Chapter 8: Taylor s theorem and L Hospital s rule

Size: px
Start display at page:

Download "Chapter 8: Taylor s theorem and L Hospital s rule"

Transcription

1 Chapter 8: Taylor s theorem and L Hospital s rule Theorem: [Inverse Mapping Theorem] Suppose that a < b and f : [a, b] R. Given that f (x) > 0 for all x (a, b) then f 1 is differentiable on (f(a), f(b)) and (f 1 ) = 1/(f f 1 ). Proof: 1. Let y 0 (f(a), f(b)). Since f is strictly increasing there is an x 0 (a, b) with f(x 0 ) = y 0. This is so if and only if f 1 (y 0 ) = x Define a function H : [a, b] R by, x x 0 f(x H(x) := 0 ) 1 f (f 1 (y 0 )) x x 0 ; x = x Then Figure 23: Motivation for the definition of H. H(x) = 1/f (x 0 ) = H(x 0 ) = H(f 1 (y 0 )) and so H is continuous at x 0 = f 1 (y 0 ). x x 0 4. Moreover from the earlier work on continuity for monotonic functions we know that f 1 is continuous on [f(a), f(b)]. Therefore, ( ) 1/f (x 0 ) = H(x 0 ) = H(f 1 (y 0 )) = H f 1 (y) y y 0 = y y0 H(f 1 (y)) = y y0 f 1 (y) f 1 (y 0 ) y y 0 = (f 1 ) (y 0 ) 54

2 Example: = x on (0, 1) has inverse f 1 (y) = y 1 on (1, 2) and (f 1 ) (y) = 1 2 y 1 = 1 2x. Remark: The hypothesis that f (x) > 0 for all x (a, b) is essential. In fact if f is strictly increasing and differentiable on (a, b) but f (x 0 ) = 0 for some x 0 (a, b) then the inverse, f 1 is not differentiable at f(x 0 ). Indeed, if f 1 were differentiable at f(x 0 ) then by the chain rule we would have, 1 = (f 1 f) (x 0 ) = (f 1 ) (f(x 0 )) f (x 0 ) = 0; which is impossible. Therefore, f 1 cannot be differentiable at f(x 0 ). The function := x 3 is strictly increasing and differentiable on R however x 3 x (the inverse of f) is not differentiable at f(0) = 0. Figure 24: Differentiable function with a non-differentiable inverse. Theorem: [Cauchy s Mean Value Theorem]. Suppose that a < b and f : [a, b] R and g : [a, b] R are continuous on [a, b] and differentiable on (a, b). If g (x) 0 for all x (a, b) then there exists a point x 0 (a, b) such that f(b) f(a) g(b) g(a) = f (x 0 ) g (x 0 ). Proof: Consider the auxiliary function h : [a, b] R defined by the 3 3 determinant, g(x) 1 h(x) := f(a) g(a) 1 f(b) g(b) 1. Now h is continuous on [a, b] and differentiable on (a, b) and h(a) = h(b) = 0 so by Rolle s theorem there exists a point x 0 (a, b) such that h (x 0 ) = 0; that is, f (x 0 ) g (x 0 ) 0 f(a) g(a) 1 f(b) g(b) 1 = 0. 55

3 ie: f (x 0 ) [g(b) g(a)] = g (x 0 ) [f(b) f(a)]. Now since g (x) 0 for all x (a, b), Rolle s theorem tells us that g(b) g(a) 0 and so the result follows. Remark: Cauchy s mean value theorem has a geometric interpretation. If we consider the curve defined by the parametric equation α(t) := (f(t), g(t)), t [a, b]. Then the conclusion of the theorem is that there exists a point (f(x 0 ), g(x 0 )) on the curve such that the slope, g (x 0 )/f (x 0 ) of the tangent line to the curve at that point is equal to the slope of the line segment joining the end points of the curve. Figure 25: Cauchy s Mean Value Theorem interpreted. The next theorem has sometimes been said to be the most important in Calculus or Analysis. We use the notation for higher derivatives, f (0) (x) =, f (1) (x) = f (x) and, in general for n N, f (n+1) (x) = (f (n) ) (x). If f (n) is differentiable on an interval, then f (n+1) exists on the interval. Theorem: [Taylor s Theorem] Suppose that a < b and f : [a, b] R. If f (n) is continuous on [a, b] and differentiable on (a, b) then for each x (a, b] there exists a point ζ (a, x) such that = P n (x) + R n (x), where P n (x) := f(a) + f (k) (x a)k (a) and R n (x) := f (n+1) (ζ) (x a)n+1. (n + 1)! Note: The conclusion of the Mean Value Theorem can be written = f(a) + f (1) (ζ)(x a) 1 = P 0 (x) + R 0 (x), so can be regarded as Taylor s Theorem of order 0. Proof: 1. Fix x 0 (a, b] and define M R by, f(x 0 ) = f(a) + f (k) (a) (x 0 a) k + M (x 0 a) n+1 (n + 1)! We need to show that there exists a ζ (a, x 0 ) such that f (n+1) (ζ) = M. 56

4 2. Consider the auxiliary function g : [a, x 0 ] R defined by, g(x) := f(x 0 ) + + f (k) (x) (x 0 x) k + M (x 0 x) n+1. (n + 1)! 3. Now g is continuous on [a, x 0 ] and differentiable on (a, x 0 ) and g(a) = g(x 0 ) = 0. Therefore, by Rolle s theorem there exists a point ζ (a, x 0 ) such that g (ζ) = But g (x) = f (x) + = (x 0 x) n {f (k+1) (x) (x 0 x) k {f (n+1) (x) M} for all x (a, x 0 ). Therefore, f (n+1) (ζ) = M. This completes the proof. f (k) (x) (x } 0 x) k 1 M (x 0 x) n (k 1)! In Taylor s theorem the polynomial P n (x) is called the n-th degree Taylor polynomial for f at a and R n (x) is called the Lagrange remainder. Suppose that a < b and f : [a, b] R. If for each fixed x [a, b], R n(x) = 0. n Then for each x [a, b], the series of powers (a so-called power series), converges to. n=0 f (n) (x a)n (a) Functions with this property are common, e.g. e x, sin(x), polynomials, rational functions. They are called real analytic. L Hospital s Theorems Recall that if x x0 = L 1 and x x0 g(x) = L 2, then x x 0 g(x) = L 1, provided L 2 0. L 2 We now look into the case when L 1 = L 2 = 0 (there s no point in considering the case L 1 0 and L 2 = 0 since the it will be ± ). Theorem: Suppose that a < b and f : [a, b] R and g : [a, b] R. If f(x 0 ) = g(x 0 ) = 0, g (x 0 ) 0 and both f (x 0 ) and g (x 0 ) exist at some point x 0 (a, b), then x x 0 g(x) = f (x 0 ) g (x 0 ). 57

5 Figure 26: Convergence of Taylor polynomials to a real analytic function. Proof: The trick in this proof is to multiply and divide by (x x 0 ). x x 0 g(x) f(x 0 ) = x x0 g(x) g(x 0 ) ( ) f(x0 ) = x x0 x x 0 = f (x 0 )/g (x 0 ). ( x x0 ) g(x) g(x 0 ) Theorem: Suppose that a < b and f : [a, b] R and g : [a, b] R are continuous on [a, b]. Let x 0 be any point in (a, b) such that f(x 0 ) = g(x 0 ) = 0 and g (x) 0 for all x x 0. Then, x x 0 g(x) = f (x), whenever the it on the right exists x x 0 g (x) Proof: By Cauchy s mean value theorem there exists for each x (a, b) a point ζ x between x 0 and x such that Then g(x) = f(x 0) g(x) g(x 0 ) = f (ζ x ) g (ζ x ). x x 0 g(x) = f(x 0 ) x x 0 g(x) g(x 0 ) = f (x) x x 0 g (x), because when x tends to x 0, ζ x tends to x 0. Notes: 1. The previous theorem is also true when = ± and g(x) = ± x x0 x x0 and may also be extended to the case when x 0 is replaced by ±. 58

6 2. It can also be iterated by replacing f by f and g by g e.t.c for higher order derivatives. If f(x 0 ) = f (x 0 ) = g(x 0 ) = g (x 0 ) and the it of the ratio of the second derivatives exists then x x 0 g(x) = f (x) x x 0 g (x) = f (x) x x 0 g (x). Exercises 1. Calculate the derivative of the function f : R R defined by, := x Consider the function f : (0, ) R defined by, := log e (x). Show that the inverse of f exists and is differentiable. Moreover, show that (f 1 ) (x) = f 1 (x) for all x R. Note: the function f 1 is usually called the exponential function. 3. Let f : (0, ) R be defined by, := x log e (1 + 1/x). (a) Calculate x. Hint: Consider the derivative of the function g : (0, ) R defined by, g(x) := log e (x) at x = 1. (b) Show that n n log e (1 + 1/n) = 1. (c) By using the fact that the exponential function, x e x, is continuous show that n (1 + 1/n)n = e. 4. Show that the function f : [0, π/2] R defined by, := sin(x) has a differentiable inverse. Moreover show that (sin 1 ) (x) = 1/ 1 x Let f : [a, b] R be continuous on [a, b] and differentiable on (a, b). Show that f is a constant function if, and only if, f (x) 0 on (a, b). 6. Let f : R R differentiable. Show that if f : R R is increasing on R then f is continuous on R. Hint: use the fact that an increasing function is continuous if, and only if, it satisfies the intermediate value property, (see the section on continuity). 7. Let f : R R and let x 0 R. If f exists and is continuous on R and (i) f (x 0 ) = 0; (ii) f (x 0 ) > 0. Show that f has a local minimum at x 0. Hint: Consider the 1st order Taylor s expansion of f around x 0, (with remainder). 8. (Taylor s Theorem) Suppose that a < b and f : [a, b] R. If f (n) is continuous on [a, b] and differentiable on (a, b) then for each x 0 (a, b] there exists a point ζ (a, x 0 ) such that f(x 0 ) = P n (x 0 ) + R n (x 0 ), where P n (x 0 ) := f(a) + f (k) (a) (x 0 a) k and R n (x 0 ) := f (n+1) (ζ) (x 0 ζ) n (x 0 a) Hint: Consider the auxiliary function g : [a, b] R defined by, g(x) := f(x 0 ) + + f (k) (x) (x 0 x) k + M (x 0 x). 59

7 9. Let I := [a, b] and let f : I R be differentiable on I. Suppose that f(a) < 0 < f(b) and that there exist m, M such that 0 < m f (x) M for all x I. Let x 1 I be arbitrary and define x n+1 := x n f(x n )/M for all n N. Show that the sequence (x n : n N) is well defined and converges to the unique zero r I of f. Hint: if φ(x) := x /M, show that 0 φ (x) 1 m/m < 1 and that φ([a, b]) [a, b]. 10. Calculate the following its. tan 1 (x) sin(x) (a) ; (b) x 0 x x 0 x ; (c) x 0 e x 1 1 cos(x) ; (d). x x 0 x 2 60

Differentiation. Table of contents Definition Arithmetics Composite and inverse functions... 5

Differentiation. Table of contents Definition Arithmetics Composite and inverse functions... 5 Differentiation Table of contents. Derivatives................................................. 2.. Definition................................................ 2.2. Arithmetics...............................................

More information

4. We accept without proofs that the following functions are differentiable: (e x ) = e x, sin x = cos x, cos x = sin x, log (x) = 1 sin x

4. We accept without proofs that the following functions are differentiable: (e x ) = e x, sin x = cos x, cos x = sin x, log (x) = 1 sin x 4 We accept without proofs that the following functions are differentiable: (e x ) = e x, sin x = cos x, cos x = sin x, log (x) = 1 sin x x, x > 0 Since tan x = cos x, from the quotient rule, tan x = sin

More information

MA4001 Engineering Mathematics 1 Lecture 15 Mean Value Theorem Increasing and Decreasing Functions Higher Order Derivatives Implicit Differentiation

MA4001 Engineering Mathematics 1 Lecture 15 Mean Value Theorem Increasing and Decreasing Functions Higher Order Derivatives Implicit Differentiation MA4001 Engineering Mathematics 1 Lecture 15 Mean Value Theorem Increasing and Decreasing Functions Higher Order Derivatives Implicit Differentiation Dr. Sarah Mitchell Autumn 2014 Rolle s Theorem Theorem

More information

Section 3.7. Rolle s Theorem and the Mean Value Theorem

Section 3.7. Rolle s Theorem and the Mean Value Theorem Section.7 Rolle s Theorem and the Mean Value Theorem The two theorems which are at the heart of this section draw connections between the instantaneous rate of change and the average rate of change of

More information

MATH 409 Advanced Calculus I Lecture 16: Mean value theorem. Taylor s formula.

MATH 409 Advanced Calculus I Lecture 16: Mean value theorem. Taylor s formula. MATH 409 Advanced Calculus I Lecture 16: Mean value theorem. Taylor s formula. Points of local extremum Let f : E R be a function defined on a set E R. Definition. We say that f attains a local maximum

More information

Taylor and Maclaurin Series

Taylor and Maclaurin Series Taylor and Maclaurin Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Background We have seen that some power series converge. When they do, we can think of them as

More information

Math 221 Notes on Rolle s Theorem, The Mean Value Theorem, l Hôpital s rule, and the Taylor-Maclaurin formula. 1. Two theorems

Math 221 Notes on Rolle s Theorem, The Mean Value Theorem, l Hôpital s rule, and the Taylor-Maclaurin formula. 1. Two theorems Math 221 Notes on Rolle s Theorem, The Mean Value Theorem, l Hôpital s rule, and the Taylor-Maclaurin formula 1. Two theorems Rolle s Theorem. If a function y = f(x) is differentiable for a x b and if

More information

Engg. Math. I. Unit-I. Differential Calculus

Engg. Math. I. Unit-I. Differential Calculus Dr. Satish Shukla 1 of 50 Engg. Math. I Unit-I Differential Calculus Syllabus: Limits of functions, continuous functions, uniform continuity, monotone and inverse functions. Differentiable functions, Rolle

More information

2. Theory of the Derivative

2. Theory of the Derivative 2. Theory of the Derivative 2.1 Tangent Lines 2.2 Definition of Derivative 2.3 Rates of Change 2.4 Derivative Rules 2.5 Higher Order Derivatives 2.6 Implicit Differentiation 2.7 L Hôpital s Rule 2.8 Some

More information

1 + lim. n n+1. f(x) = x + 1, x 1. and we check that f is increasing, instead. Using the quotient rule, we easily find that. 1 (x + 1) 1 x (x + 1) 2 =

1 + lim. n n+1. f(x) = x + 1, x 1. and we check that f is increasing, instead. Using the quotient rule, we easily find that. 1 (x + 1) 1 x (x + 1) 2 = Chapter 5 Sequences and series 5. Sequences Definition 5. (Sequence). A sequence is a function which is defined on the set N of natural numbers. Since such a function is uniquely determined by its values

More information

7.1. Calculus of inverse functions. Text Section 7.1 Exercise:

7.1. Calculus of inverse functions. Text Section 7.1 Exercise: Contents 7. Inverse functions 1 7.1. Calculus of inverse functions 2 7.2. Derivatives of exponential function 4 7.3. Logarithmic function 6 7.4. Derivatives of logarithmic functions 7 7.5. Exponential

More information

Math 117: Honours Calculus I Fall, 2002 List of Theorems. a n k b k. k. Theorem 2.1 (Convergent Bounded) A convergent sequence is bounded.

Math 117: Honours Calculus I Fall, 2002 List of Theorems. a n k b k. k. Theorem 2.1 (Convergent Bounded) A convergent sequence is bounded. Math 117: Honours Calculus I Fall, 2002 List of Theorems Theorem 1.1 (Binomial Theorem) For all n N, (a + b) n = n k=0 ( ) n a n k b k. k Theorem 2.1 (Convergent Bounded) A convergent sequence is bounded.

More information

Calculus The Mean Value Theorem October 22, 2018

Calculus The Mean Value Theorem October 22, 2018 Calculus The Mean Value Theorem October, 018 Definitions Let c be a number in the domain D of a function f. Then f(c) is the (a) absolute maximum value of f on D, i.e. f(c) = max, if f(c) for all x in

More information

JUST THE MATHS UNIT NUMBER DIFFERENTIATION APPLICATIONS 5 (Maclaurin s and Taylor s series) A.J.Hobson

JUST THE MATHS UNIT NUMBER DIFFERENTIATION APPLICATIONS 5 (Maclaurin s and Taylor s series) A.J.Hobson JUST THE MATHS UNIT NUMBER.5 DIFFERENTIATION APPLICATIONS 5 (Maclaurin s and Taylor s series) by A.J.Hobson.5. Maclaurin s series.5. Standard series.5.3 Taylor s series.5.4 Exercises.5.5 Answers to exercises

More information

Ma 530 Power Series II

Ma 530 Power Series II Ma 530 Power Series II Please note that there is material on power series at Visual Calculus. Some of this material was used as part of the presentation of the topics that follow. Operations on Power Series

More information

Caculus 221. Possible questions for Exam II. March 19, 2002

Caculus 221. Possible questions for Exam II. March 19, 2002 Caculus 221 Possible questions for Exam II March 19, 2002 These notes cover the recent material in a style more like the lecture than the book. The proofs in the book are in section 1-11. At the end there

More information

MAT137 Calculus! Lecture 10

MAT137 Calculus! Lecture 10 MAT137 Calculus! Lecture 10 Today we will study the Mean Value Theorem and its applications. Extrema. Optimization Problems. (4.2-4.5) PS4 is due this Friday June 23. Next class: Curve Sketching (4.6-4.8)

More information

M2PM1 Analysis II (2008) Dr M Ruzhansky List of definitions, statements and examples Preliminary version

M2PM1 Analysis II (2008) Dr M Ruzhansky List of definitions, statements and examples Preliminary version M2PM1 Analysis II (2008) Dr M Ruzhansky List of definitions, statements and examples Preliminary version Chapter 0: Some revision of M1P1: Limits and continuity This chapter is mostly the revision of Chapter

More information

, applyingl Hospital s Rule again x 0 2 cos(x) xsinx

, applyingl Hospital s Rule again x 0 2 cos(x) xsinx Lecture 3 We give a couple examples of using L Hospital s Rule: Example 3.. [ (a) Compute x 0 sin(x) x. To put this into a form for L Hospital s Rule we first put it over a common denominator [ x 0 sin(x)

More information

Continuity. Chapter 4

Continuity. Chapter 4 Chapter 4 Continuity Throughout this chapter D is a nonempty subset of the real numbers. We recall the definition of a function. Definition 4.1. A function from D into R, denoted f : D R, is a subset of

More information

Completion Date: Monday February 11, 2008

Completion Date: Monday February 11, 2008 MATH 4 (R) Winter 8 Intermediate Calculus I Solutions to Problem Set #4 Completion Date: Monday February, 8 Department of Mathematical and Statistical Sciences University of Alberta Question. [Sec..9,

More information

AP Calculus Testbank (Chapter 9) (Mr. Surowski)

AP Calculus Testbank (Chapter 9) (Mr. Surowski) AP Calculus Testbank (Chapter 9) (Mr. Surowski) Part I. Multiple-Choice Questions n 1 1. The series will converge, provided that n 1+p + n + 1 (A) p > 1 (B) p > 2 (C) p >.5 (D) p 0 2. The series

More information

8.7 Taylor s Inequality Math 2300 Section 005 Calculus II. f(x) = ln(1 + x) f(0) = 0

8.7 Taylor s Inequality Math 2300 Section 005 Calculus II. f(x) = ln(1 + x) f(0) = 0 8.7 Taylor s Inequality Math 00 Section 005 Calculus II Name: ANSWER KEY Taylor s Inequality: If f (n+) is continuous and f (n+) < M between the center a and some point x, then f(x) T n (x) M x a n+ (n

More information

Lecture 32: Taylor Series and McLaurin series We saw last day that some functions are equal to a power series on part of their domain.

Lecture 32: Taylor Series and McLaurin series We saw last day that some functions are equal to a power series on part of their domain. Lecture 32: Taylor Series and McLaurin series We saw last day that some functions are equal to a power series on part of their domain. For example f(x) = 1 1 x = 1 + x + x2 + x 3 + = ln(1 + x) = x x2 2

More information

Advanced Calculus I Chapter 2 & 3 Homework Solutions October 30, Prove that f has a limit at 2 and x + 2 find it. f(x) = 2x2 + 3x 2 x + 2

Advanced Calculus I Chapter 2 & 3 Homework Solutions October 30, Prove that f has a limit at 2 and x + 2 find it. f(x) = 2x2 + 3x 2 x + 2 Advanced Calculus I Chapter 2 & 3 Homework Solutions October 30, 2009 2. Define f : ( 2, 0) R by f(x) = 2x2 + 3x 2. Prove that f has a limit at 2 and x + 2 find it. Note that when x 2 we have f(x) = 2x2

More information

Calculus I. 1. Limits and Continuity

Calculus I. 1. Limits and Continuity 2301107 Calculus I 1. Limits and Continuity Outline 1.1. Limits 1.1.1 Motivation:Tangent 1.1.2 Limit of a function 1.1.3 Limit laws 1.1.4 Mathematical definition of a it 1.1.5 Infinite it 1.1. Continuity

More information

Introduction to Numerical Analysis

Introduction to Numerical Analysis Introduction to Numerical Analysis S. Baskar and S. Sivaji Ganesh Department of Mathematics Indian Institute of Technology Bombay Powai, Mumbai 400 076. Introduction to Numerical Analysis Lecture Notes

More information

Calculus I Exam 1 Review Fall 2016

Calculus I Exam 1 Review Fall 2016 Problem 1: Decide whether the following statements are true or false: (a) If f, g are differentiable, then d d x (f g) = f g. (b) If a function is continuous, then it is differentiable. (c) If a function

More information

Math 261 Calculus I. Test 1 Study Guide. Name. Decide whether the limit exists. If it exists, find its value. 1) lim x 1. f(x) 2) lim x -1/2 f(x)

Math 261 Calculus I. Test 1 Study Guide. Name. Decide whether the limit exists. If it exists, find its value. 1) lim x 1. f(x) 2) lim x -1/2 f(x) Math 261 Calculus I Test 1 Study Guide Name Decide whether the it exists. If it exists, find its value. 1) x 1 f(x) 2) x -1/2 f(x) Complete the table and use the result to find the indicated it. 3) If

More information

Advanced Calculus Math 127B, Winter 2005 Solutions: Final. nx2 1 + n 2 x, g n(x) = n2 x

Advanced Calculus Math 127B, Winter 2005 Solutions: Final. nx2 1 + n 2 x, g n(x) = n2 x . Define f n, g n : [, ] R by f n (x) = Advanced Calculus Math 27B, Winter 25 Solutions: Final nx2 + n 2 x, g n(x) = n2 x 2 + n 2 x. 2 Show that the sequences (f n ), (g n ) converge pointwise on [, ],

More information

MTAEA Differentiation

MTAEA Differentiation School of Economics, Australian National University February 5, 2010 Basic Properties of the Derivative. Secant Tangent Applet l 3 l 2 l 1 a a 3 a 2 a 1 Figure: The derivative of f at a is the limiting

More information

Math 1120 Calculus, sections 3 and 10 Test 1

Math 1120 Calculus, sections 3 and 10 Test 1 October 3, 206 Name The problems count as marked The total number of points available is 7 Throughout this test, show your work This is an amalgamation of the tests from sections 3 and 0 (0 points) Find

More information

MATH 409 Advanced Calculus I Lecture 11: More on continuous functions.

MATH 409 Advanced Calculus I Lecture 11: More on continuous functions. MATH 409 Advanced Calculus I Lecture 11: More on continuous functions. Continuity Definition. Given a set E R, a function f : E R, and a point c E, the function f is continuous at c if for any ε > 0 there

More information

Chapter 11. Taylor Series. Josef Leydold Mathematical Methods WS 2018/19 11 Taylor Series 1 / 27

Chapter 11. Taylor Series. Josef Leydold Mathematical Methods WS 2018/19 11 Taylor Series 1 / 27 Chapter 11 Taylor Series Josef Leydold Mathematical Methods WS 2018/19 11 Taylor Series 1 / 27 First-Order Approximation We want to approximate function f by some simple function. Best possible approximation

More information

Chapter 2: Functions, Limits and Continuity

Chapter 2: Functions, Limits and Continuity Chapter 2: Functions, Limits and Continuity Functions Limits Continuity Chapter 2: Functions, Limits and Continuity 1 Functions Functions are the major tools for describing the real world in mathematical

More information

Math Review for Exam Answer each of the following questions as either True or False. Circle the correct answer.

Math Review for Exam Answer each of the following questions as either True or False. Circle the correct answer. Math 22 - Review for Exam 3. Answer each of the following questions as either True or False. Circle the correct answer. (a) True/False: If a n > 0 and a n 0, the series a n converges. Soln: False: Let

More information

Computing Taylor series

Computing Taylor series TOPIC 9 Computing Taylor series Exercise 9.. Memorize the following x X e x cos x sin x X X X +x + x + x 3 +... xk +x + x + 6 x3 +... ( ) k (k)! xk ( ) k (k + )! xk+ x x +! x... For which values of x do

More information

Calculus. Weijiu Liu. Department of Mathematics University of Central Arkansas 201 Donaghey Avenue, Conway, AR 72035, USA

Calculus. Weijiu Liu. Department of Mathematics University of Central Arkansas 201 Donaghey Avenue, Conway, AR 72035, USA Calculus Weijiu Liu Department of Mathematics University of Central Arkansas 201 Donaghey Avenue, Conway, AR 72035, USA 1 Opening Welcome to your Calculus I class! My name is Weijiu Liu. I will guide you

More information

M2P1 Analysis II (2005) Dr M Ruzhansky List of definitions, statements and examples. Chapter 1: Limits and continuity.

M2P1 Analysis II (2005) Dr M Ruzhansky List of definitions, statements and examples. Chapter 1: Limits and continuity. M2P1 Analysis II (2005) Dr M Ruzhansky List of definitions, statements and examples. Chapter 1: Limits and continuity. This chapter is mostly the revision of Chapter 6 of M1P1. First we consider functions

More information

Differentiation. f(x + h) f(x) Lh = L.

Differentiation. f(x + h) f(x) Lh = L. Analysis in R n Math 204, Section 30 Winter Quarter 2008 Paul Sally, e-mail: sally@math.uchicago.edu John Boller, e-mail: boller@math.uchicago.edu website: http://www.math.uchicago.edu/ boller/m203 Differentiation

More information

Chapter 2. Limits and Continuity. 2.1 Rates of change and Tangents to Curves. The average Rate of change of y = f(x) with respect to x over the

Chapter 2. Limits and Continuity. 2.1 Rates of change and Tangents to Curves. The average Rate of change of y = f(x) with respect to x over the Chapter 2 Limits and Continuity 2.1 Rates of change and Tangents to Curves Definition 2.1.1 : interval [x 1, x 2 ] is The average Rate of change of y = f(x) with respect to x over the y x = f(x 2) f(x

More information

The Derivative of a Function Measuring Rates of Change of a function. Secant line. f(x) f(x 0 ) Average rate of change of with respect to over,

The Derivative of a Function Measuring Rates of Change of a function. Secant line. f(x) f(x 0 ) Average rate of change of with respect to over, The Derivative of a Function Measuring Rates of Change of a function y f(x) f(x 0 ) P Q Secant line x 0 x x Average rate of change of with respect to over, " " " " - Slope of secant line through, and,

More information

Section 1.4 Tangents and Velocity

Section 1.4 Tangents and Velocity Math 132 Tangents and Velocity Section 1.4 Section 1.4 Tangents and Velocity Tangent Lines A tangent line to a curve is a line that just touches the curve. In terms of a circle, the definition is very

More information

Iowa State University. Instructor: Alex Roitershtein Summer Homework #5. Solutions

Iowa State University. Instructor: Alex Roitershtein Summer Homework #5. Solutions Math 50 Iowa State University Introduction to Real Analysis Department of Mathematics Instructor: Alex Roitershtein Summer 205 Homework #5 Solutions. Let α and c be real numbers, c > 0, and f is defined

More information

6.2 Important Theorems

6.2 Important Theorems 6.2. IMPORTANT THEOREMS 223 6.2 Important Theorems 6.2.1 Local Extrema and Fermat s Theorem Definition 6.2.1 (local extrema) Let f : I R with c I. 1. f has a local maximum at c if there is a neighborhood

More information

Lesson 59 Rolle s Theorem and the Mean Value Theorem

Lesson 59 Rolle s Theorem and the Mean Value Theorem Lesson 59 Rolle s Theorem and the Mean Value Theorem HL Math - Calculus After this lesson, you should be able to: Understand and use Rolle s Theorem Understand and use the Mean Value Theorem 1 Rolle s

More information

8.5 Taylor Polynomials and Taylor Series

8.5 Taylor Polynomials and Taylor Series 8.5. TAYLOR POLYNOMIALS AND TAYLOR SERIES 50 8.5 Taylor Polynomials and Taylor Series Motivating Questions In this section, we strive to understand the ideas generated by the following important questions:

More information

The Mean Value Theorem Rolle s Theorem

The Mean Value Theorem Rolle s Theorem The Mean Value Theorem In this section, we will look at two more theorems that tell us about the way that derivatives affect the shapes of graphs: Rolle s Theorem and the Mean Value Theorem. Rolle s Theorem

More information

1.5 Inverse Trigonometric Functions

1.5 Inverse Trigonometric Functions 1.5 Inverse Trigonometric Functions Remember that only one-to-one functions have inverses. So, in order to find the inverse functions for sine, cosine, and tangent, we must restrict their domains to intervals

More information

Mean Value Theorem. MATH 161 Calculus I. J. Robert Buchanan. Summer Department of Mathematics

Mean Value Theorem. MATH 161 Calculus I. J. Robert Buchanan. Summer Department of Mathematics Mean Value Theorem MATH 161 Calculus I J. Robert Buchanan Department of Mathematics Summer 2018 Background: Corollary to the Intermediate Value Theorem Corollary Suppose f is continuous on the closed interval

More information

Math 473: Practice Problems for Test 1, Fall 2011, SOLUTIONS

Math 473: Practice Problems for Test 1, Fall 2011, SOLUTIONS Math 473: Practice Problems for Test 1, Fall 011, SOLUTIONS Show your work: 1. (a) Compute the Taylor polynomials P n (x) for f(x) = sin x and x 0 = 0. Solution: Compute f(x) = sin x, f (x) = cos x, f

More information

Mean Value Theorem. MATH 161 Calculus I. J. Robert Buchanan. Summer Department of Mathematics

Mean Value Theorem. MATH 161 Calculus I. J. Robert Buchanan. Summer Department of Mathematics Mean Value Theorem MATH 161 Calculus I J. Robert Buchanan Department of Mathematics Summer 2018 Background: Corollary to the Intermediate Value Theorem Corollary Suppose f is continuous on the closed interval

More information

f ( c ) = lim{x->c} (f(x)-f(c))/(x-c) = lim{x->c} (1/x - 1/c)/(x-c) = lim {x->c} ( (c - x)/( c x)) / (x-c) = lim {x->c} -1/( c x) = - 1 / x 2

f ( c ) = lim{x->c} (f(x)-f(c))/(x-c) = lim{x->c} (1/x - 1/c)/(x-c) = lim {x->c} ( (c - x)/( c x)) / (x-c) = lim {x->c} -1/( c x) = - 1 / x 2 There are 9 problems, most with multiple parts. The Derivative #1. Define f: R\{0} R by [f(x) = 1/x] Use the definition of derivative (page 1 of Differentiation notes, or Def. 4.1.1, Lebl) to find, the

More information

h(x) lim H(x) = lim Since h is nondecreasing then h(x) 0 for all x, and if h is discontinuous at a point x then H(x) > 0. Denote

h(x) lim H(x) = lim Since h is nondecreasing then h(x) 0 for all x, and if h is discontinuous at a point x then H(x) > 0. Denote Real Variables, Fall 4 Problem set 4 Solution suggestions Exercise. Let f be of bounded variation on [a, b]. Show that for each c (a, b), lim x c f(x) and lim x c f(x) exist. Prove that a monotone function

More information

CH 2: Limits and Derivatives

CH 2: Limits and Derivatives 2 The tangent and velocity problems CH 2: Limits and Derivatives the tangent line to a curve at a point P, is the line that has the same slope as the curve at that point P, ie the slope of the tangent

More information

QF101: Quantitative Finance August 22, Week 1: Functions. Facilitator: Christopher Ting AY 2017/2018

QF101: Quantitative Finance August 22, Week 1: Functions. Facilitator: Christopher Ting AY 2017/2018 QF101: Quantitative Finance August 22, 2017 Week 1: Functions Facilitator: Christopher Ting AY 2017/2018 The chief function of the body is to carry the brain around. Thomas A. Edison 1.1 What is a function?

More information

The Mean Value Theorem and its Applications

The Mean Value Theorem and its Applications The Mean Value Theorem and its Applications Professor Richard Blecksmith richard@math.niu.edu Dept. of Mathematical Sciences Northern Illinois University http://math.niu.edu/ richard/math229 1. Extreme

More information

Section 3.6 The chain rule 1 Lecture. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I

Section 3.6 The chain rule 1 Lecture. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I Section 3.6 The chain rule 1 Lecture College of Science MATHS 101: Calculus I (University of Bahrain) Logarithmic Differentiation 1 / 23 Motivation Goal: We want to derive rules to find the derivative

More information

Student Study Session. Theorems

Student Study Session. Theorems Students should be able to apply and have a geometric understanding of the following: Intermediate Value Theorem Mean Value Theorem for derivatives Extreme Value Theorem Name Formal Statement Restatement

More information

REAL ANALYSIS II: PROBLEM SET 2

REAL ANALYSIS II: PROBLEM SET 2 REAL ANALYSIS II: PROBLEM SET 2 21st Feb, 2016 Exercise 1. State and prove the Inverse Function Theorem. Theorem Inverse Function Theorem). Let f be a continuous one to one function defined on an interval,

More information

1.4 Techniques of Integration

1.4 Techniques of Integration .4 Techniques of Integration Recall the following strategy for evaluating definite integrals, which arose from the Fundamental Theorem of Calculus (see Section.3). To calculate b a f(x) dx. Find a function

More information

MATH 1A, Complete Lecture Notes. Fedor Duzhin

MATH 1A, Complete Lecture Notes. Fedor Duzhin MATH 1A, Complete Lecture Notes Fedor Duzhin 2007 Contents I Limit 6 1 Sets and Functions 7 1.1 Sets................................. 7 1.2 Functions.............................. 8 1.3 How to define a

More information

ECM Calculus and Geometry. Revision Notes

ECM Calculus and Geometry. Revision Notes ECM1702 - Calculus and Geometry Revision Notes Joshua Byrne Autumn 2011 Contents 1 The Real Numbers 1 1.1 Notation.................................................. 1 1.2 Set Notation...............................................

More information

MAT137 Calculus! Lecture 9

MAT137 Calculus! Lecture 9 MAT137 Calculus! Lecture 9 Today we will study: Limits at infinity. L Hôpital s Rule. Mean Value Theorem. (11.5,11.6, 4.1) PS3 is due this Friday June 16. Next class: Applications of the Mean Value Theorem.

More information

f (r) (a) r! (x a) r, r=0

f (r) (a) r! (x a) r, r=0 Part 3.3 Differentiation v1 2018 Taylor Polynomials Definition 3.3.1 Taylor 1715 and Maclaurin 1742) If a is a fixed number, and f is a function whose first n derivatives exist at a then the Taylor polynomial

More information

B553 Lecture 1: Calculus Review

B553 Lecture 1: Calculus Review B553 Lecture 1: Calculus Review Kris Hauser January 10, 2012 This course requires a familiarity with basic calculus, some multivariate calculus, linear algebra, and some basic notions of metric topology.

More information

Topics Covered in Calculus BC

Topics Covered in Calculus BC Topics Covered in Calculus BC Calculus BC Correlation 5 A Functions, Graphs, and Limits 1. Analysis of graphs 2. Limits or functions (including one sides limits) a. An intuitive understanding of the limiting

More information

Differentiation - Important Theorems

Differentiation - Important Theorems Differentiation - Important Theorems Philippe B Laval KSU Spring 2012 Philippe B Laval (KSU) Differentiation - Important Theorems Spring 2012 1 / 10 Introduction We study several important theorems related

More information

Section 3.6 The chain rule 1 Lecture. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I

Section 3.6 The chain rule 1 Lecture. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I Section 3.6 The chain rule 1 Lecture College of Science MATHS 101: Calculus I (University of Bahrain) Logarithmic Differentiation 1 / 1 Motivation Goal: We want to derive rules to find the derivative of

More information

Continuity. Chapter 4

Continuity. Chapter 4 Chapter 4 Continuity Throughout this chapter D is a nonempty subset of the real numbers. We recall the definition of a function. Definition 4.1. A function from D into R, denoted f : D R, is a subset of

More information

MATH 1902: Mathematics for the Physical Sciences I

MATH 1902: Mathematics for the Physical Sciences I MATH 1902: Mathematics for the Physical Sciences I Dr Dana Mackey School of Mathematical Sciences Room A305 A Email: Dana.Mackey@dit.ie Dana Mackey (DIT) MATH 1902 1 / 46 Module content/assessment Functions

More information

Math 242: Principles of Analysis Fall 2016 Homework 6 Part B Solutions. x 2 +2x = 15.

Math 242: Principles of Analysis Fall 2016 Homework 6 Part B Solutions. x 2 +2x = 15. Math 242: Principles of Analysis Fall 2016 Homework 6 Part B Solutions 1. Use the definition of a it to prove that x 2 +2x = 15. Solution. First write x 2 +2x 15 = x 3 x+5. Next let δ 1 = 1. If 0 < x 3

More information

Principle of Mathematical Induction

Principle of Mathematical Induction Advanced Calculus I. Math 451, Fall 2016, Prof. Vershynin Principle of Mathematical Induction 1. Prove that 1 + 2 + + n = 1 n(n + 1) for all n N. 2 2. Prove that 1 2 + 2 2 + + n 2 = 1 n(n + 1)(2n + 1)

More information

INVERSE FUNCTION THEOREM and SURFACES IN R n

INVERSE FUNCTION THEOREM and SURFACES IN R n INVERSE FUNCTION THEOREM and SURFACES IN R n Let f C k (U; R n ), with U R n open. Assume df(a) GL(R n ), where a U. The Inverse Function Theorem says there is an open neighborhood V U of a in R n so that

More information

e x = 1 + x + x2 2! + x3 If the function f(x) can be written as a power series on an interval I, then the power series is of the form

e x = 1 + x + x2 2! + x3 If the function f(x) can be written as a power series on an interval I, then the power series is of the form Taylor Series Given a function f(x), we would like to be able to find a power series that represents the function. For example, in the last section we noted that we can represent e x by the power series

More information

APPLICATIONS OF DIFFERENTIABILITY IN R n.

APPLICATIONS OF DIFFERENTIABILITY IN R n. APPLICATIONS OF DIFFERENTIABILITY IN R n. MATANIA BEN-ARTZI April 2015 Functions here are defined on a subset T R n and take values in R m, where m can be smaller, equal or greater than n. The (open) ball

More information

Continuity, Intermediate Value Theorem (2.4)

Continuity, Intermediate Value Theorem (2.4) Continuity, Intermediate Value Theorem (2.4) Xiannan Li Kansas State University January 29th, 2017 Intuitive Definition: A function f(x) is continuous at a if you can draw the graph of y = f(x) without

More information

Math Numerical Analysis

Math Numerical Analysis Math 541 - Numerical Analysis Joseph M. Mahaffy, jmahaffy@mail.sdsu.edu Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center San Diego State University

More information

MAS331: Metric Spaces Problems on Chapter 1

MAS331: Metric Spaces Problems on Chapter 1 MAS331: Metric Spaces Problems on Chapter 1 1. In R 3, find d 1 ((3, 1, 4), (2, 7, 1)), d 2 ((3, 1, 4), (2, 7, 1)) and d ((3, 1, 4), (2, 7, 1)). 2. In R 4, show that d 1 ((4, 4, 4, 6), (0, 0, 0, 0)) =

More information

Math 117: Honours Calculus I Fall, 2012 List of Theorems. a n k b k. k. Theorem 2.1 (Convergent Bounded): A convergent sequence is bounded.

Math 117: Honours Calculus I Fall, 2012 List of Theorems. a n k b k. k. Theorem 2.1 (Convergent Bounded): A convergent sequence is bounded. Math 117: Honours Calculus I Fall, 2012 List of Theorems Theorem 1.1 (Binomial Theorem): For all n N, (a+b) n = n k=0 ( ) n a n k b k. k Theorem 2.1 (Convergent Bounded): A convergent sequence is bounded.

More information

Continuity. MATH 161 Calculus I. J. Robert Buchanan. Fall Department of Mathematics

Continuity. MATH 161 Calculus I. J. Robert Buchanan. Fall Department of Mathematics Continuity MATH 161 Calculus I J. Robert Buchanan Department of Mathematics Fall 2017 Intuitive Idea A process or an item can be described as continuous if it exists without interruption. The mathematical

More information

11.10a Taylor and Maclaurin Series

11.10a Taylor and Maclaurin Series 11.10a 1 11.10a Taylor and Maclaurin Series Let y = f(x) be a differentiable function at x = a. In first semester calculus we saw that (1) f(x) f(a)+f (a)(x a), for all x near a The right-hand side of

More information

Chapter Product Rule and Quotient Rule for Derivatives

Chapter Product Rule and Quotient Rule for Derivatives Chapter 3.3 - Product Rule and Quotient Rule for Derivatives Theorem 3.6: The Product Rule If f(x) and g(x) are differentiable at any x then Example: The Product Rule. Find the derivatives: Example: The

More information

Introduction and Review of Power Series

Introduction and Review of Power Series Introduction and Review of Power Series Definition: A power series in powers of x a is an infinite series of the form c n (x a) n = c 0 + c 1 (x a) + c 2 (x a) 2 +...+c n (x a) n +... If a = 0, this is

More information

Calculus I Review Solutions

Calculus I Review Solutions Calculus I Review Solutions. Compare and contrast the three Value Theorems of the course. When you would typically use each. The three value theorems are the Intermediate, Mean and Extreme value theorems.

More information

Correlation with College Board Advanced Placement Course Descriptions

Correlation with College Board Advanced Placement Course Descriptions Correlation with College Board Advanced Placement Course Descriptions The following tables show which sections of Calculus: Concepts and Applications cover each of the topics listed in the 2004 2005 Course

More information

Solutions of Equations in One Variable. Newton s Method

Solutions of Equations in One Variable. Newton s Method Solutions of Equations in One Variable Newton s Method Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University c 2011 Brooks/Cole,

More information

3.4 Introduction to power series

3.4 Introduction to power series 3.4 Introduction to power series Definition 3.4.. A polynomial in the variable x is an expression of the form n a i x i = a 0 + a x + a 2 x 2 + + a n x n + a n x n i=0 or a n x n + a n x n + + a 2 x 2

More information

Section 4.2: The Mean Value Theorem

Section 4.2: The Mean Value Theorem Section 4.2: The Mean Value Theorem Before we continue with the problem of describing graphs using calculus we shall briefly pause to examine some interesting applications of the derivative. In previous

More information

The Derivative. Appendix B. B.1 The Derivative of f. Mappings from IR to IR

The Derivative. Appendix B. B.1 The Derivative of f. Mappings from IR to IR Appendix B The Derivative B.1 The Derivative of f In this chapter, we give a short summary of the derivative. Specifically, we want to compare/contrast how the derivative appears for functions whose domain

More information

Week 1: need to know. November 14, / 20

Week 1: need to know. November 14, / 20 Week 1: need to know How to find domains and ranges, operations on functions (addition, subtraction, multiplication, division, composition), behaviors of functions (even/odd/ increasing/decreasing), library

More information

2.6 The microscope equation

2.6 The microscope equation 2.6. THE MICROSCOPE EQUATION 5 2.6 The microscope equation As we saw in Section 2.2, the graph of a function y = f(x) near a point x = a is similar to the graph of the tangent line to f(x) at that point,

More information

Chapter 3a Topics in differentiation. Problems in differentiation. Problems in differentiation. LC Abueg: mathematical economics

Chapter 3a Topics in differentiation. Problems in differentiation. Problems in differentiation. LC Abueg: mathematical economics Chapter 3a Topics in differentiation Lectures in Mathematical Economics L Cagandahan Abueg De La Salle University School of Economics Problems in differentiation Problems in differentiation Problem 1.

More information

Week #6 - Taylor Series, Derivatives and Graphs Section 10.1

Week #6 - Taylor Series, Derivatives and Graphs Section 10.1 Week #6 - Taylor Series, Derivatives and Graphs Section 10.1 From Calculus, Single Variable by Hughes-Hallett, Gleason, McCallum et. al. Copyright 005 by John Wiley & Sons, Inc. This material is used by

More information

PART I Lecture Notes on Numerical Solution of Root Finding Problems MATH 435

PART I Lecture Notes on Numerical Solution of Root Finding Problems MATH 435 PART I Lecture Notes on Numerical Solution of Root Finding Problems MATH 435 Professor Biswa Nath Datta Department of Mathematical Sciences Northern Illinois University DeKalb, IL. 60115 USA E mail: dattab@math.niu.edu

More information

2.1 The Tangent and Velocity Problems

2.1 The Tangent and Velocity Problems 2.1 The Tangent and Velocity Problems Tangents What is a tangent? Tangent lines and Secant lines Estimating slopes from discrete data: Example: 1. A tank holds 1000 gallons of water, which drains from

More information

You can learn more about the services offered by the teaching center by visiting

You can learn more about the services offered by the teaching center by visiting MAC 232 Exam 3 Review Spring 209 This review, produced by the Broward Teaching Center, contains a collection of questions which are representative of the type you may encounter on the exam. Other resources

More information

Calculus II Lecture Notes

Calculus II Lecture Notes Calculus II Lecture Notes David M. McClendon Department of Mathematics Ferris State University 206 edition Contents Contents 2 Review of Calculus I 5. Limits..................................... 7.2 Derivatives...................................3

More information

MATH1190 CALCULUS 1 - NOTES AND AFTERNOTES

MATH1190 CALCULUS 1 - NOTES AND AFTERNOTES MATH90 CALCULUS - NOTES AND AFTERNOTES DR. JOSIP DERADO. Historical background Newton approach - from physics to calculus. Instantaneous velocity. Leibniz approach - from geometry to calculus Calculus

More information

TAYLOR AND MACLAURIN SERIES

TAYLOR AND MACLAURIN SERIES TAYLOR AND MACLAURIN SERIES. Introduction Last time, we were able to represent a certain restricted class of functions as power series. This leads us to the question: can we represent more general functions

More information