f(f 1 (B)) B f(f 1 (B)) = B B f(s) f 1 (f(a)) A f 1 (f(a)) = A f : S T 若敘述為真則證明之, 反之則必須給反例 (Q, ) y > 1 y 1/n y t > 1 n > (y 1)/(t 1) y 1/n < t

Size: px
Start display at page:

Download "f(f 1 (B)) B f(f 1 (B)) = B B f(s) f 1 (f(a)) A f 1 (f(a)) = A f : S T 若敘述為真則證明之, 反之則必須給反例 (Q, ) y > 1 y 1/n y t > 1 n > (y 1)/(t 1) y 1/n < t"

Transcription

1 S T A S B T f : S T f(f 1 (B)) B f(f 1 (B)) = B B f(s) f 1 (f(a)) A f 1 (f(a)) = A f : S T f : S T S T f y T f 1 ({y) f(d 1 D 2 ) = f(d 1 ) f(d 2 ) D 1 D 2 S F x 0 x F x = 0 x = 0 x y = x y x, y F x + y x + y x, y F x y x y x, y F 若敘述為真則證明之, 反之則必須給反例 (Q, <) (Q, ) y > 1 y 1/n y y n 1 > n(y 1) n N y 1 > n(y 1/n 1) t > 1 n > (y 1)/(t 1) y 1/n < t

2 y 1/n = 1 n x n x n+1 x n 1 n x n F F x 0 ε > 0 x ε x = 0 S = (0, 1) ε > 0 x S x < ε A R A A { x R x A A = ( A). A, B R A + B = {x + y x A, y B (A + B) = A + B (A + B) = A + B (A B) { A, B (A B) = { A, B (A B) { A, B (A B) = { A, B S R S = { x R x S. b > 1 r, s Q b r+s = b r b s r, s Q b r s = (b r ) s

3 x R B(x) = { b t R t Q, t x b r = B(r) r Q b x = B(x) x R y > 0 u, v R b u < y b v > y b u+1/n < y b v 1/n > y n y > 0 A w b w < y x = A b x = y x 1, x 2 b x 1 = b x 2 x 1 = x 2 x b x = y b b y {x n n=1 R k N S k = {x k, x k+1,, x k+n, x n S k x n S k n k n k y k = x n z k = x n {y k k=1 n k n k {z k k=1 {x n n=1 k y k {x n n=1 k z k {x n n=1 k y k = k 1 y k {x n n=1 z k = z k k x n = ( 1) n( 1 1 n) k n k k 1 x n k n k x n A R { b B A <. b B { x A x 0 {a n n=1 {x n n=1 R S k = k n=1 a n {S k k=1 x n x n+1 < a n n N {x n n=1 {S k k=1 x y f : R R f(x) f(y) 2 x 1 R x k+1 = f(x k ) k N {x n n=1

4 {x n n=1 {y n n=1 R { x n y n n=1 x n x n {x n n=1 x {x n n=1 x n x n {x n n=1 x {x n n=1 R x n+1 ϵ n x n n N {x n n=1 k n=1 ϵ n n=1 ϵ n k π : N N π {x n n=1 { x π(n) n=1 {x n n=1 {y n n=1 R ( x n + y n x n )( (x n + y n ) y n ) (x n + y n ) x ny n ( x n y n ( x n + y n x n + x n )( x n )( y n ) y n ; y n ). x n+1 x n n xn n x n+1 xn. x n n x n x n+1 x n { m m = 0, 1, 2,

5 { (1 + 1 mπ ) m = 1, 2, m 6 α S = { x [0, 1] x = kα 1 k N [0, 1] y [0, 1] ε > 0 x S (y ε, y + ε) α = 1 2π T = { x [0, 2π] x = k 2π k N [0, 2π] S [0, 1] S k = { x [0, 1] x = lα 1 1 l k + 1 S k 1 k {x n n=1 R x n x n {x n n=1 M x n M {x n n=1 m x n m x n = {x n n=1 x n = {x n n=1 x {x n n=1 a = x n a b = x n b {x n n=1 x R x n x x n p R n ( n ) 1 x i p p 1 p <, x p i=1 { x 1,, x n p =, x n = x n = x R x = (x 1,, x n )

6 M n m : M R A = x R m x 0 Ax 2 x 2, 2 2 ( k ) 1/2 x 2 = x 2 i x = (x 1,, x k ) R k. i=1 A = Ax 2 = { M R Ax 2 M x 2 x R m x R m x 2 =1 Ax 2 A x 2 x R m M R U R U = k I(a k, b k ), I (a k, b k ) (a l, b l ) = k l (M, d) A M A A {U i i I A U i i I A U i i I { (a k, b k ) N (a k, b k ) [a, b] k=1 k=1 [a, b] R N > 0 A B (M, d) A)) = (A) (A B) = (A) (B) (A B) (A) (B) (A B) (A) (B)

7 A (M, d) (M, d) A M (A ) = A A B (M, d) A)) = (A) (A B) = (A) (B) (A B) (A) (B) (A B) (A) (B) (M, d) A M A = ( A (M\A) ) ( (A)\A ). A B (M, d) A = (M\A) ( A) (A) ( A) A (A B) A B (A B) A B (A) (B) = (A B) = A B ( ( A)) = ( A) (M, d) A M A = A\ A (A) = M\ (M\A) ( (A)) = (A) ( (A)) = A

8 ( (A)) = A A A M\A A A = (A)\ A A (M, d) A M A = A E 0 = [0, 1] ( 1 3, 2 ) E1 3 [ 1] [ 2 0,, 3 3, 1]. E 2 [ 1 [ 2 0,, 9] 9, 3 [ 6, 9] 9, 7 ] [ 8, 9 9, 1]. E k E 1 E 2 E 2 E n 2 n 3 n C = n=1 E n C C (C) (M, d) A S (A) A S Q R A S S T A T A S B S B (A B) x x x {x k k=1 d(x k, x) < ε ε > 0 N > 0 k > N

9 x {x k k=1 x x k x k {x k k=1 x x k x k {x k k=1 x (M, d) N M (N, d) N (M, d) N M (N, d) (M, d) {p n n=1 {q n n=1 M {p n n=1 {q n n=1 d(p n, q n ) = 0. {p n n=1 {p n n=1 {p n n=1 {q n n=1 {q n n=1 {p n n=1 {p n n=1 {q n n=1 {q n n=1 {r n n=1 {p n n=1 {r n n=1 {p n n=1 {q n n=1 { d(p n, q n ) n=1 R M P, Q M d (P, Q) = d(p n, q n ), {p n n=1 P {q n n=1 Q {p n n=1 P {q n n=1 Q d(p n, q n ) = d(p n, q n) φ : M M x M {x n n=1 x n x n N M {x n n=1 φ(x) φ(x) M φ(x) {x n n=1 d ( φ(x), φ(y) ) = d(x, y) x, y M. φ(m) M (M, d ) (M, d ) (M, d)

10 a n a n = n an n an a n n=1 a n+1 a n n + 1 n, 2 n n n. 3 n n n = n n + 1 = 1 a n+1 a n (M, d) A M d : R 2 R 2 R { x 1 y 1 x 2 = y 2, d(x, y) = x 1 y 1 + x 2 y x 2 y 2. x = (x 1, x 2 ) y = (y 1, y 2 ) d R 2 (R 2, d) D(x, r) r < 1 r = 1 r > 1 {c [a, b] (R 2, d) {c [a, b] (R 2, d) (M, d) A M (A) (M, d) K M K {F α α I K F α α I K α J F α J I J <. {x k k=1 x k k A {x 1, x 2,, {x x A A A (M, d)

11 M M X {x k k=1 X = { {x k k=1 xk R k N x k <. k 1 R x k < k 1 : X R {xk k=1 = x k. k 1 X (X, ) l (X, ) A, B, C, D X A = { {x k k=1 xk 1 k k N, B = { {x k k=1 xk 0 k, C = { {x k k=1 {xk k=1, D = { {x k k=1 x k = 1. k 1 A, B, C, D A, B R n d(a, B) = { x y 2 x A, y B A B A = {x d(a, B) d(x, B) d(a, B) = { d(x, B) x A d(x 1, B) d(x 2, B) x 1 x 2 2 x 1, x 2 R n B ε = { x R n d(x, B) < ε B ε B ε B ε = (B) A x A d(a, B) = d(x, B) A B x A y B d(a, B) = d(x, y) A B ε>0

12 M = { (x, y) R 2 x 2 + y A M A {x k k=1 R (R, ) x A k = {x k, x k+1, {x = A k k=1 {K j j=1 K j K j+1 (K j ) 0 j (K j ) = { d(x, y) x, y K j. K j (M, d) A M A F 1 F 2 A F 1 F 2 = A F 1 A F 2 A F 1 F 2 A (M, d) A B A B (M, d) A M A A A C x, y C x y x U y V U V C F k F k+1 F k F k k N F k k=1 F k n N R n (R n, 2 ) f : R 2 R x 0 y 0 j=1 f(x, y) f(x, y) y 0 x 0

13 f : R 2 R f f : R 2 R f : R 2 R (x, y) x U R A = { (x, y) R 2 x U f : R R U R f(u) f : A R m A R n B A f( (B) A) (f(b)). R n f : R n R f(x) = x f (R n, 2 ) f(x) f(y) C x y 2 C > 0 f : R n R m B R n f(b) f : R R K R f 1 (K) f : R R C R f 1 (C) K R n f : K R m f 1 : f(k) K K f : (0, ) R f(x) = x f : (0, 1) R f(x) = x 1 x f : (0, ) R f(x) = x

14 (M, d) (N, ρ) A M f : A N f A {x k k=1 {y k k=1 d(x k, y k ) 0 k ρ ( f(x k ), f(y k ) ) 0 k f A {x k k=1 { f(xk ) k=1 f : R R p > 0 f(x + p) = f(x) x R f f R a, b R f : (a, b) R f (a, b) f(x) f(x) x a + x b (a, b) f : [a, b] R α M > 0 α (0, 1] f(x 1 ) f(x 2 ) M x 1 x 2 α x 1, x 2 [a, b]. f [a, b] f : [0, ) R f(x) = x 1 2 (M, d) A M f, g : A R A f g fg A f g f : (a, b) R x 0 (a, b) m R f (x 0 ) ε > 0, δ > 0 f(x) f(x0 ) f (x 0 )(x x 0 ) ε x x0 x x 0 < δ. f, g : R R f 0 d dx f(x)g(x) α β β > 0 f : [ 1, 1] R { x α (x β ) x 0, f(x) = 0 x = 0.

15 f α > 0 f (0) α > 1 f α 1 + β f α > 1 + β f (0) α > 2 + β f α 2 + 2β f α > 2 + 2β f, g : [a, b] R g f 0 f fg x 0 (a, b) b a f(x)g(x)dx = g(x 0 ) b a f(x)dx. f : [a, b] R f b a f (x)dx = f(b) f(a) f : [a, b] R m f(x) M x [a, b] φ : [m, M] R φ f [a, b] A R f : A R f A I ε > 0 δ > 0 P = {x 0, x 1,, x n A δ {ξ 1,, ξ n ξ k [x k 1, x k ] k n f(ξ k )(x k+1 x k ) I < ε. k=1 n f(ξ k )(x k+1 x k ) f k=1 A f A

a P (A) f k(x) = A k g k " g k (x) = ( 1) k x ą k. $ & g k (x) = x k (0, 1) f k, f, g : [0, 8) Ñ R f k (x) ď g(x) k P N x P [0, 8) g(x)dx g(x)dx ă 8

a P (A) f k(x) = A k g k  g k (x) = ( 1) k x ą k. $ & g k (x) = x k (0, 1) f k, f, g : [0, 8) Ñ R f k (x) ď g(x) k P N x P [0, 8) g(x)dx g(x)dx ă 8 M M, d A Ď M f k : A Ñ R A a P A f kx = A k xña k P N ta k u 8 k=1 f kx = f k x. xña kñ8 kñ8 xña M, d N, ρ A Ď M f k : A Ñ N tf k u 8 k=1 f : A Ñ N A f A 8ř " x ď k, g k x = 1 k x ą k. & g k x = % g k

More information

COURSE Numerical integration of functions

COURSE Numerical integration of functions COURSE 6 3. Numerical integration of functions The need: for evaluating definite integrals of functions that has no explicit antiderivatives or whose antiderivatives are not easy to obtain. Let f : [a,

More information

A = (a + 1) 2 = a 2 + 2a + 1

A = (a + 1) 2 = a 2 + 2a + 1 A = (a + 1) 2 = a 2 + 2a + 1 1 A = ( (a + b) + 1 ) 2 = (a + b) 2 + 2(a + b) + 1 = a 2 + 2ab + b 2 + 2a + 2b + 1 A = ( (a + b) + 1 ) 2 = (a + b) 2 + 2(a + b) + 1 = a 2 + 2ab + b 2 + 2a + 2b + 1 3 A = (

More information

Math 140A - Fall Final Exam

Math 140A - Fall Final Exam Math 140A - Fall 2014 - Final Exam Problem 1. Let {a n } n 1 be an increasing sequence of real numbers. (i) If {a n } has a bounded subsequence, show that {a n } is itself bounded. (ii) If {a n } has a

More information

Constructing Approximations to Functions

Constructing Approximations to Functions Constructing Approximations to Functions Given a function, f, if is often useful to it is often useful to approximate it by nicer functions. For example give a continuous function, f, it can be useful

More information

x y More precisely, this equation means that given any ε > 0, there exists some δ > 0 such that

x y More precisely, this equation means that given any ε > 0, there exists some δ > 0 such that Chapter 2 Limits and continuity 21 The definition of a it Definition 21 (ε-δ definition) Let f be a function and y R a fixed number Take x to be a point which approaches y without being equal to y If there

More information

MATH 217A HOMEWORK. P (A i A j ). First, the basis case. We make a union disjoint as follows: P (A B) = P (A) + P (A c B)

MATH 217A HOMEWORK. P (A i A j ). First, the basis case. We make a union disjoint as follows: P (A B) = P (A) + P (A c B) MATH 217A HOMEWOK EIN PEASE 1. (Chap. 1, Problem 2. (a Let (, Σ, P be a probability space and {A i, 1 i n} Σ, n 2. Prove that P A i n P (A i P (A i A j + P (A i A j A k... + ( 1 n 1 P A i n P (A i P (A

More information

Walker Ray Econ 204 Problem Set 2 Suggested Solutions July 22, 2017

Walker Ray Econ 204 Problem Set 2 Suggested Solutions July 22, 2017 Walker Ray Econ 204 Problem Set 2 Suggested s July 22, 2017 Problem 1. Show that any set in a metric space (X, d) can be written as the intersection of open sets. Take any subset A X and define C = x A

More information

MATH 104: INTRODUCTORY ANALYSIS SPRING 2008/09 PROBLEM SET 8 SOLUTIONS

MATH 104: INTRODUCTORY ANALYSIS SPRING 2008/09 PROBLEM SET 8 SOLUTIONS MATH 04: INTRODUCTORY ANALYSIS SPRING 008/09 PROBLEM SET 8 SOLUTIONS. Let f : R R be continuous periodic with period, i.e. f(x + ) = f(x) for all x R. Prove the following: (a) f is bounded above below

More information

Introduction to Decision Sciences Lecture 6

Introduction to Decision Sciences Lecture 6 Introduction to Decision Sciences Lecture 6 Andrew Nobel September 21, 2017 Functions Functions Given: Sets A and B, possibly different Definition: A function f : A B is a rule that assigns every element

More information

Math 205b Homework 2 Solutions

Math 205b Homework 2 Solutions Math 5b Homework Solutions January 5, 5 Problem (R-S, II.) () For the R case, we just expand the right hand side and use the symmetry of the inner product: ( x y x y ) = = ((x, x) (y, y) (x, y) (y, x)

More information

MS 2001: Test 1 B Solutions

MS 2001: Test 1 B Solutions MS 2001: Test 1 B Solutions Name: Student Number: Answer all questions. Marks may be lost if necessary work is not clearly shown. Remarks by me in italics and would not be required in a test - J.P. Question

More information

5. Some theorems on continuous functions

5. Some theorems on continuous functions 5. Some theorems on continuous functions The results of section 3 were largely concerned with continuity of functions at a single point (usually called x 0 ). In this section, we present some consequences

More information

Applications of Differentiation

Applications of Differentiation Applications of Differentiation Definitions. A function f has an absolute maximum (or global maximum) at c if for all x in the domain D of f, f(c) f(x). The number f(c) is called the maximum value of f

More information

Economics 204 Summer/Fall 2011 Lecture 5 Friday July 29, 2011

Economics 204 Summer/Fall 2011 Lecture 5 Friday July 29, 2011 Economics 204 Summer/Fall 2011 Lecture 5 Friday July 29, 2011 Section 2.6 (cont.) Properties of Real Functions Here we first study properties of functions from R to R, making use of the additional structure

More information

II. FOURIER TRANSFORM ON L 1 (R)

II. FOURIER TRANSFORM ON L 1 (R) II. FOURIER TRANSFORM ON L 1 (R) In this chapter we will discuss the Fourier transform of Lebesgue integrable functions defined on R. To fix the notation, we denote L 1 (R) = {f : R C f(t) dt < }. The

More information

Math 117: Continuity of Functions

Math 117: Continuity of Functions Math 117: Continuity of Functions John Douglas Moore November 21, 2008 We finally get to the topic of ɛ δ proofs, which in some sense is the goal of the course. It may appear somewhat laborious to use

More information

Analysis/Calculus Review Day 2

Analysis/Calculus Review Day 2 Analysis/Calculus Review Day 2 AJ Friend ajfriend@stanford.edu Arvind Saibaba arvindks@stanford.edu Institute of Computational and Mathematical Engineering Stanford University September 20, 2011 Continuity

More information

The reference [Ho17] refers to the course lecture notes by Ilkka Holopainen.

The reference [Ho17] refers to the course lecture notes by Ilkka Holopainen. Department of Mathematics and Statistics Real Analysis I, Fall 207 Solutions to Exercise 6 (6 pages) riikka.schroderus at helsinki.fi Note. The course can be passed by an exam. The first possible exam

More information

MATH 173: Problem Set 5 Solutions

MATH 173: Problem Set 5 Solutions MATH 173: Problem Set 5 Solutions Problem 1. Let f L 1 and a. Te wole problem is a matter of cange of variables wit integrals. i Ff a ξ = e ix ξ f a xdx = e ix ξ fx adx = e ia+y ξ fydy = e ia ξ = e ia

More information

f(x)dx . Show that there 1, 0 < x 1 does not exist a differentiable function g : [ 1, 1] R such that g (x) = f(x) for all

f(x)dx . Show that there 1, 0 < x 1 does not exist a differentiable function g : [ 1, 1] R such that g (x) = f(x) for all 3 Definite Integrl 3.1 Introduction In school one comes cross the definition of the integrl of rel vlued function defined on closed nd bounded intervl [, b] between the limits nd b, i.e., f(x)dx s the

More information

11.10a Taylor and Maclaurin Series

11.10a Taylor and Maclaurin Series 11.10a 1 11.10a Taylor and Maclaurin Series Let y = f(x) be a differentiable function at x = a. In first semester calculus we saw that (1) f(x) f(a)+f (a)(x a), for all x near a The right-hand side of

More information

Selçuk Demir WS 2017 Functional Analysis Homework Sheet

Selçuk Demir WS 2017 Functional Analysis Homework Sheet Selçuk Demir WS 2017 Functional Analysis Homework Sheet 1. Let M be a metric space. If A M is non-empty, we say that A is bounded iff diam(a) = sup{d(x, y) : x.y A} exists. Show that A is bounded iff there

More information

Exam 3 review for Math 1190

Exam 3 review for Math 1190 Exam 3 review for Math 9 Be sure to be familiar with the following : Extreme Value Theorem Optimization The antiderivative u-substitution as a method for finding antiderivatives Reimann sums (e.g. L 6

More information

Functions of Several Variables (Rudin)

Functions of Several Variables (Rudin) Functions of Several Variables (Rudin) Definition: Let X and Y be finite-dimensional real vector spaces. Then L(X, Y ) denotes the set of all linear transformations from X to Y and L(X) denotes the set

More information

a n+2 a n+1 M n a 2 a 1. (2)

a n+2 a n+1 M n a 2 a 1. (2) Rel Anlysis Fll 004 Tke Home Finl Key 1. Suppose tht f is uniformly continuous on set S R nd {x n } is Cuchy sequence in S. Prove tht {f(x n )} is Cuchy sequence. (f is not ssumed to be continuous outside

More information

OBJECTIVES Use the area under a graph to find total cost. Use rectangles to approximate the area under a graph.

OBJECTIVES Use the area under a graph to find total cost. Use rectangles to approximate the area under a graph. 4.1 The Area under a Graph OBJECTIVES Use the area under a graph to find total cost. Use rectangles to approximate the area under a graph. 4.1 The Area Under a Graph Riemann Sums (continued): In the following

More information

MATH 151 Engineering Mathematics I

MATH 151 Engineering Mathematics I MATH 151 Engineering Mathematics I Fall 2017, WEEK 14 JoungDong Kim Week 14 Section 5.4, 5.5, 6.1, Indefinite Integrals and the Net Change Theorem, The Substitution Rule, Areas Between Curves. Section

More information

Parts Manual. EPIC II Critical Care Bed REF 2031

Parts Manual. EPIC II Critical Care Bed REF 2031 EPIC II Critical Care Bed REF 2031 Parts Manual For parts or technical assistance call: USA: 1-800-327-0770 2013/05 B.0 2031-109-006 REV B www.stryker.com Table of Contents English Product Labels... 4

More information

COURSE Numerical integration of functions (continuation) 3.3. The Romberg s iterative generation method

COURSE Numerical integration of functions (continuation) 3.3. The Romberg s iterative generation method COURSE 7 3. Numerical integration of functions (continuation) 3.3. The Romberg s iterative generation method The presence of derivatives in the remainder difficulties in applicability to practical problems

More information

Functions. Chapter Continuous Functions

Functions. Chapter Continuous Functions Chapter 3 Functions 3.1 Continuous Functions A function f is determined by the domain of f: dom(f) R, the set on which f is defined, and the rule specifying the value f(x) of f at each x dom(f). If f is

More information

THEOREMS, ETC., FOR MATH 515

THEOREMS, ETC., FOR MATH 515 THEOREMS, ETC., FOR MATH 515 Proposition 1 (=comment on page 17). If A is an algebra, then any finite union or finite intersection of sets in A is also in A. Proposition 2 (=Proposition 1.1). For every

More information

WORKSHEET FOR THE PUTNAM COMPETITION -REAL ANALYSIS- lim

WORKSHEET FOR THE PUTNAM COMPETITION -REAL ANALYSIS- lim WORKSHEET FOR THE PUTNAM COMPETITION -REAL ANALYSIS- INSTRUCTOR: CEZAR LUPU Problem Let < x < and x n+ = x n ( x n ), n =,, 3, Show that nx n = Putnam B3, 966 Question? Problem E 334 from the American

More information

Chapter 5: Numerical Integration and Differentiation

Chapter 5: Numerical Integration and Differentiation Chapter 5: Numerical Integration and Differentiation PART I: Numerical Integration Newton-Cotes Integration Formulas The idea of Newton-Cotes formulas is to replace a complicated function or tabulated

More information

1 FUNCTIONS _ 5 _ 1.0 RELATIONS

1 FUNCTIONS _ 5 _ 1.0 RELATIONS 1 FUNCTIONS 1.0 RELATIONS Notes : (i) Four types of relations : one-to-one many-to-one one-to-many many-to-many. (ii) Three ways to represent relations : arrowed diagram set of ordered pairs graph. (iii)

More information

h(x) lim H(x) = lim Since h is nondecreasing then h(x) 0 for all x, and if h is discontinuous at a point x then H(x) > 0. Denote

h(x) lim H(x) = lim Since h is nondecreasing then h(x) 0 for all x, and if h is discontinuous at a point x then H(x) > 0. Denote Real Variables, Fall 4 Problem set 4 Solution suggestions Exercise. Let f be of bounded variation on [a, b]. Show that for each c (a, b), lim x c f(x) and lim x c f(x) exist. Prove that a monotone function

More information

Convergence of sequences and series

Convergence of sequences and series Convergence of sequences and series A sequence f is a map from N the positive integers to a set. We often write the map outputs as f n rather than f(n). Often we just list the outputs in order and leave

More information

2.2 The Limit of a Function

2.2 The Limit of a Function 2.2 The Limit of a Function Introductory Example: Consider the function f(x) = x is near 0. x f(x) x f(x) 1 3.7320508 1 4.236068 0.5 3.8708287 0.5 4.1213203 0.1 3.9748418 0.1 4.0248457 0.05 3.9874607 0.05

More information

Business and Life Calculus

Business and Life Calculus Business and Life Calculus George Voutsadakis Mathematics and Computer Science Lake Superior State University LSSU Math 2 George Voutsadakis (LSSU) Calculus For Business and Life Sciences Fall 203 / 55

More information

Exercises given in lecture on the day in parantheses.

Exercises given in lecture on the day in parantheses. A.Miller M22 Fall 23 Exercises given in lecture on the day in parantheses. The ɛ δ game. lim x a f(x) = L iff Hero has a winning strategy in the following game: Devil plays: ɛ > Hero plays: δ > Devil plays:

More information

FINAL REVIEW FOR MATH The limit. a n. This definition is useful is when evaluating the limits; for instance, to show

FINAL REVIEW FOR MATH The limit. a n. This definition is useful is when evaluating the limits; for instance, to show FINAL REVIEW FOR MATH 500 SHUANGLIN SHAO. The it Define a n = A: For any ε > 0, there exists N N such that for any n N, a n A < ε. This definition is useful is when evaluating the its; for instance, to

More information

Immerse Metric Space Homework

Immerse Metric Space Homework Immerse Metric Space Homework (Exercises -2). In R n, define d(x, y) = x y +... + x n y n. Show that d is a metric that induces the usual topology. Sketch the basis elements when n = 2. Solution: Steps

More information

MATH 409 Advanced Calculus I Lecture 10: Continuity. Properties of continuous functions.

MATH 409 Advanced Calculus I Lecture 10: Continuity. Properties of continuous functions. MATH 409 Advanced Calculus I Lecture 10: Continuity. Properties of continuous functions. Continuity Definition. Given a set E R, a function f : E R, and a point c E, the function f is continuous at c if

More information

WORKSHEET FOR THE PUTNAM COMPETITION -REAL ANALYSIS- lim

WORKSHEET FOR THE PUTNAM COMPETITION -REAL ANALYSIS- lim WORKSHEET FOR THE PUTNAM COMPETITION -REAL ANALYSIS- INSTRUCTOR: CEZAR LUPU Problem Let < x < and x n+ = x n ( x n ), n =,, 3, Show that nx n = Putnam B3, 966 Question? Problem E 334 from the American

More information

Logical Connectives and Quantifiers

Logical Connectives and Quantifiers Chapter 1 Logical Connectives and Quantifiers 1.1 Logical Connectives 1.2 Quantifiers 1.3 Techniques of Proof: I 1.4 Techniques of Proof: II Theorem 1. Let f be a continuous function. If 1 f(x)dx 0, then

More information

Question 1. Question 3. Question 4. Graduate Analysis I Exercise 4

Question 1. Question 3. Question 4. Graduate Analysis I Exercise 4 Graduate Analysis I Exercise 4 Question 1 If f is easurable and λ is any real nuber, f + λ and λf are easurable. Proof. Since {f > a λ} is easurable, {f + λ > a} = {f > a λ} is easurable, then f + λ is

More information

MASTERS EXAMINATION IN MATHEMATICS

MASTERS EXAMINATION IN MATHEMATICS MASTERS EXAMINATION IN MATHEMATICS PURE MATHEMATICS OPTION FALL 2007 Full points can be obtained for correct answers to 8 questions. Each numbered question (which may have several parts) is worth the same

More information

DRAFT - Math 101 Lecture Note - Dr. Said Algarni

DRAFT - Math 101 Lecture Note - Dr. Said Algarni 2 Limits 2.1 The Tangent Problems The word tangent is derived from the Latin word tangens, which means touching. A tangent line to a curve is a line that touches the curve and a secant line is a line that

More information

International Competition in Mathematics for Universtiy Students in Plovdiv, Bulgaria 1994

International Competition in Mathematics for Universtiy Students in Plovdiv, Bulgaria 1994 International Competition in Mathematics for Universtiy Students in Plovdiv, Bulgaria 1994 1 PROBLEMS AND SOLUTIONS First day July 29, 1994 Problem 1. 13 points a Let A be a n n, n 2, symmetric, invertible

More information

Chapter 4. Solution of Non-linear Equation. Module No. 1. Newton s Method to Solve Transcendental Equation

Chapter 4. Solution of Non-linear Equation. Module No. 1. Newton s Method to Solve Transcendental Equation Numerical Analysis by Dr. Anita Pal Assistant Professor Department of Mathematics National Institute of Technology Durgapur Durgapur-713209 email: anita.buie@gmail.com 1 . Chapter 4 Solution of Non-linear

More information

3 FUNCTIONS. 3.1 Definition and Basic Properties. c Dr Oksana Shatalov, Fall

3 FUNCTIONS. 3.1 Definition and Basic Properties. c Dr Oksana Shatalov, Fall c Dr Oksana Shatalov, Fall 2014 1 3 FUNCTIONS 3.1 Definition and Basic Properties DEFINITION 1. Let A and B be nonempty sets. A function f from A to B is a rule that assigns to each element in the set

More information

THE INVERSE FUNCTION THEOREM FOR LIPSCHITZ MAPS

THE INVERSE FUNCTION THEOREM FOR LIPSCHITZ MAPS THE INVERSE FUNCTION THEOREM FOR LIPSCHITZ MAPS RALPH HOWARD DEPARTMENT OF MATHEMATICS UNIVERSITY OF SOUTH CAROLINA COLUMBIA, S.C. 29208, USA HOWARD@MATH.SC.EDU Abstract. This is an edited version of a

More information

Continuity. Chapter 4

Continuity. Chapter 4 Chapter 4 Continuity Throughout this chapter D is a nonempty subset of the real numbers. We recall the definition of a function. Definition 4.1. A function from D into R, denoted f : D R, is a subset of

More information

Week 5 Lectures 13-15

Week 5 Lectures 13-15 Week 5 Lectures 13-15 Lecture 13 Definition 29 Let Y be a subset X. A subset A Y is open in Y if there exists an open set U in X such that A = U Y. It is not difficult to show that the collection of all

More information

d(x n, x) d(x n, x nk ) + d(x nk, x) where we chose any fixed k > N

d(x n, x) d(x n, x nk ) + d(x nk, x) where we chose any fixed k > N Problem 1. Let f : A R R have the property that for every x A, there exists ɛ > 0 such that f(t) > ɛ if t (x ɛ, x + ɛ) A. If the set A is compact, prove there exists c > 0 such that f(x) > c for all x

More information

Math 112 Rahman. Week Taylor Series Suppose the function f has the following power series:

Math 112 Rahman. Week Taylor Series Suppose the function f has the following power series: Math Rahman Week 0.8-0.0 Taylor Series Suppose the function f has the following power series: fx) c 0 + c x a) + c x a) + c 3 x a) 3 + c n x a) n. ) Can we figure out what the coefficients are? Yes, yes

More information

Abstract Algebra: Chapters 16 and 17

Abstract Algebra: Chapters 16 and 17 Study polynomials, their factorization, and the construction of fields. Chapter 16 Polynomial Rings Notation Let R be a commutative ring. The ring of polynomials over R in the indeterminate x is the set

More information

1 + x 2 d dx (sec 1 x) =

1 + x 2 d dx (sec 1 x) = Page This exam has: 8 multiple choice questions worth 4 points each. hand graded questions worth 4 points each. Important: No graphing calculators! Any non-graphing, non-differentiating, non-integrating

More information

Many of you got these steps reversed or otherwise out of order.

Many of you got these steps reversed or otherwise out of order. Problem 1. Let (X, d X ) and (Y, d Y ) be metric spaces. Suppose that there is a bijection f : X Y such that for all x 1, x 2 X. 1 10 d X(x 1, x 2 ) d Y (f(x 1 ), f(x 2 )) 10d X (x 1, x 2 ) Show that if

More information

2) Let X be a compact space. Prove that the space C(X) of continuous real-valued functions is a complete metric space.

2) Let X be a compact space. Prove that the space C(X) of continuous real-valued functions is a complete metric space. University of Bergen General Functional Analysis Problems with solutions 6 ) Prove that is unique in any normed space. Solution of ) Let us suppose that there are 2 zeros and 2. Then = + 2 = 2 + = 2. 2)

More information

L bor y nnd Union One nnd Inseparable. LOW I'LL, MICHIGAN. WLDNHSDA Y. JULY ), I8T. liuwkll NATIdiNAI, liank

L bor y nnd Union One nnd Inseparable. LOW I'LL, MICHIGAN. WLDNHSDA Y. JULY ), I8T. liuwkll NATIdiNAI, liank G k y $5 y / >/ k «««# ) /% < # «/» Y»««««?# «< >«>» y k»» «k F 5 8 Y Y F G k F >«y y

More information

Analysis/Calculus Review Day 3

Analysis/Calculus Review Day 3 Analysis/Calculus Review Day 3 Arvind Saibaba arvindks@stanford.edu Institute of Computational and Mathematical Engineering Stanford University September 15, 2010 Big- Oh and Little- Oh Notation We write

More information

Sec 4.1 Limits, Informally. When we calculated f (x), we first started with the difference quotient. f(x + h) f(x) h

Sec 4.1 Limits, Informally. When we calculated f (x), we first started with the difference quotient. f(x + h) f(x) h 1 Sec 4.1 Limits, Informally When we calculated f (x), we first started with the difference quotient f(x + h) f(x) h and made h small. In other words, f (x) is the number f(x+h) f(x) approaches as h gets

More information

Real Analysis Problems

Real Analysis Problems Real Analysis Problems Cristian E. Gutiérrez September 14, 29 1 1 CONTINUITY 1 Continuity Problem 1.1 Let r n be the sequence of rational numbers and Prove that f(x) = 1. f is continuous on the irrationals.

More information

SOME QUESTIONS FOR MATH 766, SPRING Question 1. Let C([0, 1]) be the set of all continuous functions on [0, 1] endowed with the norm

SOME QUESTIONS FOR MATH 766, SPRING Question 1. Let C([0, 1]) be the set of all continuous functions on [0, 1] endowed with the norm SOME QUESTIONS FOR MATH 766, SPRING 2016 SHUANGLIN SHAO Question 1. Let C([0, 1]) be the set of all continuous functions on [0, 1] endowed with the norm f C = sup f(x). 0 x 1 Prove that C([0, 1]) is a

More information

Analysis Part 1. 1 Chapter Q1(q) 1.2 Q1(r) Book: Measure and Integral by Wheeden and Zygmund

Analysis Part 1. 1 Chapter Q1(q) 1.2 Q1(r) Book: Measure and Integral by Wheeden and Zygmund Analysis Part 1 www.mathtuition88.com Book: Measure and Integral by Wheeden and Zygmund 1 Chapter 1 1.1 Q1(q) Let {T x k } be a sequence of points of T E. Since E is compact, {x k } has a subsequence {x

More information

Analysis Qualifying Exam

Analysis Qualifying Exam Analysis Qualifying Exam Spring 2017 Problem 1: Let f be differentiable on R. Suppose that there exists M > 0 such that f(k) M for each integer k, and f (x) M for all x R. Show that f is bounded, i.e.,

More information

Real Analysis Chapter 4 Solutions Jonathan Conder

Real Analysis Chapter 4 Solutions Jonathan Conder 2. Let x, y X and suppose that x y. Then {x} c is open in the cofinite topology and contains y but not x. The cofinite topology on X is therefore T 1. Since X is infinite it contains two distinct points

More information

Preliminary Exam 2016 Solutions to Morning Exam

Preliminary Exam 2016 Solutions to Morning Exam Preliminary Exam 16 Solutions to Morning Exam Part I. Solve four of the following five problems. Problem 1. Find the volume of the ice cream cone defined by the inequalities x + y + z 1 and x + y z /3

More information

Tangent Plane. Nobuyuki TOSE. October 02, Nobuyuki TOSE. Tangent Plane

Tangent Plane. Nobuyuki TOSE. October 02, Nobuyuki TOSE. Tangent Plane October 02, 2017 The Equation of a plane Given a plane α passing through P 0 perpendicular to n( 0). For any point P on α, we have n PP 0 = 0 When P 0 has the coordinates (x 0, y 0, z 0 ), P 0 (x, y, z)

More information

MATH 409 Advanced Calculus I Lecture 25: Review for the final exam.

MATH 409 Advanced Calculus I Lecture 25: Review for the final exam. MATH 49 Advanced Calculus I Lecture 25: Review for the final exam. Topics for the final Part I: Axiomatic model of the real numbers Axioms of an ordered field Completeness axiom Archimedean principle Principle

More information

The Mean Value Theorem and the Extended Mean Value Theorem

The Mean Value Theorem and the Extended Mean Value Theorem The Mean Value Theorem and the Extended Mean Value Theorem Willard Miller September 21, 2006 0.1 The MVT Recall the Extreme Value Theorem (EVT) from class: If the function f is defined and continuous on

More information

Walker Ray Econ 204 Problem Set 3 Suggested Solutions August 6, 2015

Walker Ray Econ 204 Problem Set 3 Suggested Solutions August 6, 2015 Problem 1. Take any mapping f from a metric space X into a metric space Y. Prove that f is continuous if and only if f(a) f(a). (Hint: use the closed set characterization of continuity). I make use of

More information

2 (Bonus). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure?

2 (Bonus). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure? MA 645-4A (Real Analysis), Dr. Chernov Homework assignment 1 (Due 9/5). Prove that every countable set A is measurable and µ(a) = 0. 2 (Bonus). Let A consist of points (x, y) such that either x or y is

More information

Supplementary Notes for W. Rudin: Principles of Mathematical Analysis

Supplementary Notes for W. Rudin: Principles of Mathematical Analysis Supplementary Notes for W. Rudin: Principles of Mathematical Analysis SIGURDUR HELGASON In 8.00B it is customary to cover Chapters 7 in Rudin s book. Experience shows that this requires careful planning

More information

Continuity. Chapter 4

Continuity. Chapter 4 Chapter 4 Continuity Throughout this chapter D is a nonempty subset of the real numbers. We recall the definition of a function. Definition 4.1. A function from D into R, denoted f : D R, is a subset of

More information

Ma 221 Eigenvalues and Fourier Series

Ma 221 Eigenvalues and Fourier Series Ma Eigenvalues and Fourier Series Eigenvalue and Eigenfunction Examples Example Find the eigenvalues and eigenfunctions for y y 47 y y y5 Solution: The characteristic equation is r r 47 so r 44 447 6 Thus

More information

https://hal.inria.fr/hal /

https://hal.inria.fr/hal / https://hal.inria.fr/hal-00767404/ sk sk Encrypt sk (m ) = c Decrypt sk (c ) = m Encrypt sk (m ) = c Decrypt sk (c ) = m m, m c, c Encrypt Decrypt sk pk, sk Encrypt pk (m) = c Decrypt sk (c) = m pk sk

More information

Analysis/Calculus Review Day 2

Analysis/Calculus Review Day 2 Analysis/Calculus Review Day 2 Arvind Saibaba arvindks@stanford.edu Institute of Computational and Mathematical Engineering Stanford University September 14, 2010 Limit Definition Let A R, f : A R and

More information

MAS331: Metric Spaces Problems on Chapter 1

MAS331: Metric Spaces Problems on Chapter 1 MAS331: Metric Spaces Problems on Chapter 1 1. In R 3, find d 1 ((3, 1, 4), (2, 7, 1)), d 2 ((3, 1, 4), (2, 7, 1)) and d ((3, 1, 4), (2, 7, 1)). 2. In R 4, show that d 1 ((4, 4, 4, 6), (0, 0, 0, 0)) =

More information

dy = f( x) dx = F ( x)+c = f ( x) dy = f( x) dx

dy = f( x) dx = F ( x)+c = f ( x) dy = f( x) dx Antiderivatives and The Integral Antiderivatives Objective: Use indefinite integral notation for antiderivatives. Use basic integration rules to find antiderivatives. Another important question in calculus

More information

POINT SET TOPOLOGY. Definition 2 A set with a topological structure is a topological space (X, O)

POINT SET TOPOLOGY. Definition 2 A set with a topological structure is a topological space (X, O) POINT SET TOPOLOGY Definition 1 A topological structure on a set X is a family O P(X) called open sets and satisfying (O 1 ) O is closed for arbitrary unions (O 2 ) O is closed for finite intersections.

More information

Compare the growth rate of functions

Compare the growth rate of functions Compare the growth rate of functions We have two algorithms A 1 and A 2 for solving the same problem, with runtime functions T 1 (n) and T 2 (n), respectively. Which algorithm is more efficient? We compare

More information

Find the slope of the curve at the given point P and an equation of the tangent line at P. 1) y = x2 + 11x - 15, P(1, -3)

Find the slope of the curve at the given point P and an equation of the tangent line at P. 1) y = x2 + 11x - 15, P(1, -3) Final Exam Review AP Calculus AB Find the slope of the curve at the given point P and an equation of the tangent line at P. 1) y = x2 + 11x - 15, P(1, -3) Use the graph to evaluate the limit. 2) lim x

More information

Limits and continuity

Limits and continuity CHAPTER 4 Limits and continuity Our first goal is to define and understand lim f(x) =L. Here f : D R where D R. We want the definition to mean roughly, as x gets close to a then f(x) iscloseto L. Perhaps

More information

There are two basic kinds of random variables continuous and discrete.

There are two basic kinds of random variables continuous and discrete. Summary of Lectures 5 and 6 Random Variables The random variable is usually represented by an upper case letter, say X. A measured value of the random variable is denoted by the corresponding lower case

More information

A2 Assignment lambda Cover Sheet. Ready. Done BP. Question. Aa C4 Integration 1 1. C4 Integration 3

A2 Assignment lambda Cover Sheet. Ready. Done BP. Question. Aa C4 Integration 1 1. C4 Integration 3 A Assignment lambda Cover Sheet Name: Question Done BP Ready Topic Comment Drill Mock Exam Aa C4 Integration sin x+ x+ c 4 Ab C4 Integration e x + c Ac C4 Integration ln x 5 + c Ba C Show root change of

More information

MATH 6337: Homework 8 Solutions

MATH 6337: Homework 8 Solutions 6.1. MATH 6337: Homework 8 Solutions (a) Let be a measurable subset of 2 such that for almost every x, {y : (x, y) } has -measure zero. Show that has measure zero and that for almost every y, {x : (x,

More information

8 Further theory of function limits and continuity

8 Further theory of function limits and continuity 8 Further theory of function limits and continuity 8.1 Algebra of limits and sandwich theorem for real-valued function limits The following results give versions of the algebra of limits and sandwich theorem

More information

Polynomial Approximations and Power Series

Polynomial Approximations and Power Series Polynomial Approximations and Power Series June 24, 206 Tangent Lines One of the first uses of the derivatives is the determination of the tangent as a linear approximation of a differentiable function

More information

EASY PUTNAM PROBLEMS

EASY PUTNAM PROBLEMS EASY PUTNAM PROBLEMS (Last updated: December 11, 2017) Remark. The problems in the Putnam Competition are usually very hard, but practically every session contains at least one problem very easy to solve

More information

Linearization and Extreme Values of Functions

Linearization and Extreme Values of Functions Linearization and Extreme Values of Functions 3.10 Linearization and Differentials Linear or Tangent Line Approximations of function values Equation of tangent to y = f(x) at (a, f(a)): Tangent line approximation

More information

The Substitution Rule

The Substitution Rule The Sbstittion Rle Kiryl Tsishchanka THEOREM The Fndamental Theorem Of Calcls, Part II): If f is continos on [a,b], then where F is any antiderivative of f, that is F f. b a ] b fx)dx Fb) Fa) Fx) a NOTATION:

More information

Root Finding: Close Methods. Bisection and False Position Dr. Marco A. Arocha Aug, 2014

Root Finding: Close Methods. Bisection and False Position Dr. Marco A. Arocha Aug, 2014 Root Finding: Close Methods Bisection and False Position Dr. Marco A. Arocha Aug, 2014 1 Roots Given function f(x), we seek x values for which f(x)=0 Solution x is the root of the equation or zero of the

More information

2905 Queueing Theory and Simulation PART IV: SIMULATION

2905 Queueing Theory and Simulation PART IV: SIMULATION 2905 Queueing Theory and Simulation PART IV: SIMULATION 22 Random Numbers A fundamental step in a simulation study is the generation of random numbers, where a random number represents the value of a random

More information

A Gentle Introduction to Gradient Boosting. Cheng Li College of Computer and Information Science Northeastern University

A Gentle Introduction to Gradient Boosting. Cheng Li College of Computer and Information Science Northeastern University A Gentle Introduction to Gradient Boosting Cheng Li chengli@ccs.neu.edu College of Computer and Information Science Northeastern University Gradient Boosting a powerful machine learning algorithm it can

More information

1 Assignment 1: Nonlinear dynamics (due September

1 Assignment 1: Nonlinear dynamics (due September Assignment : Nonlinear dynamics (due September 4, 28). Consider the ordinary differential equation du/dt = cos(u). Sketch the equilibria and indicate by arrows the increase or decrease of the solutions.

More information

Suggested solutions, TMA4125 Calculus 4N

Suggested solutions, TMA4125 Calculus 4N Suggested solutions, TMA5 Calculus N Charles Curry May 9th 07. The graph of g(x) is displayed below. We have b n = = = 0 [ nπ = nπ ( x) nπx dx nπx dx cos nπx ] x nπx dx [ nπx x cos nπ ] ( cos nπ + cos

More information

Problem set 5, Real Analysis I, Spring, otherwise. (a) Verify that f is integrable. Solution: Compute since f is even, 1 x (log 1/ x ) 2 dx 1

Problem set 5, Real Analysis I, Spring, otherwise. (a) Verify that f is integrable. Solution: Compute since f is even, 1 x (log 1/ x ) 2 dx 1 Problem set 5, Real Analysis I, Spring, 25. (5) Consider the function on R defined by f(x) { x (log / x ) 2 if x /2, otherwise. (a) Verify that f is integrable. Solution: Compute since f is even, R f /2

More information

Problem Set 5: Solutions Math 201A: Fall 2016

Problem Set 5: Solutions Math 201A: Fall 2016 Problem Set 5: s Math 21A: Fall 216 Problem 1. Define f : [1, ) [1, ) by f(x) = x + 1/x. Show that f(x) f(y) < x y for all x, y [1, ) with x y, but f has no fixed point. Why doesn t this example contradict

More information