Solution: APPM 1350 Final Exam Spring 2014

Size: px
Start display at page:

Download "Solution: APPM 1350 Final Exam Spring 2014"

Transcription

1 APPM 135 Final Exam Spring 214

2 1. (a) (5 pts. each) Find the following derivatives, f (x), for the f given: (a) f(x) = x 2 sin 1 (x 2 ) (b) f(x) = x 2 (c) f(x) = x ln x (d) f(x) = x x d (b) (15 pts) Using rules for differentiation it is easy to show that dx (3x2 + 1) = 6x. Show that this is true directly from the definition of differentiation. No credit will be given for quoting rules of differentiation. (a) f (x) = 2x sin 1 (x 2 ) + x 2 1 2x = 2x sin 1 (x 2 ) + 2x3 1 x 4 1 x 4 (b) f (x) = 2x (1 + x 2 ) 2 (c) f (x) = (x) ln x + x(ln x) = ln x + 1 (d) ln y = x ln x = 1 y y = ln x + 1 = y = x x (ln x + 1) (e) d 3(x + h) (3x 2 + 1) 3x 2 + 6xh + 3h x 2 1 dx (3x2 + 1) = = = (6x + 3h) = 6x h h h h h

3 2. (5 pts each) In answering the following questions, justify each part. Given f(x) = x x, for f: 2 + x (a) Find the vertical and horizontal asymptotes. (b) Find the intervals of increase or decrease. (c) Find the local maximum and minimum values. (d) Find the intervals of concavity and the inflection points. (e) Use parts (a) - (d) to the sketch the graph of f. LABEL your sketch (Intercepts, asymptotes, etc.). (a) For the HA: and For VA: and x x x 2 + x = x x 2 + x = x x 2 + x 2 (b) Chop up into two regions, x > and x <. Then x x x x = x x 2 + x 4 + = x x 2 + x 4 = 2x = = x 1 ( ) x (x < ), f 2 (x) = = 2 + x 2x(2 + x) + x2 4x x2 (2 + x) 2 = (2 + x) 2 and so we look at 4x x 2 = x = 4,. For ( ) x (x > ), f 2 (x) = = 2 + x 2x(2 + x) x2 (2 + x) 2 = 4x + x2 (2 + x) 2 and so we look at 4x + x 2 = x =, 4. Either way, we have three regions. f ( 5) < so we are decreasing on (, 4) and f ( 1) > so we are increasing on ( 4, ). On (, ) we have f (1) > so it is increasing on (, ). (c) From part (b) we know that f( 4) = 16 = 8 is a local min and that is all. (2 4) (d) Here, (x < ) f (x) = (4 + 2x)(2 + x)2 2(4x + x 2 )(2 + x) (2 + x) 4 = (2x + 4)(x + 2) 2x2 8x 8 (2 + x) 3 = (2 + x) 3 and (x > ) f (x) = 8 (2 + x) 3 The inflection points then are x = 2 and x =. (no justification needed). We compute and so it is CU on (, 2). Also, f ( 3) = 8 ( 1 3 ) > f ( 1) = < so it is CD on ( 2, ) and lastly, f (1) > so it is CU on (, ).

4 f(x) = x x x f(x) = x x x (e) x x 5 f(x) = x x x x

5 3. (15 points)you are designing a mural and you would like to have a margin of 1 feet on the left, right, and top of the artwork, but none on the bottom. If you allow 32 ft 2 for the area containing the artwork itself, what dimensions should the artwork have if you want to minimize the total area of the mural (i.e., of the artwork and the margins.) Draw a picture. If we call the total length of the base x and the total length of the height y then the total area is A = xy. The restriction is that (x 2)(y 1) = 32 and upon solving for y we have Substituting this into the original equation we get. It follows Then y = 5. This is a min because and so the area is CU at the critical point. y = 32 x A = x 32 x 2 + x A = 64 (x 2) = x = 1. A = 128 (x 2) 3, A (1) >

6 4. (6 points each) (a) The interval [ 1, 3] is partitioned into n subintervals of equal length. Let r k denote the right-hand endpoint of the k th subinterval. Express the integral 3 1 (3x2 2x + 5)dx as the it of a Riemann sum using the right-hand endpoints of each subinterval. (b) Given that a < b, what values of a and b minimize the value of b a (t4 2t 2 )dt? dy (c) Solve the initial value problem: dx = x 1 + x 2 with y(1) = 2. d 1 x (d) t t dt =? dx (e) 1 lnπ 2xe x2 cos(e x2 )dx =? n (a) (3rk 2 2r k + 5) 4 n n k=1 (b) b a t2 (t 2 2)dt integrand equals = t =, 2, 2 The polynomial is non-positive only between 2 and 2, therefore a = 2 and b = 2. (c) dy dx = x 1 + x 2 = 1dy = x 1 + x 2 dx. u-sub produces: u = 1 + x 2, du = 2xdx, 1 2du = xdx y = u 2 du = y = 1 2 [ 2 3 u c] = y = 1 3 (1 + x2 ) c y(1) = 2 = 2 = 1 3 (1 + 1) c = c = (d) u = 1 x, du dx = 1x ln 1 d dx u 1 tt dt = u u 1 x ln 1 = (1 x ) 1x 1 x ln 1 + c = (1 x ) 1x +1 ln 1 + c. 8 = = y = 1 3 (1 + x2 ) (e) With u = e x2, du = e x2 2xdx we get ln π 2xe x2 cos(e x2 )dx =??? cos udu = sin(e x2 ) sin(e ) = sin π sin 1 = sin 1 ln π = sin(e ln π ).

7 5. (6 points each) Evaluate the following: ( (a) cos 1 ) log 3 t t 3 (b) x tan(5/x) (c) (ex + x) 3/x sinh x (d) 1 + cosh x dx sin(2x) (e) cos 2 (2x) + 1 dx (a) ( ) ( t 3 cos 1 log 3 t = cos 1 ) log 3 t = cos 1 (log 3 3) = cos 1 (1/2) = π/3 t 3 (b) This is an indeterminate product. Apply L Hopital s Rule. tan(5/x) LH x tan(5/x) = = 1/x (c) This is an indeterminate power. Let y equal the it value. sec 2 (5/x)( 5/x 2 ) 1/x 2 = 5 sec2 (5/x) = 5(1) = 5 y = (ex + x) 3/x ln y = ln (ex + x) 3/x = LH = y = e 3 3e x e x + 1 = 3 ln(e x + x) x e x = 3 LH = 3 (e x + x) (ex + 1) (d) Let u = 1 + cosh x, (e) Let u = cos(2x), du = sinh x dx. sinh x du 1 + cosh x dx = = ln u + C = ln 1 + cosh x + C u du = 2 sin(2x) dx. sin(2x) cos 2 (2x) + 1 dx = 1 2 du u = 1 2 tan 1 u + C = 1 2 tan 1 (cos(2x)) + C

8 6. The intensity L(x) of light x feet beneath the surface of the ocean satisfies the differential equation dl/dx = kl. (a) (5 points) Use the law of exponential decay to find an expression for L(x) in terms of k. (b) (5 points) If diving to 18 ft cuts the light intensity in half, what is the rate constant k? (c) (5 points) Once the intensity falls below one-tenth of the surface value, you will not be able to work without artificial light. How deep can you work without artificial light? (a) The solution to dy/dt = ky is y(t) = y()e kt so the solution to dl/dx = kl is L(x) = L()e kx. (b) We are given that L(18) = L()/2. Note that ln(1/a) = ln a. L(18) = L()e 18k = L() 2 e 18k = k = ln 1 2 k = ln 2 18 (c) Solve for x when L(x) = L()/1. L(x) = L()e kx = L() 1 e kx = 1 1 kx = ln 1 1 x = ln 1 k x = 18 ln(1) ln 2 ft 59.8 ft

9

APPM 1350 Exam 2 Fall 2016

APPM 1350 Exam 2 Fall 2016 APPM 1350 Exam 2 Fall 2016 1. (28 pts, 7 pts each) The following four problems are not related. Be sure to simplify your answers. (a) Let f(x) tan 2 (πx). Find f (1/) (5 pts) f (x) 2π tan(πx) sec 2 (πx)

More information

APPM 1350 Final Exam Fall 2017

APPM 1350 Final Exam Fall 2017 APPM 350 Final Exam Fall 207. (26 pts) Evaluate the following. (a) Let g(x) cos 3 (π 2x). Find g (π/3). (b) Let y ( x) x. Find y (4). (c) lim r 0 e /r ln(r) + (a) (9 pt) g (x) 3 cos 2 (π 2x)( sin(π 2x))(

More information

Have a Safe and Happy Break

Have a Safe and Happy Break Math 121 Final EF: December 10, 2013 Name Directions: 1 /15 2 /15 3 /15 4 /15 5 /10 6 /10 7 /20 8 /15 9 /15 10 /10 11 /15 12 /20 13 /15 14 /10 Total /200 1. No book, notes, or ouiji boards. You may use

More information

MA1021 Calculus I B Term, Sign:

MA1021 Calculus I B Term, Sign: MA1021 Calculus I B Term, 2014 Final Exam Print Name: Sign: Write up your solutions neatly and show all your work. 1. (28 pts) Compute each of the following derivatives: You do not have to simplify your

More information

Math 121 Test 3 - Review 1. Use differentials to approximate the following. Compare your answer to that of a calculator

Math 121 Test 3 - Review 1. Use differentials to approximate the following. Compare your answer to that of a calculator Math Test - Review Use differentials to approximate the following. Compare your answer to that of a calculator.. 99.. 8. 6. Consider the graph of the equation f(x) = x x a. Find f (x) and f (x). b. Find

More information

18.01 EXERCISES. Unit 3. Integration. 3A. Differentials, indefinite integration. 3A-1 Compute the differentials df(x) of the following functions.

18.01 EXERCISES. Unit 3. Integration. 3A. Differentials, indefinite integration. 3A-1 Compute the differentials df(x) of the following functions. 8. EXERCISES Unit 3. Integration 3A. Differentials, indefinite integration 3A- Compute the differentials df(x) of the following functions. a) d(x 7 + sin ) b) d x c) d(x 8x + 6) d) d(e 3x sin x) e) Express

More information

Learning Objectives for Math 165

Learning Objectives for Math 165 Learning Objectives for Math 165 Chapter 2 Limits Section 2.1: Average Rate of Change. State the definition of average rate of change Describe what the rate of change does and does not tell us in a given

More information

c) xy 3 = cos(7x +5y), y 0 = y3 + 7 sin(7x +5y) 3xy sin(7x +5y) d) xe y = sin(xy), y 0 = ey + y cos(xy) x(e y cos(xy)) e) y = x ln(3x + 5), y 0

c) xy 3 = cos(7x +5y), y 0 = y3 + 7 sin(7x +5y) 3xy sin(7x +5y) d) xe y = sin(xy), y 0 = ey + y cos(xy) x(e y cos(xy)) e) y = x ln(3x + 5), y 0 Some Math 35 review problems With answers 2/6/2005 The following problems are based heavily on problems written by Professor Stephen Greenfield for his Math 35 class in spring 2005. His willingness to

More information

Chapter 12 Overview: Review of All Derivative Rules

Chapter 12 Overview: Review of All Derivative Rules Chapter 12 Overview: Review of All Derivative Rules The emphasis of the previous chapters was graphing the families of functions as they are viewed (mostly) in Analytic Geometry, that is, with traits.

More information

MATH 1242 FINAL EXAM Spring,

MATH 1242 FINAL EXAM Spring, MATH 242 FINAL EXAM Spring, 200 Part I (MULTIPLE CHOICE, NO CALCULATORS).. Find 2 4x3 dx. (a) 28 (b) 5 (c) 0 (d) 36 (e) 7 2. Find 2 cos t dt. (a) 2 sin t + C (b) 2 sin t + C (c) 2 cos t + C (d) 2 cos t

More information

Calculus 1: Sample Questions, Final Exam

Calculus 1: Sample Questions, Final Exam Calculus : Sample Questions, Final Eam. Evaluate the following integrals. Show your work and simplify your answers if asked. (a) Evaluate integer. Solution: e 3 e (b) Evaluate integer. Solution: π π (c)

More information

a x a y = a x+y a x a = y ax y (a x ) r = a rx and log a (xy) = log a (x) + log a (y) log a ( x y ) = log a(x) log a (y) log a (x r ) = r log a (x).

a x a y = a x+y a x a = y ax y (a x ) r = a rx and log a (xy) = log a (x) + log a (y) log a ( x y ) = log a(x) log a (y) log a (x r ) = r log a (x). You should prepare the following topics for our final exam. () Pre-calculus. (2) Inverses. (3) Algebra of Limits. (4) Derivative Formulas and Rules. (5) Graphing Techniques. (6) Optimization (Maxima and

More information

dollars for a week of sales t weeks after January 1. What is the total revenue (to the nearest hundred dollars) earned from t = 10 to t = 16?

dollars for a week of sales t weeks after January 1. What is the total revenue (to the nearest hundred dollars) earned from t = 10 to t = 16? MATH 7 RIOHONDO SPRING 7 TEST (TAKE HOME) DUE 5//7 NAME: SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. ) A department store has revenue from the sale

More information

Math 106 Answers to Exam 3a Fall 2015

Math 106 Answers to Exam 3a Fall 2015 Math 6 Answers to Exam 3a Fall 5.. Consider the curve given parametrically by x(t) = cos(t), y(t) = (t 3 ) 3, for t from π to π. (a) (6 points) Find all the points (x, y) where the graph has either a vertical

More information

Math 1431 Final Exam Review

Math 1431 Final Exam Review Math 1431 Final Exam Review Comprehensive exam. I recommend you study all past reviews and practice exams as well. Know all rules/formulas. Make a reservation for the final exam. If you miss it, go back

More information

EXAM 3 MAT 167 Calculus I Spring is a composite function of two functions y = e u and u = 4 x + x 2. By the. dy dx = dy du = e u x + 2x.

EXAM 3 MAT 167 Calculus I Spring is a composite function of two functions y = e u and u = 4 x + x 2. By the. dy dx = dy du = e u x + 2x. EXAM MAT 67 Calculus I Spring 20 Name: Section: I Each answer must include either supporting work or an explanation of your reasoning. These elements are considered to be the main part of each answer and

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Final Exam Review Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Match the differential equation with the appropriate slope field. 1) y = x

More information

Name: Instructor: 1. a b c d e. 15. a b c d e. 2. a b c d e a b c d e. 16. a b c d e a b c d e. 4. a b c d e... 5.

Name: Instructor: 1. a b c d e. 15. a b c d e. 2. a b c d e a b c d e. 16. a b c d e a b c d e. 4. a b c d e... 5. Name: Instructor: Math 155, Practice Final Exam, December The Honor Code is in effect for this examination. All work is to be your own. No calculators. The exam lasts for 2 hours. Be sure that your name

More information

Solutions to Final Exam

Solutions to Final Exam Name: ID#: Solutions to Final Exam Math a Introduction to Calculus 2 January 2005 Show all of your work. Full credit may not be given for an answer alone. You may use the backs of the pages or the extra

More information

Final Exam. V Spring: Calculus I. May 12, 2011

Final Exam. V Spring: Calculus I. May 12, 2011 Name: ID#: Final Exam V.63.0121.2011Spring: Calculus I May 12, 2011 PLEASE READ THE FOLLOWING INFORMATION. This is a 90-minute exam. Calculators, books, notes, and other aids are not allowed. You may use

More information

Old Math 220 Exams. David M. McClendon. Department of Mathematics Ferris State University

Old Math 220 Exams. David M. McClendon. Department of Mathematics Ferris State University Old Math 0 Exams David M. McClendon Department of Mathematics Ferris State University Last updated to include exams from Spring 05 Contents Contents General information about these exams 4 Exams from 0

More information

5 t + t2 4. (ii) f(x) = ln(x 2 1). (iii) f(x) = e 2x 2e x + 3 4

5 t + t2 4. (ii) f(x) = ln(x 2 1). (iii) f(x) = e 2x 2e x + 3 4 Study Guide for Final Exam 1. You are supposed to be able to determine the domain of a function, looking at the conditions for its expression to be well-defined. Some examples of the conditions are: What

More information

Math 1000 Final Exam Review Solutions. (x + 3)(x 2) = lim. = lim x 2 = 3 2 = 5. (x + 1) 1 x( x ) = lim. = lim. f f(1 + h) f(1) (1) = lim

Math 1000 Final Exam Review Solutions. (x + 3)(x 2) = lim. = lim x 2 = 3 2 = 5. (x + 1) 1 x( x ) = lim. = lim. f f(1 + h) f(1) (1) = lim Math Final Eam Review Solutions { + 3 if < Consider f() Find the following limits: (a) lim f() + + (b) lim f() + 3 3 (c) lim f() does not eist Find each of the following limits: + 6 (a) lim 3 + 3 (b) lim

More information

MTH Calculus with Analytic Geom I TEST 1

MTH Calculus with Analytic Geom I TEST 1 MTH 229-105 Calculus with Analytic Geom I TEST 1 Name Please write your solutions in a clear and precise manner. SHOW your work entirely. (1) Find the equation of a straight line perpendicular to the line

More information

Chapter 6: Messy Integrals

Chapter 6: Messy Integrals Chapter 6: Messy Integrals Review: Solve the following integrals x 4 sec x tan x 0 0 Find the average value of 3 1 x 3 3 Evaluate 4 3 3 ( x 1), then find the area of ( x 1) 4 Section 6.1: Slope Fields

More information

Mth Review Problems for Test 2 Stewart 8e Chapter 3. For Test #2 study these problems, the examples in your notes, and the homework.

Mth Review Problems for Test 2 Stewart 8e Chapter 3. For Test #2 study these problems, the examples in your notes, and the homework. For Test # study these problems, the examples in your notes, and the homework. Derivative Rules D [u n ] = nu n 1 du D [ln u] = du u D [log b u] = du u ln b D [e u ] = e u du D [a u ] = a u ln a du D [sin

More information

(1) Find derivatives of the following functions: (a) y = x5 + 2x + 1. Use the quotient and product rules: ( 3 x cos(x)) 2

(1) Find derivatives of the following functions: (a) y = x5 + 2x + 1. Use the quotient and product rules: ( 3 x cos(x)) 2 Calc 1: Practice Exam Solutions Name: (1) Find derivatives of the following functions: (a) y = x5 + x + 1 x cos(x) Answer: Use the quotient and product rules: y = xcos(x)(5x 4 + ) (x 5 + x + 1)( 1 x /

More information

Spring 2015 Sample Final Exam

Spring 2015 Sample Final Exam Math 1151 Spring 2015 Sample Final Exam Final Exam on 4/30/14 Name (Print): Time Limit on Final: 105 Minutes Go on carmen.osu.edu to see where your final exam will be. NOTE: This exam is much longer than

More information

Final Exam Solutions

Final Exam Solutions Final Exam Solutions Laurence Field Math, Section March, Name: Solutions Instructions: This exam has 8 questions for a total of points. The value of each part of each question is stated. The time allowed

More information

Math 147 Exam II Practice Problems

Math 147 Exam II Practice Problems Math 147 Exam II Practice Problems This review should not be used as your sole source for preparation for the exam. You should also re-work all examples given in lecture, all homework problems, all lab

More information

Math 251, Spring 2005: Exam #2 Preview Problems

Math 251, Spring 2005: Exam #2 Preview Problems Math 5, Spring 005: Exam # Preview Problems. Using the definition of derivative find the derivative of the following functions: a) fx) = e x e h. Use the following lim =, e x+h = e x e h.) h b) fx) = x

More information

Math 229 Mock Final Exam Solution

Math 229 Mock Final Exam Solution Name: Math 229 Mock Final Exam Solution Disclaimer: This mock exam is for practice purposes only. No graphing calulators TI-89 is allowed on this test. Be sure that all of your work is shown and that it

More information

Math 180, Exam 2, Practice Fall 2009 Problem 1 Solution. f(x) = arcsin(2x + 1) = sin 1 (3x + 1), lnx

Math 180, Exam 2, Practice Fall 2009 Problem 1 Solution. f(x) = arcsin(2x + 1) = sin 1 (3x + 1), lnx Math 80, Exam, Practice Fall 009 Problem Solution. Differentiate the functions: (do not simplify) f(x) = x ln(x + ), f(x) = xe x f(x) = arcsin(x + ) = sin (3x + ), f(x) = e3x lnx Solution: For the first

More information

M408 C Fall 2011 Dr. Jeffrey Danciger Exam 2 November 3, Section time (circle one): 11:00am 1:00pm 2:00pm

M408 C Fall 2011 Dr. Jeffrey Danciger Exam 2 November 3, Section time (circle one): 11:00am 1:00pm 2:00pm M408 C Fall 2011 Dr. Jeffrey Danciger Exam 2 November 3, 2011 NAME EID Section time (circle one): 11:00am 1:00pm 2:00pm No books, notes, or calculators. Show all your work. Do NOT open this exam booklet

More information

Final Examination 201-NYA-05 May 18, 2018

Final Examination 201-NYA-05 May 18, 2018 . ( points) Evaluate each of the following limits. 3x x + (a) lim x x 3 8 x + sin(5x) (b) lim x sin(x) (c) lim x π/3 + sec x ( (d) x x + 5x ) (e) lim x 5 x lim x 5 + x 6. (3 points) What value of c makes

More information

Chapter 3 Differentiation Rules (continued)

Chapter 3 Differentiation Rules (continued) Chapter 3 Differentiation Rules (continued) Sec 3.5: Implicit Differentiation (continued) Implicit Differentiation What if you want to find the slope of the tangent line to a curve that is not the graph

More information

Formulas that must be memorized:

Formulas that must be memorized: Formulas that must be memorized: Position, Velocity, Acceleration Speed is increasing when v(t) and a(t) have the same signs. Speed is decreasing when v(t) and a(t) have different signs. Section I: Limits

More information

BC Exam 1 - Part I 28 questions No Calculator Allowed - Solutions C = 2. Which of the following must be true?

BC Exam 1 - Part I 28 questions No Calculator Allowed - Solutions C = 2. Which of the following must be true? BC Exam 1 - Part I 8 questions No Calculator Allowed - Solutions 6x 5 8x 3 1. Find lim x 0 9x 3 6x 5 A. 3 B. 8 9 C. 4 3 D. 8 3 E. nonexistent ( ) f ( 4) f x. Let f be a function such that lim x 4 x 4 I.

More information

10550 PRACTICE FINAL EXAM SOLUTIONS. x 2 4. x 2 x 2 5x +6 = lim x +2. x 2 x 3 = 4 1 = 4.

10550 PRACTICE FINAL EXAM SOLUTIONS. x 2 4. x 2 x 2 5x +6 = lim x +2. x 2 x 3 = 4 1 = 4. 55 PRACTICE FINAL EXAM SOLUTIONS. First notice that x 2 4 x 2x + 2 x 2 5x +6 x 2x. This function is undefined at x 2. Since, in the it as x 2, we only care about what happens near x 2 an for x less than

More information

MIDTERM 2. Section: Signature:

MIDTERM 2. Section: Signature: MIDTERM 2 Math 3A 11/17/2010 Name: Section: Signature: Read all of the following information before starting the exam: Check your exam to make sure all pages are present. When you use a major theorem (like

More information

WeBWorK demonstration assignment

WeBWorK demonstration assignment WeBWorK demonstration assignment.( pt) Match the statements defined below with the letters labeling their equivalent expressions. You must get all of the answers correct to receive credit.. x is less than

More information

SOLUTIONS FOR PRACTICE FINAL EXAM

SOLUTIONS FOR PRACTICE FINAL EXAM SOLUTIONS FOR PRACTICE FINAL EXAM ANDREW J. BLUMBERG. Solutions () Short answer questions: (a) State the mean value theorem. Proof. The mean value theorem says that if f is continuous on (a, b) and differentiable

More information

Introduction to Differential Equations

Introduction to Differential Equations Chapter 1 Introduction to Differential Equations 1.1 Basic Terminology Most of the phenomena studied in the sciences and engineering involve processes that change with time. For example, it is well known

More information

M151B Practice Problems for Final Exam

M151B Practice Problems for Final Exam M5B Practice Problems for Final Eam Calculators will not be allowed on the eam. Unjustified answers will not receive credit. On the eam you will be given the following identities: n k = n(n + ) ; n k =

More information

18.01 Final Exam. 8. 3pm Hancock Total: /250

18.01 Final Exam. 8. 3pm Hancock Total: /250 18.01 Final Exam Name: Please circle the number of your recitation. 1. 10am Tyomkin 2. 10am Kilic 3. 12pm Coskun 4. 1pm Coskun 5. 2pm Hancock Problem 1: /25 Problem 6: /25 Problem 2: /25 Problem 7: /25

More information

Math 1310 Final Exam

Math 1310 Final Exam Math 1310 Final Exam December 11, 2014 NAME: INSTRUCTOR: Write neatly and show all your work in the space provided below each question. You may use the back of the exam pages if you need additional space

More information

Final Exam 12/11/ (16 pts) Find derivatives for each of the following: (a) f(x) = 3 1+ x e + e π [Do not simplify your answer.

Final Exam 12/11/ (16 pts) Find derivatives for each of the following: (a) f(x) = 3 1+ x e + e π [Do not simplify your answer. Math 105 Final Exam 1/11/1 Name Read directions carefully and show all your work. Partial credit will be assigned based upon the correctness, completeness, and clarity of your answers. Correct answers

More information

2. Laws of Exponents (1) b 0 1 (2) b x b y b x y (3) bx b y. b x y (4) b n (5) b r s b rs (6) n b b 1/n Example: Solve the equations (a) e 2x

2. Laws of Exponents (1) b 0 1 (2) b x b y b x y (3) bx b y. b x y (4) b n (5) b r s b rs (6) n b b 1/n Example: Solve the equations (a) e 2x 7.1 Derivative of Exponential Function 1. Exponential Functions Let b 0 and b 1. f x b x is called an exponential function. Domain of f x :, Range of f x : 0, Example: lim x e x x2 2. Laws of Exponents

More information

Math 112 (Calculus I) Midterm Exam 3 KEY

Math 112 (Calculus I) Midterm Exam 3 KEY Math 11 (Calculus I) Midterm Exam KEY Multiple Choice. Fill in the answer to each problem on your computer scored answer sheet. Make sure your name, section and instructor are on that sheet. 1. Which of

More information

NO CALCULATOR 1. Find the interval or intervals on which the function whose graph is shown is increasing:

NO CALCULATOR 1. Find the interval or intervals on which the function whose graph is shown is increasing: AP Calculus AB PRACTICE MIDTERM EXAM Read each choice carefully and find the best answer. Your midterm exam will be made up of 8 of these questions. I reserve the right to change numbers and answers on

More information

MATH 151, FALL SEMESTER 2011 COMMON EXAMINATION 3 - VERSION B - SOLUTIONS

MATH 151, FALL SEMESTER 2011 COMMON EXAMINATION 3 - VERSION B - SOLUTIONS Name (print): Signature: MATH 5, FALL SEMESTER 0 COMMON EXAMINATION - VERSION B - SOLUTIONS Instructor s name: Section No: Part Multiple Choice ( questions, points each, No Calculators) Write your name,

More information

Brief answers to assigned even numbered problems that were not to be turned in

Brief answers to assigned even numbered problems that were not to be turned in Brief answers to assigned even numbered problems that were not to be turned in Section 2.2 2. At point (x 0, x 2 0) on the curve the slope is 2x 0. The point-slope equation of the tangent line to the curve

More information

Solutions to Math 41 Final Exam December 10, 2012

Solutions to Math 41 Final Exam December 10, 2012 Solutions to Math 4 Final Exam December,. ( points) Find each of the following limits, with justification. If there is an infinite limit, then explain whether it is or. x ln(t + ) dt (a) lim x x (5 points)

More information

Practice Questions From Calculus II. 0. State the following calculus rules (these are many of the key rules from Test 1 topics).

Practice Questions From Calculus II. 0. State the following calculus rules (these are many of the key rules from Test 1 topics). Math 132. Practice Questions From Calculus II I. Topics Covered in Test I 0. State the following calculus rules (these are many of the key rules from Test 1 topics). (Trapezoidal Rule) b a f(x) dx (Fundamental

More information

AB CALCULUS SEMESTER A REVIEW Show all work on separate paper. (b) lim. lim. (f) x a. for each of the following functions: (b) y = 3x 4 x + 2

AB CALCULUS SEMESTER A REVIEW Show all work on separate paper. (b) lim. lim. (f) x a. for each of the following functions: (b) y = 3x 4 x + 2 AB CALCULUS Page 1 of 6 NAME DATE 1. Evaluate each it: AB CALCULUS Show all work on separate paper. x 3 x 9 x 5x + 6 x 0 5x 3sin x x 7 x 3 x 3 5x (d) 5x 3 x +1 x x 4 (e) x x 9 3x 4 6x (f) h 0 sin( π 6

More information

Aim: How do we prepare for AP Problems on limits, continuity and differentiability? f (x)

Aim: How do we prepare for AP Problems on limits, continuity and differentiability? f (x) Name AP Calculus Date Supplemental Review 1 Aim: How do we prepare for AP Problems on limits, continuity and differentiability? Do Now: Use the graph of f(x) to evaluate each of the following: 1. lim x

More information

Final Exam Study Guide

Final Exam Study Guide Final Exam Study Guide Final Exam Coverage: Sections 10.1-10.2, 10.4-10.5, 10.7, 11.2-11.4, 12.1-12.6, 13.1-13.2, 13.4-13.5, and 14.1 Sections/topics NOT on the exam: Sections 10.3 (Continuity, it definition

More information

Solutions to Exam 1, Math Solution. Because f(x) is one-to-one, we know the inverse function exists. Recall that (f 1 ) (a) =

Solutions to Exam 1, Math Solution. Because f(x) is one-to-one, we know the inverse function exists. Recall that (f 1 ) (a) = Solutions to Exam, Math 56 The function f(x) e x + x 3 + x is one-to-one (there is no need to check this) What is (f ) ( + e )? Solution Because f(x) is one-to-one, we know the inverse function exists

More information

Math 180, Lowman, Summer 2008, Old Exam Problems 1 Limit Problems

Math 180, Lowman, Summer 2008, Old Exam Problems 1 Limit Problems Math 180, Lowman, Summer 2008, Old Exam Problems 1 Limit Problems 1. Find the limit of f(x) = (sin x) x x 3 as x 0. 2. Use L Hopital s Rule to calculate lim x 2 x 3 2x 2 x+2 x 2 4. 3. Given the function

More information

1 + x 2 d dx (sec 1 x) =

1 + x 2 d dx (sec 1 x) = Page This exam has: 8 multiple choice questions worth 4 points each. hand graded questions worth 4 points each. Important: No graphing calculators! Any non-graphing, non-differentiating, non-integrating

More information

Integration by Parts

Integration by Parts Calculus 2 Lia Vas Integration by Parts Using integration by parts one transforms an integral of a product of two functions into a simpler integral. Divide the initial function into two parts called u

More information

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA CALCULUS AB SECTION I, Part A Time 55 minutes Number of questions 8 A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAM. Directions: Solve each of the following problems,

More information

Math 222 Spring 2013 Exam 3 Review Problem Answers

Math 222 Spring 2013 Exam 3 Review Problem Answers . (a) By the Chain ule, Math Spring 3 Exam 3 eview Problem Answers w s w x x s + w y y s (y xy)() + (xy x )( ) (( s + 4t) (s 3t)( s + 4t)) ((s 3t)( s + 4t) (s 3t) ) 8s 94st + 3t (b) By the Chain ule, w

More information

Multiple Choice Answers. MA 113 Calculus I Spring 2018 Exam 2 Tuesday, 6 March Question

Multiple Choice Answers. MA 113 Calculus I Spring 2018 Exam 2 Tuesday, 6 March Question MA 113 Calculus I Spring 2018 Exam 2 Tuesday, 6 March 2018 Name: Section: Last 4 digits of student ID #: This exam has 12 multiple choice questions (five points each) and 4 free response questions (ten

More information

Test one Review Cal 2

Test one Review Cal 2 Name: Class: Date: ID: A Test one Review Cal 2 Short Answer. Write the following expression as a logarithm of a single quantity. lnx 2ln x 2 ˆ 6 2. Write the following expression as a logarithm of a single

More information

MATH 408N PRACTICE FINAL

MATH 408N PRACTICE FINAL 05/05/2012 Bormashenko MATH 408N PRACTICE FINAL Name: TA session: Show your work for all the problems. Good luck! (1) Calculate the following limits, using whatever tools are appropriate. State which results

More information

MA FINAL EXAM Form A MAY 1, 2017

MA FINAL EXAM Form A MAY 1, 2017 MA 6 FINAL EXAM Form A MAY, 7 NAME STUDENT ID # YOUR TA S NAME RECITATION TIME. You must use a # pencil on the scantron. a. If the cover of your exam is GREEN, write in the TEST/QUIZ NUMBER boxes and darken

More information

Test 3 Review. fx ( ) ( x 2) 4/5 at the indicated extremum. y x 2 3x 2. Name: Class: Date: Short Answer

Test 3 Review. fx ( ) ( x 2) 4/5 at the indicated extremum. y x 2 3x 2. Name: Class: Date: Short Answer Name: Class: Date: ID: A Test 3 Review Short Answer 1. Find the value of the derivative (if it exists) of fx ( ) ( x 2) 4/5 at the indicated extremum. 7. A rectangle is bounded by the x- and y-axes and

More information

1. The following problems are not related: (a) (15 pts, 5 pts ea.) Find the following limits or show that they do not exist: arcsin(x)

1. The following problems are not related: (a) (15 pts, 5 pts ea.) Find the following limits or show that they do not exist: arcsin(x) APPM 5 Final Eam (5 pts) Fall. The following problems are not related: (a) (5 pts, 5 pts ea.) Find the following limits or show that they do not eist: (i) lim e (ii) lim arcsin() (b) (5 pts) Find and classify

More information

Find the indicated derivative. 1) Find y(4) if y = 3 sin x. A) y(4) = 3 cos x B) y(4) = 3 sin x C) y(4) = - 3 cos x D) y(4) = - 3 sin x

Find the indicated derivative. 1) Find y(4) if y = 3 sin x. A) y(4) = 3 cos x B) y(4) = 3 sin x C) y(4) = - 3 cos x D) y(4) = - 3 sin x Assignment 5 Name Find the indicated derivative. ) Find y(4) if y = sin x. ) A) y(4) = cos x B) y(4) = sin x y(4) = - cos x y(4) = - sin x ) y = (csc x + cot x)(csc x - cot x) ) A) y = 0 B) y = y = - csc

More information

7.1. Calculus of inverse functions. Text Section 7.1 Exercise:

7.1. Calculus of inverse functions. Text Section 7.1 Exercise: Contents 7. Inverse functions 1 7.1. Calculus of inverse functions 2 7.2. Derivatives of exponential function 4 7.3. Logarithmic function 6 7.4. Derivatives of logarithmic functions 7 7.5. Exponential

More information

Integration by Substitution

Integration by Substitution Integration by Substitution Dr. Philippe B. Laval Kennesaw State University Abstract This handout contains material on a very important integration method called integration by substitution. Substitution

More information

California State University Northridge MATH 280: Applied Differential Equations Midterm Exam 1

California State University Northridge MATH 280: Applied Differential Equations Midterm Exam 1 California State University Northridge MATH 280: Applied Differential Equations Midterm Exam 1 October 9, 2013. Duration: 75 Minutes. Instructor: Jing Li Student Name: Student number: Take your time to

More information

MAS113 CALCULUS II SPRING 2008, QUIZ 4 SOLUTIONS

MAS113 CALCULUS II SPRING 2008, QUIZ 4 SOLUTIONS MAS113 CALCULUS II SPRING 8, QUIZ 4 SOLUTIONS Quiz 4a Solutions 1 Find the area of the surface obtained by rotating the curve y = x 3 /6 + 1/x, 1/ x 1 about the x-axis. We have y = x / 1/x. Therefore,

More information

Practice problems from old exams for math 132 William H. Meeks III

Practice problems from old exams for math 132 William H. Meeks III Practice problems from old exams for math 32 William H. Meeks III Disclaimer: Your instructor covers far more materials that we can possibly fit into a four/five questions exams. These practice tests are

More information

DRAFT - Math 101 Lecture Note - Dr. Said Algarni

DRAFT - Math 101 Lecture Note - Dr. Said Algarni 3 Differentiation Rules 3.1 The Derivative of Polynomial and Exponential Functions In this section we learn how to differentiate constant functions, power functions, polynomials, and exponential functions.

More information

May 9, 2018 MATH 255A Spring Final Exam Study Guide. Types of questions

May 9, 2018 MATH 255A Spring Final Exam Study Guide. Types of questions May 9, 18 MATH 55A Spring 18 Final Exam Study Guide Rules for the final exam: The test is closed books/notes. A formula sheet will be provided that includes the key formulas that were introduced in the

More information

Math. 151, WebCalc Sections December Final Examination Solutions

Math. 151, WebCalc Sections December Final Examination Solutions Math. 5, WebCalc Sections 507 508 December 00 Final Examination Solutions Name: Section: Part I: Multiple Choice ( points each) There is no partial credit. You may not use a calculator.. Another word for

More information

Review Guideline for Final

Review Guideline for Final Review Guideline for Final Here is the outline of the required skills for the final exam. Please read it carefully and find some corresponding homework problems in the corresponding sections to practice.

More information

Math 116 Second Midterm November 14, 2012

Math 116 Second Midterm November 14, 2012 Math 6 Second Midterm November 4, Name: EXAM SOLUTIONS Instructor: Section:. Do not open this exam until you are told to do so.. This exam has pages including this cover. There are 8 problems. Note that

More information

Problem Total Points Score

Problem Total Points Score Your Name Your Signature Instructor Name Problem Total Points Score 1 16 2 12 3 6 4 6 5 8 6 10 7 12 8 6 9 10 10 8 11 6 Total 100 This test is closed notes and closed book. You may not use a calculator.

More information

Calculus I Announcements

Calculus I Announcements Slide 1 Calculus I Announcements Read sections 4.2,4.3,4.4,4.1 and 5.3 Do the homework from sections 4.2,4.3,4.4,4.1 and 5.3 Exam 3 is Thursday, November 12th See inside for a possible exam question. Slide

More information

MATH 180 Final Exam May 10, 2018

MATH 180 Final Exam May 10, 2018 MATH 180 Final Exam May 10, 2018 Directions. Fill in each of the lines below. Then read the directions that follow before beginning the exam. YOU MAY NOT OPEN THE EXAM UNTIL TOLD TO DO SO BY YOUR EXAM

More information

A.P. Calculus Holiday Packet

A.P. Calculus Holiday Packet A.P. Calculus Holiday Packet Since this is a take-home, I cannot stop you from using calculators but you would be wise to use them sparingly. When you are asked questions about graphs of functions, do

More information

Written Homework 7 Solutions

Written Homework 7 Solutions Written Homework 7 Solutions Section 4.3 20. Find the local maxima and minima using the First and Second Derivative tests: Solution: First start by finding the first derivative. f (x) = x2 x 1 f (x) =

More information

Grade: The remainder of this page has been left blank for your workings. VERSION E. Midterm E: Page 1 of 12

Grade: The remainder of this page has been left blank for your workings. VERSION E. Midterm E: Page 1 of 12 First Name: Student-No: Last Name: Section: Grade: The remainder of this page has been left blank for your workings. Midterm E: Page of Indefinite Integrals. 9 marks Each part is worth 3 marks. Please

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSITY OF SOUTHAMPTON MATH03W SEMESTER EXAMINATION 0/ MATHEMATICS FOR ELECTRONIC & ELECTRICAL ENGINEERING Duration: 0 min This paper has two parts, part A and part B. Answer all questions from part

More information

Math 113 Winter 2005 Key

Math 113 Winter 2005 Key Name Student Number Section Number Instructor Math Winter 005 Key Departmental Final Exam Instructions: The time limit is hours. Problem consists of short answer questions. Problems through are multiple

More information

Applications of Differentiation

Applications of Differentiation Applications of Differentiation Definitions. A function f has an absolute maximum (or global maximum) at c if for all x in the domain D of f, f(c) f(x). The number f(c) is called the maximum value of f

More information

Math 611b Assignment #6 Name. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Math 611b Assignment #6 Name. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Math 611b Assignment #6 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find a formula for the function graphed. 1) 1) A) f(x) = 5 + x, x < -

More information

Review for the Final Exam

Review for the Final Exam Math 171 Review for the Final Exam 1 Find the limits (4 points each) (a) lim 4x 2 3; x x (b) lim ( x 2 x x 1 )x ; (c) lim( 1 1 ); x 1 ln x x 1 sin (x 2) (d) lim x 2 x 2 4 Solutions (a) The limit lim 4x

More information

Student s Printed Name: _Key

Student s Printed Name: _Key Student s Printed Name: _Key Instructor: CUID: Section # : You are not permitted to use a calculator on any part of this test. You are not allowed to use any textbook, notes, cell phone, laptop, PDA, or

More information

Study 5.5, # 1 5, 9, 13 27, 35, 39, 49 59, 63, 69, 71, 81. Class Notes: Prof. G. Battaly, Westchester Community College, NY Homework.

Study 5.5, # 1 5, 9, 13 27, 35, 39, 49 59, 63, 69, 71, 81. Class Notes: Prof. G. Battaly, Westchester Community College, NY Homework. Goals: 1. Recognize an integrand that is the derivative of a composite function. 2. Generalize the Basic Integration Rules to include composite functions. 3. Use substitution to simplify the process of

More information

Problem Worth Score Total 14

Problem Worth Score Total 14 MATH 241, Fall 14 Extra Credit Preparation for Final Name: INSTRUCTIONS: Write legibly. Indicate your answer clearly. Revise and clean up solutions. Do not cross anything out. Rewrite the page, I will

More information

1. The graph of a function f is given above. Answer the question: a. Find the value(s) of x where f is not differentiable. Ans: x = 4, x = 3, x = 2,

1. The graph of a function f is given above. Answer the question: a. Find the value(s) of x where f is not differentiable. Ans: x = 4, x = 3, x = 2, 1. The graph of a function f is given above. Answer the question: a. Find the value(s) of x where f is not differentiable. x = 4, x = 3, x = 2, x = 1, x = 1, x = 2, x = 3, x = 4, x = 5 b. Find the value(s)

More information

Name: Instructor: Exam 3 Solutions. Multiple Choice. 3x + 2 x ) 3x 3 + 2x 2 + 5x + 2 3x 3 3x 2x 2 + 2x + 2 2x 2 2 2x.

Name: Instructor: Exam 3 Solutions. Multiple Choice. 3x + 2 x ) 3x 3 + 2x 2 + 5x + 2 3x 3 3x 2x 2 + 2x + 2 2x 2 2 2x. . Exam 3 Solutions Multiple Choice.(6 pts.) Find the equation of the slant asymptote to the function We have so the slant asymptote is y = 3x +. f(x) = 3x3 + x + 5x + x + 3x + x + ) 3x 3 + x + 5x + 3x

More information

MATH 408N PRACTICE FINAL

MATH 408N PRACTICE FINAL 2/03/20 Bormashenko MATH 408N PRACTICE FINAL Show your work for all the problems. Good luck! () Let f(x) = ex e x. (a) [5 pts] State the domain and range of f(x). Name: TA session: Since e x is defined

More information

MA 242 Review Exponential and Log Functions Notes for today s class can be found at

MA 242 Review Exponential and Log Functions Notes for today s class can be found at MA 242 Review Exponential and Log Functions Notes for today s class can be found at www.xecu.net/jacobs/index242.htm Example: If y = x n If y = x 2 then then dy dx = nxn 1 dy dx = 2x1 = 2x Power Function

More information

Practice Exam 1 Solutions

Practice Exam 1 Solutions Practice Exam 1 Solutions 1a. Let S be the region bounded by y = x 3, y = 1, and x. Find the area of S. What is the volume of the solid obtained by rotating S about the line y = 1? Area A = Volume 1 1

More information

Practice Final Exam Solutions

Practice Final Exam Solutions Important Notice: To prepare for the final exam, study past exams and practice exams, and homeworks, quizzes, and worksheets, not just this practice final. A topic not being on the practice final does

More information