBÁƒOVÁ UNIVERZITA KOMENSKÉHO V BRATISLAVE Fakulta matematiky, fyziky a informatiky Spracovanie

More information

P a g e 5 1 of R e p o r t P B 4 / 0 9

P a g e 5 1 of R e p o r t P B 4 / 0 9 P a g e 5 1 of R e p o r t P B 4 / 0 9 J A R T a l s o c o n c l u d e d t h a t a l t h o u g h t h e i n t e n t o f N e l s o n s r e h a b i l i t a t i o n p l a n i s t o e n h a n c e c o n n e

More information

An idea how to solve some of the problems. diverges the same must hold for the original series. T 1 p T 1 p + 1 p 1 = 1. dt = lim

An idea how to solve some of the problems. diverges the same must hold for the original series. T 1 p T 1 p + 1 p 1 = 1. dt = lim An idea how to solve some of the problems 5.2-2. (a) Does not converge: By multiplying across we get Hence 2k 2k 2 /2 k 2k2 k 2 /2 k 2 /2 2k 2k 2 /2 k. As the series diverges the same must hold for the

More information

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9 OH BOY! O h Boy!, was or igin a lly cr eat ed in F r en ch an d was a m a jor s u cc ess on t h e Fr en ch st a ge f or young au di enc es. It h a s b een s een by ap pr ox i ma t ely 175,000 sp ect at

More information

Samuel Flimmel. Univerzita Karlova v Praze Matematicko-fyzikální fakulta. Katedra pravděpodobnosti a matematické statistiky

Samuel Flimmel. Univerzita Karlova v Praze Matematicko-fyzikální fakulta. Katedra pravděpodobnosti a matematické statistiky Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE Samuel Flimmel Log-optimální investování Katedra pravděpodobnosti a matematické statistiky Vedoucí bakalářské práce: doc. RNDr.

More information

Univerzita Karlova v Praze Matematicko-fyzikální fakulta. Michal Kesely. Katedra matematické analýzy. Studijní program: Obecná matematika

Univerzita Karlova v Praze Matematicko-fyzikální fakulta. Michal Kesely. Katedra matematické analýzy. Studijní program: Obecná matematika Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE Michal Kesely Slavné neřešitelné problémy Katedra matematické analýzy Vedoucí bakalářské práce: RNDr. Dalibor Pražák, Ph.D. Studijní

More information

I M P O R T A N T S A F E T Y I N S T R U C T I O N S W h e n u s i n g t h i s e l e c t r o n i c d e v i c e, b a s i c p r e c a u t i o n s s h o

I M P O R T A N T S A F E T Y I N S T R U C T I O N S W h e n u s i n g t h i s e l e c t r o n i c d e v i c e, b a s i c p r e c a u t i o n s s h o I M P O R T A N T S A F E T Y I N S T R U C T I O N S W h e n u s i n g t h i s e l e c t r o n i c d e v i c e, b a s i c p r e c a u t i o n s s h o u l d a l w a y s b e t a k e n, i n c l u d f o l

More information

T h e C S E T I P r o j e c t

T h e C S E T I P r o j e c t T h e P r o j e c t T H E P R O J E C T T A B L E O F C O N T E N T S A r t i c l e P a g e C o m p r e h e n s i v e A s s es s m e n t o f t h e U F O / E T I P h e n o m e n o n M a y 1 9 9 1 1 E T

More information

Short time oscillations of exchange rates

Short time oscillations of exchange rates Univerzita Komenského v Bratislave, Fakulta matematiky, fyziky a informatiky Short time oscillations of exchange rates Diploma Thesis Bratislava 2007 Tomáš Bokes Short time oscillations of exchange rates

More information

ZIS OVANIE ANAEROBNÉHO PRAHU POMOCOU METÓDY IMPLEMENTOVANEJ DO MATLABU

ZIS OVANIE ANAEROBNÉHO PRAHU POMOCOU METÓDY IMPLEMENTOVANEJ DO MATLABU ZIS OVANIE ANAEROBNÉHO PRAHU POMOCOU METÓDY IMPLEMENTOVANEJ DO MATLABU Eva Jamrichová FMFI UK, Bratislava Abstrakt Pri výstavbe tréningového procesu je ve mi dôleºitým ukazovate om práve anaeróbny prah.

More information

h : sh +i F J a n W i m +i F D eh, 1 ; 5 i A cl m i n i sh» si N «q a : 1? ek ser P t r \. e a & im a n alaa p ( M Scanned by CamScanner

h : sh +i F J a n W i m +i F D eh, 1 ; 5 i A cl m i n i sh» si N «q a : 1? ek ser P t r \. e a & im a n alaa p ( M Scanned by CamScanner m m i s t r * j i ega>x I Bi 5 n ì r s w «s m I L nk r n A F o n n l 5 o 5 i n l D eh 1 ; 5 i A cl m i n i sh» si N «q a : 1? { D v i H R o s c q \ l o o m ( t 9 8 6) im a n alaa p ( M n h k Em l A ma

More information

Homework 27. Homework 28. Homework 29. Homework 30. Prof. Girardi, Math 703, Fall 2012 Homework: Define f : C C and u, v : R 2 R by

Homework 27. Homework 28. Homework 29. Homework 30. Prof. Girardi, Math 703, Fall 2012 Homework: Define f : C C and u, v : R 2 R by Homework 27 Define f : C C and u, v : R 2 R by f(z) := xy where x := Re z, y := Im z u(x, y) = Re f(x + iy) v(x, y) = Im f(x + iy). Show that 1. u and v satisfies the Cauchy Riemann equations at (x, y)

More information

A l g o r i t m i c k y n e r i e š i t e ľ n é p r o b l é m y

A l g o r i t m i c k y n e r i e š i t e ľ n é p r o b l é m y A l g o r i t m i c k y n e r i e š i t e ľ n é p r o b l é m y Lev Bukovský Ústav matematických vied, Prírodovedecká fakulta UPJŠ Košice, 20. apríla 2004 Obsah 1 Úvod 2 2 Čiastočne rekurzívne funkcie

More information

Considering our result for the sum and product of analytic functions, this means that for (a 0, a 1,..., a N ) C N+1, the polynomial.

Considering our result for the sum and product of analytic functions, this means that for (a 0, a 1,..., a N ) C N+1, the polynomial. Lecture 3 Usual complex functions MATH-GA 245.00 Complex Variables Polynomials. Construction f : z z is analytic on all of C since its real and imaginary parts satisfy the Cauchy-Riemann relations and

More information

Analýza investi ného rozhodovania pri uplatnení reálnej opcie

Analýza investi ného rozhodovania pri uplatnení reálnej opcie FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITA KOMENSKÉHO V BRATISLAVE Katedra aplikovanej matematiky a ²tatistiky Analýza investi ného rozhodovania pri uplatnení reálnej opcie DIPLOMOVÁ PRÁCA BRATISLAVA

More information

Formulas to remember

Formulas to remember Complex numbers Let z = x + iy be a complex number The conjugate z = x iy Formulas to remember The real part Re(z) = x = z+z The imaginary part Im(z) = y = z z i The norm z = zz = x + y The reciprocal

More information

Software Process Models there are many process model s in th e li t e ra t u re, s om e a r e prescriptions and some are descriptions you need to mode

Software Process Models there are many process model s in th e li t e ra t u re, s om e a r e prescriptions and some are descriptions you need to mode Unit 2 : Software Process O b j ec t i ve This unit introduces software systems engineering through a discussion of software processes and their principal characteristics. In order to achieve the desireable

More information

Fourth Week: Lectures 10-12

Fourth Week: Lectures 10-12 Fourth Week: Lectures 10-12 Lecture 10 The fact that a power series p of positive radius of convergence defines a function inside its disc of convergence via substitution is something that we cannot ignore

More information

Fakulta Matematiky, Fyziky a Informatiky Univerzita Komenského, Bratislava THEILOVA REGRESIA

Fakulta Matematiky, Fyziky a Informatiky Univerzita Komenského, Bratislava THEILOVA REGRESIA Fakulta Matematiky, Fyziky a Informatiky Univerzita Komenského, Bratislava THEILOVA REGRESIA Róbert Tóth Bratislava 2013 Fakulta Matematiky, Fyziky a Informatiky Univerzita Komenského, Bratislava THEILOVA

More information

Dokonalé a spriatelené čísla

Dokonalé a spriatelené čísla Dokonalé a spriatelené čísla 1. kapitola. Niektoré poznatky z teorie čísel In: Tibor Šalát (author): Dokonalé a spriatelené čísla. (Slovak). Praha: Mladá fronta, 1969. pp. 5 17. Persistent URL: http://dml.cz/dmlcz/403668

More information

Technické rezervy v neºivotnom poistení

Technické rezervy v neºivotnom poistení UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY Technické rezervy v neºivotnom poistení DIPLOMOVÁ PRÁCA 2012 Bc JAROSLAVA GATIALOVÁ UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA

More information

CALCULUS JIA-MING (FRANK) LIOU

CALCULUS JIA-MING (FRANK) LIOU CALCULUS JIA-MING (FRANK) LIOU Abstract. Contents. Power Series.. Polynomials and Formal Power Series.2. Radius of Convergence 2.3. Derivative and Antiderivative of Power Series 4.4. Power Series Expansion

More information

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UIVERZITA KOMESKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A IFORMATIKY VÝPOČET FOURIEROVÝCH RADOV POMOCOU DISKRÉTEJ FOURIEROVEJ TRASFORMÁCIE BAKALÁRSKA PRÁCA 2013 Andrej ZUBAL UIVERZITA KOMESKÉHO V BRATISLAVE

More information

CATAVASII LA NAȘTEREA DOMNULUI DUMNEZEU ȘI MÂNTUITORULUI NOSTRU, IISUS HRISTOS. CÂNTAREA I-A. Ήχος Πα. to os se e e na aș te e e slă ă ă vi i i i i

CATAVASII LA NAȘTEREA DOMNULUI DUMNEZEU ȘI MÂNTUITORULUI NOSTRU, IISUS HRISTOS. CÂNTAREA I-A. Ήχος Πα. to os se e e na aș te e e slă ă ă vi i i i i CATAVASII LA NAȘTEREA DOMNULUI DUMNEZEU ȘI MÂNTUITORULUI NOSTRU, IISUS HRISTOS. CÂNTAREA I-A Ήχος α H ris to os s n ș t slă ă ă vi i i i i ți'l Hris to o os di in c ru u uri, în tâm pi i n ți i'l Hris

More information

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY HADAMARDOVE MATICE A ICH APLIKÁCIE V OPTIMÁLNOM DIZAJNE BAKALÁRSKA PRÁCA 2012 Samuel ROSA UNIVERZITA KOMENSKÉHO V BRATISLAVE

More information

Ayuntamiento de Madrid

Ayuntamiento de Madrid 9 v vx-xvv \ ü - v q v ó - ) q ó v Ó ü " v" > - v x -- ü ) Ü v " ñ v é - - v j? j 7 Á v ü - - v - ü

More information

P a g e 3 6 of R e p o r t P B 4 / 0 9

P a g e 3 6 of R e p o r t P B 4 / 0 9 P a g e 3 6 of R e p o r t P B 4 / 0 9 p r o t e c t h um a n h e a l t h a n d p r o p e r t y fr om t h e d a n g e rs i n h e r e n t i n m i n i n g o p e r a t i o n s s u c h a s a q u a r r y. J

More information

Maticové algoritmy I maticová algebra operácie nad maticami súčin matíc

Maticové algoritmy I maticová algebra operácie nad maticami súčin matíc Maticové algoritmy I maticová algebra operácie nad maticami súčin matíc priesvitka Maurits Cornelis Escher (898-97) Ascending and Descending, 960, Lithograph priesvitka Matice V mnohých prípadoch dáta

More information

Algoritmy metód vnútorného bodu v lineárnom programovaní

Algoritmy metód vnútorného bodu v lineárnom programovaní UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY Algoritmy metód vnútorného bodu v lineárnom programovaní RIGORÓZNA PRÁCA 14 Mgr. Marek KABÁT UNIVERZITA KOMENSKÉHO V BRATISLAVE

More information

d(x n, x) d(x n, x nk ) + d(x nk, x) where we chose any fixed k > N

d(x n, x) d(x n, x nk ) + d(x nk, x) where we chose any fixed k > N Problem 1. Let f : A R R have the property that for every x A, there exists ɛ > 0 such that f(t) > ɛ if t (x ɛ, x + ɛ) A. If the set A is compact, prove there exists c > 0 such that f(x) > c for all x

More information

MA 201 Complex Analysis Lecture 6: Elementary functions

MA 201 Complex Analysis Lecture 6: Elementary functions MA 201 Complex Analysis : The Exponential Function Recall: Euler s Formula: For y R, e iy = cos y + i sin y and for any x, y R, e x+y = e x e y. Definition: If z = x + iy, then e z or exp(z) is defined

More information

História nekonečne malej veličiny PROJEKTOVÁ PRÁCA. Martin Čulen. Alex Fleško. Konzultant: Vladimír Repáš

História nekonečne malej veličiny PROJEKTOVÁ PRÁCA. Martin Čulen. Alex Fleško. Konzultant: Vladimír Repáš História nekonečne malej veličiny PROJEKTOVÁ PRÁCA Martin Čulen Alex Fleško Konzultant: Vladimír Repáš Škola pre mimoriadne nadané deti a Gymnázium, Skalická 1, Bratislava BRATISLAVA 2013 1. Obsah 1. Obsah

More information

Sec 4.1 Limits, Informally. When we calculated f (x), we first started with the difference quotient. f(x + h) f(x) h

Sec 4.1 Limits, Informally. When we calculated f (x), we first started with the difference quotient. f(x + h) f(x) h 1 Sec 4.1 Limits, Informally When we calculated f (x), we first started with the difference quotient f(x + h) f(x) h and made h small. In other words, f (x) is the number f(x+h) f(x) approaches as h gets

More information

ANALÝZA VLASTNÝCH FREKVENCIÍ DYCHOVÉHO HUDOBNÉHO NÁSTROJA FUJARY

ANALÝZA VLASTNÝCH FREKVENCIÍ DYCHOVÉHO HUDOBNÉHO NÁSTROJA FUJARY SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE STAVEBNÁ FAKULTA ANALÝZA VLASTNÝCH FREKVENCIÍ DYCHOVÉHO HUDOBNÉHO NÁSTROJA FUJARY Diplomová práca tudijný program: tudijný odbor: koliace pracovisko: Vedúci

More information

Matematická analýza II.

Matematická analýza II. V. Diferenciálny počet (prezentácia k prednáške MANb/10) doc. RNDr., PhD. 1 1 ondrej.hutnik@upjs.sk umv.science.upjs.sk/analyza Prezentácie k prednáškam čast II 21. februára 2018 The extent of this calculus

More information

THIS PAGE DECLASSIFIED IAW E

THIS PAGE DECLASSIFIED IAW E THS PAGE DECLASSFED AW E0 2958 BL K THS PAGE DECLASSFED AW E0 2958 THS PAGE DECLASSFED AW E0 2958 B L K THS PAGE DECLASSFED AW E0 2958 THS PAGE DECLASSFED AW EO 2958 THS PAGE DECLASSFED AW EO 2958 THS

More information

1 Úvod Úvod Sylaby a literatúra Označenia a pomocné tvrdenia... 4

1 Úvod Úvod Sylaby a literatúra Označenia a pomocné tvrdenia... 4 Obsah 1 Úvod 3 1.1 Úvod......................................... 3 1. Sylaby a literatúra................................. 3 1.3 Označenia a omocné tvrdenia.......................... 4 Prvočísla 6.1 Deliteľnosť......................................

More information

Kapitola P2. Rozvinuteľné priamkové plochy

Kapitola P2. Rozvinuteľné priamkové plochy Kapitola P2 Rozvinuteľné priamkové plochy 1 Priamková plocha je rozvinuteľná, ak na nej ležia iba torzálne priamky. Rozvinuteľné priamkové plochy rozdeľujeme na: rovinu, valcové plochy, kužeľové plochy,

More information

Math 205b Homework 2 Solutions

Math 205b Homework 2 Solutions Math 5b Homework Solutions January 5, 5 Problem (R-S, II.) () For the R case, we just expand the right hand side and use the symmetry of the inner product: ( x y x y ) = = ((x, x) (y, y) (x, y) (y, x)

More information

1 Holomorphic functions

1 Holomorphic functions Robert Oeckl CA NOTES 1 15/09/2009 1 1 Holomorphic functions 11 The complex derivative The basic objects of complex analysis are the holomorphic functions These are functions that posses a complex derivative

More information

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY ANALÝZA VZ AHOV MEDZI ƒasovými RADMI METÓDAMI SIE OVEJ ANALÝZY A ZHLUKOVANIA DIPLOMOVÁ PRÁCA 2018 Radka LITVAJOVÁ UNIVERZITA

More information

Univerzita Karlova v Praze. Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE. Matúš Kepič

Univerzita Karlova v Praze. Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE. Matúš Kepič Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE Matúš Kepič Webová aplikace pro výuku goniometrických funkcí, rovnic a nerovnic Katedra didaktiky matematiky Vedoucí diplomové práce:

More information

Use precise language and domain-specific vocabulary to inform about or explain the topic. CCSS.ELA-LITERACY.WHST D

Use precise language and domain-specific vocabulary to inform about or explain the topic. CCSS.ELA-LITERACY.WHST D Lesson eight What are characteristics of chemical reactions? Science Constructing Explanations, Engaging in Argument and Obtaining, Evaluating, and Communicating Information ENGLISH LANGUAGE ARTS Reading

More information

Test one Review Cal 2

Test one Review Cal 2 Name: Class: Date: ID: A Test one Review Cal 2 Short Answer. Write the following expression as a logarithm of a single quantity. lnx 2ln x 2 ˆ 6 2. Write the following expression as a logarithm of a single

More information

ANOTÁCIA ZHLUKOV GÉNOV

ANOTÁCIA ZHLUKOV GÉNOV UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY FYZIKY A INFORMATIKY ANOTÁCIA ZHLUKOV GÉNOV 2011 Milan Mikula UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY FYZIKY A INFORMATIKY ANOTÁCIA ZHLUKOV

More information

MASTER THESIS. Vlastnosti k-intervalových booleovských funkcí Properties of k-interval Boolean functions

MASTER THESIS. Vlastnosti k-intervalových booleovských funkcí Properties of k-interval Boolean functions Charles University in Prague Faculty of Mathematics and Physics MASTER THESIS Pavol Gál Vlastnosti k-intervalových booleovských funkcí Properties of k-interval Boolean functions Department of Theoretical

More information

Real Analysis, 2nd Edition, G.B.Folland Elements of Functional Analysis

Real Analysis, 2nd Edition, G.B.Folland Elements of Functional Analysis Real Analysis, 2nd Edition, G.B.Folland Chapter 5 Elements of Functional Analysis Yung-Hsiang Huang 5.1 Normed Vector Spaces 1. Note for any x, y X and a, b K, x+y x + y and by ax b y x + b a x. 2. It

More information

Stavba Lobačevského planimetrie

Stavba Lobačevského planimetrie Stavba Lobačevského planimetrie Riešenie úloh In: Ján Gatial (author); Milan Hejný (author): Stavba Lobačevského planimetrie. (Slovak). Praha: Mladá fronta, 1969. pp. 78 109. Persistent URL: http://dml.cz/dmlcz/403691

More information

Odhady veľkosti pokrytí náhodne indukovaných podgrafov n-rozmernej hyperkocky

Odhady veľkosti pokrytí náhodne indukovaných podgrafov n-rozmernej hyperkocky KATEDRA INFORMATIKY FAKULTA MATEMATIKY FYZIKY A INFORMATIKY UNIVERZITA KOMENSKÉHO Odhady veľkosti pokrytí náhodne indukovaných podgrafov nrozmernej hyperkocky Diplomová práca Bc. Ján Kliman študijný odbor:

More information

Ex. 1. Find the general solution for each of the following differential equations:

Ex. 1. Find the general solution for each of the following differential equations: MATH 261.007 Instr. K. Ciesielski Spring 2010 NAME (print): SAMPLE TEST # 2 Solve the following exercises. Show your work. (No credit will be given for an answer with no supporting work shown.) Ex. 1.

More information

Ash Wednesday. First Introit thing. * Dómi- nos. di- di- nos, tú- ré- spi- Ps. ne. Dó- mi- Sál- vum. intra-vé-runt. Gló- ri-

Ash Wednesday. First Introit thing. * Dómi- nos. di- di- nos, tú- ré- spi- Ps. ne. Dó- mi- Sál- vum. intra-vé-runt. Gló- ri- sh Wdsdy 7 gn mult- tú- st Frst Intrt thng X-áud m. ns ní- m-sr-cór- Ps. -qu Ptr - m- Sál- vum m * usqu 1 d fc á-rum sp- m-sr-t- ó- num Gló- r- Fí- l- Sp-rí- : quó-n- m ntr-vé-runt á- n-mm c * m- quó-n-

More information

Complex Inversion Formula for Stieltjes and Widder Transforms with Applications

Complex Inversion Formula for Stieltjes and Widder Transforms with Applications Int. J. Contemp. Math. Sciences, Vol. 3, 8, no. 16, 761-77 Complex Inversion Formula for Stieltjes and Widder Transforms with Applications A. Aghili and A. Ansari Department of Mathematics, Faculty of

More information

METRICKÉ ÚLOHY V PRIESTORE

METRICKÉ ÚLOHY V PRIESTORE 1. ÚVOD METRICKÉ ÚLOHY V PRIESTORE Monika ĎURIKOVIČOVÁ 1 Katedra Matematiky, Strojnícka fakulta STU, Abstrakt: Popisujeme možnosti použitia programového systému Mathematica pri riešení špeciálnych metrických

More information

Series Solution of Linear Ordinary Differential Equations

Series Solution of Linear Ordinary Differential Equations Series Solution of Linear Ordinary Differential Equations Department of Mathematics IIT Guwahati Aim: To study methods for determining series expansions for solutions to linear ODE with variable coefficients.

More information

x 3y 2z = 6 1.2) 2x 4y 3z = 8 3x + 6y + 8z = 5 x + 3y 2z + 5t = 4 1.5) 2x + 8y z + 9t = 9 3x + 5y 12z + 17t = 7

x 3y 2z = 6 1.2) 2x 4y 3z = 8 3x + 6y + 8z = 5 x + 3y 2z + 5t = 4 1.5) 2x + 8y z + 9t = 9 3x + 5y 12z + 17t = 7 Linear Algebra and its Applications-Lab 1 1) Use Gaussian elimination to solve the following systems x 1 + x 2 2x 3 + 4x 4 = 5 1.1) 2x 1 + 2x 2 3x 3 + x 4 = 3 3x 1 + 3x 2 4x 3 2x 4 = 1 x + y + 2z = 4 1.4)

More information

TMA4120, Matematikk 4K, Fall Date Section Topic HW Textbook problems Suppl. Answers. Sept 12 Aug 31/

TMA4120, Matematikk 4K, Fall Date Section Topic HW Textbook problems Suppl. Answers. Sept 12 Aug 31/ TMA420, Matematikk 4K, Fall 206 LECTURE SCHEDULE AND ASSIGNMENTS Date Section Topic HW Textbook problems Suppl Answers Aug 22 6 Laplace transform 6:,7,2,2,22,23,25,26,4 A Sept 5 Aug 24/25 62-3 ODE, Heaviside

More information

2 u Du, k Hu Dv Hu, y H. u Cu j u qu u. Nv. v uy. Cu Hu F A H. qu Cu.. Cu j 1980, u V, v Nu My O k. v u u. A G C. My u v k, 2.5 H v v u / u v u v k y

2 u Du, k Hu Dv Hu, y H. u Cu j u qu u. Nv. v uy. Cu Hu F A H. qu Cu.. Cu j 1980, u V, v Nu My O k. v u u. A G C. My u v k, 2.5 H v v u / u v u v k y H HE 1016 M EEING OF HE ODIE CLU 1,016 Cu 7:30.. D 11, 2007 y W L Uvy. C : Pu A y: Ov 25 x u. Hk, u k MA k D u y Hu, u G, u C C, MN C, Nk Dv Hu, MN, u K A u vu v. W y A Pku G, G u. N EW UINE: D, Cu, 22

More information

From now on, we will represent a metric space with (X, d). Here are some examples: i=1 (x i y i ) p ) 1 p, p 1.

From now on, we will represent a metric space with (X, d). Here are some examples: i=1 (x i y i ) p ) 1 p, p 1. Chapter 1 Metric spaces 1.1 Metric and convergence We will begin with some basic concepts. Definition 1.1. (Metric space) Metric space is a set X, with a metric satisfying: 1. d(x, y) 0, d(x, y) = 0 x

More information

1. Let A R be a nonempty set that is bounded from above, and let a be the least upper bound of A. Show that there exists a sequence {a n } n N

1. Let A R be a nonempty set that is bounded from above, and let a be the least upper bound of A. Show that there exists a sequence {a n } n N Applied Analysis prelim July 15, 216, with solutions Solve 4 of the problems 1-5 and 2 of the problems 6-8. We will only grade the first 4 problems attempted from1-5 and the first 2 attempted from problems

More information

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s A g la di ou s F. L. 462 E l ec tr on ic D ev el op me nt A i ng er A.W.S. 371 C. A. M. A l ex an de r 236 A d mi ni st ra ti on R. H. (M rs ) A n dr ew s P. V. 326 O p ti ca l Tr an sm is si on A p ps

More information

Use precise language and domain-specific vocabulary to inform about or explain the topic. CCSS.ELA-LITERACY.WHST D

Use precise language and domain-specific vocabulary to inform about or explain the topic. CCSS.ELA-LITERACY.WHST D Lesson seven What is a chemical reaction? Science Constructing Explanations, Engaging in Argument and Obtaining, Evaluating, and Communicating Information ENGLISH LANGUAGE ARTS Reading Informational Text,

More information

I N A C O M P L E X W O R L D

I N A C O M P L E X W O R L D IS L A M I C E C O N O M I C S I N A C O M P L E X W O R L D E x p l o r a t i o n s i n A g-b eanste d S i m u l a t i o n S a m i A l-s u w a i l e m 1 4 2 9 H 2 0 0 8 I s l a m i c D e v e l o p m e

More information

FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITY KOMENSKÉHO V BRATISLAVE

FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITY KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITY KOMENSKÉHO V BRATISLAVE PÍSOMNÁ PRÁCA K DIZERTAČNEJ SKÚŠKE 2005 Zuzana Holeščáková FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITY KOMENSKÉHO V BRATISLAVE

More information

A = (a + 1) 2 = a 2 + 2a + 1

A = (a + 1) 2 = a 2 + 2a + 1 A = (a + 1) 2 = a 2 + 2a + 1 1 A = ( (a + b) + 1 ) 2 = (a + b) 2 + 2(a + b) + 1 = a 2 + 2ab + b 2 + 2a + 2b + 1 A = ( (a + b) + 1 ) 2 = (a + b) 2 + 2(a + b) + 1 = a 2 + 2ab + b 2 + 2a + 2b + 1 3 A = (

More information

lim Prob. < «_ - arc sin «1 / 2, 0 <_ «< 1.

lim Prob. < «_ - arc sin «1 / 2, 0 <_ «< 1. ON THE NUMBER OF POSITIVE SUMS OF INDEPENDENT RANDOM VARIABLES P. ERDÖS AND M. KAC 1 1. Introduction. In a recent paper' the authors have introduced a method for proving certain limit theorems of the theory

More information

Math 106: Review for Exam II - SOLUTIONS

Math 106: Review for Exam II - SOLUTIONS Math 6: Review for Exam II - SOLUTIONS INTEGRATION TIPS Substitution: usually let u a function that s inside another function, especially if du (possibly off by a multiplying constant) is also present

More information

5 Operations on Multiple Random Variables

5 Operations on Multiple Random Variables EE360 Random Signal analysis Chapter 5: Operations on Multiple Random Variables 5 Operations on Multiple Random Variables Expected value of a function of r.v. s Two r.v. s: ḡ = E[g(X, Y )] = g(x, y)f X,Y

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS 1. Basic Terminology A differential equation is an equation that contains an unknown function together with one or more of its derivatives. 1 Examples: 1. y = 2x + cos x 2. dy dt

More information

Jádrové odhady gradientu regresní funkce

Jádrové odhady gradientu regresní funkce Monika Kroupová Ivana Horová Jan Koláček Ústav matematiky a statistiky, Masarykova univerzita, Brno ROBUST 2018 Osnova Regresní model a odhad gradientu Metody pro odhad vyhlazovací matice Simulace Závěr

More information

MATEMATIKA I a jej využitie v ekonómii

MATEMATIKA I a jej využitie v ekonómii Katedra matematiky a teoretickej informatiky Fakulta elektrotechniky a informatiky Technická Univerzita v Košiciach MATEMATIKA I a jej využitie v ekonómii Monika Molnárová Košice 2012 Katedra matematiky

More information

In this chapter we study several functions that are useful in calculus and other areas of mathematics.

In this chapter we study several functions that are useful in calculus and other areas of mathematics. Calculus 5 7 Special functions In this chapter we study several functions that are useful in calculus and other areas of mathematics. 7. Hyperbolic trigonometric functions The functions we study in this

More information

Fixed Points and Contractive Transformations. Ron Goldman Department of Computer Science Rice University

Fixed Points and Contractive Transformations. Ron Goldman Department of Computer Science Rice University Fixed Points and Contractive Transformations Ron Goldman Department of Computer Science Rice University Applications Computer Graphics Fractals Bezier and B-Spline Curves and Surfaces Root Finding Newton

More information

ON THE OSCILLATION OF THE DERIVATIVES OF A PERIODIC FUNCTION

ON THE OSCILLATION OF THE DERIVATIVES OF A PERIODIC FUNCTION ON THE OSCILLATION OF THE DERIVATIVES OF A PERIODIC FUNCTION BY GEORGE PÖLYA AND NORBERT WIENER 1. Let f(x) be a real valued periodic function of period 2ir defined for all real values of x and possessing

More information

Scientific Computing

Scientific Computing 2301678 Scientific Computing Chapter 2 Interpolation and Approximation Paisan Nakmahachalasint Paisan.N@chula.ac.th Chapter 2 Interpolation and Approximation p. 1/66 Contents 1. Polynomial interpolation

More information

YOU MAY USE YOUR OWN BLANK SO AS NOT TO DISTURB OTHER COHERENTLY, OR THEY RISK NOT YOU MAY WRITE SOLUTIONS ON THE

YOU MAY USE YOUR OWN BLANK SO AS NOT TO DISTURB OTHER COHERENTLY, OR THEY RISK NOT YOU MAY WRITE SOLUTIONS ON THE MATH 1A FINAL (PRACTICE 1) PROFESSOR PAULIN DO NOT TURN OVER UNTIL INSTRUCTED TO DO SO. CALCULATORS ARE NOT PERMITTED YOU MAY USE YOUR OWN BLANK PAPER FOR ROUGH WORK SO AS NOT TO DISTURB OTHER STUDENTS,

More information

Exercises from other sources REAL NUMBERS 2,...,

Exercises from other sources REAL NUMBERS 2,..., Exercises from other sources REAL NUMBERS 1. Find the supremum and infimum of the following sets: a) {1, b) c) 12, 13, 14, }, { 1 3, 4 9, 13 27, 40 } 81,, { 2, 2 + 2, 2 + 2 + } 2,..., d) {n N : n 2 < 10},

More information

Math 20B Supplement. Bill Helton. September 23, 2004

Math 20B Supplement. Bill Helton. September 23, 2004 Math 0B Supplement Bill Helton September 3, 004 1 Supplement to Appendix G Supplement to Appendix G and Chapters 7 and 9 of Stewart Calculus Edition 5: August 003 Contents 1 Complex Exponentials: For Appendix

More information

h(x) lim H(x) = lim Since h is nondecreasing then h(x) 0 for all x, and if h is discontinuous at a point x then H(x) > 0. Denote

h(x) lim H(x) = lim Since h is nondecreasing then h(x) 0 for all x, and if h is discontinuous at a point x then H(x) > 0. Denote Real Variables, Fall 4 Problem set 4 Solution suggestions Exercise. Let f be of bounded variation on [a, b]. Show that for each c (a, b), lim x c f(x) and lim x c f(x) exist. Prove that a monotone function

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS 1. Basic Terminology A differential equation is an equation that contains an unknown function together with one or more of its derivatives. 1 Examples: 1. y = 2x + cos x 2. dy dt

More information