Mar 10, Calculus with Algebra and Trigonometry II Lecture 14Undoing the Marproduct 10, 2015 rule: integration 1 / 18

Size: px
Start display at page:

Download "Mar 10, Calculus with Algebra and Trigonometry II Lecture 14Undoing the Marproduct 10, 2015 rule: integration 1 / 18"

Transcription

1 Calculus with Algebra and Trigonometry II Lecture 14 Undoing the product rule: integration by parts Mar 10, 2015 Calculus with Algebra and Trigonometry II Lecture 14Undoing the Marproduct 10, 2015 rule: integration 1 / 18

2 Undoing the product rule The product rule is (f (x)g(x)) = f (x)g(x) + f (x).g (x) Integrating we have f (x)g(x) = f (x).g (x) dx + g(x).f (x) dx It can be rewritten in the form f (x)g (x) dx = f (x)g(x) g(x)f (x) dx This allows us to transform an integral we can t evaluate, to one we can, hopefully. Calculus with Algebra and Trigonometry II Lecture 14Undoing the Marproduct 10, 2015 rule: integration 2 / 18

3 Example 1 x sin(2x) dx f (x) = x g (x) = sin(2x) f (x) = 1 g(x) = 1 2 cos(2x) x sin(2x) dx = x ( 12 ) cos(2x) = 1 2 x cos(2x) ( 12 ) cos(2x) cos(2x) dx 1 dx = 1 2 x cos(2x) sin(2x) + C Calculus with Algebra and Trigonometry II Lecture 14Undoing the Marproduct 10, 2015 rule: integration 3 / 18

4 Example 2 x 3 e x dx f (x) = x 3 g (x) = e x f (x) = 3x 2 g(x) = e x x 3 e x dx = x 3 ( e x ) = x 3 e x + 3 ( e x )(3x 2 dx) x 2 e x dx Now evaluate the integral by using by parts again Calculus with Algebra and Trigonometry II Lecture 14Undoing the Marproduct 10, 2015 rule: integration 4 / 18

5 f (x) = x 2 g (x) = e x f (x) = 2x g(x) = e x x 3 e x dx = x 3 e x + 3 x 2 e x dx ( ) = x 3 e x + 3 x 2 e x ( e x )(2x dx) = ( x 3 3x 2 )e x + 6 xe x dx Integrating by parts again f (x) = x g (x) = e x f (x) = 1 g(x) = e x x 3 e x dx = ( x 3 3x 2 )e x + 6 xe x dx ( ) = ( x 3 3x 2 )e x + 6 xe x ( e x )1 dx = ( x 3 3x 2 6x 6)e x + C Calculus with Algebra and Trigonometry II Lecture 14Undoing the Marproduct 10, 2015 rule: integration 5 / 18

6 Example 3 x 4 ln x dx f (x) = ln x g (x) = x 4 f (x) = 1 x g(x) = 1 5 x 5 ( ) ( ) ( ) x 4 ln x dx = 5 x 5 ln x 5 x 5 x dx = 1 5 x 5 ln x 1 x 4 dx 5 = 1 5 x 5 ln x 1 25 x 5 + C Calculus with Algebra and Trigonometry II Lecture 14Undoing the Marproduct 10, 2015 rule: integration 6 / 18

7 Example 4 x sec 2 x dx f (x) = x g (x) = sec 2 x f (x) = 1 g(x) = tan x x sec 2 x dx = x tan x = x tan x (tan x)1 dx tan x dx = x tan x + ln cos x + C Calculus with Algebra and Trigonometry II Lecture 14Undoing the Marproduct 10, 2015 rule: integration 7 / 18

8 Example 5 tan 1 x dx f (x) = tan 1 x g (x) = 1 f (x) = x 2 g(x) = x tan 1 x dx = x tan 1 x = x tan 1 x ( ) 1 x 1 + x 2 dx x 1 + x 2 dx We will use u substitution to evaluate the integral Calculus with Algebra and Trigonometry II Lecture 14Undoing the Marproduct 10, 2015 rule: integration 8 / 18

9 u = 1 + x 2 du = 2x dx dx = du 2x ( ) x du tan 1 x dx = x tan 1 x u 2x = x tan 1 x u du = x tan 1 x 1 ln u + C 2 = x tan 1 x 1 2 ln(1 + x 2 ) + C Calculus with Algebra and Trigonometry II Lecture 14Undoing the Marproduct 10, 2015 rule: integration 9 / 18

10 Example 6 cos x dx x = u 2 dx = 2u du cos x dx = 2 u cos du Now use integration by parts, let f (u) = u g (u) = cos u f (u) = 1 g(u) = sin u cos x dx = 2u sin u 2 sin u du = 2u sin u + 2 cos u + C = 2 x sin( x) + 2 cos( x) + C Calculus with Algebra and Trigonometry II Lecture 14Undoing Mar the product 10, 2015rule: integration 10 / 18

11 Example 7 cos 2 x dx f (x) = cos x g (x) = cos x f (x) = sin x g(x) = sin x cos 2 x dx = cos x sin x sin x( sin x dx) = cos x sin x + sin 2 x dx = cos x sin x + (1 cos 2 x) dx = cos x sin x + x cos 2 x dx cos 2 x dx = 1 (x + cos x sin x) + C 2 Calculus with Algebra and Trigonometry II Lecture 14Undoing Mar the product 10, 2015rule: integration 11 / 18

12 Example 8 1 x 2 dx f (x) = 1 x 2 g (x) = 1 f x (x) = 1 x 2 g(x) = x 1 x 2 dx = x 1 x 2 = x 1 x 2 + x x( dx) 1 x 2 x 2 1 x 2 dx = x x 2 1 x dx 1 x 2 Calculus with Algebra and Trigonometry II Lecture 14Undoing Mar the product 10, 2015rule: integration 12 / 18

13 1 x 2 dx = x 1 x 2 + x 2 1 dx + 1 x x 2 dx = x 1 x 2 1 x 2 dx + sin 1 x + C Rearranging gives 1 x 2 = 1 ( x ) 1 x sin 1 x + C Calculus with Algebra and Trigonometry II Lecture 14Undoing Mar the product 10, 2015rule: integration 13 / 18

14 Example 9 sec 3 x dx = sec x sec 2 x dx f (x) = sec x g (x) = sec 2 x f (x) = sec x tan x g(x) = tan x sec 3 x dx = sec x tan x tan x(sec x tan x dx) = sec x tan x secx tan 2 x dx = sec x tan x secx(sec 2 x 1) dx = sec x tan x sec 3 x dx + sec x dx sec 3 x = 1 (sec x tan x + ln sec x + tan x ) + C 2 Calculus with Algebra and Trigonometry II Lecture 14Undoing Mar the product 10, 2015rule: integration 14 / 18

15 Example 10 e ax sin bx dx f (x) = sin bx g (x) = e ax f (x) = b cos bx g(x) = 1 a eax e ax sin bx dx = 1 1 a eax sin bx a eax (b cos bx dx) = 1 a eax sin bx b e ax cos bx dx a Now use by parts to evaluate the integral Calculus with Algebra and Trigonometry II Lecture 14Undoing Mar the product 10, 2015rule: integration 15 / 18

16 f (x) = cos bx g (x) = e ax f (x) = b sin bxbx g(x) = 1 a eax e ax sin bx dx = 1 a eax sin bx b ( 1 1 a a eax cos bx a eax ( b sin bx dx)bx = 1 a eax sin bx b a 2 eax cos bx b2 a 2 e ax sin bx dx this implies ) (1 + b2 a 2 e ax sin bx dx = e ax ( 1 a sin bx b a 2 cos bx ) + C e ax sin bx dx = eax a 2 (a sin bx b cos bx) + C + b2 Calculus with Algebra and Trigonometry II Lecture 14Undoing Mar the product 10, 2015rule: integration 16 / 18

17 Example 10a e ax cos bx dx Assume it has the form e ax cos bx dx = Ae ax cos bx + Be ax sin bx + C Using the fundamental theorem we have e ax cos bx = (Ae ax cos bx = Be ax sin bx) = A(ae ax cos bx be ax sin bx) + B(e ax b cos bx + ae ax sin bx) = e ax cos bx(aa + bb) + e ax sin bx( ba + ab) Calculus with Algebra and Trigonometry II Lecture 14Undoing Mar the product 10, 2015rule: integration 17 / 18

18 This is true only if Solving we get this gives aa + bb = 1 ba + ab = 0 B = b a A A = and the integral becomes e ax cos bx dx = b2 aa + a A = 1 a a 2 + b 2 B = b a 2 + b 2 eax a 2 (b sin bx + a cos bx) + C + b2 Calculus with Algebra and Trigonometry II Lecture 14Undoing Mar the product 10, 2015rule: integration 18 / 18

Section 5.5 More Integration Formula (The Substitution Method) 2 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I

Section 5.5 More Integration Formula (The Substitution Method) 2 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I Section 5.5 More Integration Formula (The Substitution Method) 2 Lectures College of Science MATHS : Calculus I (University of Bahrain) Integrals / 7 The Substitution Method Idea: To replace a relatively

More information

If y = f (u) is a differentiable function of u and u = g(x) is a differentiable function of x then dy dx = dy. du du. If y = f (u) then y = f (u) u

If y = f (u) is a differentiable function of u and u = g(x) is a differentiable function of x then dy dx = dy. du du. If y = f (u) then y = f (u) u Section 3 4B Lecture The Chain Rule If y = f (u) is a differentiable function of u and u = g(x) is a differentiable function of x then dy dx = dy du du dx or If y = f (u) then y = f (u) u The Chain Rule

More information

Math 131 Final Exam Spring 2016

Math 131 Final Exam Spring 2016 Math 3 Final Exam Spring 06 Name: ID: multiple choice questions worth 5 points each. Exam is only out of 00 (so there is the possibility of getting more than 00%) Exam covers sections. through 5.4 No graphing

More information

C3 Revision Questions. (using questions from January 2006, January 2007, January 2008 and January 2009)

C3 Revision Questions. (using questions from January 2006, January 2007, January 2008 and January 2009) C3 Revision Questions (using questions from January 2006, January 2007, January 2008 and January 2009) 1 2 1. f(x) = 1 3 x 2 + 3, x 2. 2 ( x 2) (a) 2 x x 1 Show that f(x) =, x 2. 2 ( x 2) (4) (b) Show

More information

Chapter 7: Techniques of Integration

Chapter 7: Techniques of Integration Chapter 7: Techniques of Integration MATH 206-01: Calculus II Department of Mathematics University of Louisville last corrected September 14, 2013 1 / 43 Chapter 7: Techniques of Integration 7.1. Integration

More information

Section 4.8 Anti Derivative and Indefinite Integrals 2 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I

Section 4.8 Anti Derivative and Indefinite Integrals 2 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I Section 4.8 Anti Derivative and Indefinite Integrals 2 Lectures College of Science MATHS 101: Calculus I (University of Bahrain) 1 / 28 Indefinite Integral Given a function f, if F is a function such that

More information

Example. Evaluate. 3x 2 4 x dx.

Example. Evaluate. 3x 2 4 x dx. 3x 2 4 x 3 + 4 dx. Solution: We need a new technique to integrate this function. Notice that if we let u x 3 + 4, and we compute the differential du of u, we get: du 3x 2 dx Going back to our integral,

More information

WeBWorK, Problems 2 and 3

WeBWorK, Problems 2 and 3 WeBWorK, Problems 2 and 3 7 dx 2. Evaluate x ln(6x) This can be done using integration by parts or substitution. (Most can not). However, it is much more easily done using substitution. This can be written

More information

If y = f (u) is a differentiable function of u and u = g(x) is a differentiable function of x then dy dx = dy. du du. If y = f (u) then y = f (u) u

If y = f (u) is a differentiable function of u and u = g(x) is a differentiable function of x then dy dx = dy. du du. If y = f (u) then y = f (u) u Section 3 4B The Chain Rule If y = f (u) is a differentiable function of u and u = g(x) is a differentiable function of x then dy dx = dy du du dx or If y = f (u) then f (u) u The Chain Rule with the Power

More information

Math 21B - Homework Set 8

Math 21B - Homework Set 8 Math B - Homework Set 8 Section 8.:. t cos t dt Let u t, du t dt and v sin t, dv cos t dt Let u t, du dt and v cos t, dv sin t dt t cos t dt u v v du t sin t t sin t dt [ t sin t u v ] v du [ ] t sin t

More information

Section 5.6. Integration By Parts. MATH 126 (Section 5.6) Integration By Parts The University of Kansas 1 / 10

Section 5.6. Integration By Parts. MATH 126 (Section 5.6) Integration By Parts The University of Kansas 1 / 10 Section 5.6 Integration By Parts MATH 126 (Section 5.6) Integration By Parts The University of Kansas 1 / 10 Integration By Parts Manipulating the Product Rule d dx (f (x) g(x)) = f (x) g (x) + f (x) g(x)

More information

Integration by Parts

Integration by Parts Calculus 2 Lia Vas Integration by Parts Using integration by parts one transforms an integral of a product of two functions into a simpler integral. Divide the initial function into two parts called u

More information

Grade: The remainder of this page has been left blank for your workings. VERSION E. Midterm E: Page 1 of 12

Grade: The remainder of this page has been left blank for your workings. VERSION E. Midterm E: Page 1 of 12 First Name: Student-No: Last Name: Section: Grade: The remainder of this page has been left blank for your workings. Midterm E: Page of Indefinite Integrals. 9 marks Each part is worth 3 marks. Please

More information

Math 106 Fall 2014 Exam 2.1 October 31, ln(x) x 3 dx = 1. 2 x 2 ln(x) + = 1 2 x 2 ln(x) + 1. = 1 2 x 2 ln(x) 1 4 x 2 + C

Math 106 Fall 2014 Exam 2.1 October 31, ln(x) x 3 dx = 1. 2 x 2 ln(x) + = 1 2 x 2 ln(x) + 1. = 1 2 x 2 ln(x) 1 4 x 2 + C Math 6 Fall 4 Exam. October 3, 4. The following questions have to do with the integral (a) Evaluate dx. Use integration by parts (x 3 dx = ) ( dx = ) x3 x dx = x x () dx = x + x x dx = x + x 3 dx dx =

More information

b n x n + b n 1 x n b 1 x + b 0

b n x n + b n 1 x n b 1 x + b 0 Math Partial Fractions Stewart 7.4 Integrating basic rational functions. For a function f(x), we have examined several algebraic methods for finding its indefinite integral (antiderivative) F (x) = f(x)

More information

2.1 The derivative. Rates of change. m sec = y f (a + h) f (a)

2.1 The derivative. Rates of change. m sec = y f (a + h) f (a) 2.1 The derivative Rates of change 1 The slope of a secant line is m sec = y f (b) f (a) = x b a and represents the average rate of change over [a, b]. Letting b = a + h, we can express the slope of the

More information

M152: Calculus II Midterm Exam Review

M152: Calculus II Midterm Exam Review M52: Calculus II Midterm Exam Review Chapter 4. 4.2 : Mean Value Theorem. - Know the statement and idea of Mean Value Theorem. - Know how to find values of c making the theorem true. - Realize the importance

More information

MAT137 Calculus! Lecture 6

MAT137 Calculus! Lecture 6 MAT137 Calculus! Lecture 6 Today: 3.2 Differentiation Rules; 3.3 Derivatives of higher order. 3.4 Related rates 3.5 Chain Rule 3.6 Derivative of Trig. Functions Next: 3.7 Implicit Differentiation 4.10

More information

Math 3B: Lecture 11. Noah White. October 25, 2017

Math 3B: Lecture 11. Noah White. October 25, 2017 Math 3B: Lecture 11 Noah White October 25, 2017 Introduction Midterm 1 Introduction Midterm 1 Average is 73%. This is higher than I expected which is good. Introduction Midterm 1 Average is 73%. This is

More information

Math 152 Take Home Test 1

Math 152 Take Home Test 1 Math 5 Take Home Test Due Monday 5 th October (5 points) The following test will be done at home in order to ensure that it is a fair and representative reflection of your own ability in mathematics I

More information

Inverse Trig Functions

Inverse Trig Functions 6.6i Inverse Trigonometric Functions Inverse Sine Function Does g(x) = sin(x) have an inverse? What restriction would we need to make so that at least a piece of this function has an inverse? Given f (x)

More information

Calculus II Practice Test Problems for Chapter 7 Page 1 of 6

Calculus II Practice Test Problems for Chapter 7 Page 1 of 6 Calculus II Practice Test Problems for Chapter 7 Page of 6 This is a set of practice test problems for Chapter 7. This is in no way an inclusive set of problems there can be other types of problems on

More information

Lecture 31 INTEGRATION

Lecture 31 INTEGRATION Lecture 3 INTEGRATION Substitution. Example. x (let u = x 3 +5 x3 +5 du =3x = 3x 3 x 3 +5 = du 3 u du =3x ) = 3 u du = 3 u = 3 u = 3 x3 +5+C. Example. du (let u =3x +5 3x+5 = 3 3 3x+5 =3 du =3.) = 3 du

More information

Core 3 (A2) Practice Examination Questions

Core 3 (A2) Practice Examination Questions Core 3 (A) Practice Examination Questions Trigonometry Mr A Slack Trigonometric Identities and Equations I know what secant; cosecant and cotangent graphs look like and can identify appropriate restricted

More information

Calculus I: Practice Midterm II

Calculus I: Practice Midterm II Calculus I: Practice Mierm II April 3, 2015 Name: Write your solutions in the space provided. Continue on the back for more space. Show your work unless asked otherwise. Partial credit will be given for

More information

CHAIN RULE: DAY 2 WITH TRIG FUNCTIONS. Section 2.4A Calculus AP/Dual, Revised /30/2018 1:44 AM 2.4A: Chain Rule Day 2 1

CHAIN RULE: DAY 2 WITH TRIG FUNCTIONS. Section 2.4A Calculus AP/Dual, Revised /30/2018 1:44 AM 2.4A: Chain Rule Day 2 1 CHAIN RULE: DAY WITH TRIG FUNCTIONS Section.4A Calculus AP/Dual, Revised 018 viet.dang@humbleisd.net 7/30/018 1:44 AM.4A: Chain Rule Day 1 THE CHAIN RULE A. d dx f g x = f g x g x B. If f(x) is a differentiable

More information

There are some trigonometric identities given on the last page.

There are some trigonometric identities given on the last page. MA 114 Calculus II Fall 2015 Exam 4 December 15, 2015 Name: Section: Last 4 digits of student ID #: No books or notes may be used. Turn off all your electronic devices and do not wear ear-plugs during

More information

Mathematics 104 Fall Term 2006 Solutions to Final Exam. sin(ln t) dt = e x sin(x) dx.

Mathematics 104 Fall Term 2006 Solutions to Final Exam. sin(ln t) dt = e x sin(x) dx. Mathematics 14 Fall Term 26 Solutions to Final Exam 1. Evaluate sin(ln t) dt. Solution. We first make the substitution t = e x, for which dt = e x. This gives sin(ln t) dt = e x sin(x). To evaluate the

More information

Section 3.3 Product and Quotient rules 1 Lecture. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I

Section 3.3 Product and Quotient rules 1 Lecture. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I Section 3.3 Product and Quotient rules 1 Lecture College of Science MATHS 101: Calculus I (University of Bahrain) Differentiation Rules 1 / 12 Motivation Goal: We want to derive rules to find the derivative

More information

Chapter 6. Techniques of Integration. 6.1 Differential notation

Chapter 6. Techniques of Integration. 6.1 Differential notation Chapter 6 Techniques of Integration In this chapter, we expand our repertoire for antiderivatives beyond the elementary functions discussed so far. A review of the table of elementary antiderivatives (found

More information

Math 226 Calculus Spring 2016 Exam 2V1

Math 226 Calculus Spring 2016 Exam 2V1 Math 6 Calculus Spring 6 Exam V () (35 Points) Evaluate the following integrals. (a) (7 Points) tan 5 (x) sec 3 (x) dx (b) (8 Points) cos 4 (x) dx Math 6 Calculus Spring 6 Exam V () (Continued) Evaluate

More information

MAT137 - Term 2, Week 5

MAT137 - Term 2, Week 5 MAT137 - Term 2, Week 5 Test 3 is tomorrow, February 3, at 4pm. See the course website for details. Today we will: Talk more about integration by parts. Talk about integrating certain combinations of trig

More information

Section 3.5: Implicit Differentiation

Section 3.5: Implicit Differentiation Section 3.5: Implicit Differentiation In the previous sections, we considered the problem of finding the slopes of the tangent line to a given function y = f(x). The idea of a tangent line however is not

More information

Lecture 4: Integrals and applications

Lecture 4: Integrals and applications Lecture 4: Integrals and applications Lejla Batina Institute for Computing and Information Sciences Digital Security Version: autumn 2013 Lejla Batina Version: autumn 2013 Calculus en Kansrekenen 1 / 18

More information

1 Arithmetic calculations (calculator is not allowed)

1 Arithmetic calculations (calculator is not allowed) 1 ARITHMETIC CALCULATIONS (CALCULATOR IS NOT ALLOWED) 1 Arithmetic calculations (calculator is not allowed) 1.1 Check the result Problem 1.1. Problem 1.2. Problem 1.3. Problem 1.4. 78 5 6 + 24 3 4 99 1

More information

Chapter 6. Techniques of Integration. 6.1 Differential notation

Chapter 6. Techniques of Integration. 6.1 Differential notation Chapter 6 Techniques of Integration In this chapter, we expand our repertoire for antiderivatives beyond the elementary functions discussed so far. A review of the table of elementary antiderivatives (found

More information

Lecture 5: Integrals and Applications

Lecture 5: Integrals and Applications Lecture 5: Integrals and Applications Lejla Batina Institute for Computing and Information Sciences Digital Security Version: spring 2012 Lejla Batina Version: spring 2012 Wiskunde 1 1 / 21 Outline The

More information

Final Exam SOLUTIONS MAT 131 Fall 2011

Final Exam SOLUTIONS MAT 131 Fall 2011 1. Compute the following its. (a) Final Exam SOLUTIONS MAT 131 Fall 11 x + 1 x 1 x 1 The numerator is always positive, whereas the denominator is negative for numbers slightly smaller than 1. Also, as

More information

Calculus I Exam 1 Review Fall 2016

Calculus I Exam 1 Review Fall 2016 Problem 1: Decide whether the following statements are true or false: (a) If f, g are differentiable, then d d x (f g) = f g. (b) If a function is continuous, then it is differentiable. (c) If a function

More information

Chapter 8 Integration Techniques and Improper Integrals

Chapter 8 Integration Techniques and Improper Integrals Chapter 8 Integration Techniques and Improper Integrals 8.1 Basic Integration Rules 8.2 Integration by Parts 8.4 Trigonometric Substitutions 8.5 Partial Fractions 8.6 Numerical Integration 8.7 Integration

More information

( ) a (graphical) transformation of y = f ( x )? x 0,2π. f ( 1 b) = a if and only if f ( a ) = b. f 1 1 f

( ) a (graphical) transformation of y = f ( x )? x 0,2π. f ( 1 b) = a if and only if f ( a ) = b. f 1 1 f Warm-Up: Solve sinx = 2 for x 0,2π 5 (a) graphically (approximate to three decimal places) y (b) algebraically BY HAND EXACTLY (do NOT approximate except to verify your solutions) x x 0,2π, xscl = π 6,y,,

More information

1.4 Techniques of Integration

1.4 Techniques of Integration .4 Techniques of Integration Recall the following strategy for evaluating definite integrals, which arose from the Fundamental Theorem of Calculus (see Section.3). To calculate b a f(x) dx. Find a function

More information

Section 3.6 The chain rule 1 Lecture. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I

Section 3.6 The chain rule 1 Lecture. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I Section 3.6 The chain rule 1 Lecture College of Science MATHS 101: Calculus I (University of Bahrain) Logarithmic Differentiation 1 / 23 Motivation Goal: We want to derive rules to find the derivative

More information

Solutions to Exam 1, Math Solution. Because f(x) is one-to-one, we know the inverse function exists. Recall that (f 1 ) (a) =

Solutions to Exam 1, Math Solution. Because f(x) is one-to-one, we know the inverse function exists. Recall that (f 1 ) (a) = Solutions to Exam, Math 56 The function f(x) e x + x 3 + x is one-to-one (there is no need to check this) What is (f ) ( + e )? Solution Because f(x) is one-to-one, we know the inverse function exists

More information

A = (a + 1) 2 = a 2 + 2a + 1

A = (a + 1) 2 = a 2 + 2a + 1 A = (a + 1) 2 = a 2 + 2a + 1 1 A = ( (a + b) + 1 ) 2 = (a + b) 2 + 2(a + b) + 1 = a 2 + 2ab + b 2 + 2a + 2b + 1 A = ( (a + b) + 1 ) 2 = (a + b) 2 + 2(a + b) + 1 = a 2 + 2ab + b 2 + 2a + 2b + 1 3 A = (

More information

Section 3.6 The chain rule 1 Lecture. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I

Section 3.6 The chain rule 1 Lecture. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I Section 3.6 The chain rule 1 Lecture College of Science MATHS 101: Calculus I (University of Bahrain) Logarithmic Differentiation 1 / 1 Motivation Goal: We want to derive rules to find the derivative of

More information

1 Solution to Homework 4

1 Solution to Homework 4 Solution to Homework Section. 5. The characteristic equation is r r + = (r )(r ) = 0 r = or r =. y(t) = c e t + c e t y = c e t + c e t. y(0) =, y (0) = c + c =, c + c = c =, c =. To find the maximum value

More information

MathsGeeks. Everything You Need to Know A Level Edexcel C4. March 2014 MathsGeeks Copyright 2014 Elite Learning Limited

MathsGeeks. Everything You Need to Know A Level Edexcel C4. March 2014 MathsGeeks Copyright 2014 Elite Learning Limited Everything You Need to Know A Level Edexcel C4 March 4 Copyright 4 Elite Learning Limited Page of 4 Further Binomial Expansion: Make sure it starts with a e.g. for ( x) ( x ) then use ( + x) n + nx + n(n

More information

Math 113 (Calculus 2) Exam 4

Math 113 (Calculus 2) Exam 4 Math 3 (Calculus ) Exam 4 November 0 November, 009 Sections 0, 3 7 Name Student ID Section Instructor In some cases a series may be seen to converge or diverge for more than one reason. For such problems

More information

AP CALCULUS SUMMER WORKSHEET

AP CALCULUS SUMMER WORKSHEET AP CALCULUS SUMMER WORKSHEET DUE: First Day of School Aug. 19, 2010 Complete this assignment at your leisure during the summer. It is designed to help you become more comfortable with your graphing calculator,

More information

1. The graph of a function f is given above. Answer the question: a. Find the value(s) of x where f is not differentiable. Ans: x = 4, x = 3, x = 2,

1. The graph of a function f is given above. Answer the question: a. Find the value(s) of x where f is not differentiable. Ans: x = 4, x = 3, x = 2, 1. The graph of a function f is given above. Answer the question: a. Find the value(s) of x where f is not differentiable. x = 4, x = 3, x = 2, x = 1, x = 1, x = 2, x = 3, x = 4, x = 5 b. Find the value(s)

More information

Formulas that must be memorized:

Formulas that must be memorized: Formulas that must be memorized: Position, Velocity, Acceleration Speed is increasing when v(t) and a(t) have the same signs. Speed is decreasing when v(t) and a(t) have different signs. Section I: Limits

More information

2005 Mathematics. Advanced Higher. Finalised Marking Instructions

2005 Mathematics. Advanced Higher. Finalised Marking Instructions 2005 Mathematics Advanced Higher Finalised Marking Instructions These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments.

More information

Integration by Parts. MAT 126, Week 2, Thursday class. Xuntao Hu

Integration by Parts. MAT 126, Week 2, Thursday class. Xuntao Hu MAT 126, Week 2, Thursday class Xuntao Hu Recall that the substitution rule is a combination of the FTC and the chain rule. We can also combine the FTC and the product rule: d dx [f (x)g(x)] = f (x)g (x)

More information

Next, we ll use all of the tools we ve covered in our study of trigonometry to solve some equations.

Next, we ll use all of the tools we ve covered in our study of trigonometry to solve some equations. Section 6.3 - Solving Trigonometric Equations Next, we ll use all of the tools we ve covered in our study of trigonometry to solve some equations. These are equations from algebra: Linear Equation: Solve:

More information

5.8 Indeterminate forms and L Hôpital s rule

5.8 Indeterminate forms and L Hôpital s rule 5.8 Indeterminate forms and L Hôpital s rule Mark Woodard Furman U Fall 2009 Mark Woodard (Furman U) 5.8 Indeterminate forms and L Hôpital s rule Fall 2009 1 / 11 Outline 1 The forms 0/0 and / 2 Examples

More information

Substitutions and by Parts, Area Between Curves. Goals: The Method of Substitution Areas Integration by Parts

Substitutions and by Parts, Area Between Curves. Goals: The Method of Substitution Areas Integration by Parts Week #7: Substitutions and by Parts, Area Between Curves Goals: The Method of Substitution Areas Integration by Parts 1 Week 7 The Indefinite Integral The Fundamental Theorem of Calculus, b a f(x) dx =

More information

Math 106: Review for Exam II - SOLUTIONS

Math 106: Review for Exam II - SOLUTIONS Math 6: Review for Exam II - SOLUTIONS INTEGRATION TIPS Substitution: usually let u a function that s inside another function, especially if du (possibly off by a multiplying constant) is also present

More information

122. Period: x 4 2 x 7

122. Period: x 4 2 x 7 646 Chapter 7 Analytic Trigonometry. f x x Amplitude: Period: Key points: 0, 0,,,, 0,,,, 0 y x. f x tan x Amplitude: Period: Two consecutive vertical asymptotes: x, x Key points:,, 0, 0,, y x. f x sec

More information

f(g(x)) g (x) dx = f(u) du.

f(g(x)) g (x) dx = f(u) du. 1. Techniques of Integration Section 8-IT 1.1. Basic integration formulas. Integration is more difficult than derivation. The derivative of every rational function or trigonometric function is another

More information

Mathematics Revision Questions for the University of Bristol School of Physics

Mathematics Revision Questions for the University of Bristol School of Physics Mathematics Revision Questions for the University of Bristol School of Physics You will not be surprised to find you have to use a lot of maths in your stu of physics at university! You need to be completely

More information

AP Calculus Testbank (Chapter 6) (Mr. Surowski)

AP Calculus Testbank (Chapter 6) (Mr. Surowski) AP Calculus Testbank (Chapter 6) (Mr. Surowski) Part I. Multiple-Choice Questions 1. Suppose that f is an odd differentiable function. Then (A) f(1); (B) f (1) (C) f(1) f( 1) (D) 0 (E). 1 1 xf (x) =. The

More information

Course Notes for Calculus , Spring 2015

Course Notes for Calculus , Spring 2015 Course Notes for Calculus 110.109, Spring 2015 Nishanth Gudapati In the previous course (Calculus 110.108) we introduced the notion of integration and a few basic techniques of integration like substitution

More information

4. Theory of the Integral

4. Theory of the Integral 4. Theory of the Integral 4.1 Antidifferentiation 4.2 The Definite Integral 4.3 Riemann Sums 4.4 The Fundamental Theorem of Calculus 4.5 Fundamental Integration Rules 4.6 U-Substitutions 4.1 Antidifferentiation

More information

CHALLENGE! (0) = 5. Construct a polynomial with the following behavior at x = 0:

CHALLENGE! (0) = 5. Construct a polynomial with the following behavior at x = 0: TAYLOR SERIES Construct a polynomial with the following behavior at x = 0: CHALLENGE! P( x) = a + ax+ ax + ax + ax 2 3 4 0 1 2 3 4 P(0) = 1 P (0) = 2 P (0) = 3 P (0) = 4 P (4) (0) = 5 Sounds hard right?

More information

NOTICE TO CUSTOMER: The sale of this product is intended for use of the original purchaser only and for use only on a single computer system.

NOTICE TO CUSTOMER: The sale of this product is intended for use of the original purchaser only and for use only on a single computer system. NOTICE TO CUSTOMER: The sale of this product is intended for use of the original purchaser only and for use only on a single computer system. Duplicating, selling, or otherwise distributing this product

More information

AP CALCULUS SUMMER WORKSHEET

AP CALCULUS SUMMER WORKSHEET AP CALCULUS SUMMER WORKSHEET DUE: First Day of School, 2011 Complete this assignment at your leisure during the summer. I strongly recommend you complete a little each week. It is designed to help you

More information

Calculus I Announcements

Calculus I Announcements Slie 1 Calculus I Announcements Office Hours: Amos Eaton 309, Monays 12:50-2:50 Exam 2 is Thursay, October 22n. The stuy guie is now on the course web page. Start stuying now, an make a plan to succee.

More information

Math 141: Lecture 11

Math 141: Lecture 11 Math 141: Lecture 11 The Fundamental Theorem of Calculus and integration methods Bob Hough October 12, 2016 Bob Hough Math 141: Lecture 11 October 12, 2016 1 / 36 First Fundamental Theorem of Calculus

More information

The Free Intuitive Calculus Course Integrals

The Free Intuitive Calculus Course Integrals Intuitive-Calculus.com Presents The Free Intuitive Calculus Course Integrals Day 19: Trigonometric Integrals By Pablo Antuna 013 All Rights Reserved. The Intuitive Calculus Course - By Pablo Antuna Contents

More information

Calculus I Sample Exam #01

Calculus I Sample Exam #01 Calculus I Sample Exam #01 1. Sketch the graph of the function and define the domain and range. 1 a) f( x) 3 b) g( x) x 1 x c) hx ( ) x x 1 5x6 d) jx ( ) x x x 3 6 . Evaluate the following. a) 5 sin 6

More information

17.2 Nonhomogeneous Linear Equations. 27 September 2007

17.2 Nonhomogeneous Linear Equations. 27 September 2007 17.2 Nonhomogeneous Linear Equations 27 September 2007 Nonhomogeneous Linear Equations The differential equation to be studied is of the form ay (x) + by (x) + cy(x) = G(x) (1) where a 0, b, c are given

More information

Functions. Remark 1.2 The objective of our course Calculus is to study functions.

Functions. Remark 1.2 The objective of our course Calculus is to study functions. Functions 1.1 Functions and their Graphs Definition 1.1 A function f is a rule assigning a number to each of the numbers. The number assigned to the number x via the rule f is usually denoted by f(x).

More information

MTH Calculus with Analytic Geom I TEST 1

MTH Calculus with Analytic Geom I TEST 1 MTH 229-105 Calculus with Analytic Geom I TEST 1 Name Please write your solutions in a clear and precise manner. SHOW your work entirely. (1) Find the equation of a straight line perpendicular to the line

More information

Math 181, Exam 2, Study Guide 2 Problem 1 Solution. 1 + dx. 1 + (cos x)2 dx. 1 + cos2 xdx. = π ( 1 + cos π 2

Math 181, Exam 2, Study Guide 2 Problem 1 Solution. 1 + dx. 1 + (cos x)2 dx. 1 + cos2 xdx. = π ( 1 + cos π 2 Math 8, Exam, Study Guide Problem Solution. Use the trapezoid rule with n to estimate the arc-length of the curve y sin x between x and x π. Solution: The arclength is: L b a π π + ( ) dy + (cos x) + cos

More information

Core Mathematics 3 Differentiation

Core Mathematics 3 Differentiation http://kumarmaths.weebly.com/ Core Mathematics Differentiation C differentiation Page Differentiation C Specifications. By the end of this unit you should be able to : Use chain rule to find the derivative

More information

FINAL EXAM CALCULUS 2. Name PRACTICE EXAM SOLUTIONS

FINAL EXAM CALCULUS 2. Name PRACTICE EXAM SOLUTIONS FINAL EXAM CALCULUS MATH 00 FALL 08 Name PRACTICE EXAM SOLUTIONS Please answer all of the questions, and show your work. You must explain your answers to get credit. You will be graded on the clarity of

More information

The goal of today is to determine what u-substitution to use for trigonometric integrals. The most common substitutions are the following:

The goal of today is to determine what u-substitution to use for trigonometric integrals. The most common substitutions are the following: Trigonometric Integrals The goal of today is to determine what u-substitution to use for trigonometric integrals. The most common substitutions are the following: Substitution u sinx u cosx u tanx u secx

More information

Calculus I Announcements

Calculus I Announcements Slide 1 Calculus I Announcements Read sections 4.2,4.3,4.4,4.1 and 5.3 Do the homework from sections 4.2,4.3,4.4,4.1 and 5.3 Exam 3 is Thursday, November 12th See inside for a possible exam question. Slide

More information

Study 5.5, # 1 5, 9, 13 27, 35, 39, 49 59, 63, 69, 71, 81. Class Notes: Prof. G. Battaly, Westchester Community College, NY Homework.

Study 5.5, # 1 5, 9, 13 27, 35, 39, 49 59, 63, 69, 71, 81. Class Notes: Prof. G. Battaly, Westchester Community College, NY Homework. Goals: 1. Recognize an integrand that is the derivative of a composite function. 2. Generalize the Basic Integration Rules to include composite functions. 3. Use substitution to simplify the process of

More information

DRAFT - Math 102 Lecture Note - Dr. Said Algarni

DRAFT - Math 102 Lecture Note - Dr. Said Algarni Math02 - Term72 - Guides and Exercises - DRAFT 7 Techniques of Integration A summery for the most important integrals that we have learned so far: 7. Integration by Parts The Product Rule states that if

More information

Chapter 3. Integration. 3.1 Indefinite Integration

Chapter 3. Integration. 3.1 Indefinite Integration Chapter 3 Integration 3. Indefinite Integration Integration is the reverse of differentiation. Consider a function f(x) and suppose that there exists another function F (x) such that df f(x). (3.) For

More information

2.12: Derivatives of Exp/Log (cont d) and 2.15: Antiderivatives and Initial Value Problems

2.12: Derivatives of Exp/Log (cont d) and 2.15: Antiderivatives and Initial Value Problems 2.12: Derivatives of Exp/Log (cont d) and 2.15: Antiderivatives and Initial Value Problems Mathematics 3 Lecture 14 Dartmouth College February 03, 2010 Derivatives of the Exponential and Logarithmic Functions

More information

Lecture 25: The Sine and Cosine Functions. tan(x) 1+y

Lecture 25: The Sine and Cosine Functions. tan(x) 1+y Lecture 5: The Sine Cosine Functions 5. Denitions We begin b dening functions s : c : ; i! R ; i! R b Note that 8 >< q tan(x) ; if x s(x) + tan (x) ; >: ; if x 8 >< q ; if x c(x) + tan (x) ; >: 0; if x.

More information

Review for Ma 221 Final Exam

Review for Ma 221 Final Exam Review for Ma 22 Final Exam The Ma 22 Final Exam from December 995.a) Solve the initial value problem 2xcosy 3x2 y dx x 3 x 2 sin y y dy 0 y 0 2 The equation is first order, for which we have techniques

More information

Calculating the Derivative Using Derivative Rules Implicit Functions Higher-Order Derivatives

Calculating the Derivative Using Derivative Rules Implicit Functions Higher-Order Derivatives Topic 4 Outline 1 Derivative Rules Calculating the Derivative Using Derivative Rules Implicit Functions Higher-Order Derivatives D. Kalajdzievska (University of Manitoba) Math 1500 Fall 2015 1 / 32 Topic

More information

3. Use absolute value notation to write an inequality that represents the statement: x is within 3 units of 2 on the real line.

3. Use absolute value notation to write an inequality that represents the statement: x is within 3 units of 2 on the real line. PreCalculus Review Review Questions 1 The following transformations are applied in the given order) to the graph of y = x I Vertical Stretch by a factor of II Horizontal shift to the right by units III

More information

McGill University Math 325A: Differential Equations LECTURE 12: SOLUTIONS FOR EQUATIONS WITH CONSTANTS COEFFICIENTS (II)

McGill University Math 325A: Differential Equations LECTURE 12: SOLUTIONS FOR EQUATIONS WITH CONSTANTS COEFFICIENTS (II) McGill University Math 325A: Differential Equations LECTURE 12: SOLUTIONS FOR EQUATIONS WITH CONSTANTS COEFFICIENTS (II) HIGHER ORDER DIFFERENTIAL EQUATIONS (IV) 1 Introduction (Text: pp. 338-367, Chap.

More information

C3 papers June 2007 to 2008

C3 papers June 2007 to 2008 physicsandmathstutor.com June 007 C3 papers June 007 to 008 1. Find the exact solutions to the equations (a) ln x + ln 3 = ln 6, (b) e x + 3e x = 4. *N6109A04* physicsandmathstutor.com June 007 x + 3 9+

More information

Edexcel GCE Core Mathematics C3 Advanced

Edexcel GCE Core Mathematics C3 Advanced Centre No. Candidate No. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced Monday 24 January 2011 Morning Time: 1 hour 30 minutes Materials required for examination Mathematical Formulae

More information

Mathematics 1 Lecture Notes Chapter 1 Algebra Review

Mathematics 1 Lecture Notes Chapter 1 Algebra Review Mathematics 1 Lecture Notes Chapter 1 Algebra Review c Trinity College 1 A note to the students from the lecturer: This course will be moving rather quickly, and it will be in your own best interests to

More information

y = x 3 and y = 2x 2 x. 2x 2 x = x 3 x 3 2x 2 + x = 0 x(x 2 2x + 1) = 0 x(x 1) 2 = 0 x = 0 and x = (x 3 (2x 2 x)) dx

y = x 3 and y = 2x 2 x. 2x 2 x = x 3 x 3 2x 2 + x = 0 x(x 2 2x + 1) = 0 x(x 1) 2 = 0 x = 0 and x = (x 3 (2x 2 x)) dx Millersville University Name Answer Key Mathematics Department MATH 2, Calculus II, Final Examination May 4, 2, 8:AM-:AM Please answer the following questions. Your answers will be evaluated on their correctness,

More information

Solutions to Exam 2, Math 10560

Solutions to Exam 2, Math 10560 Solutions to Exam, Math 6. Which of the following expressions gives the partial fraction decomposition of the function x + x + f(x = (x (x (x +? Solution: Notice that (x is not an irreducile factor. If

More information

a x a y = a x+y a x a = y ax y (a x ) r = a rx and log a (xy) = log a (x) + log a (y) log a ( x y ) = log a(x) log a (y) log a (x r ) = r log a (x).

a x a y = a x+y a x a = y ax y (a x ) r = a rx and log a (xy) = log a (x) + log a (y) log a ( x y ) = log a(x) log a (y) log a (x r ) = r log a (x). You should prepare the following topics for our final exam. () Pre-calculus. (2) Inverses. (3) Algebra of Limits. (4) Derivative Formulas and Rules. (5) Graphing Techniques. (6) Optimization (Maxima and

More information

Integration by Substitution

Integration by Substitution Integration by Substitution Dr. Philippe B. Laval Kennesaw State University Abstract This handout contains material on a very important integration method called integration by substitution. Substitution

More information

Chapter 2: Differentiation

Chapter 2: Differentiation Chapter 2: Differentiation Winter 2016 Department of Mathematics Hong Kong Baptist University 1 / 75 2.1 Tangent Lines and Their Slopes This section deals with the problem of finding a straight line L

More information

Integration by parts (product rule backwards)

Integration by parts (product rule backwards) Integration by parts (product rule backwards) The product rule states Integrating both sides gives f(x)g(x) = d dx f(x)g(x) = f(x)g (x) + f (x)g(x). f(x)g (x)dx + Letting f(x) = u, g(x) = v, and rearranging,

More information

Math 180, Final Exam, Fall 2012 Problem 1 Solution

Math 180, Final Exam, Fall 2012 Problem 1 Solution Math 80, Final Exam, Fall 0 Problem Solution. Find the derivatives of the following functions: (a) ln(ln(x)) (b) x 6 + sin(x) e x (c) tan(x ) + cot(x ) (a) We evaluate the derivative using the Chain Rule.

More information

JUST THE MATHS UNIT NUMBER ORDINARY DIFFERENTIAL EQUATIONS 1 (First order equations (A)) A.J.Hobson

JUST THE MATHS UNIT NUMBER ORDINARY DIFFERENTIAL EQUATIONS 1 (First order equations (A)) A.J.Hobson JUST THE MATHS UNIT NUMBER 5. ORDINARY DIFFERENTIAL EQUATIONS (First order equations (A)) by A.J.Hobson 5.. Introduction and definitions 5..2 Exact equations 5..3 The method of separation of the variables

More information

x n cos 2x dx. dx = nx n 1 and v = 1 2 sin(2x). Andreas Fring (City University London) AS1051 Lecture Autumn / 36

x n cos 2x dx. dx = nx n 1 and v = 1 2 sin(2x). Andreas Fring (City University London) AS1051 Lecture Autumn / 36 We saw in Example 5.4. that we sometimes need to apply integration by parts several times in the course of a single calculation. Example 5.4.4: For n let S n = x n cos x dx. Find an expression for S n

More information