A = (a + 1) 2 = a 2 + 2a + 1

Size: px
Start display at page:

Download "A = (a + 1) 2 = a 2 + 2a + 1"

Transcription

1 A = (a + 1) 2 = a 2 + 2a + 1 1

2 A = ( (a + b) + 1 ) 2 = (a + b) 2 + 2(a + b) + 1 = a 2 + 2ab + b 2 + 2a + 2b + 1 A = ( (a + b) + 1 ) 2 = (a + b) 2 + 2(a + b) + 1 = a 2 + 2ab + b 2 + 2a + 2b A = ( (a + b) + 1 ) 2 = (a + b) 2 + 2(a + b) + 1 A = (a + 1) 2 = a 2 + 2a + 1 A = (a + 1) 2 = a 2 + 2a + 1

3 A = (a + 1) 2 = a 2 + 2a + 1 A = (a + 1) 2 = a 2 + 2a + 1 A = ( (a + b) + 1 ) 2 = (a + b) 2 + 2(a + b) + 1 = a 2 + 2ab + b 2 + 2a + 2b + 1 A = (a + 1) 2 = a 2 + 2a + 1

4 A = (a + 1) 2 = a 2 + 2a + 1 A = ( (a + b) + 1 ) 2 = (a + b) 2 + 2(a + b) + 1 = a 2 + 2ab + b 2 + 2a + 2b (x + 1)2 dx = 1 0 (x2 + 2x + 1)dx = 1 0 x2 dx xdx dx = = (x + 1) 2 dx = = (x 2 + 2x + 1)dx x 2 dx + 2 = xdx dx = 7 3

5 (cos x + sin x) 2 = cos 2 x + 2 cos x sin x + sin 2 x = cos 2 x + sin 2 x + 2 sin x cos x = 1 + sin(2x) n n (x i + 1) 2 = (x 2 i + 2x i + 1) i=1 = i=1 n n x 2 i + 2 x i + n i=1 i=1 f = ( x (x + 1) 2) = ( ) x x 2 + 2x + 1

6 A = (a + b) 2 = a 2 + 2ab + b 2 0 ( I = ln 1 + tan ( π 4 u)) ( du) = = = = = π 4 π 4 0 π 4 0 π 4 0 π 4 0 π 4 0 ( ln 1 + tan ( π 4 u)) du ( ln tan u ) du 1 + tan u ( 1 + tan u + 1 tan u ln 1 + tan u ( ) 2 ln du 1 + tan u ( ln 2 ln(1 + tan u) ) du = π 4 ln 2 π 4 = π 4 ln 2 I 0 ln(1 + tan u) du ) du r l

7 I = = = = = = 0 π 4 π 4 0 π 4 0 π 4 0 π 4 0 π 4 0 ( ln 1 + tan ( π 4 u)) ( du) ( ln 1 + tan ( π 4 u)) du ( ln tan u ) du 1 + tan u ( 1 + tan u + 1 tan u ln 1 + tan u ( ) 2 ln du 1 + tan u ( ln 2 ln(1 + tan u) ) du = π 4 ln 2 π 4 = π 4 ln 2 I 0 ln(1 + tan u) du ) du 2 i (a + b)(a + ib)(a b)(a ib) = (a + b)(a b) (a + ib)(a ib) = (a 2 b 2 )(a 2 + b 2 ) = a 4 b 4 (x y)(x + y) = x 2 y 2 2xy 3y = x 2x(K y 0 + Ky 0) 3Ky 0 = x 2xK y 0 + K(2xy 0 3y 0 ) = x 2xK y 0 = x 2xK x 3 2 = x 1 2 K = 1 2x 2 K = 1 2x y 0 x a i(a) f(a) a b a b i(a), f(a) i(b), f(b)

8 A = B = C + D = D = E + F + G + H + I = K + L + M = N = O A = (a + 1) 2 = a 2 + 2a + 1 F = 1 2 G = H K = K

9 φ(x, y) = 0 (x + y) 2 + (x + 2y) 2 = 0 { x + y = 0 x + 2y = 0 x y φ(x, y) = 0 (x + y) 2 + (x + 2y) 2 = 0 { x + y = 0 x + 2y = 0 x y A = (a + 1) 2 = a 2 + 2a + 1

10 { f(x) = 3x 3 + 2x 2 x + 4 g(x) = 5x 2 5x + 6 n n (x i + 1) 2 = (x 2 i + 2x i + 1) i=1 = i=1 n n x 2 i + 2 x i + n i=1 i=1 n n (x i + 1) 2 = (x 2 i + 2x i + 1) i=1 = i=1 n n x 2 i + 2 x i + n i=1 i=1 φ(x, y) = 0 (x + 2y) 2 + (2x + 4y) 2 = 0 { x + 2y = 0 2x + 4y = 0 { x + 2y = 0 x + 2y = 0 x + 2y = 0

11 φ(x, y) = 0 (x + 2y) 2 + (2x + 4y) 2 = 0 { x + 2y = 0 2x + 4y = 0 { x + 2y = 0 2 x + 2y = 0 x + 2y = 0 φ(x, y) = 0 (x + 2y) 2 + (2x + 4y) 2 = 0 { x + 2y = 0 2x + 4y = 0 { x + 2y = 0 x + 2y = 0 x + 2y = φ(x, y) = 0 (x + 2y) 2 + (2x + 4y) 2 = 0 { x + 2y = 0 2x + 4y = 0 { x + 2y = 0 2 x + 2y = 0 x + 2y = 0

12 φ(x, y) = 0 (x + 2y) 2 + (2x + 4y) 2 = 0 { x + 2y = 0 2x + 4y = 0 { x + 2y = 0 2 x + 2y = 0 x + 2y = 0 A = B = C = D = E = F

13 A B + B + B + B + B + B + B + B + B + B + B + B + B { C D E F G H + H + H + H + H + H + H { J K I L M { N O P Q 0 A B + B + B + B + B + B + B + B + B + B + B + B + B { C D E F G H + H + H + H + H + H + H { J K I L M { N O P Q

14 A = B = C A = B = C A = (a + 1) 2 = a 2 + 2a + 1 A = (a + 1) 2 = a 2 + 2a + 1

15 A = (a + 1) 2 = a 2 + 2a + 1 A = (a + 1) 2 = a 2 + 2a + 1

16 ( S n = 1 n 1 ) n R ( ) e i π k 2n k=0 ) n ( = 1 ( 1 e i π n R 2n 1 e i π 2n = 1 n R ( 1 i 1 e i π 2n ) ) e i 2π n

17 E 3(2x + 4) = 6 2x + 4 = 2 2x = 2 2x = A = (a + b) 2 = a 2 + b 2 + 2ab f(x) g(x) f(x) 2 g(x) 2 f(x) 2 g(x) 2 0

18 arccos(x) = arcsin arcsin 5 13 x = sin ( arcsin arcsin 5 13 x = cos arcsin x = ( ) ) 13 cos arcsin ( ) [ π 2, π 2 ] x [ 1, 1], cos(arcsin x) = 1 x 2 E 3(2x + 4) = 6 2x + 4 = 2 2x = 2 2x =

19 S n = 1 n = 1 n n 1 cos ( π 2 ) k n k=0 n 1 k=0 ( R ( = 1 n 1 n R k=0 e i kπ 2n e i kπ 2n ) ) ( = 1 n 1 ) n R ( ) e i π k 2n k=0 ) n ( = 1 ( 1 e i π n R 2n 1 e i π 2n = 1 n R ( 1 i 1 e i π 2n ) ) cos x = R(e ix ) R(z + z ) = R(z) + R(z ) exp + e i 2π n

20 E (x+4) 3 + 5x+3 5 = 7 5(x + 4) + 3(5x + 3) = x x + 9 = x + 29 = x = 76 x = a. f E b. f 0 c. f d. K > 0 x E f(x) K x e. f

21 a. f E b. f 0 c. f d. K > 0 x E f(x) K x e. f

22

23

24 x

25

26

27

28

29 x

30

31

32 [3, 2, 1] 1 1

33

34

35

36

37

38 x

39 x

40 x x

41 x

42 x x

43 x y

44

45 0 3

46

47

48

49

50

51

52

Section 5.5 More Integration Formula (The Substitution Method) 2 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I

Section 5.5 More Integration Formula (The Substitution Method) 2 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I Section 5.5 More Integration Formula (The Substitution Method) 2 Lectures College of Science MATHS : Calculus I (University of Bahrain) Integrals / 7 The Substitution Method Idea: To replace a relatively

More information

Final Exam. Math 3 December 7, 2010

Final Exam. Math 3 December 7, 2010 Final Exam Math 3 December 7, 200 Name: On this final examination for Math 3 in Fall 200, I will work individually, neither giving nor receiving help, guided by the Dartmouth Academic Honor Principle.

More information

Inverse Trigonometric Functions. September 5, 2018

Inverse Trigonometric Functions. September 5, 2018 Inverse Trigonometric Functions September 5, 08 / 7 Restricted Sine Function. The trigonometric function sin x is not a one-to-one functions..0 0.5 Π 6, 5Π 6, Π Π Π Π 0.5 We still want an inverse, so what

More information

Linearization and Extreme Values of Functions

Linearization and Extreme Values of Functions Linearization and Extreme Values of Functions 3.10 Linearization and Differentials Linear or Tangent Line Approximations of function values Equation of tangent to y = f(x) at (a, f(a)): Tangent line approximation

More information

Name Date Period. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Name Date Period. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. AB Fall Final Exam Review 200-20 Name Date Period MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the problem. ) The position of a particle

More information

MATH 1207 R02 MIDTERM EXAM 2 SOLUTION

MATH 1207 R02 MIDTERM EXAM 2 SOLUTION MATH 7 R MIDTERM EXAM SOLUTION FALL 6 - MOON Name: Write your answer neatly and show steps. Except calculators, any electronic devices including laptops and cell phones are not allowed. () (5 pts) Find

More information

SET 1. (1) Solve for x: (a) e 2x = 5 3x

SET 1. (1) Solve for x: (a) e 2x = 5 3x () Solve for x: (a) e x = 5 3x SET We take natural log on both sides: ln(e x ) = ln(5 3x ) x = 3 x ln(5) Now we take log base on both sides: log ( x ) = log (3 x ln 5) x = log (3 x ) + log (ln(5)) x x

More information

2.12: Derivatives of Exp/Log (cont d) and 2.15: Antiderivatives and Initial Value Problems

2.12: Derivatives of Exp/Log (cont d) and 2.15: Antiderivatives and Initial Value Problems 2.12: Derivatives of Exp/Log (cont d) and 2.15: Antiderivatives and Initial Value Problems Mathematics 3 Lecture 14 Dartmouth College February 03, 2010 Derivatives of the Exponential and Logarithmic Functions

More information

Section 3.5: Implicit Differentiation

Section 3.5: Implicit Differentiation Section 3.5: Implicit Differentiation In the previous sections, we considered the problem of finding the slopes of the tangent line to a given function y = f(x). The idea of a tangent line however is not

More information

1 Solution to Homework 4

1 Solution to Homework 4 Solution to Homework Section. 5. The characteristic equation is r r + = (r )(r ) = 0 r = or r =. y(t) = c e t + c e t y = c e t + c e t. y(0) =, y (0) = c + c =, c + c = c =, c =. To find the maximum value

More information

Solutions to Exam 2, Math 10560

Solutions to Exam 2, Math 10560 Solutions to Exam, Math 6. Which of the following expressions gives the partial fraction decomposition of the function x + x + f(x = (x (x (x +? Solution: Notice that (x is not an irreducile factor. If

More information

x n cos 2x dx. dx = nx n 1 and v = 1 2 sin(2x). Andreas Fring (City University London) AS1051 Lecture Autumn / 36

x n cos 2x dx. dx = nx n 1 and v = 1 2 sin(2x). Andreas Fring (City University London) AS1051 Lecture Autumn / 36 We saw in Example 5.4. that we sometimes need to apply integration by parts several times in the course of a single calculation. Example 5.4.4: For n let S n = x n cos x dx. Find an expression for S n

More information

Find the indicated derivative. 1) Find y(4) if y = 3 sin x. A) y(4) = 3 cos x B) y(4) = 3 sin x C) y(4) = - 3 cos x D) y(4) = - 3 sin x

Find the indicated derivative. 1) Find y(4) if y = 3 sin x. A) y(4) = 3 cos x B) y(4) = 3 sin x C) y(4) = - 3 cos x D) y(4) = - 3 sin x Assignment 5 Name Find the indicated derivative. ) Find y(4) if y = sin x. ) A) y(4) = cos x B) y(4) = sin x y(4) = - cos x y(4) = - sin x ) y = (csc x + cot x)(csc x - cot x) ) A) y = 0 B) y = y = - csc

More information

If y = f (u) is a differentiable function of u and u = g(x) is a differentiable function of x then dy dx = dy. du du. If y = f (u) then y = f (u) u

If y = f (u) is a differentiable function of u and u = g(x) is a differentiable function of x then dy dx = dy. du du. If y = f (u) then y = f (u) u Section 3 4B The Chain Rule If y = f (u) is a differentiable function of u and u = g(x) is a differentiable function of x then dy dx = dy du du dx or If y = f (u) then f (u) u The Chain Rule with the Power

More information

Math 1131Q Section 10

Math 1131Q Section 10 Math 1131Q Section 10 Review Oct 5, 2010 Exam 1 DATE: Tuesday, October 5 TIME: 6-8 PM Exam Rooms Sections 11D, 14D, 15D CLAS 110 Sections12D, 13D, 16D PB 38 (Physics Building) Material covered on the exam:

More information

Chapter 5 Integrals. 5.1 Areas and Distances

Chapter 5 Integrals. 5.1 Areas and Distances Chapter 5 Integrals 5.1 Areas and Distances We start with a problem how can we calculate the area under a given function ie, the area between the function and the x-axis? If the curve happens to be something

More information

If y = f (u) is a differentiable function of u and u = g(x) is a differentiable function of x then dy dx = dy. du du. If y = f (u) then y = f (u) u

If y = f (u) is a differentiable function of u and u = g(x) is a differentiable function of x then dy dx = dy. du du. If y = f (u) then y = f (u) u Section 3 4B Lecture The Chain Rule If y = f (u) is a differentiable function of u and u = g(x) is a differentiable function of x then dy dx = dy du du dx or If y = f (u) then y = f (u) u The Chain Rule

More information

Practice Midterm 2 Math 2153

Practice Midterm 2 Math 2153 Practice Midterm 2 Math 23. Decide if the following statements are TRUE or FALSE and circle your answer. You do NOT need to justify your answers. (a) ( point) If both partial derivatives f x and f y exist

More information

Math 181, Exam 1, Study Guide Problem 1 Solution. xe x2 dx = e x2 xdx. = e u 1 2 du = 1. e u du. = 1 2 eu + C. = 1 2 ex2 + C

Math 181, Exam 1, Study Guide Problem 1 Solution. xe x2 dx = e x2 xdx. = e u 1 2 du = 1. e u du. = 1 2 eu + C. = 1 2 ex2 + C Math 8, Exam, Study Guide Problem Solution. Evaluate xe x dx. Solution: We evaluate the integral using the u-substitution method. Let u x. Then du xdx du xdx and we get: xe x dx e x xdx e u du e u du eu

More information

Math 201 Solutions to Assignment 1. 2ydy = x 2 dx. y = C 1 3 x3

Math 201 Solutions to Assignment 1. 2ydy = x 2 dx. y = C 1 3 x3 Math 201 Solutions to Assignment 1 1. Solve the initial value problem: x 2 dx + 2y = 0, y(0) = 2. x 2 dx + 2y = 0, y(0) = 2 2y = x 2 dx y 2 = 1 3 x3 + C y = C 1 3 x3 Notice that y is not defined for some

More information

Partial Derivatives for Math 229. Our puropose here is to explain how one computes partial derivatives. We will not attempt

Partial Derivatives for Math 229. Our puropose here is to explain how one computes partial derivatives. We will not attempt Partial Derivatives for Math 229 Our puropose here is to explain how one computes partial derivatives. We will not attempt to explain how they arise or why one would use them; that is left to other courses

More information

Problem set 5, Real Analysis I, Spring, otherwise. (a) Verify that f is integrable. Solution: Compute since f is even, 1 x (log 1/ x ) 2 dx 1

Problem set 5, Real Analysis I, Spring, otherwise. (a) Verify that f is integrable. Solution: Compute since f is even, 1 x (log 1/ x ) 2 dx 1 Problem set 5, Real Analysis I, Spring, 25. (5) Consider the function on R defined by f(x) { x (log / x ) 2 if x /2, otherwise. (a) Verify that f is integrable. Solution: Compute since f is even, R f /2

More information

MAT01A1: Inverse Functions

MAT01A1: Inverse Functions MAT01A1: Inverse Functions Dr Craig 27 February 2018 Introduction Who: Dr Craig What: Lecturer & course coordinator for MAT01A1 Where: C-Ring 508 acraig@uj.ac.za Web: http://andrewcraigmaths.wordpress.com

More information

Grade: The remainder of this page has been left blank for your workings. VERSION E. Midterm E: Page 1 of 12

Grade: The remainder of this page has been left blank for your workings. VERSION E. Midterm E: Page 1 of 12 First Name: Student-No: Last Name: Section: Grade: The remainder of this page has been left blank for your workings. Midterm E: Page of Indefinite Integrals. 9 marks Each part is worth 3 marks. Please

More information

(x 3)(x + 5) = (x 3)(x 1) = x + 5. sin 2 x e ax bx 1 = 1 2. lim

(x 3)(x + 5) = (x 3)(x 1) = x + 5. sin 2 x e ax bx 1 = 1 2. lim SMT Calculus Test Solutions February, x + x 5 Compute x x x + Answer: Solution: Note that x + x 5 x x + x )x + 5) = x )x ) = x + 5 x x + 5 Then x x = + 5 = Compute all real values of b such that, for fx)

More information

C3 Revision Questions. (using questions from January 2006, January 2007, January 2008 and January 2009)

C3 Revision Questions. (using questions from January 2006, January 2007, January 2008 and January 2009) C3 Revision Questions (using questions from January 2006, January 2007, January 2008 and January 2009) 1 2 1. f(x) = 1 3 x 2 + 3, x 2. 2 ( x 2) (a) 2 x x 1 Show that f(x) =, x 2. 2 ( x 2) (4) (b) Show

More information

Math 113 (Calculus 2) Exam 4

Math 113 (Calculus 2) Exam 4 Math 3 (Calculus ) Exam 4 November 0 November, 009 Sections 0, 3 7 Name Student ID Section Instructor In some cases a series may be seen to converge or diverge for more than one reason. For such problems

More information

Mar 10, Calculus with Algebra and Trigonometry II Lecture 14Undoing the Marproduct 10, 2015 rule: integration 1 / 18

Mar 10, Calculus with Algebra and Trigonometry II Lecture 14Undoing the Marproduct 10, 2015 rule: integration 1 / 18 Calculus with Algebra and Trigonometry II Lecture 14 Undoing the product rule: integration by parts Mar 10, 2015 Calculus with Algebra and Trigonometry II Lecture 14Undoing the Marproduct 10, 2015 rule:

More information

Homework Solutions: , plus Substitutions

Homework Solutions: , plus Substitutions Homework Solutions: 2.-2.2, plus Substitutions Section 2. I have not included any drawings/direction fields. We can see them using Maple or by hand, so we ll be focusing on getting the analytic solutions

More information

Spring 2015 Sample Final Exam

Spring 2015 Sample Final Exam Math 1151 Spring 2015 Sample Final Exam Final Exam on 4/30/14 Name (Print): Time Limit on Final: 105 Minutes Go on carmen.osu.edu to see where your final exam will be. NOTE: This exam is much longer than

More information

Math 265 (Butler) Practice Midterm III B (Solutions)

Math 265 (Butler) Practice Midterm III B (Solutions) Math 265 (Butler) Practice Midterm III B (Solutions). Set up (but do not evaluate) an integral for the surface area of the surface f(x, y) x 2 y y over the region x, y 4. We have that the surface are is

More information

Math 250 Skills Assessment Test

Math 250 Skills Assessment Test Math 5 Skills Assessment Test Page Math 5 Skills Assessment Test The purpose of this test is purely diagnostic (before beginning your review, it will be helpful to assess both strengths and weaknesses).

More information

Topics and Concepts. 1. Limits

Topics and Concepts. 1. Limits Topics and Concepts 1. Limits (a) Evaluating its (Know: it exists if and only if the it from the left is the same as the it from the right) (b) Infinite its (give rise to vertical asymptotes) (c) Limits

More information

Have a Safe and Happy Break

Have a Safe and Happy Break Math 121 Final EF: December 10, 2013 Name Directions: 1 /15 2 /15 3 /15 4 /15 5 /10 6 /10 7 /20 8 /15 9 /15 10 /10 11 /15 12 /20 13 /15 14 /10 Total /200 1. No book, notes, or ouiji boards. You may use

More information

2 (x 2 + a 2 ) x 2. is easy. Do this first.

2 (x 2 + a 2 ) x 2. is easy. Do this first. MAC 3 INTEGRATION BY PARTS General Remark: Unless specified otherwise, you will solve the following problems using integration by parts, combined, if necessary with simple substitutions We will not explicitly

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS 1. Basic Terminology A differential equation is an equation that contains an unknown function together with one or more of its derivatives. 1 Examples: 1. y = 2x + cos x 2. dy dt

More information

1 + x 2 d dx (sec 1 x) =

1 + x 2 d dx (sec 1 x) = Page This exam has: 8 multiple choice questions worth 4 points each. hand graded questions worth 4 points each. Important: No graphing calculators! Any non-graphing, non-differentiating, non-integrating

More information

1 Arithmetic calculations (calculator is not allowed)

1 Arithmetic calculations (calculator is not allowed) 1 ARITHMETIC CALCULATIONS (CALCULATOR IS NOT ALLOWED) 1 Arithmetic calculations (calculator is not allowed) 1.1 Check the result Problem 1.1. Problem 1.2. Problem 1.3. Problem 1.4. 78 5 6 + 24 3 4 99 1

More information

MATH 151 Engineering Mathematics I

MATH 151 Engineering Mathematics I MATH 151 Engineering Mathematics I Fall 2017, WEEK 14 JoungDong Kim Week 14 Section 5.4, 5.5, 6.1, Indefinite Integrals and the Net Change Theorem, The Substitution Rule, Areas Between Curves. Section

More information

x 2 y = 1 2. Problem 2. Compute the Taylor series (at the base point 0) for the function 1 (1 x) 3.

x 2 y = 1 2. Problem 2. Compute the Taylor series (at the base point 0) for the function 1 (1 x) 3. MATH 8.0 - FINAL EXAM - SOME REVIEW PROBLEMS WITH SOLUTIONS 8.0 Calculus, Fall 207 Professor: Jared Speck Problem. Consider the following curve in the plane: x 2 y = 2. Let a be a number. The portion of

More information

M GENERAL MATHEMATICS -2- Dr. Tariq A. AlFadhel 1 Solution of the First Mid-Term Exam First semester H

M GENERAL MATHEMATICS -2- Dr. Tariq A. AlFadhel 1 Solution of the First Mid-Term Exam First semester H M - GENERAL MATHEMATICS -- Dr. Tariq A. AlFadhel Solution of the First Mid-Term Exam First semester 38-39 H 3 Q. Let A =, B = and C = 3 Compute (if possible) : A+B and BC A+B is impossible. ( ) BC = 3

More information

2005 Mathematics. Advanced Higher. Finalised Marking Instructions

2005 Mathematics. Advanced Higher. Finalised Marking Instructions 2005 Mathematics Advanced Higher Finalised Marking Instructions These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments.

More information

Study 5.5, # 1 5, 9, 13 27, 35, 39, 49 59, 63, 69, 71, 81. Class Notes: Prof. G. Battaly, Westchester Community College, NY Homework.

Study 5.5, # 1 5, 9, 13 27, 35, 39, 49 59, 63, 69, 71, 81. Class Notes: Prof. G. Battaly, Westchester Community College, NY Homework. Goals: 1. Recognize an integrand that is the derivative of a composite function. 2. Generalize the Basic Integration Rules to include composite functions. 3. Use substitution to simplify the process of

More information

f(f 1 (B)) B f(f 1 (B)) = B B f(s) f 1 (f(a)) A f 1 (f(a)) = A f : S T 若敘述為真則證明之, 反之則必須給反例 (Q, ) y > 1 y 1/n y t > 1 n > (y 1)/(t 1) y 1/n < t

f(f 1 (B)) B f(f 1 (B)) = B B f(s) f 1 (f(a)) A f 1 (f(a)) = A f : S T 若敘述為真則證明之, 反之則必須給反例 (Q, ) y > 1 y 1/n y t > 1 n > (y 1)/(t 1) y 1/n < t S T A S B T f : S T f(f 1 (B)) B f(f 1 (B)) = B B f(s) f 1 (f(a)) A f 1 (f(a)) = A f : S T f : S T S T f y T f 1 ({y) f(d 1 D 2 ) = f(d 1 ) f(d 2 ) D 1 D 2 S F x 0 x F x = 0 x = 0 x y = x y x, y F x +

More information

OBJECTIVES Use the area under a graph to find total cost. Use rectangles to approximate the area under a graph.

OBJECTIVES Use the area under a graph to find total cost. Use rectangles to approximate the area under a graph. 4.1 The Area under a Graph OBJECTIVES Use the area under a graph to find total cost. Use rectangles to approximate the area under a graph. 4.1 The Area Under a Graph Riemann Sums (continued): In the following

More information

Chapter 8: Taylor s theorem and L Hospital s rule

Chapter 8: Taylor s theorem and L Hospital s rule Chapter 8: Taylor s theorem and L Hospital s rule Theorem: [Inverse Mapping Theorem] Suppose that a < b and f : [a, b] R. Given that f (x) > 0 for all x (a, b) then f 1 is differentiable on (f(a), f(b))

More information

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 216-1-11 DEL A 1. Differentiate these functions with respect to x and state in each case for what x the derivative exists. Only answers are necessary,

More information

Exploring Substitution

Exploring Substitution I. Introduction Exploring Substitution Math Fall 08 Lab We use the Fundamental Theorem of Calculus, Part to evaluate a definite integral. If f is continuous on [a, b] b and F is any antiderivative of f

More information

6.2 Trigonometric Integrals and Substitutions

6.2 Trigonometric Integrals and Substitutions Arkansas Tech University MATH 9: Calculus II Dr. Marcel B. Finan 6. Trigonometric Integrals and Substitutions In this section, we discuss integrals with trigonometric integrands and integrals that can

More information

Calculus II Practice Test Questions for Chapter , 9.6, Page 1 of 9

Calculus II Practice Test Questions for Chapter , 9.6, Page 1 of 9 Calculus II Practice Test Questions for Chapter 9.1 9.4, 9.6, 10.1 10.4 Page 1 of 9 This is in no way an inclusive set of problems there can be other types of problems on the actual test. To prepare for

More information

OCR (MEI) Mathematics Advanced Subsidiary GCE Core 3 (4753) January 2010

OCR (MEI) Mathematics Advanced Subsidiary GCE Core 3 (4753) January 2010 Link to past paper on OCR website: www.ocr.org.uk The above link takes you to OCR s website. From there you click QUALIFICATIONS, QUALIFICATIONS BY TYPE, AS/A LEVEL GCE, MATHEMATICS (MEI), VIEW ALL DOCUMENTS,

More information

Institute of Computer Science

Institute of Computer Science Institute of Computer Science Academy of Sciences of the Czech Republic Calculus Digest Jiří Rohn http://uivtx.cs.cas.cz/~rohn Technical report No. V-54 02.02.202 Pod Vodárenskou věží 2, 82 07 Prague 8,

More information

Name: Instructor: 1. a b c d e. 15. a b c d e. 2. a b c d e a b c d e. 16. a b c d e a b c d e. 4. a b c d e... 5.

Name: Instructor: 1. a b c d e. 15. a b c d e. 2. a b c d e a b c d e. 16. a b c d e a b c d e. 4. a b c d e... 5. Name: Instructor: Math 155, Practice Final Exam, December The Honor Code is in effect for this examination. All work is to be your own. No calculators. The exam lasts for 2 hours. Be sure that your name

More information

MAS113 CALCULUS II SPRING 2008, QUIZ 5 SOLUTIONS. x 2 dx = 3y + y 3 = x 3 + c. It can be easily verified that the differential equation is exact, as

MAS113 CALCULUS II SPRING 2008, QUIZ 5 SOLUTIONS. x 2 dx = 3y + y 3 = x 3 + c. It can be easily verified that the differential equation is exact, as MAS113 CALCULUS II SPRING 008, QUIZ 5 SOLUTIONS Quiz 5a Solutions (1) Solve the differential equation y = x 1 + y. (1 + y )y = x = (1 + y ) = x = 3y + y 3 = x 3 + c. () Solve the differential equation

More information

2.1 The derivative. Rates of change. m sec = y f (a + h) f (a)

2.1 The derivative. Rates of change. m sec = y f (a + h) f (a) 2.1 The derivative Rates of change 1 The slope of a secant line is m sec = y f (b) f (a) = x b a and represents the average rate of change over [a, b]. Letting b = a + h, we can express the slope of the

More information

Alpha Trigonometry Solutions MA National Convention. Answers:

Alpha Trigonometry Solutions MA National Convention. Answers: Answers: 1 A C C D 5 A 6 C 7 B 8 A 9 A 10 A 11 C 1 D 1 E 1 B 15 C 16 C 17 D 18 C 19 B 0 C 1 E A C C 5 E 6 B 7 E 8 D 9 D 0 B 1 Solutions: 1 A Need to check each answer to 1 k60 and 1 (60 ) = 06. C An even

More information

Series Solution of Linear Ordinary Differential Equations

Series Solution of Linear Ordinary Differential Equations Series Solution of Linear Ordinary Differential Equations Department of Mathematics IIT Guwahati Aim: To study methods for determining series expansions for solutions to linear ODE with variable coefficients.

More information

Announcements. Topics: Homework: - sections 4.5 and * Read these sections and study solved examples in your textbook!

Announcements. Topics: Homework: - sections 4.5 and * Read these sections and study solved examples in your textbook! Announcements Topics: - sections 4.5 and 5.1-5.5 * Read these sections and study solved examples in your textbook! Homework: - review lecture notes thoroughly - work on practice problems from the textbook

More information

Problem Max. Possible Points Total

Problem Max. Possible Points Total MA 262 Exam 1 Fall 2011 Instructor: Raphael Hora Name: Max Possible Student ID#: 1234567890 1. No books or notes are allowed. 2. You CAN NOT USE calculators or any electronic devices. 3. Show all work

More information

Change of Variables: Indefinite Integrals

Change of Variables: Indefinite Integrals Change of Variables: Indefinite Integrals Mathematics 11: Lecture 39 Dan Sloughter Furman University November 29, 2007 Dan Sloughter (Furman University) Change of Variables: Indefinite Integrals November

More information

UNIT 3: DERIVATIVES STUDY GUIDE

UNIT 3: DERIVATIVES STUDY GUIDE Calculus I UNIT 3: Derivatives REVIEW Name: Date: UNIT 3: DERIVATIVES STUDY GUIDE Section 1: Section 2: Limit Definition (Derivative as the Slope of the Tangent Line) Calculating Rates of Change (Average

More information

Applications of Differentiation

Applications of Differentiation Applications of Differentiation Definitions. A function f has an absolute maximum (or global maximum) at c if for all x in the domain D of f, f(c) f(x). The number f(c) is called the maximum value of f

More information

9. The x axis is a horizontal line so a 1 1 function can touch the x axis in at most one place.

9. The x axis is a horizontal line so a 1 1 function can touch the x axis in at most one place. O Answers: Chapter 7 Contemporary Calculus PROBLEM ANSWERS Chapter Seven Section 7.0. f is one to one ( ), y is, g is not, h is not.. f is not, y is, g is, h is not. 5. I think SS numbers are supposeo

More information

Math 223 Final. July 24, 2014

Math 223 Final. July 24, 2014 Math 223 Final July 24, 2014 Name Directions: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Total 1. No books, notes, or evil looks. You may use a calculator to do routine arithmetic computations. You may not use your

More information

Allen Zhang Bobby Laudone Dima Kuzmenko Geoff Bentsen Jaeun Park. James Hanson Julia Lindberg Mao Li Polly Yu Qiao He

Allen Zhang Bobby Laudone Dima Kuzmenko Geoff Bentsen Jaeun Park. James Hanson Julia Lindberg Mao Li Polly Yu Qiao He MATH 222 (Lectures 2,3, and 4) Fall 2017 Practice Midterm 2.1 Name: Circle your TA s name from the following list. Allen Zhang Bobby Laudone Dima Kuzmenko Geoff Bentsen Jaeun Park James Hanson Julia Lindberg

More information

Solutionbank Edexcel AS and A Level Modular Mathematics

Solutionbank Edexcel AS and A Level Modular Mathematics Page of Exercise A, Question The curve C, with equation y = x ln x, x > 0, has a stationary point P. Find, in terms of e, the coordinates of P. (7) y = x ln x, x > 0 Differentiate as a product: = x + x

More information

Final Examination 201-NYA-05 May 18, 2018

Final Examination 201-NYA-05 May 18, 2018 . ( points) Evaluate each of the following limits. 3x x + (a) lim x x 3 8 x + sin(5x) (b) lim x sin(x) (c) lim x π/3 + sec x ( (d) x x + 5x ) (e) lim x 5 x lim x 5 + x 6. (3 points) What value of c makes

More information

1 st ORDER O.D.E. EXAM QUESTIONS

1 st ORDER O.D.E. EXAM QUESTIONS 1 st ORDER O.D.E. EXAM QUESTIONS Question 1 (**) 4y + = 6x 5, x > 0. dx x Determine the solution of the above differential equation subject to the boundary condition is y = 1 at x = 1. Give the answer

More information

Math 152 Take Home Test 1

Math 152 Take Home Test 1 Math 5 Take Home Test Due Monday 5 th October (5 points) The following test will be done at home in order to ensure that it is a fair and representative reflection of your own ability in mathematics I

More information

Calculus II/III Summer Packet

Calculus II/III Summer Packet Calculus II/III Summer Packet First of all, have a great summer! Enjoy your time away from school. Come back fired up and ready to learn. I know that I will be ready to have a great year of calculus with

More information

Math 1431 Final Exam Review

Math 1431 Final Exam Review Math 1431 Final Exam Review Comprehensive exam. I recommend you study all past reviews and practice exams as well. Know all rules/formulas. Make a reservation for the final exam. If you miss it, go back

More information

Math Practice Exam 3 - solutions

Math Practice Exam 3 - solutions Math 181 - Practice Exam 3 - solutions Problem 1 Consider the function h(x) = (9x 2 33x 25)e 3x+1. a) Find h (x). b) Find all values of x where h (x) is zero ( critical values ). c) Using the sign pattern

More information

Power Series Solutions to the Legendre Equation

Power Series Solutions to the Legendre Equation Department of Mathematics IIT Guwahati The Legendre equation The equation (1 x 2 )y 2xy + α(α + 1)y = 0, (1) where α is any real constant, is called Legendre s equation. When α Z +, the equation has polynomial

More information

Integration by Parts. MAT 126, Week 2, Thursday class. Xuntao Hu

Integration by Parts. MAT 126, Week 2, Thursday class. Xuntao Hu MAT 126, Week 2, Thursday class Xuntao Hu Recall that the substitution rule is a combination of the FTC and the chain rule. We can also combine the FTC and the product rule: d dx [f (x)g(x)] = f (x)g (x)

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Calculus 1 Instructor: James Lee Practice Exam 3 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Determine from the graph whether the function

More information

~UTS. University of Technology, Sydney TO BE RETURNED AT THE END OF THE EXAMINATION. THIS PAPER MUST NOT BE REMOVED FROM THE EXAM CENTRE.

~UTS. University of Technology, Sydney TO BE RETURNED AT THE END OF THE EXAMINATION. THIS PAPER MUST NOT BE REMOVED FROM THE EXAM CENTRE. Cover Type B ~UTS University of Technology, Sydney TO BE RETURNED AT THE END OF THE EXAMINATION. THIS PAPER MUST NOT BE REMOVED FROM THE EXAM CENTRE. SURNAME: FIRST NAME: STUDENT NUMBER: --------------------

More information

First Order Differential Equations and Applications

First Order Differential Equations and Applications First Order Differential Equations and Applications Definition. A differential Equation is an equation involving an unknown function y, and some of its derivatives, and possibly some other known functions.

More information

Final Exam SOLUTIONS MAT 131 Fall 2011

Final Exam SOLUTIONS MAT 131 Fall 2011 1. Compute the following its. (a) Final Exam SOLUTIONS MAT 131 Fall 11 x + 1 x 1 x 1 The numerator is always positive, whereas the denominator is negative for numbers slightly smaller than 1. Also, as

More information

Solution: APPM 1350 Final Exam Spring 2014

Solution: APPM 1350 Final Exam Spring 2014 APPM 135 Final Exam Spring 214 1. (a) (5 pts. each) Find the following derivatives, f (x), for the f given: (a) f(x) = x 2 sin 1 (x 2 ) (b) f(x) = 1 1 + x 2 (c) f(x) = x ln x (d) f(x) = x x d (b) (15 pts)

More information

Announcements. Topics: Homework:

Announcements. Topics: Homework: Announcements Topics: - sections 7.3 (the definite integral +area), 7.4 (FTC), 7.5 (additional techniques of integration) * Read these sections and study solved examples in your textbook! Homework: - review

More information

Resources: http://www.calcchat.com/book/calculus-9e/ http://apcentral.collegeboard.com/apc/public/courses/teachers_corner/27.html http://www.calculus.org/ http://cow.math.temple.edu/ http://www.mathsisfun.com/calculus/

More information

Functions. Remark 1.2 The objective of our course Calculus is to study functions.

Functions. Remark 1.2 The objective of our course Calculus is to study functions. Functions 1.1 Functions and their Graphs Definition 1.1 A function f is a rule assigning a number to each of the numbers. The number assigned to the number x via the rule f is usually denoted by f(x).

More information

Analysis/Calculus Review Day 2

Analysis/Calculus Review Day 2 Analysis/Calculus Review Day 2 Arvind Saibaba arvindks@stanford.edu Institute of Computational and Mathematical Engineering Stanford University September 14, 2010 Limit Definition Let A R, f : A R and

More information

APPM 1350 Final Exam Fall 2017

APPM 1350 Final Exam Fall 2017 APPM 350 Final Exam Fall 207. (26 pts) Evaluate the following. (a) Let g(x) cos 3 (π 2x). Find g (π/3). (b) Let y ( x) x. Find y (4). (c) lim r 0 e /r ln(r) + (a) (9 pt) g (x) 3 cos 2 (π 2x)( sin(π 2x))(

More information

and lim lim 6. The Squeeze Theorem

and lim lim 6. The Squeeze Theorem Limits (day 3) Things we ll go over today 1. Limits of the form 0 0 (continued) 2. Limits of piecewise functions 3. Limits involving absolute values 4. Limits of compositions of functions 5. Limits similar

More information

17.2 Nonhomogeneous Linear Equations. 27 September 2007

17.2 Nonhomogeneous Linear Equations. 27 September 2007 17.2 Nonhomogeneous Linear Equations 27 September 2007 Nonhomogeneous Linear Equations The differential equation to be studied is of the form ay (x) + by (x) + cy(x) = G(x) (1) where a 0, b, c are given

More information

Complex numbers. Reference note to lecture 9 ECON 5101 Time Series Econometrics

Complex numbers. Reference note to lecture 9 ECON 5101 Time Series Econometrics Complex numbers. Reference note to lecture 9 ECON 5101 Time Series Econometrics Ragnar Nymoen March 31 2014 1 Introduction This note gives the definitions and theorems related to complex numbers that are

More information

Exam 3 MATH Calculus I

Exam 3 MATH Calculus I Trinity College December 03, 2015 MATH 131-01 Calculus I By signing below, you attest that you have neither given nor received help of any kind on this exam. Signature: Printed Name: Instructions: Show

More information

CALCULUS. Berkant Ustaoğlu CRYPTOLOUNGE.NET

CALCULUS. Berkant Ustaoğlu CRYPTOLOUNGE.NET CALCULUS Berkant Ustaoğlu CRYPTOLOUNGE.NET Secant 1 Definition Let f be defined over an interval I containing u. If x u and x I then f (x) f (u) Q = x u is the difference quotient. Also if h 0, such that

More information

MSc Mas6002, Introductory Material Mathematical Methods Exercises

MSc Mas6002, Introductory Material Mathematical Methods Exercises MSc Mas62, Introductory Material Mathematical Methods Exercises These exercises are on a range of mathematical methods which are useful in different parts of the MSc, especially calculus and linear algebra.

More information

SOLUTIONS FOR PRACTICE FINAL EXAM

SOLUTIONS FOR PRACTICE FINAL EXAM SOLUTIONS FOR PRACTICE FINAL EXAM ANDREW J. BLUMBERG. Solutions () Short answer questions: (a) State the mean value theorem. Proof. The mean value theorem says that if f is continuous on (a, b) and differentiable

More information

Math 122 Test 3. April 17, 2018

Math 122 Test 3. April 17, 2018 SI: Math Test 3 April 7, 08 EF: 3 4 5 6 7 8 9 0 Total Name Directions:. No books, notes or April showers. You may use a calculator to do routine arithmetic computations. You may not use your calculator

More information

Chapter 2. First-Order Differential Equations

Chapter 2. First-Order Differential Equations Chapter 2 First-Order Differential Equations i Let M(x, y) + N(x, y) = 0 Some equations can be written in the form A(x) + B(y) = 0 DEFINITION 2.2. (Separable Equation) A first-order differential equation

More information

cos t 2 sin 2t (vi) y = cosh t sinh t (vii) y sin x 2 = x sin y 2 (viii) xy = cot(xy) (ix) 1 + x = sin(xy 2 ) (v) g(t) =

cos t 2 sin 2t (vi) y = cosh t sinh t (vii) y sin x 2 = x sin y 2 (viii) xy = cot(xy) (ix) 1 + x = sin(xy 2 ) (v) g(t) = MATH1003 REVISION 1. Differentiate the following functions, simplifying your answers when appropriate: (i) f(x) = (x 3 2) tan x (ii) y = (3x 5 1) 6 (iii) y 2 = x 2 3 (iv) y = ln(ln(7 + x)) e 5x3 (v) g(t)

More information

MATH1013 Calculus I. Derivatives II (Chap. 3) 1

MATH1013 Calculus I. Derivatives II (Chap. 3) 1 MATH1013 Calculus I Derivatives II (Chap. 3) 1 Edmund Y. M. Chiang Department of Mathematics Hong Kong University of Science & Technology October 16, 2013 2013 1 Based on Briggs, Cochran and Gillett: Calculus

More information

The integral test and estimates of sums

The integral test and estimates of sums The integral test Suppose f is a continuous, positive, decreasing function on [, ) and let a n = f (n). Then the series n= a n is convergent if and only if the improper integral f (x)dx is convergent.

More information

Chapter 3: Transcendental Functions

Chapter 3: Transcendental Functions Chapter 3: Transcendental Functions Spring 2018 Department of Mathematics Hong Kong Baptist University 1 / 32 Except for the power functions, the other basic elementary functions are also called the transcendental

More information

ODE Background: Differential (1A) Young Won Lim 12/29/15

ODE Background: Differential (1A) Young Won Lim 12/29/15 ODE Background: Differential (1A Copyright (c 2011-2015 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version

More information

Contraction Mappings Consider the equation

Contraction Mappings Consider the equation Contraction Mappings Consider the equation x = cos x. If we plot the graphs of y = cos x and y = x, we see that they intersect at a unique point for x 0.7. This point is called a fixed point of the function

More information

Ordinary Differential Equations (ODEs)

Ordinary Differential Equations (ODEs) c01.tex 8/10/2010 22: 55 Page 1 PART A Ordinary Differential Equations (ODEs) Chap. 1 First-Order ODEs Sec. 1.1 Basic Concepts. Modeling To get a good start into this chapter and this section, quickly

More information