OCR (MEI) Mathematics Advanced Subsidiary GCE Core 3 (4753) January 2010

Size: px
Start display at page:

Download "OCR (MEI) Mathematics Advanced Subsidiary GCE Core 3 (4753) January 2010"

Transcription

1 Link to past paper on OCR website: The above link takes you to OCR s website. From there you click QUALIFICATIONS, QUALIFICATIONS BY TYPE, AS/A LEVEL GCE, MATHEMATICS (MEI), VIEW ALL DOCUMENTS, PAST PAPERS JANUARY SERIES 2010, QUESTION PAPER UNIT 4753/01 CORE MATHEMATICS 3 These solutions are for your personal use only. DO NOT photocopy or pass on to third parties. If you are a school or an organisation and would like to purchase these solutions please contact Chatterton Tuition for further details. Section A Question 1 Factorise out e x e x (e x 5) = 0 e x = 0 or e x = 5 Take natural logs of both sides (ln) x = ln(0) which is not defined so this leads to no solution or x = ln (5) = Page 1

2 Question 2 i) we are given some information, we can use these to set up some equations initially (when t = 0) T = = 20 + be -k(0) 100 = 20 + b b = 80 now we can use b = 80 in the equation after 5 minutes, T = = e -5k Subtract 20 from each side 40 = 80e -5k Divide both sides by = e -5k Take natural logs (ln) of both sides ln(0.5) = -5k Divide both sides by -5 - ln (0.5) = k This is the same as k = ln (2) = ii) now set T = 50, to find t 50 = e -1/5tln2 Subtract 20 from each side 30 = 80e -1/5tln2 Divide both sides by 80 = e-1/5xtln2 Take natural logs (ln) of both sides ln( ) = - tln(2) multiply both sides by -5-5 ln( ) = tln(2) Divide both sides by ln(2) t = ( ) () = minutes Page 2

3 Question 3 i) y = (1 + 3x 2 ) 1/3 We can use the chain rule here Let u = 1 + 3x 2 Then y = u 1/3 = 6x = u-2/3 = x = u-2/3 x 6x Substitute back u = 1 + 3x 2 = (1 + 3x2 ) -2/3 x 6x = 2(1 + 3x2 ) -2/3 = ( ) ii) Differentiate both sides with respect to x 3y 2 = 6x Divide both sides by 3y 2 = = Now replace y with (1 + 3x 2 ) 1/3 so that y 2 = (1 + 3x 2 ) 2/3 = = same as part i) ( ) Page 3

4 Question 4 i) This is the type of integral where the top is the differential of the bottom () = ln (f(x)) + c () = ln( + 1) 1 0 = ln 2 ln 1 = ln 2 0 = ln 2 ii) integrate by substitution let u = 1 + x = 1 Multiply both sides by dx du = dx If u = 1 + x x = u - 1 Limits When x = 1, u = = 2 When x = 0, u = = 1 New limits are 2 and 1 Now substitute all the x terms for u terms () dx = () du = (2 ) = 2 2ln ln 2 (2 2ln 1) = 2 2ln Page 4

5 Question 5 It would help here to see the original sine curve i) Looking at the x axis first on the original sine curve the distance between a peak and trough should be π, for the transformed graph the distance is now π/2, this implies that the transformed graph (so far) is y = sin 2x (c = 2) (always affects the x in the opposite way to what we think) now looking at the y axis: on the original sine curve the vertical distance between peak and trough is 2, on the transformed graph this is 6 (3 times bigger) so we have (so far) y = 3 sin 2x (b = 3 and c = 2) on the original sine curve the height above the x axis is the same as the height below the x axis. This is still the same on the transformed curve. So we have y = sin 2x a = 0, b = 3, c = 2 ii) Looking at the x axis first the distance between a peak and trough should be π, for the transformed graph the distance is still π, this implies that the transformed graph (so far) is y = sin x (c = 1) now looking at the y axis: on the original sine curve the vertical distance between peak and trough is 2, on the transformed graph this is still 2. However the graph is a reflection of the sine curve in the x axis so we have (so far) y = - sin x (b = -1 and c = 1) on the original sine curve the height above the x axis is the same as the height below the x axis. This has now all been shifted up by 1 unit so we have y = sin x a = 1, b = -1, c = Page 5

6 Question 6 if f(x) is an odd function then this means that -f(x) = f(-x) if g(x) is an even function then g(x) = g(-x) f(x) = -f(-x) g(x) = g(-x) f odd implies gf(x) = g(-f(-x)) g even implies g(-f(-x)) = g(f(-x)) = gf(-x) so we have gf(x) = gf(-x) so gf is an even function Page 6

7 Question 7 Let arcsin x = θ So x = sin θ If arcsin x = θ then so does arccos y = θ (because given that arcsin x = arcos y) Arccos y = θ So y = cos θ We know the basic identity that sin 2 θ + cos 2 θ = 1 So replacing x = sin θ and y = cos θ We have x 2 + y 2 = Page 7

8 Section B Question 8 i) At P and Q the y coordinate is 0 0 = xcos 3x So either x = 0 or cos 3x = 0 x = 0 is not P or Q cos 3x = 0 3x = arcos 0 =,,,, P and Q are the first two of these Divide both sides by 3 x =, P = (, 0) Q = (, 0) ii) to find the gradient we need to first differentiate we need to use the product rule = + where y = let u = x and v = cos 3x = 1 = 3sin3 = cos 3x + 3sin3 Now substitute the x value at P (x = ) cos ( ) + sin( ) = 0 + = - gradient at P is Page 8

9 turning points occur when = 0 cos 3x + 3sin3 = 0 divide both sides by cos 3x 1 3x tan x = 0 Add 3x tan x to both sides 1 = 3x tan x Divide both sides by 3 x tan x = iii) we need to integrate the curve y = xcos 3x between the limits of 0 and cos3 We need to integrate by parts dx = b a - dx Let u = x = 1 and = cos3x v = sin 3x cos3 0 cos3π/6 0 + cos - cos0 = - = sin3π/6 0 - sin Page 9

10 Question 9 i) the quotient rule is = let u = 2x 2-1 let v = x = 4x = 2x where y = = f (x) = ( ) ( ) = = ( ) ( ) ( ) If x > 0 then 6x will also be positive The denominator is always positive anyway as it is a square So if x > 0 then f (x) is always positive so has a positive gradient and is an increasing function ii) we can see from the diagram shown that the smallest y value is at -1 and the largest y value is when x = 2 when x = 2, y = = () () = range is -1 y Page 10

11 iii) to maximise f (x) we want to differentiate and set equal to 0 f (x) differentiated is f (x) which is given to us ( ) = 0 We just need to set the numerator to x 2 = 0 Add 18x 2 to both sides 6 = 18x 2 Divide both sides by 18 x 2 = x is positive as domain was 0 x 2 x = = now substitute into f (x) f (x) = ( ) = = Page 11

12 iv) the domain of the inverse function will be the same as the range for the original function the range of the inverse function will be the same as the domain for the original function domain: -1 x range: 0 y 2 g(x) will be the reflection of f(x) in the line y = x g(x) is shown here in red Page 12

13 v) to find the inverse we swap the x and y around and then rearrange to get y as the subject y = x = multiply both sides by (y 2 + 1) x(y 2 + 1) = 2y 2 1 expand xy 2 + x = 2y 2 1 subtract xy 2 from both sides x = 2y 2 xy 2 1 add 1 to both sides x + 1 = 2y 2 xy 2 factorise x + 1 = y 2 (2 x) divide both sides by (2 x) y 2 = square root both sides (only want the positive root) y = g(x) = Page 13

14 If you found these solutions helpful and would like to see some more then visit our website It should be noted that Chatterton Tuition is responsible for these solutions. The solutions have not been produced nor approved by MEI. In addition these solutions may not necessarily constitute the only possible solutions Page 14

OCR Mathematics Advanced Subsidiary GCE Core 4 (4724) June 2010

OCR Mathematics Advanced Subsidiary GCE Core 4 (4724) June 2010 Link to past paper on OCR website: www.ocr.org.uk The above link takes you to OCR s website. From there you click QUALIFICATIONS, QUALIFICATIONS BY TYPE, AS/A LEVEL GCE, MATHEMATICS, VIEW ALL DOCUMENTS,

More information

OCR Mathematics Advanced Subsidiary GCE Core 4 (4724) January 2010

OCR Mathematics Advanced Subsidiary GCE Core 4 (4724) January 2010 Link to past paper on OCR website: www.ocr.org.uk The above link takes you to OCR s website. From there you click QUALIFICATIONS, QUALIFICATIONS BY TYPE, AS/A LEVEL GCE, MATHEMATICS, VIEW ALL DOCUMENTS,

More information

OCR (MEI) Mathematics Advanced Subsidiary GCE Core 2 (4752) January 2010

OCR (MEI) Mathematics Advanced Subsidiary GCE Core 2 (4752) January 2010 Link to past paper on OCR website: www.ocr.org.uk The above link takes you to OCR s website. From there you click QUALIFICATIONS, QUALIFICATIONS BY TYPE, AS/A LEVEL GCE, MATHEMATICS (MEI), VIEW ALL DOCUMENTS,

More information

OCR Mathematics Advanced Subsidiary GCE Core 3 (4723) June 2012

OCR Mathematics Advanced Subsidiary GCE Core 3 (4723) June 2012 Link to past paper on OCR website: www.ocr.org.uk The above link takes you to OCR s website. From there you click QUALIFICATIONS, QUALIFICATIONS BY TYPE, AS/A LEVEL GCE, MATHEMATICS, VIEW ALL DOCUMENTS,

More information

OCR (MEI) Mathematics Advanced Subsidiary GCE Core 4 (4754) January 2011

OCR (MEI) Mathematics Advanced Subsidiary GCE Core 4 (4754) January 2011 Link to past paper on OCR website: www.ocr.org.uk The above link takes you to OCR s website. From there you click QUALIFICATIONS, QUALIFICATIONS BY TYPE, AS/A LEVEL GCE, MATHEMATICS (MEI), VIEW ALL DOCUMENTS,

More information

OCR Mathematics Advanced Subsidiary GCE Core 1 (4721) January 2012

OCR Mathematics Advanced Subsidiary GCE Core 1 (4721) January 2012 Link to past paper on OCR website: www.ocr.org.uk The above link takes you to the OCR website. From there you click QUALIFICATIONS, QUALIFICATIONS BY TYPE, AS/A LEVEL GCE, MATHEMATICS, VIEW ALL DOCUMENTS,

More information

Mathematics Edexcel Advanced Subsidiary GCE Core 3 (6665) January 2010

Mathematics Edexcel Advanced Subsidiary GCE Core 3 (6665) January 2010 Link to past paper on Edexcel website: www.edexcel.com The above link takes you to Edexcel s website. From there you click QUALIFICATIONS, GCE from 2008, under the subject list click MATHEMATICS, click

More information

Mathematics (MEI) Advanced Subsidiary GCE Core 1 (4751) June 2010

Mathematics (MEI) Advanced Subsidiary GCE Core 1 (4751) June 2010 Link to past paper on OCR website: www.ocr.org.uk The above link takes you to OCR s website. From there you click QUALIFICATIONS, QUALIFICATIONS BY TYPE, AS/A LEVEL GCE, MATHEMATICS (MEI), VIEW ALL DOCUMENTS,

More information

Mathematics Edexcel Advanced Subsidiary GCE Core 1 (6663) January 2010

Mathematics Edexcel Advanced Subsidiary GCE Core 1 (6663) January 2010 Link to past paper on Edexcel website: http://www.edexcel.com/quals/gce/gce08/maths/pages/default.aspx These solutions are for your personal use only. DO NOT photocopy or pass on to third parties. If you

More information

Mathematics (MEI) Advanced Subsidiary GCE Core 2 (4752) June 2010

Mathematics (MEI) Advanced Subsidiary GCE Core 2 (4752) June 2010 Link to past paper on OCR website: www.ocr.org.uk The above link takes you to OCR s website. From there you click QUALIFICATIONS, QUALIFICATIONS BY TYPE, AS/A LEVEL GCE, MATHEMATICS (MEI), VIEW ALL DOCUMENTS,

More information

Mathematics (MEI) Advanced Subsidiary GCE Core 1 (4751) May 2010

Mathematics (MEI) Advanced Subsidiary GCE Core 1 (4751) May 2010 Link to past paper on OCR website: http://www.mei.org.uk/files/papers/c110ju_ergh.pdf These solutions are for your personal use only. DO NOT photocopy or pass on to third parties. If you are a school or

More information

Mathematics AQA Advanced Subsidiary GCE Core 1 (MPC1) January 2010

Mathematics AQA Advanced Subsidiary GCE Core 1 (MPC1) January 2010 Link to past paper on AQA website: http://store.aqa.org.uk/qual/gce/pdf/aqa-mpc1-w-qp-jan10.pdf These solutions are for your personal use only. DO NOT photocopy or pass on to third parties. If you are

More information

Mathematics IGCSE Higher Tier, November /3H (Paper 3H)

Mathematics IGCSE Higher Tier, November /3H (Paper 3H) Link to examining board: www.edexcel.com This question paper associated with this paper is not currently available to download for free from the Edexcel website. You can purchase your own copy of the question

More information

Mathematics IGCSE Higher Tier, November /4H (Paper 4H)

Mathematics IGCSE Higher Tier, November /4H (Paper 4H) Link to examining board: http://www.edexcel.com The question paper associated with these solutions is available to download for free from the Edexcel website. The navigation around the website sometimes

More information

Edexcel Mathematics Higher Tier, November 2009 (1380/3H) (Paper 3, non-calculator)

Edexcel Mathematics Higher Tier, November 2009 (1380/3H) (Paper 3, non-calculator) Link to examining board: http://www.edexcel.com/migrationdocuments/qp%20current%20gcse/nov09-qp/1380_3h_que_20091105.pdf As at the time of writing you can download this paper for free from the Edexcel

More information

Mathematics IGCSE Higher Tier, June /4H (Paper 4H)

Mathematics IGCSE Higher Tier, June /4H (Paper 4H) Link to examining board: http://www.edexcel.com The question paper associated with these solutions is available to download for free from the Edexcel website. The navigation around the website sometimes

More information

Mathematics IGCSE Higher Tier, November /3H (Paper 3H)

Mathematics IGCSE Higher Tier, November /3H (Paper 3H) Link to examining board: http://www.edexcel.com The question paper associated with these solutions is available to download for free from the Edexcel website. The navigation around the website sometimes

More information

Edexcel Mathematics Higher Tier, May 2009 (1380/4H) (Paper 4, calculator)

Edexcel Mathematics Higher Tier, May 2009 (1380/4H) (Paper 4, calculator) Link to examining board: http://www.edexcel.com/migrationdocuments/qp%20current%20gcse/june%202009/1380_4h_que_20090601.pdf You will be able to download this paper for free from the website. These solutions

More information

Mathematics GCSE Higher Tier Taster Pages

Mathematics GCSE Higher Tier Taster Pages Question 14 (June 2011 4306/1H) a) on the cumulative frequency diagram you can work out the lower quartile, median and upper quartile. These have been got by using the dashed red lines. Draw them across

More information

Mathematics Higher Tier, June /1H (Paper 1, non calculator)

Mathematics Higher Tier, June /1H (Paper 1, non calculator) Link to past paper on AQA website: www.aqa.org.uk The question paper associated with these worked answers is available to download for free from the AQA website. You can navigate around the website in

More information

Edexcel Mathematics Higher Tier, November 2010 (1380/3H) (Paper 3, non-calculator)

Edexcel Mathematics Higher Tier, November 2010 (1380/3H) (Paper 3, non-calculator) Link to examining board: www.edexcel.com This question paper is not currently available to download for free from the Edexcel website. You can purchase your own copy by phoning the Edexcel order line on

More information

Mathematics Higher Tier, November /1H (Paper 1, non calculator)

Mathematics Higher Tier, November /1H (Paper 1, non calculator) Link to past paper on AQA website: www.aqa.org.uk The question paper associated with these worked answers is available to download for free from the AQA website. You can navigate around the website in

More information

Mathematics IGCSE Higher Tier, June /3H (Paper 3H)

Mathematics IGCSE Higher Tier, June /3H (Paper 3H) Link to examining board: http://www.edexcel.com The question paper associated with these solutions is available to download for free from the Edexcel website. The navigation around the website sometimes

More information

C3 Revision Questions. (using questions from January 2006, January 2007, January 2008 and January 2009)

C3 Revision Questions. (using questions from January 2006, January 2007, January 2008 and January 2009) C3 Revision Questions (using questions from January 2006, January 2007, January 2008 and January 2009) 1 2 1. f(x) = 1 3 x 2 + 3, x 2. 2 ( x 2) (a) 2 x x 1 Show that f(x) =, x 2. 2 ( x 2) (4) (b) Show

More information

DEPARTMENT OF MATHEMATICS

DEPARTMENT OF MATHEMATICS DEPARTMENT OF MATHEMATICS A2 level Mathematics Core 3 course workbook 2015-2016 Name: Welcome to Core 3 (C3) Mathematics. We hope that you will use this workbook to give you an organised set of notes for

More information

Mathematics Higher Tier, June /1H (Paper 1, non-calculator)

Mathematics Higher Tier, June /1H (Paper 1, non-calculator) Link to past paper on AQA website: www.aqa.org.uk The associated question paper is available to download freely from the AQA website. To navigate around the website, choose QUALIFICATIONS, GCSE, MATHS,

More information

Core 3 (A2) Practice Examination Questions

Core 3 (A2) Practice Examination Questions Core 3 (A) Practice Examination Questions Trigonometry Mr A Slack Trigonometric Identities and Equations I know what secant; cosecant and cotangent graphs look like and can identify appropriate restricted

More information

Edexcel Mathematics Higher Tier, November 2011 (1380/3H) (Paper 3, non-calculator)

Edexcel Mathematics Higher Tier, November 2011 (1380/3H) (Paper 3, non-calculator) Link to examining board: www.edexcel.com This question paper is not yet available to download for free from the Edexcel website. You can purchase your own copy by phoning the Edexcel order line on 01623

More information

CHAIN RULE: DAY 2 WITH TRIG FUNCTIONS. Section 2.4A Calculus AP/Dual, Revised /30/2018 1:44 AM 2.4A: Chain Rule Day 2 1

CHAIN RULE: DAY 2 WITH TRIG FUNCTIONS. Section 2.4A Calculus AP/Dual, Revised /30/2018 1:44 AM 2.4A: Chain Rule Day 2 1 CHAIN RULE: DAY WITH TRIG FUNCTIONS Section.4A Calculus AP/Dual, Revised 018 viet.dang@humbleisd.net 7/30/018 1:44 AM.4A: Chain Rule Day 1 THE CHAIN RULE A. d dx f g x = f g x g x B. If f(x) is a differentiable

More information

Edexcel Mathematics Higher Tier, June 2011 (1380/3H) (Paper 3, non-calculator)

Edexcel Mathematics Higher Tier, June 2011 (1380/3H) (Paper 3, non-calculator) Link to examining board: www.edexcel.com This question paper is not currently available to download for free from the Edexcel website. You can purchase your own copy by phoning the Edexcel order line on

More information

GCE. Mathematics (MEI) Mark Scheme for June Advanced GCE 4753 Methods for Advanced Mathematics (C3) Oxford Cambridge and RSA Examinations

GCE. Mathematics (MEI) Mark Scheme for June Advanced GCE 4753 Methods for Advanced Mathematics (C3) Oxford Cambridge and RSA Examinations GCE Mathematics (MEI) Advanced GCE 4753 Methods for Advanced Mathematics (C3) Mark Scheme for June 00 Oxford Cambridge and RSA Examinations OCR (Oxford Cambridge and RSA) is a leading UK awarding body,

More information

Final Exam SOLUTIONS MAT 131 Fall 2011

Final Exam SOLUTIONS MAT 131 Fall 2011 1. Compute the following its. (a) Final Exam SOLUTIONS MAT 131 Fall 11 x + 1 x 1 x 1 The numerator is always positive, whereas the denominator is negative for numbers slightly smaller than 1. Also, as

More information

If y = f (u) is a differentiable function of u and u = g(x) is a differentiable function of x then dy dx = dy. du du. If y = f (u) then y = f (u) u

If y = f (u) is a differentiable function of u and u = g(x) is a differentiable function of x then dy dx = dy. du du. If y = f (u) then y = f (u) u Section 3 4B The Chain Rule If y = f (u) is a differentiable function of u and u = g(x) is a differentiable function of x then dy dx = dy du du dx or If y = f (u) then f (u) u The Chain Rule with the Power

More information

If y = f (u) is a differentiable function of u and u = g(x) is a differentiable function of x then dy dx = dy. du du. If y = f (u) then y = f (u) u

If y = f (u) is a differentiable function of u and u = g(x) is a differentiable function of x then dy dx = dy. du du. If y = f (u) then y = f (u) u Section 3 4B Lecture The Chain Rule If y = f (u) is a differentiable function of u and u = g(x) is a differentiable function of x then dy dx = dy du du dx or If y = f (u) then y = f (u) u The Chain Rule

More information

physicsandmathstutor.com Paper Reference Core Mathematics C3 Advanced Level Monday 23 January 2006 Afternoon Time: 1 hour 30 minutes

physicsandmathstutor.com Paper Reference Core Mathematics C3 Advanced Level Monday 23 January 2006 Afternoon Time: 1 hour 30 minutes Centre No. Candidate No. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced Level Monday 23 January 2006 Afternoon Time: 1 hour 30 minutes Materials required for examination Mathematical

More information

x n cos 2x dx. dx = nx n 1 and v = 1 2 sin(2x). Andreas Fring (City University London) AS1051 Lecture Autumn / 36

x n cos 2x dx. dx = nx n 1 and v = 1 2 sin(2x). Andreas Fring (City University London) AS1051 Lecture Autumn / 36 We saw in Example 5.4. that we sometimes need to apply integration by parts several times in the course of a single calculation. Example 5.4.4: For n let S n = x n cos x dx. Find an expression for S n

More information

Mark Scheme (Results) January 2011

Mark Scheme (Results) January 2011 Mark (Results) January 0 GCE GCE Core Mathematics C3 (6665) Paper Edecel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WCV 7BH Edecel is one of the

More information

Math Practice Exam 3 - solutions

Math Practice Exam 3 - solutions Math 181 - Practice Exam 3 - solutions Problem 1 Consider the function h(x) = (9x 2 33x 25)e 3x+1. a) Find h (x). b) Find all values of x where h (x) is zero ( critical values ). c) Using the sign pattern

More information

MATHEMATICS 4723 Core Mathematics 3

MATHEMATICS 4723 Core Mathematics 3 ADVANCED GCE MATHEMATICS 4723 Core Mathematics 3 QUESTION PAPER Candidates answer on the printed answer book. OCR supplied materials: Printed answer book 4723 List of Formulae (MF1) Other materials required:

More information

Mathematics Higher Tier, June /2H (Paper 2, calculator)

Mathematics Higher Tier, June /2H (Paper 2, calculator) Link to past paper on AQA website: www.aqa.org.uk The associated question paper is available to download freely from the AQA website. To navigate around the website, choose QUALIFICATIONS, GCSE, MATHS,

More information

Section 3.5: Implicit Differentiation

Section 3.5: Implicit Differentiation Section 3.5: Implicit Differentiation In the previous sections, we considered the problem of finding the slopes of the tangent line to a given function y = f(x). The idea of a tangent line however is not

More information

The number of marks is given in brackets [ ] at the end of each question or part question. The total number of marks for this paper is 72.

The number of marks is given in brackets [ ] at the end of each question or part question. The total number of marks for this paper is 72. ADVANCED GCE UNIT 4753/0 MATHEMATICS (MEI) Methods for Advanced Mathematics (C3) MONDAY JUNE 007 Additional materials: Answer booklet (8 pages) Graph paper MEI Examination Formulae and Tables (MF) Afternoon

More information

AP Calculus AB Summer Math Packet

AP Calculus AB Summer Math Packet Name Date Section AP Calculus AB Summer Math Packet This assignment is to be done at you leisure during the summer. It is meant to help you practice mathematical skills necessary to be successful in Calculus

More information

SET 1. (1) Solve for x: (a) e 2x = 5 3x

SET 1. (1) Solve for x: (a) e 2x = 5 3x () Solve for x: (a) e x = 5 3x SET We take natural log on both sides: ln(e x ) = ln(5 3x ) x = 3 x ln(5) Now we take log base on both sides: log ( x ) = log (3 x ln 5) x = log (3 x ) + log (ln(5)) x x

More information

Example. Evaluate. 3x 2 4 x dx.

Example. Evaluate. 3x 2 4 x dx. 3x 2 4 x 3 + 4 dx. Solution: We need a new technique to integrate this function. Notice that if we let u x 3 + 4, and we compute the differential du of u, we get: du 3x 2 dx Going back to our integral,

More information

AP Calculus Summer Packet

AP Calculus Summer Packet AP Calculus Summer Packet Writing The Equation Of A Line Example: Find the equation of a line that passes through ( 1, 2) and (5, 7). ü Things to remember: Slope formula, point-slope form, slopeintercept

More information

AP Calculus AB Summer Assignment 2016

AP Calculus AB Summer Assignment 2016 AP Calculus AB Name Dates: Start Finish AP Calculus AB Summer Assignment 016 Welcome to AP Calculus AB. This packet is a review of Advanced Algebra & Pre-Calculus topics that you will use continuously

More information

Functions. Remark 1.2 The objective of our course Calculus is to study functions.

Functions. Remark 1.2 The objective of our course Calculus is to study functions. Functions 1.1 Functions and their Graphs Definition 1.1 A function f is a rule assigning a number to each of the numbers. The number assigned to the number x via the rule f is usually denoted by f(x).

More information

6.1 The Inverse Sine, Cosine, and Tangent Functions Objectives

6.1 The Inverse Sine, Cosine, and Tangent Functions Objectives Objectives 1. Find the Exact Value of an Inverse Sine, Cosine, or Tangent Function. 2. Find an Approximate Value of an Inverse Sine Function. 3. Use Properties of Inverse Functions to Find Exact Values

More information

Mathematics Higher Tier, November /2H (Paper 2, calculator)

Mathematics Higher Tier, November /2H (Paper 2, calculator) Link to past paper on AQA website: www.aqa.org.uk This question paper is available to download freely from the AQA website. To navigate around the website, you want QUALIFICATIONS, GCSE, MATHS, MATHEMATICS,

More information

Summer Assignment Directions:

Summer Assignment Directions: Name: Block: Date: AP Calculus AB Summer Assignment Mr. Carter Welcome to AP Calculus AB! This fall will begin an exciting, challenging journey through the world of mathematics. You will challenge yourself

More information

CALCULUS ASSESSMENT REVIEW

CALCULUS ASSESSMENT REVIEW CALCULUS ASSESSMENT REVIEW DEPARTMENT OF MATHEMATICS CHRISTOPHER NEWPORT UNIVERSITY 1. Introduction and Topics The purpose of these notes is to give an idea of what to expect on the Calculus Readiness

More information

APPM 1350 Final Exam Fall 2017

APPM 1350 Final Exam Fall 2017 APPM 350 Final Exam Fall 207. (26 pts) Evaluate the following. (a) Let g(x) cos 3 (π 2x). Find g (π/3). (b) Let y ( x) x. Find y (4). (c) lim r 0 e /r ln(r) + (a) (9 pt) g (x) 3 cos 2 (π 2x)( sin(π 2x))(

More information

Time: 1 hour 30 minutes

Time: 1 hour 30 minutes www.londonnews47.com Paper Reference(s) 6665/0 Edexcel GCE Core Mathematics C Bronze Level B4 Time: hour 0 minutes Materials required for examination papers Mathematical Formulae (Green) Items included

More information

Chapter 5 Notes. 5.1 Using Fundamental Identities

Chapter 5 Notes. 5.1 Using Fundamental Identities Chapter 5 Notes 5.1 Using Fundamental Identities 1. Simplify each expression to its lowest terms. Write the answer to part as the product of factors. (a) sin x csc x cot x ( 1+ sinσ + cosσ ) (c) 1 tanx

More information

Inverse Trig Functions & Derivatives of Trig Functions

Inverse Trig Functions & Derivatives of Trig Functions Inverse Trig Functions & Derivatives of Trig Functions Cole Zmurchok Math 102 Section 106 November 28, 2016 Today... 1. More Trig Function Derivatives 2. Inverse Trig Functions 3. Related Rates with Trig

More information

a k 0, then k + 1 = 2 lim 1 + 1

a k 0, then k + 1 = 2 lim 1 + 1 Math 7 - Midterm - Form A - Page From the desk of C. Davis Buenger. https://people.math.osu.edu/buenger.8/ Problem a) [3 pts] If lim a k = then a k converges. False: The divergence test states that if

More information

MATH 103 Pre-Calculus Mathematics Dr. McCloskey Fall 2008 Final Exam Sample Solutions

MATH 103 Pre-Calculus Mathematics Dr. McCloskey Fall 2008 Final Exam Sample Solutions MATH 103 Pre-Calculus Mathematics Dr. McCloskey Fall 008 Final Exam Sample Solutions In these solutions, FD refers to the course textbook (PreCalculus (4th edition), by Faires and DeFranza, published by

More information

MATHEMATICS (MEI) MONDAY 2 JUNE 2008 ADVANCED GCE 4753/01. Methods for Advanced Mathematics (C3) Morning Time: 1 hour 30 minutes

MATHEMATICS (MEI) MONDAY 2 JUNE 2008 ADVANCED GCE 4753/01. Methods for Advanced Mathematics (C3) Morning Time: 1 hour 30 minutes ADVANCED GCE 475/0 MATHEMATICS (MEI) Methods for Advanced Mathematics (C) MONDAY JUNE 008 Additional materials (enclosed): None Additional materials (required): Answer Booklet (8 pages) Graph paper MEI

More information

*n23494b0220* C3 past-paper questions on trigonometry. 1. (a) Given that sin 2 θ + cos 2 θ 1, show that 1 + tan 2 θ sec 2 θ. (2)

*n23494b0220* C3 past-paper questions on trigonometry. 1. (a) Given that sin 2 θ + cos 2 θ 1, show that 1 + tan 2 θ sec 2 θ. (2) C3 past-paper questions on trigonometry physicsandmathstutor.com June 005 1. (a) Given that sin θ + cos θ 1, show that 1 + tan θ sec θ. (b) Solve, for 0 θ < 360, the equation tan θ + secθ = 1, giving your

More information

A = (a + 1) 2 = a 2 + 2a + 1

A = (a + 1) 2 = a 2 + 2a + 1 A = (a + 1) 2 = a 2 + 2a + 1 1 A = ( (a + b) + 1 ) 2 = (a + b) 2 + 2(a + b) + 1 = a 2 + 2ab + b 2 + 2a + 2b + 1 A = ( (a + b) + 1 ) 2 = (a + b) 2 + 2(a + b) + 1 = a 2 + 2ab + b 2 + 2a + 2b + 1 3 A = (

More information

Preliminary algebra. Polynomial equations. and three real roots altogether. Continue an investigation of its properties as follows.

Preliminary algebra. Polynomial equations. and three real roots altogether. Continue an investigation of its properties as follows. 978-0-51-67973- - Student Solutions Manual for Mathematical Methods for Physics and Engineering: 1 Preliminary algebra Polynomial equations 1.1 It can be shown that the polynomial g(x) =4x 3 +3x 6x 1 has

More information

Mark Scheme (Pre-standardisation)

Mark Scheme (Pre-standardisation) Mark (Pre-standardisation) June 013 GCE Core Mathematics C3 (6665/01) Edexcel and BTEC Qualifications Edexcel and BTEC qualifications come from Pearson, the world s leading learning company. We provide

More information

6.3 METHODS FOR ADVANCED MATHEMATICS, C3 (4753) A2

6.3 METHODS FOR ADVANCED MATHEMATICS, C3 (4753) A2 6.3 METHODS FOR ADVANCED MATHEMATICS, C3 (4753) A2 Objectives To build on and develop the techniques students have learnt at AS Level, with particular emphasis on the calculus. Assessment Examination (72

More information

TRIGONOMETRIC RATIOS AND GRAPHS

TRIGONOMETRIC RATIOS AND GRAPHS Mathematics Revision Guides Trigonometric Ratios and Graphs Page 1 of 15 M.K. HOME TUITION Mathematics Revision Guides Level: AS / A Level AQA : C2 Edexcel: C2 OCR: C2 OCR MEI: C2 TRIGONOMETRIC RATIOS

More information

Core Mathematics 3 Trigonometry

Core Mathematics 3 Trigonometry Edexcel past paper questions Core Mathematics 3 Trigonometry Edited by: K V Kumaran Email: kvkumaran@gmail.com Core Maths 3 Trigonometry Page 1 C3 Trigonometry In C you were introduced to radian measure

More information

weebly.com/ Core Mathematics 3 Trigonometry

weebly.com/ Core Mathematics 3 Trigonometry http://kumarmaths. weebly.com/ Core Mathematics 3 Trigonometry Core Maths 3 Trigonometry Page 1 C3 Trigonometry In C you were introduced to radian measure and had to find areas of sectors and segments.

More information

Solutionbank Edexcel AS and A Level Modular Mathematics

Solutionbank Edexcel AS and A Level Modular Mathematics Page of Exercise A, Question The curve C, with equation y = x ln x, x > 0, has a stationary point P. Find, in terms of e, the coordinates of P. (7) y = x ln x, x > 0 Differentiate as a product: = x + x

More information

Paper Reference. Core Mathematics C3 Advanced. Wednesday 20 January 2010 Afternoon Time: 1 hour 30 minutes. Mathematical Formulae (Pink or Green)

Paper Reference. Core Mathematics C3 Advanced. Wednesday 20 January 2010 Afternoon Time: 1 hour 30 minutes. Mathematical Formulae (Pink or Green) Centre No. Candidate No. Surname Signature Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced Wednesday 20 January 2010 Afternoon Time: 1 hour 30 minutes Materials required for examination

More information

Albertson AP Calculus AB AP CALCULUS AB SUMMER PACKET DUE DATE: The beginning of class on the last class day of the first week of school.

Albertson AP Calculus AB AP CALCULUS AB SUMMER PACKET DUE DATE: The beginning of class on the last class day of the first week of school. Albertson AP Calculus AB Name AP CALCULUS AB SUMMER PACKET 2015 DUE DATE: The beginning of class on the last class day of the first week of school. This assignment is to be done at you leisure during the

More information

(x + 3)(x 1) lim(x + 3) = 4. lim. (x 2)( x ) = (x 2)(x + 2) x + 2 x = 4. dt (t2 + 1) = 1 2 (t2 + 1) 1 t. f(x) = lim 3x = 6,

(x + 3)(x 1) lim(x + 3) = 4. lim. (x 2)( x ) = (x 2)(x + 2) x + 2 x = 4. dt (t2 + 1) = 1 2 (t2 + 1) 1 t. f(x) = lim 3x = 6, Math 140 MT1 Sample C Solutions Tyrone Crisp 1 (B): First try direct substitution: you get 0. So try to cancel common factors. We have 0 x 2 + 2x 3 = x 1 and so the it as x 1 is equal to (x + 3)(x 1),

More information

MA40S Pre-calculus UNIT C Trigonometric Identities CLASS NOTES Analyze Trigonometric Identities Graphically and Verify them Algebraically

MA40S Pre-calculus UNIT C Trigonometric Identities CLASS NOTES Analyze Trigonometric Identities Graphically and Verify them Algebraically 1 MA40S Pre-calculus UNIT C Trigonometric Identities CLASS NOTES Analyze Trigonometric Identities Graphically and Verify them Algebraically Definition Trigonometric identity Investigate 1. Using the diagram

More information

Core A-level mathematics reproduced from the QCA s Subject criteria for Mathematics document

Core A-level mathematics reproduced from the QCA s Subject criteria for Mathematics document Core A-level mathematics reproduced from the QCA s Subject criteria for Mathematics document Background knowledge: (a) The arithmetic of integers (including HCFs and LCMs), of fractions, and of real numbers.

More information

Fall 2009 Math 113 Final Exam Solutions. f(x) = 1 + ex 1 e x?

Fall 2009 Math 113 Final Exam Solutions. f(x) = 1 + ex 1 e x? . What are the domain and range of the function Fall 9 Math 3 Final Exam Solutions f(x) = + ex e x? Answer: The function is well-defined everywhere except when the denominator is zero, which happens when

More information

6.6 Inverse Trigonometric Functions

6.6 Inverse Trigonometric Functions 6.6 6.6 Inverse Trigonometric Functions We recall the following definitions from trigonometry. If we restrict the sine function, say fx) sinx, π x π then we obtain a one-to-one function. π/, /) π/ π/ Since

More information

Numbers Content Points. Reference sheet (1 pt. each) 1-7 Linear Equations (1 pt. each) / Factoring (2 pt. each) /28

Numbers Content Points. Reference sheet (1 pt. each) 1-7 Linear Equations (1 pt. each) / Factoring (2 pt. each) /28 Summer Packet 2015 Your summer packet will be a major test grade for the first nine weeks. It is due the first day of school. You must show all necessary solutions. You will be tested on ALL material;

More information

Math 113 Winter 2005 Key

Math 113 Winter 2005 Key Name Student Number Section Number Instructor Math Winter 005 Key Departmental Final Exam Instructions: The time limit is hours. Problem consists of short answer questions. Problems through are multiple

More information

Math Final Exam Review

Math Final Exam Review Math - Final Exam Review. Find dx x + 6x +. Name: Solution: We complete the square to see if this function has a nice form. Note we have: x + 6x + (x + + dx x + 6x + dx (x + + Note that this looks a lot

More information

Math Academy I Fall Study Guide. CHAPTER ONE: FUNDAMENTALS Due Thursday, December 8

Math Academy I Fall Study Guide. CHAPTER ONE: FUNDAMENTALS Due Thursday, December 8 Name: Math Academy I Fall Study Guide CHAPTER ONE: FUNDAMENTALS Due Thursday, December 8 1-A Terminology natural integer rational real complex irrational imaginary term expression argument monomial degree

More information

Topics and Concepts. 1. Limits

Topics and Concepts. 1. Limits Topics and Concepts 1. Limits (a) Evaluating its (Know: it exists if and only if the it from the left is the same as the it from the right) (b) Infinite its (give rise to vertical asymptotes) (c) Limits

More information

1 Solving equations 1.1 Kick off with CAS 1. Polynomials 1. Trigonometric symmetry properties 1.4 Trigonometric equations and general solutions 1.5 Literal and simultaneous equations 1.6 Review 1.1 Kick

More information

( ) ( ) ( ) 2 6A: Special Trig Limits! Math 400

( ) ( ) ( ) 2 6A: Special Trig Limits! Math 400 2 6A: Special Trig Limits Math 400 This section focuses entirely on the its of 2 specific trigonometric functions. The use of Theorem and the indeterminate cases of Theorem are all considered. a The it

More information

Practice Midterm 2 Math 2153

Practice Midterm 2 Math 2153 Practice Midterm 2 Math 23. Decide if the following statements are TRUE or FALSE and circle your answer. You do NOT need to justify your answers. (a) ( point) If both partial derivatives f x and f y exist

More information

Test one Review Cal 2

Test one Review Cal 2 Name: Class: Date: ID: A Test one Review Cal 2 Short Answer. Write the following expression as a logarithm of a single quantity. lnx 2ln x 2 ˆ 6 2. Write the following expression as a logarithm of a single

More information

Mark Scheme Summer 2009

Mark Scheme Summer 2009 Mark Summer 009 GCE Core Mathematics C (666) Edecel is one of the leading eamining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic,

More information

3/4/2014: First Midterm Exam

3/4/2014: First Midterm Exam Math A: Introduction to functions and calculus Oliver Knill, Spring 0 //0: First Midterm Exam Your Name: Start by writing your name in the above box. Try to answer each question on the same page as the

More information

Pearson Edexcel Level 3 Advanced Subsidiary GCE in Mathematics (8MA0) Pearson Edexcel Level 3 Advanced GCE in Mathematics (9MA0)

Pearson Edexcel Level 3 Advanced Subsidiary GCE in Mathematics (8MA0) Pearson Edexcel Level 3 Advanced GCE in Mathematics (9MA0) Pearson Edexcel Level 3 Advanced Subsidiary GCE in Mathematics (8MA0) Pearson Edexcel Level 3 Advanced GCE in Mathematics (9MA0) First teaching from September 2017 First certification from June 2018 2

More information

Math 121: Calculus 1 - Winter 2012/2013 Review of Precalculus Concepts

Math 121: Calculus 1 - Winter 2012/2013 Review of Precalculus Concepts Introduction Math 11: Calculus 1 - Winter 01/01 Review of Precalculus Concepts Welcome to Math 11 - Calculus 1, Winter 01/01! This problems in this packet are designed to help you review the topics from

More information

I.e., the range of f(x) = arctan(x) is all real numbers y such that π 2 < y < π 2

I.e., the range of f(x) = arctan(x) is all real numbers y such that π 2 < y < π 2 Inverse Trigonometric Functions: The inverse sine function, denoted by fx = arcsinx or fx = sin 1 x is defined by: y = sin 1 x if and only if siny = x and π y π I.e., the range of fx = arcsinx is all real

More information

Calculus II Practice Test Problems for Chapter 7 Page 1 of 6

Calculus II Practice Test Problems for Chapter 7 Page 1 of 6 Calculus II Practice Test Problems for Chapter 7 Page of 6 This is a set of practice test problems for Chapter 7. This is in no way an inclusive set of problems there can be other types of problems on

More information

NOTICE TO CUSTOMER: The sale of this product is intended for use of the original purchaser only and for use only on a single computer system.

NOTICE TO CUSTOMER: The sale of this product is intended for use of the original purchaser only and for use only on a single computer system. NOTICE TO CUSTOMER: The sale of this product is intended for use of the original purchaser only and for use only on a single computer system. Duplicating, selling, or otherwise distributing this product

More information

GCE. Mathematics (MEI) Mark Scheme for January Advanced GCE Unit 4756: Further Methods for Advanced Mathematics

GCE. Mathematics (MEI) Mark Scheme for January Advanced GCE Unit 4756: Further Methods for Advanced Mathematics GCE Mathematics (MEI) Advanced GCE Unit 7: Further Methods for Advanced Mathematics Mark Scheme for January Oxford Cambridge and RSA Examinations OCR (Oxford Cambridge and RSA) is a leading UK awarding

More information

1 + lim. n n+1. f(x) = x + 1, x 1. and we check that f is increasing, instead. Using the quotient rule, we easily find that. 1 (x + 1) 1 x (x + 1) 2 =

1 + lim. n n+1. f(x) = x + 1, x 1. and we check that f is increasing, instead. Using the quotient rule, we easily find that. 1 (x + 1) 1 x (x + 1) 2 = Chapter 5 Sequences and series 5. Sequences Definition 5. (Sequence). A sequence is a function which is defined on the set N of natural numbers. Since such a function is uniquely determined by its values

More information

Core Mathematics 3 A2 compulsory unit for GCE Mathematics and GCE Pure Mathematics Mathematics. Unit C3. C3.1 Unit description

Core Mathematics 3 A2 compulsory unit for GCE Mathematics and GCE Pure Mathematics Mathematics. Unit C3. C3.1 Unit description Unit C3 Core Mathematics 3 A2 compulsory unit for GCE Mathematics and GCE Pure Mathematics Mathematics C3. Unit description Algebra and functions; trigonometry; eponentials and logarithms; differentiation;

More information

Math 121: Calculus 1 - Fall 2013/2014 Review of Precalculus Concepts

Math 121: Calculus 1 - Fall 2013/2014 Review of Precalculus Concepts Introduction Math 121: Calculus 1 - Fall 201/2014 Review of Precalculus Concepts Welcome to Math 121 - Calculus 1, Fall 201/2014! This problems in this packet are designed to help you review the topics

More information

* * MATHEMATICS (MEI) 4753/01 Methods for Advanced Mathematics (C3) ADVANCED GCE. Thursday 15 January 2009 Morning. Duration: 1 hour 30 minutes

* * MATHEMATICS (MEI) 4753/01 Methods for Advanced Mathematics (C3) ADVANCED GCE. Thursday 15 January 2009 Morning. Duration: 1 hour 30 minutes ADVANCED GCE MATHEMATICS (MEI) 475/0 Methods for Advanced Mathematics (C) Candidates answer on the Answer Booklet OCR Supplied Materials: 8 page Answer Booklet Graph paper MEI Eamination Formulae and Tables

More information

f(g(x)) g (x) dx = f(u) du.

f(g(x)) g (x) dx = f(u) du. 1. Techniques of Integration Section 8-IT 1.1. Basic integration formulas. Integration is more difficult than derivation. The derivative of every rational function or trigonometric function is another

More information

Math 113 Winter 2005 Departmental Final Exam

Math 113 Winter 2005 Departmental Final Exam Name Student Number Section Number Instructor Math Winter 2005 Departmental Final Exam Instructions: The time limit is hours. Problem consists of short answer questions. Problems 2 through are multiple

More information

Prelim 1 Solutions V2 Math 1120

Prelim 1 Solutions V2 Math 1120 Feb., Prelim Solutions V Math Please show your reasoning and all your work. This is a 9 minute exam. Calculators are not needed or permitted. Good luck! Problem ) ( Points) Calculate the following: x a)

More information

Substitutions and by Parts, Area Between Curves. Goals: The Method of Substitution Areas Integration by Parts

Substitutions and by Parts, Area Between Curves. Goals: The Method of Substitution Areas Integration by Parts Week #7: Substitutions and by Parts, Area Between Curves Goals: The Method of Substitution Areas Integration by Parts 1 Week 7 The Indefinite Integral The Fundamental Theorem of Calculus, b a f(x) dx =

More information