( ) ( ) ( ) 2 6A: Special Trig Limits! Math 400

Size: px
Start display at page:

Download "( ) ( ) ( ) 2 6A: Special Trig Limits! Math 400"

Transcription

1 2 6A: Special Trig Limits Math 400 This section focuses entirely on the its of 2 specific trigonometric functions. The use of Theorem and the indeterminate cases of Theorem are all considered. a The it of the function f () as approaches a ( ) and f () is continuous in the neighborhood of = a from the left OR right side where there is a point at a, f (a) Theorem One: f () = f (a) if f (a) REALSAND f () is continuous in the neighborhood of = a In many cases the it of f () as approaches a can be found by the use of Theorem. Eample Eample 2 π 2 sin() 2 sin() is continuous in 2 the neighborhood of π 2 so π 3 cos(3) 6 cos(3) is continuous in 6 the neighborhood of π 3 so π 2 sin() 2 = sin π 2 2 π 2 ( ) ( ) π 3 cos(3) ( ( )) ( ) = cos 3 π 3 6 π 3 = π = cos( π ) = 0 2π 2π = 0 Eample 3 π cos() cos() is continuous in the neighborhood of π so π cos() = cos(π) π = 2 π Lecture 2 6A Page of Eitel

2 The Indeterminate Cases for trigonometric functions Many times the use of Theorem to find the it a f () g() produces f (a) g(a) = a Real Number This result allows us to state that the it as approaches a is f (a). Sometimes the use of Theorem g(a) f () to find the it produces a value of f(a) Nonzero number =. When this occurs the a g() g(a) zero function has a vertical asymptote at = a and the it of the function as approaches a from the left or right side of a vertical asymptote at = a is either + or. If h(a) k(a) is a non zero number zero then there is a "vertical asymptote" in the graph at = a and f () a g() = + or and f () a + = + or g() a f () g() = + or or DNE Lecture 2 6A Page 2 of Eitel

3 Sometimes the use of Theorem to find the it a f () g() produces a value of f(a) g(a) = 0 0 How do you determine the it given the zero case. We call this the Indeterminate case for zero Theorem. There are 3 special it problems in this chapter that involve this condition. sin and sin and + cos ( ) We will develop special theorems to find the it for each of there it problems Theorem sin = and sin = Lecture 2 6A Page 3 of Eitel

4 This it theorem requires that you have an eact match to the functions sin or and that sin the it be taken as. The theorem listed above cannot be used to answer its like the ones listed below. sin( 2 ) 2 sin( e ) e sin( ln() ) ln() Eample Eample 2 sin() 2 5 sin() = = 2 = 2 2 sin() sin() = = 5 = 5 5 sin() sin() = 2 = 5 Lecture 2 6A Page 4 of Eitel

5 Theorem If a then where a is a nonzero real number sin(a) a = and a = where a is a nonzero real number sina This it theorem requires that you have an eact match to the functions sin ( a) ) a or a sin( a) and that the it be taken as. The it of other functions cannot be taken using this theorem. Eample 3 Eample 4 sin(8) 8 3 sin(3) sin(a) a = for a nonzero real sin(a) a = for a nonzero real so so sin(8) 8 = 3 sin(3) = Eample 5 Eample 6 sin(4) 0 sin(7) multiply sin(4) by 4 4 multiply sin(7) by sin(4) 4 4 sin(4) sin(7) 7 7 sin(7) = 4 sin(4) sin(7) = 4 = 4 = 7 = 7 Lecture 2 6A Page 5 of Eitel

6 Eample 7 Eample 8 2sin(4) 3 3 sin 3 (2) rewrite as 2 3 sin(4) multiply 2 3 sin(4) sin(4) 4 sin(4) 4 by 4 4 rewrite as sin(2) sin(2) sin(2) multiply by sin(2) 2 sin(2) 2 sin(2) 2 sin(2) 2 sin(2) 2 sin(2) = 8 3 = 8 3 = 8 = 8 Lecture 2 6A Page 6 of Eitel

7 Theorem sin(a) a = a sin(a) = In English: You can multiply by and not change the it because = for all 0 The sin(a) a requires to approach BUT NOT REACH 0 so = as Eample 9 Eample 0 sin(4) 4 2 sin(2) multiply sin(4) 4 by multiply 2 sin(2) by sin(4) 4 2 sin(2) = sin(4) 4 = 2 sin(2) = 0 = 0 = DNE = DNE Lecture 2 6A Page 7 of Eitel

8 Eample Eample 2 sin(4 ) 2sin(5) cos(4) sin(3) rewrite as 2 sin(4) sin(5) rewrite as cos(4) sin(3) the sin(4) term needs a 4 in it's denominator and the sin(5) term needs a 5 in it's numarator multiply sin(4) by 4 4 and 5 by sin(5) 5 the cos(4) term needs a 4 in it's denominator and the sin(3) term needs a 3 in it's numarator multiply cos(4) by 4 4 and 3 by sin(3) 3 = 4 sin(4) sin(5) = 4 ( cos(4) ) sin(3) = sin(4) 4 sin(4) 4 = 4 cos(4) sin(3) = 2 5 sin(4) 4 sin(4) 4 = 4 cos(4) sin(3) = 2 5 = 2 5 = = 0 Lecture 2 6A Page 8 of Eitel

9 Eample 3 Eample 4 sin 2 (4) sin(4) sin(4) each of the 's in the denominator needs to be a 4 multiply by 6 6 = = 5 4sin(4) 4sin(4) 4 4 rewrite as cos(4) sin(3) cos(4) sin(3) the cos(4) needs a 4 in it's denominator and the term needs a 3 in it's numarator multiply by 3 4 = 6 5 sin(4) sin(4) 4 4 = cos(4) 4 3 sin(3) = 6 5 sin(4) 4 sin(4) 4 = cos(4) 4 3 sin(3) = 6 5 = 6 5 = 0 = 0 Lecture 2 6A Page 9 of Eitel

10 Equivalent infinitesimals When two functions f() and g() converge to zero at the same point and called equivalent infinitesimals. f() =, they are g() For the evaluation of the indeterminate form 0/0, we can use the following equivalent infinitesimals. sin arcsin π 2 arccos tan arc tan ln( +) e sin = arcsin = π 2 arccos = tan = arc tan ln( +) e = = = a ( +) a ( +) a a = 2 2 cos co 2 2 = Lecture 2 6A Page 0 of Eitel

11 Theorem cos( ) = 0 and cos( ) = 0 This it theorem requires that you have an eact match to the functions cos( ) and that the it be taken as. The it of other functions cannot be taken using this theorem. Note: You cannot use the theorem above to find the it of the reciprocal of + cos( ) = + cos( ) = Eample Eample 2 or cos ( ) cos( ) cos( ) 2 4 cos( ) 4 = = 2 = 2 0 = 0 2 cos ( ) cos( ) = = 4 = 4 0 = 0 4 cos( ) cos( ) Lecture 2 6A Page of Eitel

12 Take a unit circle and mark out the angle θ above and below the dashed radius, for a total angle of 2θ. The length of the arc of a unit circle is the measure of the arc angle (in radians), so the length of the purple arc is 2θ. The length of the straight red segment is 2 sin(θ). If we take a small enough segment of an arc, it closely resembles a straight line segment. As θ tends to zero, the length of the purple arc and the length of the red segment get closer, and the it is one. Lecture 2 6A Page 2 of Eitel

13 Prove that θ 0 cos(θ) θ = 0 Starting with the sine it proof above we can prove this cosine it algebraically. We begin by multiplying the it by cos(θ) + cos(θ) + to get θ 0 cos(θ) cos(θ) + i θ cos(θ) + Multiplying the binomials in the numerator gives θ 0 cos 2 (θ) θ cos(θ) + ( ) The Pythagorean identity, sin 2 θ + cos 2 θ =, can be converted to cos 2 θ = sin 2 θ and cos 2 can replace sin 2 the numerator to get θ 0 sin 2 (θ) θ cos(θ) + ( ) We can then break this epression into two parts, one of which is our sine it, and the other which can be evaluated by direct substitution: θ 0 sin(θ) θ i sin(θ) cos(θ) + ( ) = θ 0 sin(θ) θ i θ 0 sin(θ) cos(θ) + ( ) = i sin(0) cos(0) + ( ) = i 0 = 0 Lecture 2 6A Page 3 of Eitel

14 Using the figure below, we can also prove the cosine it geometrically, though it's not quite as obvious as the sine it. We start with a larger version of the unit circle (only a sector of angle 2θ is shown). Taking the radius as r = and subtracting cos(θ), which is the length of the green line, we have the length of the segment that spans the gap between the chord and the sector arc, - cos(θ). As angle θ shrinks (approaches zero), so does the length of the black segment. Lecture 2 6A Page 4 of Eitel

Solution. Using the point-slope form of the equation we have the answer immediately: y = 4 5 (x ( 2)) + 9 = 4 (x +2)+9

Solution. Using the point-slope form of the equation we have the answer immediately: y = 4 5 (x ( 2)) + 9 = 4 (x +2)+9 Chapter Review. Lines Eample. Find the equation of the line that goes through the point ( 2, 9) and has slope 4/5. Using the point-slope form of the equation we have the answer immediately: y = 4 5 ( (

More information

FUNDAMENTAL TRIGONOMETRIC INDENTITIES 1 = cos. sec θ 1 = sec. = cosθ. Odd Functions sin( t) = sint. csc( t) = csct tan( t) = tant

FUNDAMENTAL TRIGONOMETRIC INDENTITIES 1 = cos. sec θ 1 = sec. = cosθ. Odd Functions sin( t) = sint. csc( t) = csct tan( t) = tant NOTES 8: ANALYTIC TRIGONOMETRY Name: Date: Period: Mrs. Nguyen s Initial: LESSON 8.1 TRIGONOMETRIC IDENTITIES FUNDAMENTAL TRIGONOMETRIC INDENTITIES Reciprocal Identities sinθ 1 cscθ cosθ 1 secθ tanθ 1

More information

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved.

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved. Analytic Trigonometry Copyright Cengage Learning. All rights reserved. 7.1 Trigonometric Identities Copyright Cengage Learning. All rights reserved. Objectives Simplifying Trigonometric Expressions Proving

More information

Chapter 5 Trigonometric Functions of Angles

Chapter 5 Trigonometric Functions of Angles Chapter 5 Trigonometric Functions of Angles Section 3 Points on Circles Using Sine and Cosine Signs Signs I Signs (+, +) I Signs II (+, +) I Signs II (, +) (+, +) I Signs II (, +) (+, +) I III Signs II

More information

MA40S Pre-calculus UNIT C Trigonometric Identities CLASS NOTES Analyze Trigonometric Identities Graphically and Verify them Algebraically

MA40S Pre-calculus UNIT C Trigonometric Identities CLASS NOTES Analyze Trigonometric Identities Graphically and Verify them Algebraically 1 MA40S Pre-calculus UNIT C Trigonometric Identities CLASS NOTES Analyze Trigonometric Identities Graphically and Verify them Algebraically Definition Trigonometric identity Investigate 1. Using the diagram

More information

sin cos 1 1 tan sec 1 cot csc Pre-Calculus Mathematics Trigonometric Identities and Equations

sin cos 1 1 tan sec 1 cot csc Pre-Calculus Mathematics Trigonometric Identities and Equations Pre-Calculus Mathematics 12 6.1 Trigonometric Identities and Equations Goal: 1. Identify the Fundamental Trigonometric Identities 2. Simplify a Trigonometric Expression 3. Determine the restrictions on

More information

I.e., the range of f(x) = arctan(x) is all real numbers y such that π 2 < y < π 2

I.e., the range of f(x) = arctan(x) is all real numbers y such that π 2 < y < π 2 Inverse Trigonometric Functions: The inverse sine function, denoted by fx = arcsinx or fx = sin 1 x is defined by: y = sin 1 x if and only if siny = x and π y π I.e., the range of fx = arcsinx is all real

More information

Core Mathematics 2 Unit C2 AS

Core Mathematics 2 Unit C2 AS Core Mathematics 2 Unit C2 AS compulsory unit for GCE AS and GCE Mathematics, GCE AS and GCE Pure Mathematics C2.1 Unit description Algebra and functions; coordinate geometry in the (, y) plane; sequences

More information

SET 1. (1) Solve for x: (a) e 2x = 5 3x

SET 1. (1) Solve for x: (a) e 2x = 5 3x () Solve for x: (a) e x = 5 3x SET We take natural log on both sides: ln(e x ) = ln(5 3x ) x = 3 x ln(5) Now we take log base on both sides: log ( x ) = log (3 x ln 5) x = log (3 x ) + log (ln(5)) x x

More information

Calculus with business applications, Lehigh U, Lecture 05 notes Summer

Calculus with business applications, Lehigh U, Lecture 05 notes Summer Calculus with business applications, Lehigh U, Lecture 0 notes Summer 0 Trigonometric functions. Trigonometric functions often arise in physical applications with periodic motion. They do not arise often

More information

TRIG REVIEW NOTES. Co-terminal Angles: Angles that end at the same spot. (sines, cosines, and tangents will equal)

TRIG REVIEW NOTES. Co-terminal Angles: Angles that end at the same spot. (sines, cosines, and tangents will equal) TRIG REVIEW NOTES Convert from radians to degrees: multiply by 0 180 Convert from degrees to radians: multiply by 0. 180 Co-terminal Angles: Angles that end at the same spot. (sines, cosines, and tangents

More information

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals 8. Basic Integration Rules In this section we will review various integration strategies. Strategies: I. Separate

More information

(Section 4.7: Inverse Trig Functions) 4.82 PART F: EVALUATING INVERSE TRIG FUNCTIONS. Think:

(Section 4.7: Inverse Trig Functions) 4.82 PART F: EVALUATING INVERSE TRIG FUNCTIONS. Think: PART F: EVALUATING INVERSE TRIG FUNCTIONS Think: (Section 4.7: Inverse Trig Functions) 4.82 A trig function such as sin takes in angles (i.e., real numbers in its domain) as inputs and spits out outputs

More information

Unit 6: 10 3x 2. Semester 2 Final Review Name: Date: Advanced Algebra

Unit 6: 10 3x 2. Semester 2 Final Review Name: Date: Advanced Algebra Semester Final Review Name: Date: Advanced Algebra Unit 6: # : Find the inverse of: 0 ) f ( ) = ) f ( ) Finding Inverses, Graphing Radical Functions, Simplifying Radical Epressions, & Solving Radical Equations

More information

Core A-level mathematics reproduced from the QCA s Subject criteria for Mathematics document

Core A-level mathematics reproduced from the QCA s Subject criteria for Mathematics document Core A-level mathematics reproduced from the QCA s Subject criteria for Mathematics document Background knowledge: (a) The arithmetic of integers (including HCFs and LCMs), of fractions, and of real numbers.

More information

Pre-Calculus EOC Review 2016

Pre-Calculus EOC Review 2016 Pre-Calculus EOC Review 2016 Name The Exam 50 questions, multiple choice, paper and pencil. I. Limits 8 questions a. (1) decide if a function is continuous at a point b. (1) understand continuity in terms

More information

NAME DATE PERIOD. Trigonometric Identities. Review Vocabulary Complete each identity. (Lesson 4-1) 1 csc θ = 1. 1 tan θ = cos θ sin θ = 1

NAME DATE PERIOD. Trigonometric Identities. Review Vocabulary Complete each identity. (Lesson 4-1) 1 csc θ = 1. 1 tan θ = cos θ sin θ = 1 5-1 Trigonometric Identities What You ll Learn Scan the text under the Now heading. List two things that you will learn in the lesson. 1. 2. Lesson 5-1 Active Vocabulary Review Vocabulary Complete each

More information

1.5 Inverse Trigonometric Functions

1.5 Inverse Trigonometric Functions 1.5 Inverse Trigonometric Functions Remember that only one-to-one functions have inverses. So, in order to find the inverse functions for sine, cosine, and tangent, we must restrict their domains to intervals

More information

Dinwiddie County Subject: Trigonometry Scope and Sequence

Dinwiddie County Subject: Trigonometry Scope and Sequence Dinwiddie County Subject: Trigonometry Scope and Sequence GRADE: High School 9 WKS Topics Equations (linear, quadratic, and absolute value) and Radicals (simplest radical form, including rationalizing

More information

Pre- Calculus Mathematics Trigonometric Identities and Equations

Pre- Calculus Mathematics Trigonometric Identities and Equations Pre- Calculus Mathematics 12 6.1 Trigonometric Identities and Equations Goal: 1. Identify the Fundamental Trigonometric Identities 2. Simplify a Trigonometric Expression 3. Determine the restrictions on

More information

Candidates are expected to have available a calculator. Only division by (x + a) or (x a) will be required.

Candidates are expected to have available a calculator. Only division by (x + a) or (x a) will be required. Revision Checklist Unit C2: Core Mathematics 2 Unit description Algebra and functions; coordinate geometry in the (x, y) plane; sequences and series; trigonometry; exponentials and logarithms; differentiation;

More information

(c) cos Arctan ( 3) ( ) PRECALCULUS ADVANCED REVIEW FOR FINAL FIRST SEMESTER

(c) cos Arctan ( 3) ( ) PRECALCULUS ADVANCED REVIEW FOR FINAL FIRST SEMESTER PRECALCULUS ADVANCED REVIEW FOR FINAL FIRST SEMESTER Work the following on notebook paper ecept for the graphs. Do not use our calculator unless the problem tells ou to use it. Give three decimal places

More information

SESSION 6 Trig. Equations and Identities. Math 30-1 R 3. (Revisit, Review and Revive)

SESSION 6 Trig. Equations and Identities. Math 30-1 R 3. (Revisit, Review and Revive) SESSION 6 Trig. Equations and Identities Math 30-1 R 3 (Revisit, Review and Revive) 1 P a g e 2 P a g e Mathematics 30-1 Learning Outcomes Specific Outcome 5: Solve, algebraically and graphically, first

More information

Pure Core 2. Revision Notes

Pure Core 2. Revision Notes Pure Core Revision Notes June 06 Pure Core Algebra... Polynomials... Factorising... Standard results... Long division... Remainder theorem... 4 Factor theorem... 5 Choosing a suitable factor... 6 Cubic

More information

Math Precalculus Blueprint Assessed Quarter 1

Math Precalculus Blueprint Assessed Quarter 1 PO 11. Find approximate solutions for polynomial equations with or without graphing technology. MCWR-S3C2-06 Graphing polynomial functions. MCWR-S3C2-12 Theorems of polynomial functions. MCWR-S3C3-08 Polynomial

More information

Unit #17: Spring Trig Unit. A. First Quadrant Notice how the x-values decrease by while the y-values increase by that same amount.

Unit #17: Spring Trig Unit. A. First Quadrant Notice how the x-values decrease by while the y-values increase by that same amount. Name Unit #17: Spring Trig Unit Notes #1: Basic Trig Review I. Unit Circle A circle with center point and radius. A. First Quadrant Notice how the x-values decrease by while the y-values increase by that

More information

Solutions to Problem Sheet for Week 6

Solutions to Problem Sheet for Week 6 THE UNIVERSITY OF SYDNEY SCHOOL OF MATHEMATICS AND STATISTICS Solutions to Problem Sheet for Week 6 MATH90: Differential Calculus (Advanced) Semester, 07 Web Page: sydney.edu.au/science/maths/u/ug/jm/math90/

More information

A basic trigonometric equation asks what values of the trig function have a specific value.

A basic trigonometric equation asks what values of the trig function have a specific value. Lecture 3A: Solving Basic Trig Equations A basic trigonometric equation asks what values of the trig function have a specific value. The equation sinθ = 1 asks for what vales of θ is the equation true.

More information

NYS Algebra II and Trigonometry Suggested Sequence of Units (P.I's within each unit are NOT in any suggested order)

NYS Algebra II and Trigonometry Suggested Sequence of Units (P.I's within each unit are NOT in any suggested order) 1 of 6 UNIT P.I. 1 - INTEGERS 1 A2.A.1 Solve absolute value equations and inequalities involving linear expressions in one variable 1 A2.A.4 * Solve quadratic inequalities in one and two variables, algebraically

More information

Example 9 Algebraic Evaluation for Example 1

Example 9 Algebraic Evaluation for Example 1 A Basic Principle Consider the it f(x) x a If you have a formula for the function f and direct substitution gives the indeterminate form 0, you may be able to evaluate the it algebraically. 0 Principle

More information

1 Chapter 2 Perform arithmetic operations with polynomial expressions containing rational coefficients 2-2, 2-3, 2-4

1 Chapter 2 Perform arithmetic operations with polynomial expressions containing rational coefficients 2-2, 2-3, 2-4 NYS Performance Indicators Chapter Learning Objectives Text Sections Days A.N. Perform arithmetic operations with polynomial expressions containing rational coefficients. -, -5 A.A. Solve absolute value

More information

5.3 Properties of Trigonometric Functions Objectives

5.3 Properties of Trigonometric Functions Objectives Objectives. Determine the Domain and Range of the Trigonometric Functions. 2. Determine the Period of the Trigonometric Functions. 3. Determine the Signs of the Trigonometric Functions in a Given Quadrant.

More information

Section Inverse Trigonometry. In this section, we will define inverse since, cosine and tangent functions. x is NOT one-to-one.

Section Inverse Trigonometry. In this section, we will define inverse since, cosine and tangent functions. x is NOT one-to-one. Section 5.4 - Inverse Trigonometry In this section, we will define inverse since, cosine and tangent functions. RECALL Facts about inverse functions: A function f ) is one-to-one if no two different inputs

More information

Honors Algebra 2 Chapter 14 Page 1

Honors Algebra 2 Chapter 14 Page 1 Section. (Introduction) Graphs of Trig Functions Objectives:. To graph basic trig functions using t-bar method. A. Sine and Cosecant. y = sinθ y y y y 0 --- --- 80 --- --- 30 0 0 300 5 35 5 35 60 50 0

More information

HS Trigonometry Mathematics CC

HS Trigonometry Mathematics CC Course Description A pre-calculus course for the college bound student. The term includes a strong emphasis on circular and triangular trigonometric functions, graphs of trigonometric functions and identities

More information

AP Calculus AB Summer Assignment

AP Calculus AB Summer Assignment Name: AP Calculus AB Summer Assignment Due Date: The beginning of class on the last class day of the first week of school. The purpose of this assignment is to have you practice the mathematical skills

More information

A.P. Calculus Summer Assignment

A.P. Calculus Summer Assignment A.P. Calculus Summer Assignment This assignment is due the first day of class at the beginning of the class. It will be graded and counts as your first test grade. This packet contains eight sections and

More information

MATH 100 REVIEW PACKAGE

MATH 100 REVIEW PACKAGE SCHOOL OF UNIVERSITY ARTS AND SCIENCES MATH 00 REVIEW PACKAGE Gearing up for calculus and preparing for the Assessment Test that everybody writes on at. You are strongly encouraged not to use a calculator

More information

Topic Outline for Algebra 2 & and Trigonometry One Year Program

Topic Outline for Algebra 2 & and Trigonometry One Year Program Topic Outline for Algebra 2 & and Trigonometry One Year Program Algebra 2 & and Trigonometry - N - Semester 1 1. Rational Expressions 17 Days A. Factoring A2.A.7 B. Rationals A2.N.3 A2.A.17 A2.A.16 A2.A.23

More information

Preview from Notesale.co.uk Page 2 of 42

Preview from Notesale.co.uk Page 2 of 42 . CONCEPTS & FORMULAS. INTRODUCTION Radian The angle subtended at centre of a circle by an arc of length equal to the radius of the circle is radian r o = o radian r r o radian = o = 6 Positive & Negative

More information

6.1 Reciprocal, Quotient, and Pythagorean Identities.notebook. Chapter 6: Trigonometric Identities

6.1 Reciprocal, Quotient, and Pythagorean Identities.notebook. Chapter 6: Trigonometric Identities Chapter 6: Trigonometric Identities 1 Chapter 6 Complete the following table: 6.1 Reciprocal, Quotient, and Pythagorean Identities Pages 290 298 6.3 Proving Identities Pages 309 315 Measure of

More information

DuVal High School Summer Review Packet AP Calculus

DuVal High School Summer Review Packet AP Calculus DuVal High School Summer Review Packet AP Calculus Welcome to AP Calculus AB. This packet contains background skills you need to know for your AP Calculus. My suggestion is, you read the information and

More information

AP Calculus Summer Packet

AP Calculus Summer Packet AP Calculus Summer Packet Writing The Equation Of A Line Example: Find the equation of a line that passes through ( 1, 2) and (5, 7). ü Things to remember: Slope formula, point-slope form, slopeintercept

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. and θ is in quadrant IV. 1)

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. and θ is in quadrant IV. 1) Chapter 5-6 Review Math 116 Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Use the fundamental identities to find the value of the trigonometric

More information

Math 141: Trigonometry Practice Final Exam: Fall 2012

Math 141: Trigonometry Practice Final Exam: Fall 2012 Name: Math 141: Trigonometry Practice Final Eam: Fall 01 Instructions: Show all work. Answers without work will NOT receive full credit. Clearly indicate your final answers. The maimum possible score is

More information

CHAPTERS 5-7 TRIG. FORMULAS PACKET

CHAPTERS 5-7 TRIG. FORMULAS PACKET CHAPTERS 5-7 TRIG. FORMULAS PACKET PRE-CALCULUS SECTION 5-2 IDENTITIES Reciprocal Identities sin x = ( 1 / csc x ) csc x = ( 1 / sin x ) cos x = ( 1 / sec x ) sec x = ( 1 / cos x ) tan x = ( 1 / cot x

More information

Falls Church High School

Falls Church High School Summer AP Assignment Coversheet Falls Church High School Course: AP Calculus BC Teacher Name/s: Marla Schnall Assignment Title: AP Calculus BC Summer Packet Assignment Summary/Purpose: The material in

More information

Trigonometry LESSON SIX - Trigonometric Identities I Lesson Notes

Trigonometry LESSON SIX - Trigonometric Identities I Lesson Notes LESSON SIX - Trigonometric Identities I Example Understanding Trigonometric Identities. a) Why are trigonometric identities considered to be a special type of trigonometric equation? Trigonometric Identities

More information

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved.

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved. Analytic Trigonometry Copyright Cengage Learning. All rights reserved. 7.4 Basic Trigonometric Equations Copyright Cengage Learning. All rights reserved. Objectives Basic Trigonometric Equations Solving

More information

More with Angles Reference Angles

More with Angles Reference Angles More with Angles Reference Angles A reference angle is the angle formed by the terminal side of an angle θ, and the (closest) x axis. A reference angle, θ', is always 0 o

More information

MATH 127 SAMPLE FINAL EXAM I II III TOTAL

MATH 127 SAMPLE FINAL EXAM I II III TOTAL MATH 17 SAMPLE FINAL EXAM Name: Section: Do not write on this page below this line Part I II III TOTAL Score Part I. Multiple choice answer exercises with exactly one correct answer. Each correct answer

More information

Troy High School AP Calculus Summer Packet

Troy High School AP Calculus Summer Packet Troy High School AP Calculus Summer Packet As instructors of AP Calculus, we have etremely high epectations of students taking our courses. We epect a certain level of independence to be demonstrated by

More information

MTH 112: Elementary Functions

MTH 112: Elementary Functions 1/19 MTH 11: Elementary Functions Section 6.6 6.6:Inverse Trigonometric functions /19 Inverse Trig functions 1 1 functions satisfy the horizontal line test: Any horizontal line crosses the graph of a 1

More information

Precalculus Review. Functions to KNOW! 1. Polynomial Functions. Types: General form Generic Graph and unique properties. Constants. Linear.

Precalculus Review. Functions to KNOW! 1. Polynomial Functions. Types: General form Generic Graph and unique properties. Constants. Linear. Precalculus Review Functions to KNOW! 1. Polynomial Functions Types: General form Generic Graph and unique properties Constants Linear Quadratic Cubic Generalizations for Polynomial Functions - The domain

More information

A List of Definitions and Theorems

A List of Definitions and Theorems Metropolitan Community College Definition 1. Two angles are called complements if the sum of their measures is 90. Two angles are called supplements if the sum of their measures is 180. Definition 2. One

More information

(ii) y = ln 1 ] t 3 t x x2 9

(ii) y = ln 1 ] t 3 t x x2 9 Study Guide for Eam 1 1. You are supposed to be able to determine the domain of a function, looking at the conditions for its epression to be well-defined. Some eamples of the conditions are: What is inside

More information

Trig Identities. or (x + y)2 = x2 + 2xy + y 2. Dr. Ken W. Smith Other examples of identities are: (x + 3)2 = x2 + 6x + 9 and

Trig Identities. or (x + y)2 = x2 + 2xy + y 2. Dr. Ken W. Smith Other examples of identities are: (x + 3)2 = x2 + 6x + 9 and Trig Identities An identity is an equation that is true for all values of the variables. Examples of identities might be obvious results like Part 4, Trigonometry Lecture 4.8a, Trig Identities and Equations

More information

MATH 32 FALL 2012 FINAL EXAM - PRACTICE EXAM SOLUTIONS

MATH 32 FALL 2012 FINAL EXAM - PRACTICE EXAM SOLUTIONS MATH 3 FALL 0 FINAL EXAM - PRACTICE EXAM SOLUTIONS () You cut a slice from a circular pizza (centered at the origin) with radius 6 along radii at angles 4 and 3 with the positive horizontal axis. (a) (3

More information

2 Trigonometric functions

2 Trigonometric functions Theodore Voronov. Mathematics 1G1. Autumn 014 Trigonometric functions Trigonometry provides methods to relate angles and lengths but the functions we define have many other applications in mathematics..1

More information

Summer Packet Greetings Future AP Calculus Scholar,

Summer Packet Greetings Future AP Calculus Scholar, Summer Packet 2017 Greetings Future AP Calculus Scholar, I am excited about the work that we will do together during the 2016-17 school year. I do not yet know what your math capability is, but I can assure

More information

Summer Review Packet for Students Entering AP Calculus BC. Complex Fractions

Summer Review Packet for Students Entering AP Calculus BC. Complex Fractions Summer Review Packet for Students Entering AP Calculus BC Comple Fractions When simplifying comple fractions, multiply by a fraction equal to 1 which has a numerator and denominator composed of the common

More information

Algebra II B Review 5

Algebra II B Review 5 Algebra II B Review 5 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Find the measure of the angle below. y x 40 ο a. 135º b. 50º c. 310º d. 270º Sketch

More information

MATH 32 FALL 2013 FINAL EXAM SOLUTIONS. 1 cos( 2. is in the first quadrant, so its sine is positive. Finally, csc( π 8 ) = 2 2.

MATH 32 FALL 2013 FINAL EXAM SOLUTIONS. 1 cos( 2. is in the first quadrant, so its sine is positive. Finally, csc( π 8 ) = 2 2. MATH FALL 01 FINAL EXAM SOLUTIONS (1) (1 points) Evalute the following (a) tan(0) Solution: tan(0) = 0. (b) csc( π 8 ) Solution: csc( π 8 ) = 1 sin( π 8 ) To find sin( π 8 ), we ll use the half angle formula:

More information

Solutionbank C2 Edexcel Modular Mathematics for AS and A-Level

Solutionbank C2 Edexcel Modular Mathematics for AS and A-Level file://c:\users\buba\kaz\ouba\c_rev_a_.html Eercise A, Question Epand and simplify ( ) 5. ( ) 5 = + 5 ( ) + 0 ( ) + 0 ( ) + 5 ( ) + ( ) 5 = 5 + 0 0 + 5 5 Compare ( + ) n with ( ) n. Replace n by 5 and

More information

Given an arc of length s on a circle of radius r, the radian measure of the central angle subtended by the arc is given by θ = s r :

Given an arc of length s on a circle of radius r, the radian measure of the central angle subtended by the arc is given by θ = s r : Given an arc of length s on a circle of radius r, the radian measure of the central angle subtended by the arc is given by θ = s r : To convert from radians (rad) to degrees ( ) and vice versa, use the

More information

Given an arc of length s on a circle of radius r, the radian measure of the central angle subtended by the arc is given by θ = s r :

Given an arc of length s on a circle of radius r, the radian measure of the central angle subtended by the arc is given by θ = s r : Given an arc of length s on a circle of radius r, the radian measure of the central angle subtended by the arc is given by θ = s r : To convert from radians (rad) to degrees ( ) and vice versa, use the

More information

McKinney High School AP Calculus Summer Packet

McKinney High School AP Calculus Summer Packet McKinne High School AP Calculus Summer Packet (for students entering AP Calculus AB or AP Calculus BC) Name:. This packet is to be handed in to our Calculus teacher the first week of school.. ALL work

More information

Feedback D. Incorrect! Exponential functions are continuous everywhere. Look for features like square roots or denominators that could be made 0.

Feedback D. Incorrect! Exponential functions are continuous everywhere. Look for features like square roots or denominators that could be made 0. Calculus Problem Solving Drill 07: Trigonometric Limits and Continuity No. of 0 Instruction: () Read the problem statement and answer choices carefully. () Do your work on a separate sheet of paper. (3)

More information

Mathematics Trigonometry: Unit Circle

Mathematics Trigonometry: Unit Circle a place of mind F A C U L T Y O F E D U C A T I O N Department of Curriculum and Pedagog Mathematics Trigonometr: Unit Circle Science and Mathematics Education Research Group Supported b UBC Teaching and

More information

Essential Question How can you verify a trigonometric identity?

Essential Question How can you verify a trigonometric identity? 9.7 Using Trigonometric Identities Essential Question How can you verify a trigonometric identity? Writing a Trigonometric Identity Work with a partner. In the figure, the point (, y) is on a circle of

More information

Math Section 4.3 Unit Circle Trigonometry

Math Section 4.3 Unit Circle Trigonometry Math 10 - Section 4. Unit Circle Trigonometry An angle is in standard position if its vertex is at the origin and its initial side is along the positive x axis. Positive angles are measured counterclockwise

More information

6.1: Reciprocal, Quotient & Pythagorean Identities

6.1: Reciprocal, Quotient & Pythagorean Identities Math Pre-Calculus 6.: Reciprocal, Quotient & Pythagorean Identities A trigonometric identity is an equation that is valid for all values of the variable(s) for which the equation is defined. In this chapter

More information

Trigonometry - Part 1 (12 pages; 4/9/16) fmng.uk

Trigonometry - Part 1 (12 pages; 4/9/16) fmng.uk Trigonometry - Part 1 (12 pages; 4/9/16) (1) Sin, cos & tan of 30, 60 & 45 sin30 = 1 2 ; sin60 = 3 2 cos30 = 3 2 ; cos60 = 1 2 cos45 = sin45 = 1 2 = 2 2 tan45 = 1 tan30 = 1 ; tan60 = 3 3 Graphs of y =

More information

6.5 Trigonometric Equations

6.5 Trigonometric Equations 6. Trigonometric Equations In this section, we discuss conditional trigonometric equations, that is, equations involving trigonometric functions that are satisfied only by some values of the variable (or

More information

CALCULUS ASSESSMENT REVIEW

CALCULUS ASSESSMENT REVIEW CALCULUS ASSESSMENT REVIEW DEPARTMENT OF MATHEMATICS CHRISTOPHER NEWPORT UNIVERSITY 1. Introduction and Topics The purpose of these notes is to give an idea of what to expect on the Calculus Readiness

More information

Summer Packet Honors PreCalculus

Summer Packet Honors PreCalculus Summer Packet Honors PreCalculus Honors Pre-Calculus is a demanding course that relies heavily upon a student s algebra, geometry, and trigonometry skills. You are epected to know these topics before entering

More information

Section 6.1 Angles and Radian Measure Review If you measured the distance around a circle in terms of its radius, what is the unit of measure?

Section 6.1 Angles and Radian Measure Review If you measured the distance around a circle in terms of its radius, what is the unit of measure? Section 6.1 Angles and Radian Measure Review If you measured the distance around a circle in terms of its radius, what is the unit of measure? In relationship to a circle, if I go half way around the edge

More information

Lecture 5: Finding limits analytically Simple indeterminate forms

Lecture 5: Finding limits analytically Simple indeterminate forms Lecture 5: Finding its analytically Simple indeterminate forms Objectives: (5.) Use algebraic techniques to resolve 0/0 indeterminate forms. (5.) Use the squeeze theorem to evaluate its. (5.3) Use trigonometric

More information

Trig Identities, Solving Trig Equations Answer Section

Trig Identities, Solving Trig Equations Answer Section Trig Identities, Solving Trig Equations Answer Section MULTIPLE CHOICE. ANS: B PTS: REF: Knowledge and Understanding OBJ: 7. - Compound Angle Formulas. ANS: A PTS: REF: Knowledge and Understanding OBJ:

More information

Algebra/Pre-calc Review

Algebra/Pre-calc Review Algebra/Pre-calc Review The following pages contain various algebra and pre-calculus topics that are used in the stud of calculus. These pages were designed so that students can refresh their knowledge

More information

Section 6.2 Trigonometric Functions: Unit Circle Approach

Section 6.2 Trigonometric Functions: Unit Circle Approach Section. Trigonometric Functions: Unit Circle Approach The unit circle is a circle of radius centered at the origin. If we have an angle in standard position superimposed on the unit circle, the terminal

More information

Math 005A Prerequisite Material Answer Key

Math 005A Prerequisite Material Answer Key Math 005A Prerequisite Material Answer Key 1. a) P = 4s (definition of perimeter and square) b) P = l + w (definition of perimeter and rectangle) c) P = a + b + c (definition of perimeter and triangle)

More information

A BRIEF REVIEW OF ALGEBRA AND TRIGONOMETRY

A BRIEF REVIEW OF ALGEBRA AND TRIGONOMETRY A BRIEF REVIEW OF ALGEBRA AND TRIGONOMETR Some Key Concepts:. The slope and the equation of a straight line. Functions and functional notation. The average rate of change of a function and the DIFFERENCE-

More information

Fox Lane High School Department of Mathematics

Fox Lane High School Department of Mathematics Fo Lane High School Department of Mathematics June 08 Hello Future AP Calculus AB Student! This is the summer assignment for all students taking AP Calculus AB net school year. It contains a set of problems

More information

CAMI Education links: Maths NQF Level 4

CAMI Education links: Maths NQF Level 4 CONTENT 1.1 Work with Comple numbers 1. Solve problems using comple numbers.1 Work with algebraic epressions using the remainder and factor theorems CAMI Education links: MATHEMATICS NQF Level 4 LEARNING

More information

The Intermediate Value Theorem If a function f (x) is continuous in the closed interval [ a,b] then [ ]

The Intermediate Value Theorem If a function f (x) is continuous in the closed interval [ a,b] then [ ] Lecture 2 5B Evaluating Limits Limits x ---> a The Intermediate Value Theorem If a function f (x) is continuous in the closed interval [ a,b] then [ ] the y values f (x) must take on every value on the

More information

Sum and difference formulae for sine and cosine. Elementary Functions. Consider angles α and β with α > β. These angles identify points on the

Sum and difference formulae for sine and cosine. Elementary Functions. Consider angles α and β with α > β. These angles identify points on the Consider angles α and β with α > β. These angles identify points on the unit circle, P (cos α, sin α) and Q(cos β, sin β). Part 5, Trigonometry Lecture 5.1a, Sum and Difference Formulas Dr. Ken W. Smith

More information

The letter m is used to denote the slope and we say that m = rise run = change in y change in x = 5 7. change in y change in x = 4 6 =

The letter m is used to denote the slope and we say that m = rise run = change in y change in x = 5 7. change in y change in x = 4 6 = Section 4 3: Slope Introduction We use the term Slope to describe how steep a line is as ou move between an two points on the line. The slope or steepness is a ratio of the vertical change in (rise) compared

More information

( ) ( ) ( ) ( ) MATHEMATICS Precalculus Martin Huard Fall 2007 Semester Review. 1. Simplify each expression. 4a b c. x y. 18x. x 2x.

( ) ( ) ( ) ( ) MATHEMATICS Precalculus Martin Huard Fall 2007 Semester Review. 1. Simplify each expression. 4a b c. x y. 18x. x 2x. MATHEMATICS 0-009-0 Precalculus Martin Huard Fall 007. Simplif each epression. a) 8 8 g) ( ) ( j) m) a b c a b 8 8 8 n f) t t ) h) + + + + k) + + + n) + + + + + ( ) i) + n 8 + 9 z + l) 8 o) ( + ) ( + )

More information

APPLICATIONS OF DIFFERENTIATION

APPLICATIONS OF DIFFERENTIATION 4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION 4.4 Indeterminate Forms and L Hospital s Rule In this section, we will learn: How to evaluate functions whose values cannot be found at

More information

Trigonometric Functions. Section 1.6

Trigonometric Functions. Section 1.6 Trigonometric Functions Section 1.6 Quick Review Radian Measure The radian measure of the angle ACB at the center of the unit circle equals the length of the arc that ACB cuts from the unit circle. Radian

More information

Trig. Past Papers Unit 2 Outcome 3

Trig. Past Papers Unit 2 Outcome 3 PSf Written Questions Trig. Past Papers Unit utcome 3 1. Solve the equation 3 cos + cos = 1 in the interval 0 360. 5 Part Marks Level Calc. Content Answer U C3 5 A/B CR T10 60, 131 8, 8, 300 000 P Q5 1

More information

MATH 32 FALL 2012 FINAL EXAM - PRACTICE EXAM SOLUTIONS

MATH 32 FALL 2012 FINAL EXAM - PRACTICE EXAM SOLUTIONS MATH 2 FALL 2012 FINAL EXAM - PRACTICE EXAM SOLUTIONS (1) ( points) Solve the equation x 1 =. Solution: Since x 1 =, x 1 = or x 1 =. Solving for x, x = 4 or x = 2. (2) In the triangle below, let a = 4,

More information

Trigonometry Trigonometry comes from the Greek word meaning measurement of triangles Angles are typically labeled with Greek letters

Trigonometry Trigonometry comes from the Greek word meaning measurement of triangles Angles are typically labeled with Greek letters Trigonometry Trigonometry comes from the Greek word meaning measurement of triangles Angles are typically labeled with Greek letters α( alpha), β ( beta), θ ( theta) as well as upper case letters A,B,

More information

Since 1 revolution = 1 = = Since 1 revolution = 1 = =

Since 1 revolution = 1 = = Since 1 revolution = 1 = = Fry Texas A&M University Math 150 Chapter 8A Fall 2015! 207 Since 1 revolution = 1 = = Since 1 revolution = 1 = = Convert to revolutions (or back to degrees and/or radians) a) 45! = b) 120! = c) 450! =

More information

Core Mathematics 3 A2 compulsory unit for GCE Mathematics and GCE Pure Mathematics Mathematics. Unit C3. C3.1 Unit description

Core Mathematics 3 A2 compulsory unit for GCE Mathematics and GCE Pure Mathematics Mathematics. Unit C3. C3.1 Unit description Unit C3 Core Mathematics 3 A2 compulsory unit for GCE Mathematics and GCE Pure Mathematics Mathematics C3. Unit description Algebra and functions; trigonometry; eponentials and logarithms; differentiation;

More information

Composition of and the Transformation of Functions

Composition of and the Transformation of Functions 1 3 Specific Outcome Demonstrate an understanding of operations on, and compositions of, functions. Demonstrate an understanding of the effects of horizontal and vertical translations on the graphs of

More information

1. Create, solve, or interpret linear equations in one variable. Algebra 1 Unit Create, solve, or interpret linear inequalities in one variable

1. Create, solve, or interpret linear equations in one variable. Algebra 1 Unit Create, solve, or interpret linear inequalities in one variable SAT Content Standards correlated with Connecticut Core Mathematics Curricula: Algebra 1, Geometry, and Algebra. Content Dimension Description Place in Curriculum 1. Create, solve, or interpret linear equations

More information

CAMI Education linked to CAPS: Mathematics

CAMI Education linked to CAPS: Mathematics - 1 - The main topics in the Curriculum: NUMBER TOPIC 1 Functions 2 Number patterns, sequences and series 3 Finance, growth and decay 4 Algebra 5 Differential Calculus 6 Probability 7 Euclidian geometry

More information

Math 142: Trigonometry and Analytic Geometry Practice Final Exam: Fall 2012

Math 142: Trigonometry and Analytic Geometry Practice Final Exam: Fall 2012 Name: Math 14: Trigonometry and Analytic Geometry Practice Final Eam: Fall 01 Instructions: Show all work. Answers without work will NOT receive full credit. Clearly indicate your final answers. The maimum

More information