Test one Review Cal 2

Size: px
Start display at page:

Download "Test one Review Cal 2"

Transcription

1 Name: Class: Date: ID: A Test one Review Cal 2 Short Answer. Write the following expression as a logarithm of a single quantity. lnx 2ln x 2 ˆ 6 2. Write the following expression as a logarithm of a single quantity. ln x ln x 2 ˆ. Find the following limit if it exists: lim Use when appropriate. x 5 ln( x 5).. Find the following limit if it exists: lim ln( x ). x Use when appropriate. 5. Find an equation of the tangent line to the graph of y ln x ˆ at the point (,0). 6. Differentiate the function fx ( ) ln( x 2). 7. Differentiate the function f(x) ln 8x 2 ˆ x. 8. Find the derivative of the function y ln x Find the derivative of the function x ˆ fx ( ) ln x Find the derivative of the function y ln ln x 2 ˆ.. Use implicit differentiation to find dy at the point dx 7, ˆ. xy 5lny Find all points of inflection on the graph of fx ( ) ( 5x 7)ln x,x 0.. Use logarithmic differentiation to find dy dx. y 5x ( x 2). Find the indefinite integral of 5. Find the indefinite integral. x x 2 9 dx x 5 dx. x 2 x 0 6. Find dx. x 2 7. Find tan6 d. 8. Find the indefinite integral. csc( x) dx.

2 Name: ID: A 9. Find the indefinite integral. 20. Find cos( 2 ) sin( 2 ) d x x dx. 2. Find F( x) given F( x) 6x 7 t dt. 22. Use the Horizontal Line Test to determine whether the following statement is true or false. The function fx ( ) x is one-to-one on its 9 entire domain and therefore has an inverse function. 2. Find f ( x) if fx ( ) 2x Find f ( x) if fx ( ) x. 25. Find f ( x) if fx ( ) 6x 2, x Find dy dx x y 6y 2 8. at the point, ˆ for the equation 27. Use the functions fx ( ) x 2andgx ( ) x 7 to find the function g û f ˆ ( x). 28. Use the functions fx ( ) x 2andgx ( ) x to find the function f û g ˆ ( x). 29. Solve the following equation for x.. Find the derivative of the function fx ( ) x 6 e x. ˆ 2. Differentiate the function fx ( ) ln e5x e 2x.. Find the indefinite integral. 2xe x 2 dx. Find the indefinite integral. cosxe sin x dx 5. Evaluate the following expression without using a calculator. ˆ log 6 6. Solve the following equation for x. log x log ( x 2) 7. Use logarithmic differentiation to find dy dx. y x 8x 8. Find the indefinite integral. 6 5x dx 9. Evaluate the expression arcsin ˆ without using a 2 calculator. ln x e ( ) 0. Differentiate the function fx ( ) 5e x2. 2

3 Name: ID: A 0. Evaluate the expression arccos using a calculator. 2 2 ˆ without 50. Find the derivative of the function y ln cosh ˆ ( 0x). 5. Find the indefinite integral.. Evaluate the expression cos arcsin ˆ 5 without using a calculator. x 5 csch 2 x 6 6 ˆ dx 2. Write the following expression in algebraic form. cos arcsin 2x 2 ˆ ˆ. Write the following expression in algebraic form. sin arccos( 2x) ˆ. Find the indefinite integral. 9 6x 2 dx 5. Find the integral t t dt Evaluate the integral / x 2 dx. 7. Evaluate the integral 2 9 x 2 dx. 8. Find the integral x 5 dx. x 2 9. Evaluate sinh ln ˆ ˆ 8 and cosh ln ˆ ˆ 8 in that order.

4 Test one Review Cal 2 Answer Section SHORT ANSWER. ANS: x ln x 2 ˆ 6 2 ˆ PTS: DIF: Medium REF: 5..5 OBJ: Write a logarithmic expression as a single quantity NOT: Section ANS: ˆ x ln x 2 ˆ PTS: DIF: Medium REF: 5..5 OBJ: Write a logarithmic expression as a single quantity NOT: Section 5.. ANS: does not exist PTS: DIF: Medium REF: 5..9 OBJ: Evaluate limits involving logarithmic functions NOT: Section 5.. ANS: PTS: DIF: Medium REF: 5..9 OBJ: Evaluate limits involving logarithmic functions NOT: Section ANS: y ( x ) PTS: DIF: Medium REF: 5.. OBJ: Write an equation of a line tangent to the graph of a function at a specified point NOT: Section 5.

5 6. ANS: x 2 PTS: DIF: Medium REF: 5..8 OBJ: Differentiate a logarithmic function using the chain rule NOT: Section ANS: 6x 8x 2 x PTS: DIF: Medium REF: OBJ: Differentiate a logarithmic function using the chain rule NOT: Section ANS: dy dx x x 2 7 PTS: DIF: Medium REF: 5..5 OBJ: Differentiate a logarithmic function using the chain rule NOT: Section ANS: f ( x) x 2x x 2 PTS: DIF: Medium REF: OBJ: Differentiate a logarithmic function using the chain rule and quotient rule NOT: Section ANS: dy dx 2 x ln x 2 ˆ PTS: DIF: Medium REF: 5..6 OBJ: Differentiate a logarithmic function using the chain rule NOT: Section 5.. ANS: PTS: DIF: Medium REF: OBJ: Differentiate an equation using implicit differentiation and evaluate at a specified point NOT: Section 5. 2

6 2. ANS: 7 5,ln 7 ˆ 5 PTS: DIF: Medium REF: 5..9 OBJ: Identify all points of inflection for a function NOT: Section 5.. ANS: 0x 7 ( x 2) PTS: DIF: Medium REF: OBJ: Differentiate a function using logarithmic differentiation NOT: Section 5.. ANS: lnx 5 C PTS: DIF: Easy REF: 5.2. NOT: Section ANS: 8 ln x2 9 C PTS: DIF: Medium REF: NOT: Section ANS: x 2 x 0 dx x 2 2 x2 26x 22ln x 2 C PTS: DIF: Difficult REF: NOT: Section ANS: tan6 d 6 ln cos 6 C PTS: DIF: Easy REF: NOT: Section 5.2

7 8. ANS: lncsc ( x) cot x ( ) C PTS: DIF: Medium REF: 5.2. NOT: Section ANS: lnsin 2 2 ( ) C PTS: DIF: Medium REF: NOT: Section ANS: ˆ x x dx x 2 2ln x 2 2 x C PTS: DIF: Medium REF: OBJ: Evaluate the definite integral of a function using a computer algebra system NOT: Section ANS: F( x) 7 x PTS: DIF: Easy REF: OBJ: Calculate the derivative of an integral function NOT: Section ANS: true PTS: DIF: Medium REF: 5.. OBJ: Recognize invertible functions MSC: Application NOT: Section ANS: f ( x) 2 x 5 6 PTS: DIF: Easy REF: 5.2.2a OBJ: Construct the inverse of a function NOT: Section ANS: f ( x) ( x ) PTS: DIF: Medium REF: 5..26a OBJ: Construct the inverse of a function NOT: Section 5.

8 25. ANS: f ( x) x 6 PTS: DIF: Medium REF: 5..28a OBJ: Construct the inverse of a function NOT: Section ANS: 9 PTS: DIF: Medium REF: OBJ: Evaluate a derivative at a point using the inverse function NOT: Section ANS: x 5 PTS: DIF: Easy REF: 5..9 OBJ: Construct the inverse of a composition of functions NOT: Section ANS: x PTS: DIF: Easy REF: 5..9 OBJ: Construct the inverse of a composition of functions NOT: Section ANS: x PTS: DIF: Easy REF: 5..2 OBJ: Solve an exponential equation NOT: Section ANS: 0xe x2 PTS: DIF: Medium REF: 5..2 OBJ: Differentiate an exponential function using the chain rule NOT: Section 5.. ANS: x 5 e x ( x 6) PTS: DIF: Medium REF: 5..7 OBJ: Differentiate an exponential function using the chain rule and product rule NOT: Section 5. 5

9 2. ANS: 5e 5x e 5x 2e2x e 2x PTS: DIF: Medium REF: OBJ: Differentiate a logarithmic function using the chain rule NOT: Section 5.. ANS: 2 ex C PTS: DIF: Medium REF: 5..0 OBJ: Evaluate the indefinite integral of an exponential function using substitution NOT: Section 5.. ANS: esin x C PTS: DIF: Medium REF: OBJ: Evaluate the indefinite integral of an exponential function using substitution NOT: Section ANS: PTS: DIF: Medium REF: 5.5. OBJ: Evaluate a logarithmic expression NOT: Section ANS:, PTS: DIF: Medium REF: 5.5.2b OBJ: Solve a logarithmic equation NOT: Section ANS: 8x 8x ( ln x ) PTS: DIF: Medium REF: OBJ: Differentiate a function using logarithmic differentiation NOT: Section ANS: 5ln6 65x C PTS: DIF: Medium REF: OBJ: Evaluate the indefinite integral of an exponential function using substitution NOT: Section 5.5 6

10 9. ANS: 6 PTS: DIF: Easy REF: OBJ: Evaluate an inverse trigonometric expression NOT: Section ANS: PTS: DIF: Easy REF: OBJ: Evaluate an inverse trigonometric expression NOT: Section 5.6. ANS: 5 PTS: DIF: Medium REF: 5.6.8b OBJ: Evaluate an expression involving an inverse trigonometric expression NOT: Section ANS: x PTS: DIF: Medium REF: OBJ: Convert an inverse trigonometric expression to an algebraic expression NOT: Section 5.6. ANS: x 2 PTS: DIF: Medium REF: OBJ: Convert an inverse trigonometric expression to an algebraic expression NOT: Section 5.6. ANS: x ˆ arcsin C PTS: DIF: Medium REF: 5.7. OBJ: Evaluate the indefinite integral involving an inverse trigonometric function NOT: Section ANS: 8 arctan t2 9 dt C PTS: DIF: Medium REF: 5.7. OBJ: Evaluate the indefinite integral involving an inverse trigonometric function NOT: Section 5.7 7

11 6. ANS: 8 9 PTS: DIF: Easy REF: OBJ: Evaluate a definite integral involving inverse trigonometric functions NOT: Section ANS: PTS: DIF: Easy REF: OBJ: Evaluate a definite integral involving inverse trigonometric functions NOT: Section ANS: 2 ln x 2 ˆ 5arctan( x) C PTS: DIF: Difficult REF: OBJ: Evaluate the indefinite integral involving an inverse trigonometric function and a logarithmic function NOT: Section ANS: 6 6, 65 6 PTS: DIF: Medium REF: 5.8.a OBJ: Evaluate a hyperbolic function NOT: Section ANS: dy dx 0tanh ( 0x ) PTS: DIF: Medium REF: OBJ: Differentiate a hyperbolic function NOT: Section ANS: ˆ coth x6 6 C PTS: DIF: Medium REF: OBJ: Evaluate an indefinite integral involving hyperbolic functions NOT: Section 5.8 8

Chapter 3 Differentiation Rules (continued)

Chapter 3 Differentiation Rules (continued) Chapter 3 Differentiation Rules (continued) Sec 3.5: Implicit Differentiation (continued) Implicit Differentiation What if you want to find the slope of the tangent line to a curve that is not the graph

More information

MA 242 Review Exponential and Log Functions Notes for today s class can be found at

MA 242 Review Exponential and Log Functions Notes for today s class can be found at MA 242 Review Exponential and Log Functions Notes for today s class can be found at www.xecu.net/jacobs/index242.htm Example: If y = x n If y = x 2 then then dy dx = nxn 1 dy dx = 2x1 = 2x Power Function

More information

90 Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions. Name Class. (a) (b) ln x (c) (a) (b) (c) 1 x. y e (a) 0 (b) y.

90 Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions. Name Class. (a) (b) ln x (c) (a) (b) (c) 1 x. y e (a) 0 (b) y. 90 Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions Test Form A Chapter 5 Name Class Date Section. Find the derivative: f ln. 6. Differentiate: y. ln y y y y. Find dy d if ey y. y

More information

Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions

Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions Chapter 5 Logarithmic, Exponential, an Other Transcenental Functions 5.1 The Natural Logarithmic Function: Differentiation 5.2 The Natural Logarithmic Function: Integration 5.3 Inverse Functions 5.4 Exponential

More information

Announcements. Topics: Homework: - sections 4.5 and * Read these sections and study solved examples in your textbook!

Announcements. Topics: Homework: - sections 4.5 and * Read these sections and study solved examples in your textbook! Announcements Topics: - sections 4.5 and 5.1-5.5 * Read these sections and study solved examples in your textbook! Homework: - review lecture notes thoroughly - work on practice problems from the textbook

More information

7.1. Calculus of inverse functions. Text Section 7.1 Exercise:

7.1. Calculus of inverse functions. Text Section 7.1 Exercise: Contents 7. Inverse functions 1 7.1. Calculus of inverse functions 2 7.2. Derivatives of exponential function 4 7.3. Logarithmic function 6 7.4. Derivatives of logarithmic functions 7 7.5. Exponential

More information

FINAL - PART 1 MATH 150 SPRING 2017 KUNIYUKI PART 1: 135 POINTS, PART 2: 115 POINTS, TOTAL: 250 POINTS No notes, books, or calculators allowed.

FINAL - PART 1 MATH 150 SPRING 2017 KUNIYUKI PART 1: 135 POINTS, PART 2: 115 POINTS, TOTAL: 250 POINTS No notes, books, or calculators allowed. Math 150 Name: FINAL - PART 1 MATH 150 SPRING 2017 KUNIYUKI PART 1: 135 POINTS, PART 2: 115 POINTS, TOTAL: 250 POINTS No notes, books, or calculators allowed. 135 points: 45 problems, 3 pts. each. You

More information

UNIT 3: DERIVATIVES STUDY GUIDE

UNIT 3: DERIVATIVES STUDY GUIDE Calculus I UNIT 3: Derivatives REVIEW Name: Date: UNIT 3: DERIVATIVES STUDY GUIDE Section 1: Section 2: Limit Definition (Derivative as the Slope of the Tangent Line) Calculating Rates of Change (Average

More information

DRAFT - Math 101 Lecture Note - Dr. Said Algarni

DRAFT - Math 101 Lecture Note - Dr. Said Algarni 3 Differentiation Rules 3.1 The Derivative of Polynomial and Exponential Functions In this section we learn how to differentiate constant functions, power functions, polynomials, and exponential functions.

More information

Lecture Notes for Math 1000

Lecture Notes for Math 1000 Lecture Notes for Math 1000 Dr. Xiang-Sheng Wang Memorial University of Newfoundland Office: HH-2016, Phone: 864-4321 Office hours: 13:00-15:00 Wednesday, 12:00-13:00 Friday Email: xswang@mun.ca Course

More information

Week 1: need to know. November 14, / 20

Week 1: need to know. November 14, / 20 Week 1: need to know How to find domains and ranges, operations on functions (addition, subtraction, multiplication, division, composition), behaviors of functions (even/odd/ increasing/decreasing), library

More information

CALCULUS: Graphical,Numerical,Algebraic by Finney,Demana,Watts and Kennedy Chapter 3: Derivatives 3.3: Derivative of a function pg.

CALCULUS: Graphical,Numerical,Algebraic by Finney,Demana,Watts and Kennedy Chapter 3: Derivatives 3.3: Derivative of a function pg. CALCULUS: Graphical,Numerical,Algebraic b Finne,Demana,Watts and Kenned Chapter : Derivatives.: Derivative of a function pg. 116-16 What ou'll Learn About How to find the derivative of: Functions with

More information

Math 180 Prof. Beydler Homework for Packet #5 Page 1 of 11

Math 180 Prof. Beydler Homework for Packet #5 Page 1 of 11 Math 180 Prof. Beydler Homework for Packet #5 Page 1 of 11 Due date: Name: Note: Write your answers using positive exponents. Radicals are nice, but not required. ex: Write 1 x 2 not x 2. ex: x is nicer

More information

MATH 2413 TEST ON CHAPTER 4 ANSWER ALL QUESTIONS. TIME 1.5 HRS.

MATH 2413 TEST ON CHAPTER 4 ANSWER ALL QUESTIONS. TIME 1.5 HRS. MATH 1 TEST ON CHAPTER ANSWER ALL QUESTIONS. TIME 1. HRS. M1c Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Use the summation formulas to rewrite the

More information

TOTAL NAME DATE PERIOD AP CALCULUS AB UNIT 4 ADVANCED DIFFERENTIATION TECHNIQUES DATE TOPIC ASSIGNMENT /6 10/8 10/9 10/10 X X X X 10/11 10/12

TOTAL NAME DATE PERIOD AP CALCULUS AB UNIT 4 ADVANCED DIFFERENTIATION TECHNIQUES DATE TOPIC ASSIGNMENT /6 10/8 10/9 10/10 X X X X 10/11 10/12 NAME DATE PERIOD AP CALCULUS AB UNIT ADVANCED DIFFERENTIATION TECHNIQUES DATE TOPIC ASSIGNMENT 0 0 0/6 0/8 0/9 0/0 X X X X 0/ 0/ 0/5 0/6 QUIZ X X X 0/7 0/8 0/9 0/ 0/ 0/ 0/5 UNIT EXAM X X X TOTAL AP Calculus

More information

MIDTERM 1. Name-Surname: 15 pts 20 pts 15 pts 10 pts 10 pts 10 pts 15 pts 20 pts 115 pts Total. Overall 115 points.

MIDTERM 1. Name-Surname: 15 pts 20 pts 15 pts 10 pts 10 pts 10 pts 15 pts 20 pts 115 pts Total. Overall 115 points. Name-Surname: Student No: Grade: 15 pts 20 pts 15 pts 10 pts 10 pts 10 pts 15 pts 20 pts 115 pts 1 2 3 4 5 6 7 8 Total Overall 115 points. Do as much as you can. Write your answers to all of the questions.

More information

DIFFERENTIATION RULES

DIFFERENTIATION RULES 3 DIFFERENTIATION RULES DIFFERENTIATION RULES The functions that we have met so far can be described by expressing one variable explicitly in terms of another variable. y For example,, or y = x sin x,

More information

APPM 1350 Final Exam Fall 2017

APPM 1350 Final Exam Fall 2017 APPM 350 Final Exam Fall 207. (26 pts) Evaluate the following. (a) Let g(x) cos 3 (π 2x). Find g (π/3). (b) Let y ( x) x. Find y (4). (c) lim r 0 e /r ln(r) + (a) (9 pt) g (x) 3 cos 2 (π 2x)( sin(π 2x))(

More information

JUST THE MATHS UNIT NUMBER DIFFERENTIATION 4 (Products and quotients) & (Logarithmic differentiation) A.J.Hobson

JUST THE MATHS UNIT NUMBER DIFFERENTIATION 4 (Products and quotients) & (Logarithmic differentiation) A.J.Hobson JUST THE MATHS UNIT NUMBER 104 DIFFERENTIATION 4 (Products and quotients) & (Logarithmic differentiation) by AJHobson 1041 Products 1042 Quotients 1043 Logarithmic differentiation 1044 Exercises 1045 Answers

More information

(e) 2 (f) 2. (c) + (d). Limits at Infinity. 2.5) 9-14,25-34,41-43,46-47,56-57, (c) (d) 2

(e) 2 (f) 2. (c) + (d). Limits at Infinity. 2.5) 9-14,25-34,41-43,46-47,56-57, (c) (d) 2 Math 150A. Final Review Answers, Spring 2018. Limits. 2.2) 7-10, 21-24, 28-1, 6-8, 4-44. 1. Find the values, or state they do not exist. (a) (b) 1 (c) DNE (d) 1 (e) 2 (f) 2 (g) 2 (h) 4 2. lim f(x) = 2,

More information

Page x2 Choose the expression equivalent to ln ÄÄÄ.

Page x2 Choose the expression equivalent to ln ÄÄÄ. Page 1 1. 9x Choose the expression equivalent to ln ÄÄÄ. y a. ln 9 - ln + ln x - ln y b. ln(9x) - ln(y) c. ln(9x) + ln(y) d. None of these e. ln 9 + ln x ÄÄÄÄ ln + ln y. ÚÄÄÄÄÄÄ xû4x + 1 Find the derivative:

More information

L Hôpital s Rule was discovered by Bernoulli but written for the first time in a text by L Hôpital.

L Hôpital s Rule was discovered by Bernoulli but written for the first time in a text by L Hôpital. 7.5. Ineterminate Forms an L Hôpital s Rule L Hôpital s Rule was iscovere by Bernoulli but written for the first time in a text by L Hôpital. Ineterminate Forms 0/0 an / f(x) If f(x 0 ) = g(x 0 ) = 0,

More information

CALCULUS Exercise Set 2 Integration

CALCULUS Exercise Set 2 Integration CALCULUS Exercise Set Integration 1 Basic Indefinite Integrals 1. R = C. R x n = xn+1 n+1 + C n 6= 1 3. R 1 =ln x + C x 4. R sin x= cos x + C 5. R cos x=sinx + C 6. cos x =tanx + C 7. sin x = cot x + C

More information

Summary: Primer on Integral Calculus:

Summary: Primer on Integral Calculus: Physics 2460 Electricity and Magnetism I, Fall 2006, Primer on Integration: Part I 1 Summary: Primer on Integral Calculus: Part I 1. Integrating over a single variable: Area under a curve Properties of

More information

Practice Questions From Calculus II. 0. State the following calculus rules (these are many of the key rules from Test 1 topics).

Practice Questions From Calculus II. 0. State the following calculus rules (these are many of the key rules from Test 1 topics). Math 132. Practice Questions From Calculus II I. Topics Covered in Test I 0. State the following calculus rules (these are many of the key rules from Test 1 topics). (Trapezoidal Rule) b a f(x) dx (Fundamental

More information

Trigonometric substitutions (8.3).

Trigonometric substitutions (8.3). Review for Eam 2. 5 or 6 problems. No multiple choice questions. No notes, no books, no calculators. Problems similar to homeworks. Eam covers: 7.4, 7.6, 7.7, 8-IT, 8., 8.2. Solving differential equations

More information

a x a y = a x+y a x a = y ax y (a x ) r = a rx and log a (xy) = log a (x) + log a (y) log a ( x y ) = log a(x) log a (y) log a (x r ) = r log a (x).

a x a y = a x+y a x a = y ax y (a x ) r = a rx and log a (xy) = log a (x) + log a (y) log a ( x y ) = log a(x) log a (y) log a (x r ) = r log a (x). You should prepare the following topics for our final exam. () Pre-calculus. (2) Inverses. (3) Algebra of Limits. (4) Derivative Formulas and Rules. (5) Graphing Techniques. (6) Optimization (Maxima and

More information

Solutions Exam 4 (Applications of Differentiation) 1. a. Applying the Quotient Rule we compute the derivative function of f as follows:

Solutions Exam 4 (Applications of Differentiation) 1. a. Applying the Quotient Rule we compute the derivative function of f as follows: MAT 4 Solutions Eam 4 (Applications of Differentiation) a Applying the Quotient Rule we compute the derivative function of f as follows: f () = 43 e 4 e (e ) = 43 4 e = 3 (4 ) e Hence f '( ) 0 for = 0

More information

Differential and Integral Calculus

Differential and Integral Calculus School of science an engineering El Akhawayn University Monay, March 31 st, 2008 Outline 1 Definition of hyperbolic functions: The hyperbolic cosine an the hyperbolic sine of the real number x are enote

More information

Math 1A Midterm 2 Fall 2015 Riverside City College (Use this as a Review)

Math 1A Midterm 2 Fall 2015 Riverside City College (Use this as a Review) Name Date Miterm Score Overall Grae Math A Miterm 2 Fall 205 Riversie City College (Use this as a Review) Instructions: All work is to be shown, legible, simplifie an answers are to be boxe in the space

More information

Have a Safe and Happy Break

Have a Safe and Happy Break Math 121 Final EF: December 10, 2013 Name Directions: 1 /15 2 /15 3 /15 4 /15 5 /10 6 /10 7 /20 8 /15 9 /15 10 /10 11 /15 12 /20 13 /15 14 /10 Total /200 1. No book, notes, or ouiji boards. You may use

More information

3.4 The Chain Rule. F (x) = f (g(x))g (x) Alternate way of thinking about it: If y = f(u) and u = g(x) where both are differentiable functions, then

3.4 The Chain Rule. F (x) = f (g(x))g (x) Alternate way of thinking about it: If y = f(u) and u = g(x) where both are differentiable functions, then 3.4 The Chain Rule To find the derivative of a function that is the composition of two functions for which we already know the derivatives, we can use the Chain Rule. The Chain Rule: Suppose F (x) = f(g(x)).

More information

ENGI 3425 Review of Calculus Page then

ENGI 3425 Review of Calculus Page then ENGI 345 Review of Calculus Page 1.01 1. Review of Calculus We begin this course with a refresher on ifferentiation an integration from MATH 1000 an MATH 1001. 1.1 Reminer of some Derivatives (review from

More information

SET 1. (1) Solve for x: (a) e 2x = 5 3x

SET 1. (1) Solve for x: (a) e 2x = 5 3x () Solve for x: (a) e x = 5 3x SET We take natural log on both sides: ln(e x ) = ln(5 3x ) x = 3 x ln(5) Now we take log base on both sides: log ( x ) = log (3 x ln 5) x = log (3 x ) + log (ln(5)) x x

More information

Chapter 3: Transcendental Functions

Chapter 3: Transcendental Functions Chapter 3: Transcendental Functions Spring 2018 Department of Mathematics Hong Kong Baptist University 1 / 32 Except for the power functions, the other basic elementary functions are also called the transcendental

More information

m(x) = f(x) + g(x) m (x) = f (x) + g (x) (The Sum Rule) n(x) = f(x) g(x) n (x) = f (x) g (x) (The Difference Rule)

m(x) = f(x) + g(x) m (x) = f (x) + g (x) (The Sum Rule) n(x) = f(x) g(x) n (x) = f (x) g (x) (The Difference Rule) Chapter 3 Differentiation Rules 3.1 Derivatives of Polynomials and Exponential Functions Aka The Short Cuts! Yay! f(x) = c f (x) = 0 g(x) = x g (x) = 1 h(x) = x n h (x) = n x n-1 (The Power Rule) k(x)

More information

Math 180, Final Exam, Fall 2007 Problem 1 Solution

Math 180, Final Exam, Fall 2007 Problem 1 Solution Problem Solution. Differentiate with respect to x. Write your answers showing the use of the appropriate techniques. Do not simplify. (a) x 27 x 2/3 (b) (x 2 2x + 2)e x (c) ln(x 2 + 4) (a) Use the Power

More information

cos t 2 sin 2t (vi) y = cosh t sinh t (vii) y sin x 2 = x sin y 2 (viii) xy = cot(xy) (ix) 1 + x = sin(xy 2 ) (v) g(t) =

cos t 2 sin 2t (vi) y = cosh t sinh t (vii) y sin x 2 = x sin y 2 (viii) xy = cot(xy) (ix) 1 + x = sin(xy 2 ) (v) g(t) = MATH1003 REVISION 1. Differentiate the following functions, simplifying your answers when appropriate: (i) f(x) = (x 3 2) tan x (ii) y = (3x 5 1) 6 (iii) y 2 = x 2 3 (iv) y = ln(ln(7 + x)) e 5x3 (v) g(t)

More information

Throughout this module we use x to denote the positive square root of x; for example, 4 = 2.

Throughout this module we use x to denote the positive square root of x; for example, 4 = 2. Throughout this module we use x to denote the positive square root of x; for example, 4 = 2. You may often see (although not in FLAP) the notation sin 1 used in place of arcsin. sinh and cosh are pronounced

More information

5 t + t2 4. (ii) f(x) = ln(x 2 1). (iii) f(x) = e 2x 2e x + 3 4

5 t + t2 4. (ii) f(x) = ln(x 2 1). (iii) f(x) = e 2x 2e x + 3 4 Study Guide for Final Exam 1. You are supposed to be able to determine the domain of a function, looking at the conditions for its expression to be well-defined. Some examples of the conditions are: What

More information

Test 3 Review. fx ( ) ( x 2) 4/5 at the indicated extremum. y x 2 3x 2. Name: Class: Date: Short Answer

Test 3 Review. fx ( ) ( x 2) 4/5 at the indicated extremum. y x 2 3x 2. Name: Class: Date: Short Answer Name: Class: Date: ID: A Test 3 Review Short Answer 1. Find the value of the derivative (if it exists) of fx ( ) ( x 2) 4/5 at the indicated extremum. 7. A rectangle is bounded by the x- and y-axes and

More information

Math 147 Exam II Practice Problems

Math 147 Exam II Practice Problems Math 147 Exam II Practice Problems This review should not be used as your sole source for preparation for the exam. You should also re-work all examples given in lecture, all homework problems, all lab

More information

Topics and Concepts. 1. Limits

Topics and Concepts. 1. Limits Topics and Concepts 1. Limits (a) Evaluating its (Know: it exists if and only if the it from the left is the same as the it from the right) (b) Infinite its (give rise to vertical asymptotes) (c) Limits

More information

SOLUTIONS FOR PRACTICE FINAL EXAM

SOLUTIONS FOR PRACTICE FINAL EXAM SOLUTIONS FOR PRACTICE FINAL EXAM ANDREW J. BLUMBERG. Solutions () Short answer questions: (a) State the mean value theorem. Proof. The mean value theorem says that if f is continuous on (a, b) and differentiable

More information

Final Exam Review Exercise Set A, Math 1551, Fall 2017

Final Exam Review Exercise Set A, Math 1551, Fall 2017 Final Exam Review Exercise Set A, Math 1551, Fall 2017 This review set gives a list of topics that we explored throughout this course, as well as a few practice problems at the end of the document. A complete

More information

Find the indicated derivative. 1) Find y(4) if y = 3 sin x. A) y(4) = 3 cos x B) y(4) = 3 sin x C) y(4) = - 3 cos x D) y(4) = - 3 sin x

Find the indicated derivative. 1) Find y(4) if y = 3 sin x. A) y(4) = 3 cos x B) y(4) = 3 sin x C) y(4) = - 3 cos x D) y(4) = - 3 sin x Assignment 5 Name Find the indicated derivative. ) Find y(4) if y = sin x. ) A) y(4) = cos x B) y(4) = sin x y(4) = - cos x y(4) = - sin x ) y = (csc x + cot x)(csc x - cot x) ) A) y = 0 B) y = y = - csc

More information

Section 3.5: Implicit Differentiation

Section 3.5: Implicit Differentiation Section 3.5: Implicit Differentiation In the previous sections, we considered the problem of finding the slopes of the tangent line to a given function y = f(x). The idea of a tangent line however is not

More information

Tangent Lines Sec. 2.1, 2.7, & 2.8 (continued)

Tangent Lines Sec. 2.1, 2.7, & 2.8 (continued) Tangent Lines Sec. 2.1, 2.7, & 2.8 (continued) Prove this Result How Can a Derivative Not Exist? Remember that the derivative at a point (or slope of a tangent line) is a LIMIT, so it doesn t exist whenever

More information

" $ CALCULUS 2 WORKSHEET #21. t, y = t + 1. are A) x = 0, y = 0 B) x = 0 only C) x = 1, y = 0 D) x = 1 only E) x= 0, y = 1

 $ CALCULUS 2 WORKSHEET #21. t, y = t + 1. are A) x = 0, y = 0 B) x = 0 only C) x = 1, y = 0 D) x = 1 only E) x= 0, y = 1 CALCULUS 2 WORKSHEET #2. The asymptotes of the graph of the parametric equations x = t t, y = t + are A) x = 0, y = 0 B) x = 0 only C) x =, y = 0 D) x = only E) x= 0, y = 2. What are the coordinates of

More information

Spring 2015 Sample Final Exam

Spring 2015 Sample Final Exam Math 1151 Spring 2015 Sample Final Exam Final Exam on 4/30/14 Name (Print): Time Limit on Final: 105 Minutes Go on carmen.osu.edu to see where your final exam will be. NOTE: This exam is much longer than

More information

AP Calculus Summer Packet

AP Calculus Summer Packet AP Calculus Summer Packet Writing The Equation Of A Line Example: Find the equation of a line that passes through ( 1, 2) and (5, 7). ü Things to remember: Slope formula, point-slope form, slopeintercept

More information

) # ( 281). Give units with your answer.

) # ( 281). Give units with your answer. Math 120 Winter 2009 Handout 17: In-Class Review for Exam 2 The topics covered by Exam 2 in the course include the following: Implicit differentiation. Finding formulas for tangent lines using implicit

More information

Review Guideline for Final

Review Guideline for Final Review Guideline for Final Here is the outline of the required skills for the final exam. Please read it carefully and find some corresponding homework problems in the corresponding sections to practice.

More information

Solutions to Second Midterm(pineapple)

Solutions to Second Midterm(pineapple) Math 125 Solutions to Second Midterm(pineapple) 1. Compute each of the derivatives below as indicated. 4 points (a) f(x) = 3x 8 5x 4 + 4x e 3. Solution: f (x) = 24x 7 20x + 4. Don t forget that e 3 is

More information

Calculus: Early Transcendental Functions Lecture Notes for Calculus 101. Feras Awad Mahmoud

Calculus: Early Transcendental Functions Lecture Notes for Calculus 101. Feras Awad Mahmoud Calculus: Early Transcendental Functions Lecture Notes for Calculus 101 Feras Awad Mahmoud Last Updated: August 2, 2012 1 2 Feras Awad Mahmoud Department of Basic Sciences Philadelphia University JORDAN

More information

Math 131 Exam 2 Spring 2016

Math 131 Exam 2 Spring 2016 Math 3 Exam Spring 06 Name: ID: 7 multiple choice questions worth 4.7 points each. hand graded questions worth 0 points each. 0. free points (so the total will be 00). Exam covers sections.7 through 3.0

More information

2. Laws of Exponents (1) b 0 1 (2) b x b y b x y (3) bx b y. b x y (4) b n (5) b r s b rs (6) n b b 1/n Example: Solve the equations (a) e 2x

2. Laws of Exponents (1) b 0 1 (2) b x b y b x y (3) bx b y. b x y (4) b n (5) b r s b rs (6) n b b 1/n Example: Solve the equations (a) e 2x 7.1 Derivative of Exponential Function 1. Exponential Functions Let b 0 and b 1. f x b x is called an exponential function. Domain of f x :, Range of f x : 0, Example: lim x e x x2 2. Laws of Exponents

More information

Some functions and their derivatives

Some functions and their derivatives Chapter Some functions an their erivatives. Derivative of x n for integer n Recall, from eqn (.6), for y = f (x), Also recall that, for integer n, Hence, if y = x n then y x = lim δx 0 (a + b) n = a n

More information

Differentiation Review, Part 1 (Part 2 follows; there are answers at the end of each part.)

Differentiation Review, Part 1 (Part 2 follows; there are answers at the end of each part.) Differentiation Review 1 Name Differentiation Review, Part 1 (Part 2 follows; there are answers at the end of each part.) Derivatives Review: Summary of Rules Each derivative rule is summarized for you

More information

Derivatives of Trig and Inverse Trig Functions

Derivatives of Trig and Inverse Trig Functions Derivatives of Trig and Inverse Trig Functions Math 102 Section 102 Mingfeng Qiu Nov. 28, 2018 Office hours I m planning to have additional office hours next week. Next Monday (Dec 3), which time works

More information

CHAPTER 1. DIFFERENTIATION 18. As x 1, f(x). At last! We are now in a position to sketch the curve; see Figure 1.4.

CHAPTER 1. DIFFERENTIATION 18. As x 1, f(x). At last! We are now in a position to sketch the curve; see Figure 1.4. CHAPTER. DIFFERENTIATION 8 and similarly for x, As x +, fx), As x, fx). At last! We are now in a position to sketch the curve; see Figure.4. Figure.4: A sketch of the function y = fx) =/x ). Observe the

More information

MATH 2413 TEST ON CHAPTER 4 ANSWER ALL QUESTIONS. TIME 1.5 HRS

MATH 2413 TEST ON CHAPTER 4 ANSWER ALL QUESTIONS. TIME 1.5 HRS MATH 1 TEST ON CHAPTER ANSWER ALL QUESTIONS. TIME 1. HRS M1c Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Find the general solution of the differential

More information

6.2. The Hyperbolic Functions. Introduction. Prerequisites. Learning Outcomes

6.2. The Hyperbolic Functions. Introduction. Prerequisites. Learning Outcomes The Hyperbolic Functions 6. Introduction The hyperbolic functions cosh x, sinh x, tanh x etc are certain combinations of the exponential functions e x and e x. The notation implies a close relationship

More information

Math 1431 Final Exam Review

Math 1431 Final Exam Review Math 1431 Final Exam Review Comprehensive exam. I recommend you study all past reviews and practice exams as well. Know all rules/formulas. Make a reservation for the final exam. If you miss it, go back

More information

Further Pure Mathematics 3 GCE Further Mathematics GCE Pure Mathematics and Further Mathematics (Additional) A2 optional unit

Further Pure Mathematics 3 GCE Further Mathematics GCE Pure Mathematics and Further Mathematics (Additional) A2 optional unit Unit FP3 Further Pure Mathematics 3 GCE Further Mathematics GCE Pure Mathematics and Further Mathematics (Additional) A optional unit FP3.1 Unit description Further matrix algebra; vectors, hyperbolic

More information

Name Date Period. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Name Date Period. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. AB Fall Final Exam Review 200-20 Name Date Period MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the problem. ) The position of a particle

More information

The Big 50 Revision Guidelines for C3

The Big 50 Revision Guidelines for C3 The Big 50 Revision Guidelines for C3 If you can understand all of these you ll do very well 1. Know how to recognise linear algebraic factors, especially within The difference of two squares, in order

More information

m(x) = f(x) + g(x) m (x) = f (x) + g (x) (The Sum Rule) n(x) = f(x) g(x) n (x) = f (x) g (x) (The Difference Rule) thing CFAIHIHD fkthf.

m(x) = f(x) + g(x) m (x) = f (x) + g (x) (The Sum Rule) n(x) = f(x) g(x) n (x) = f (x) g (x) (The Difference Rule) thing CFAIHIHD fkthf. . Chapter 3 Differentiation Rules 3.1 Derivatives of Polynomials and Exponential Functions Aka The Short Cuts! Yay! f(x) c f (x) 0 g(x) x g (x) 1 h(x) x n h (x) n x n-1 (The Power Rule) k(x) c f(x) k (x)

More information

Brief answers to assigned even numbered problems that were not to be turned in

Brief answers to assigned even numbered problems that were not to be turned in Brief answers to assigned even numbered problems that were not to be turned in Section 2.2 2. At point (x 0, x 2 0) on the curve the slope is 2x 0. The point-slope equation of the tangent line to the curve

More information

February 21 Math 1190 sec. 63 Spring 2017

February 21 Math 1190 sec. 63 Spring 2017 February 21 Math 1190 sec. 63 Spring 2017 Chapter 2: Derivatives Let s recall the efinitions an erivative rules we have so far: Let s assume that y = f (x) is a function with c in it s omain. The erivative

More information

Chapter 6: Messy Integrals

Chapter 6: Messy Integrals Chapter 6: Messy Integrals Review: Solve the following integrals x 4 sec x tan x 0 0 Find the average value of 3 1 x 3 3 Evaluate 4 3 3 ( x 1), then find the area of ( x 1) 4 Section 6.1: Slope Fields

More information

Lecture 3. Lecturer: Prof. Sergei Fedotov Calculus and Vectors. Exponential and logarithmic functions

Lecture 3. Lecturer: Prof. Sergei Fedotov Calculus and Vectors. Exponential and logarithmic functions Lecture 3 Lecturer: Prof. Sergei Fedotov 10131 - Calculus and Vectors Exponential and logarithmic functions Sergei Fedotov (University of Manchester) MATH10131 2011 1 / 7 Lecture 3 1 Inverse functions

More information

3.9 Derivatives of Exponential and Logarithmic Functions

3.9 Derivatives of Exponential and Logarithmic Functions 322 Chapter 3 Derivatives 3.9 Derivatives of Exponential and Logarithmic Functions Learning Objectives 3.9.1 Find the derivative of exponential functions. 3.9.2 Find the derivative of logarithmic functions.

More information

Calculus I Exam 1 Review Fall 2016

Calculus I Exam 1 Review Fall 2016 Problem 1: Decide whether the following statements are true or false: (a) If f, g are differentiable, then d d x (f g) = f g. (b) If a function is continuous, then it is differentiable. (c) If a function

More information

1. The following problems are not related: (a) (15 pts, 5 pts ea.) Find the following limits or show that they do not exist: arcsin(x)

1. The following problems are not related: (a) (15 pts, 5 pts ea.) Find the following limits or show that they do not exist: arcsin(x) APPM 5 Final Eam (5 pts) Fall. The following problems are not related: (a) (5 pts, 5 pts ea.) Find the following limits or show that they do not eist: (i) lim e (ii) lim arcsin() (b) (5 pts) Find and classify

More information

Math 250 Skills Assessment Test

Math 250 Skills Assessment Test Math 5 Skills Assessment Test Page Math 5 Skills Assessment Test The purpose of this test is purely diagnostic (before beginning your review, it will be helpful to assess both strengths and weaknesses).

More information

Chapter 3 Differentiation Rules

Chapter 3 Differentiation Rules Chapter 3 Differentiation Rules Derivative constant function if c is any real number, then Example: The Power Rule: If n is a positive integer, then Example: Extended Power Rule: If r is any real number,

More information

Hyperbolics. Scott Morgan. Further Mathematics Support Programme - WJEC A-Level Further Mathematics 31st March scott3142.

Hyperbolics. Scott Morgan. Further Mathematics Support Programme - WJEC A-Level Further Mathematics 31st March scott3142. Hyperbolics Scott Morgan Further Mathematics Support Programme - WJEC A-Level Further Mathematics 3st March 208 scott342.com @Scott342 Topics Hyperbolic Identities Calculus with Hyperbolics - Differentiation

More information

Core 3 (A2) Practice Examination Questions

Core 3 (A2) Practice Examination Questions Core 3 (A) Practice Examination Questions Trigonometry Mr A Slack Trigonometric Identities and Equations I know what secant; cosecant and cotangent graphs look like and can identify appropriate restricted

More information

Math 1310 Final Exam

Math 1310 Final Exam Math 1310 Final Exam December 11, 2014 NAME: INSTRUCTOR: Write neatly and show all your work in the space provided below each question. You may use the back of the exam pages if you need additional space

More information

Mth Review Problems for Test 2 Stewart 8e Chapter 3. For Test #2 study these problems, the examples in your notes, and the homework.

Mth Review Problems for Test 2 Stewart 8e Chapter 3. For Test #2 study these problems, the examples in your notes, and the homework. For Test # study these problems, the examples in your notes, and the homework. Derivative Rules D [u n ] = nu n 1 du D [ln u] = du u D [log b u] = du u ln b D [e u ] = e u du D [a u ] = a u ln a du D [sin

More information

Math 180, Exam 2, Spring 2013 Problem 1 Solution

Math 180, Exam 2, Spring 2013 Problem 1 Solution Math 80, Eam, Spring 0 Problem Solution. Find the derivative of each function below. You do not need to simplify your answers. (a) tan ( + cos ) (b) / (logarithmic differentiation may be useful) (c) +

More information

Fall 2009 Math 113 Final Exam Solutions. f(x) = 1 + ex 1 e x?

Fall 2009 Math 113 Final Exam Solutions. f(x) = 1 + ex 1 e x? . What are the domain and range of the function Fall 9 Math 3 Final Exam Solutions f(x) = + ex e x? Answer: The function is well-defined everywhere except when the denominator is zero, which happens when

More information

CALCULUS II MATH Dr. Hyunju Ban

CALCULUS II MATH Dr. Hyunju Ban CALCULUS II MATH 2414 Dr. Hyunju Ban Introduction Syllabus Chapter 5.1 5.4 Chapters To Be Covered: Chap 5: Logarithmic, Exponential, and Other Transcendental Functions (2 week) Chap 7: Applications of

More information

CHAPTER 1: FURTHER TRANSCENDENTAL FUNCTIONS

CHAPTER 1: FURTHER TRANSCENDENTAL FUNCTIONS SSCE1693 ENGINEERING MATHEMATICS CHAPTER 1: FURTHER TRANSCENDENTAL FUNCTIONS WAN RUKAIDA BT WAN ABDULLAH YUDARIAH BT MOHAMMAD YUSOF SHAZIRAWATI BT MOHD PUZI NUR ARINA BAZILAH BT AZIZ ZUHAILA BT ISMAIL

More information

Practice Differentiation Math 120 Calculus I Fall 2015

Practice Differentiation Math 120 Calculus I Fall 2015 . x. Hint.. (4x 9) 4x + 9. Hint. Practice Differentiation Math 0 Calculus I Fall 0 The rules of differentiation are straightforward, but knowing when to use them and in what order takes practice. Although

More information

1. The graph of a function f is given above. Answer the question: a. Find the value(s) of x where f is not differentiable. Ans: x = 4, x = 3, x = 2,

1. The graph of a function f is given above. Answer the question: a. Find the value(s) of x where f is not differentiable. Ans: x = 4, x = 3, x = 2, 1. The graph of a function f is given above. Answer the question: a. Find the value(s) of x where f is not differentiable. x = 4, x = 3, x = 2, x = 1, x = 1, x = 2, x = 3, x = 4, x = 5 b. Find the value(s)

More information

THE UNIVERSITY OF WESTERN ONTARIO

THE UNIVERSITY OF WESTERN ONTARIO Instructor s Name (Print) Student s Name (Print) Student s Signature THE UNIVERSITY OF WESTERN ONTARIO LONDON CANADA DEPARTMENTS OF APPLIED MATHEMATICS AND MATHEMATICS Calculus 1A Final Examination Code

More information

EXAM 3 MAT 167 Calculus I Spring is a composite function of two functions y = e u and u = 4 x + x 2. By the. dy dx = dy du = e u x + 2x.

EXAM 3 MAT 167 Calculus I Spring is a composite function of two functions y = e u and u = 4 x + x 2. By the. dy dx = dy du = e u x + 2x. EXAM MAT 67 Calculus I Spring 20 Name: Section: I Each answer must include either supporting work or an explanation of your reasoning. These elements are considered to be the main part of each answer and

More information

SANDERSON HIGH SCHOOL AP CALCULUS AB/BC SUMMER REVIEW PACKET

SANDERSON HIGH SCHOOL AP CALCULUS AB/BC SUMMER REVIEW PACKET SANDERSON HIGH SCHOOL AP CALCULUS AB/BC SUMMER REVIEW PACKET 017-018 Name: 1. This packet is to be handed in on Monday August 8, 017.. All work must be shown on separate paper attached to the packet. 3.

More information

FUNCTIONS AND MODELS

FUNCTIONS AND MODELS 1 FUNCTIONS AND MODELS FUNCTIONS AND MODELS 1.6 Inverse Functions and Logarithms In this section, we will learn about: Inverse functions and logarithms. INVERSE FUNCTIONS The table gives data from an experiment

More information

Math Test #2 Info and Review Exercises

Math Test #2 Info and Review Exercises Math 180 - Test #2 Info an Review Exercises Spring 2019, Prof. Beyler Test Info Date: Will cover packets #7 through #16. You ll have the entire class to finish the test. This will be a 2-part test. Part

More information

Revision Checklist. Unit FP3: Further Pure Mathematics 3. Assessment information

Revision Checklist. Unit FP3: Further Pure Mathematics 3. Assessment information Revision Checklist Unit FP3: Further Pure Mathematics 3 Unit description Further matrix algebra; vectors, hyperbolic functions; differentiation; integration, further coordinate systems Assessment information

More information

m2413c2 the limiting process. 4. Use the alternative form of the derivative to find the derivative of the function at. a. b. c. d. e.

m2413c2 the limiting process. 4. Use the alternative form of the derivative to find the derivative of the function at. a. b. c. d. e. m2413c2 Multiple Choice Identify the choice that best completes the statement or answers the question 1 Find the derivative of the following function using the limiting process 2 Find the derivative of

More information

Calculus III: Practice Final

Calculus III: Practice Final Calculus III: Practice Final Name: Circle one: Section 6 Section 7. Read the problems carefully. Show your work unless asked otherwise. Partial credit will be given for incomplete work. The exam contains

More information

IF you participate fully in this boot camp, you will get full credit for the summer packet.

IF you participate fully in this boot camp, you will get full credit for the summer packet. 18_19 AP Calculus BC Summer Packet NOTE - Please mark July on your calendars. We will have a boot camp in my room from 8am 11am on this day. We will work together on the summer packet. Time permitting,

More information

ALGEBRA 2 FINAL EXAM REVIEW

ALGEBRA 2 FINAL EXAM REVIEW Class: Date: ALGEBRA 2 FINAL EXAM REVIEW Multiple Choice Identify the choice that best completes the statement or answers the question.. Classify 6x 5 + x + x 2 + by degree. quintic c. quartic cubic d.

More information

ARAB ACADEMY FOR SCIENCE TECHNOLOGY AND MARITIME TRANSPORT

ARAB ACADEMY FOR SCIENCE TECHNOLOGY AND MARITIME TRANSPORT ARAB ACADEMY FOR SCIENCE TECHNOLOGY AND MARITIME TRANSPORT Course: Math For Engineering Winter 8 Lecture Notes By Dr. Mostafa Elogail Page Lecture [ Functions / Graphs of Rational Functions] Functions

More information

D sin x. (By Product Rule of Diff n.) ( ) D 2x ( ) 2. 10x4, or 24x 2 4x 7 ( ) ln x. ln x. , or. ( by Gen.

D sin x. (By Product Rule of Diff n.) ( ) D 2x ( ) 2. 10x4, or 24x 2 4x 7 ( ) ln x. ln x. , or. ( by Gen. SOLUTIONS TO THE FINAL - PART MATH 50 SPRING 07 KUNIYUKI PART : 35 POINTS, PART : 5 POINTS, TOTAL: 50 POINTS No notes, books, or calculators allowed. 35 points: 45 problems, 3 pts. each. You do not have

More information