Lecture 31 INTEGRATION

Size: px
Start display at page:

Download "Lecture 31 INTEGRATION"

Transcription

1 Lecture 3 INTEGRATION Substitution. Example. x (let u = x 3 +5 x3 +5 du =3x = 3x 3 x 3 +5 = du 3 u du =3x ) = 3 u du = 3 u = 3 u = 3 x3 +5+C. Example. du (let u =3x +5 3x+5 = 3 3 3x+5 =3 du =3.) = 3 du u = 3 ln u = 3 ln(3x +5)+C. Example 3. x +x (let u =+x du = +x x udu = = u du = u 3 =x du =x) = u 3 3 = (+x ) +x 3.

2 Integration : Substitution (cont d). Example. Example. cos x (+sin x) = du u = u du = u = u = +sin x. Lecture 3 (let u = + sin x du = cos x du = cos x) x log e x (let u = log e x du = x du = x ) = log e x x = u du = log e u = log e (log e x)+c.

3 Lecture 33 Partial Fractions. Example. Express x (x )(x 3) = A x + B x 3 x (x )(x 3) in the form A x + B x 3. = A(x 3)+B(x ) (x )(x 3) x =A(x 3) + B(x ) Substitute x =3. B = 5. Substitute x = A =3 A = 3. Alternatively,(A + B)x (3A +B) = x A + B = & 3A +B = 3( B)+B = B =5 A = 5= 3. x (x )(x 3) = 3 x + 5 x 3. Note: The degree of numerators is less than the degree of the demominators for breaking up of partial fractions. Example. Decompose x+3 (x +)(x ) x+3 (x +)(x ) = Ax+B x + x = (Ax+B)(x )+C(x +) (x +)(x ) into partial fractions. (since the degree of the numerators are at most, one less than the degree of the denominators.) x +3=(Ax + B)(x ) (x +) 7=6C C = 7 6 When x =0, 3= B +C 3= B B = 3. When x =, 5= (A + B)+c(3) = (A 3 )+ 7 6 (3) A = 7 6 x+3 (x +)(x ) = 7 6 x 3 x x = 7 6x 7x+ 6x +. Example 3. Decompose (x )(x+). (x )(x+) = A x + B x+ (x+) =A(x +) + B(x )(x +)+C(x ) When x =, 9A = A =9. When x =, 3C = C = 3. When x =0, =A B C, B = A C = + 3 B = 9. (x )(x+) = 9 x + 9 x+ + 3 (x+) = 9x 8 9x+9 3(x+).

4 Integration with partial fractions. Example. Find (x )(x ) = A x + (x )(x ). B x A =. Hence (x )(x ) = x + x. (x )(x ) = ( x + x ) Lecture 34 =A(x ) + B(x ). If x =,B =. Ifx =, A = = ln x +ln x =ln x x

5 Lecture 35 Example. Find 3x +5x+7 (x )(x ). First, (x )(x ) = x 3x +, which has the same degree as the numerator. So divide: 3 x 3x + ) 3x +5x +7 3x 9x +6 4x + Now use partial fractions: 4x+ (x )(x ) = A =5 A = 5 & B =9. A x + B x = A(x )+B(x ) (x )(x ) 4x +=A(x ) + B(x ) So, ( ) 3x +5x+7 (x )(x ) = (x )(x ) = ( 3 5 x + 9 x ) =3x 5 ln x +9ln x =3x +ln (x )9 (x ) 5

6 Lecture 36 Integration by Parts. d d (uv) =u v + v d u u dv = d du (uv) v. u dv = uv v du i.e., udv= uv vdu. Example. Find xe x. Let u = x du =,v = ex xe x = xe x e x = xe x e x = e x (x ) Example. Find x cos x. x cos x= x d sin x = x sin x sin x d x = x sin x sin x = x sin x + cos x

7 Lecture 37 Integration by Parts (cont d) Example. Find log e x. Let u =lnx, v = x log e x= log e x = x ln x = x ln x x Example. Find sin x. Let u = sin x, v = x. sin x= sin x = x sin x x let w = x x = dw x = x sin x ( w x dw ) x = x sin x + w dw = x sin x + w = x sin x +( x )

8 Lecture 38 Trigonometric Integrals. Powers of sin x Example. sin x= cos x Example. sin x= ( cos x) = (x sin x)+c Example 3. sin 3 x= sin x sin x = ( cos x) sin x(let u = cos x du = sin x) = ( u ) du = (u 3 u3 )+C = 3 cos3 x cos x Example 4. sin 4 x= (sin x) = ( ( cos x)) = 4 ( cos x + cos x) = 4 ( cos x + ( + cos 4x)) = 4 x sin x + (x + 4 sin 4x)) = 3 8 x 4 sin x + 3 sin 4x Example 5. sin 5 x= sin 4 x sin x = ( cos x) sin x(let u = cos x du = sin x) = ( u ) du = ( u + u 4 ) du = (u + 3 u3 + u5 5 )+C = 3 cos3 x cos5 x 5 cos x For sin n x, for odd powers, use the substitution method u = cos x. For even powers, use the fact that sin x = ( cos x)

9 tan n xfor n = Z + Lecture 39 Example. tan x= sin x cos x = ln cos x =ln cos x = ln sec x Example. tan x= (sec x ) = tan x x Example 3. tan 3 x= tan x(sec x ) = tan x sec x tan x = tan xd(tan x) tan x = tan x + ln cos x Example 4. tan 4 x= tan x(sec x ) = tan x sec x tan x = tan xd(tan x) tan x = 3 tan3 x (tan x x)+c = x + 3 tan3 x tan x Example 5. tan 5 x= tan 3 x(sec x ) = tan 3 x sec x tan 3 x = tan 3 xd(tan x) tan 3 x = 4 tan4 x ( tan x + ln cos x)+c = 4 tan4 x tan x ln cos x

10 Lecture 40 Trigonometric integrals Example. sin x cos x(u = cos x, du = sin x) = udu = u = cos x Alternatively, sin x cos x(v = sin x, dv = cos x) = vdv = v + K = sin x + K sin Note: x and cos x differ only by a constant, so although the answers look different, they are really the same, only expressed differently, because C and K are arbitrary constants. Example. sin / x cos x(u = sin x du = cos x) = u / du = u3/ 3 = 3 sin3/ x Example 3. cos 7 x sin 4 x = cos 6 x sin 4 x cos x(split the odd power) = ( sin x) 3 sin 4 cos x(u = sin x du = cos x) = ( u ) 3 u 4 du = ( 3u +3u 4 u 6 )u 4 du = (u 4 3u 6 +3u 8 u 0 )du = u5 5 3u u9 9 u = 5 sin5 x 3 7 sin7 x + 3 sin9 x sin x

11 Example 4. cos 7 x (u = sin x u = cos x) sin 4 x = cos 6 x cos x sin 4 x = ( sin x) 3 cos x sin 4 x = ( u ) 3 du u 4 = 3u +3u 4 u 6 u du 4 = (u 4 3u +3 u )du = u u +3u 3 u3 = 3 (sin x) 3 + 3(sin x) + 3 sin x 3 sin3 x

12 Lecture 4 Integration using tangents of half angles Let t = tan x. Then sin x = t dt = sec x dt = ( + tan x ) dt = ( + t ) dt = +t = dt +t Example. ( 3+ cos x = 3+ = +t, cos x = t +t, tan x = t t. ) dt +t ( ) t +t ( dt ) +t ( 3(+t )+( t )) +t = dt 3+3t + t = dt 5+t = 5 tan t 5 = 5 tan tan x 5 Example. cos x 3+ cos x = (3+ cos x) 3 3+ cos x = 3 3+ cos x = x 3 5 tan tan x 5 = x 3 5 tan tan x 5

13 Lecture 4 Integrals with quadratic denominators Example. Example. Example 3. Example 4. Example x = 4( 9 4 +x ) = x = 4 ( 3 ) tan x 3 = 6 tan x 3 = 4x 9 x +4x+ = x 9 4 = ln (x + (x+) 3 = du u 3 = 3 = 3 3x +x+ = 3 = 3 = 3 = 3 = 3 x 9 4 u ln 3 x+ ln 3 u+ 3 x++ 3 x + 3 x+ 3 x + 3 x (x+ 3 ) + 9 du u + 9 ( ) 3 tan ) (Let u = x + du = ) 3u Let u = x + 3 = tan 3(x + ) = 3x+ tan +4x x = (x 4x) = 5 (x 4x+4) = 5 (x ) = du 5u = 5 ln 5+u 5 u = 5 ln 5 +x 5+ x du = (Let u = x du = )

14 Example 6. x x +6x+ = (x+6) 6 x +6x+ = x+6 x +6x+ 6 x +6x+ = ln(x +6x +) 3 x +6x+ = ln(x +6x +) 3 x +6x+9 8 = ln(x +6x +) 3 (x+3) 8 = ln(x +6x +) 3 du u 8 ( = ln(x +6x +) 3 ln 8 = ln(x +6x +) 3 8 u 8 u+ 8 x+3 ln 8 Let u = x +3 du = ) x+3+ 8

15 Lecture 43 Substitutions using trigonometry. - for a x, a + x, and x a, use substitutions x = a sin θ, x = a tan θ and x = a sec θ respectively. Example. x 9 x (Let x = 3 sin θ = 3 cos θdθ) = 9 sin θ3 cos θ dθ 9 9 sin θ = 7 sin θ cos θ dθ 3 cos θ =9 sin θdθ = 9 ( cos θ) dθ = 9 [θ sin θ]+c where x = 3 sin θ, sin θ = x 3 θ = sin x 3 = 9 (θ sin θ cos θ)+c = 9 (θ sin θ cos θ)+c = 9 (sin x 3 x 9 x 3 3 )+C = 9 (sin x 3 x 9 9 x )+C

16 Lecture 44 Reduction Formulae Example. If I n = sin n x(n is an integer). Express I n in terms of I n and hence evaluate π/ 0 sin 5 x(application of Integration by Parts). Solution. I n = sin n x = sin n x sin x(let u = sin n x and v = sin x u =(n ) sin n x. cos x & v = cos x) = cos x sin n x + (n ) sin n cos x cos x = cos x sin n x +(n ) sin n cos x = cos x sin n x +(n ) sin n ( sin x) = cos x sin n x +(n ) sin n x (n ) sin n x = cos x sin n x +(n )I n (n )I n (n )I n + I n = cos x sin n x(n )I n I n (n +)= cos x sin n x +(n )I n I n = n cos x sinn x + n n I n I 5 = π/ 0 sin 5 x =[ 5 cos x sin4 x I 3] π/ 0 =[ 5 cos x sin4 x ( 3 cos x sin x + 3 I )] π/ =[ 5 cos x sin4 x ( 3 cos x sin x + 3 =[ 5 cos x sin4 x 4 5 cos x sin x sin x)] π/ sin x] π/ 0 =[ 5 cos x sin4 x 4 5 cos x sin x 8 5 cos x]π/ 0 = ( 8 5 cos 0) = Example. If I n = (log e x) n show that I n = (log e ) n ni n hence evaluate (log e x) 4.

17 I n = (log e x) n (Let u = (log e x) n & v = = x(log e x) n n u = n x (log e x) n,v = x) x (log e x) n x =[x(log e x) n ] n (log e x) n = (ln ) n ni n I 4 = (log e x) n = (ln ) 4 4I 3 = (ln ) 4 4((ln ) 3 3I ) = (ln ) 4 8(ln ) 3 +I = (ln ) 4 8(ln ) 3 + ((ln ) I ) = (ln ) 4 8(ln ) 3 + 4(ln ) 4I...( ) = (ln ) 4 8(ln ) 3 + 4(ln ) 4 ln x(let u = log x, v = = (ln ) 4 8(ln ) 3 + 4(ln ) 4[[x ln x] ] = (ln ) 4 8(ln ) 3 + 4(ln ) 4[x ln x x] = (ln ) 4 8(ln ) 3 + 4(ln ) 4( ln +) = (ln ) 4 8(ln ) 3 + 4(ln ) 48 ln + 4 ( ) Also I = (ln ) I 0 = (ln ) = (ln ) [x] = ln. u = x,v = x) Example 3. Let I n = sec n x. Show that I n = tan x secn x n + n n I n d Note: sec x = d (cos x) = (cos) ( sin x) = sin x cos x = tan x sec x. I n = sec n x sec x[let u = sec n xv = sec x u =(n )(sec x) n 3 tan x sec x =(n )(sec x) n tan x, v = tan x] = tan x sec n x (n ) tan x(sec x) n = tan x sec n x (n ) (sec) n tan x = tan x sec n x (n ) tan x(sec x) n = tan x sec n x (n ) (sec x ) sec n x = tan x sec n x (n ) sec n x+(n ) sec n x So sec n x+(n ) sec n x=(n ) sec n x = tan x sec n x +(n ) sec n x= tan x sec n x +(n )I n So sec n x= tan x secn x n + n n I n

18 Example 4. Let I n = tan n x. Then: I n = tan n x tan x = tan n x(sec x ) = tan n x sec x tan n x = tan n x sec x I n [Let u = tan x du = sec x] = u n I n = un n I n = tann x n I n

Integration by Parts

Integration by Parts Calculus 2 Lia Vas Integration by Parts Using integration by parts one transforms an integral of a product of two functions into a simpler integral. Divide the initial function into two parts called u

More information

Section: I. u 4 du. (9x + 1) + C, 3

Section: I. u 4 du. (9x + 1) + C, 3 EXAM 3 MAT 168 Calculus II Fall 18 Name: Section: I All answers must include either supporting work or an eplanation of your reasoning. MPORTANT: These elements are considered main part of the answer and

More information

Prelim 2 Math Please show your reasoning and all your work. This is a 90 minute exam. Calculators are not needed or permitted. Good luck!

Prelim 2 Math Please show your reasoning and all your work. This is a 90 minute exam. Calculators are not needed or permitted. Good luck! April 4, Prelim Math Please show your reasoning and all your work. This is a 9 minute exam. Calculators are not needed or permitted. Good luck! Trigonometric Formulas sin x sin x cos x cos (u + v) cos

More information

Methods of Integration

Methods of Integration Methods of Integration Professor D. Olles January 8, 04 Substitution The derivative of a composition of functions can be found using the chain rule form d dx [f (g(x))] f (g(x)) g (x) Rewriting the derivative

More information

Math 21B - Homework Set 8

Math 21B - Homework Set 8 Math B - Homework Set 8 Section 8.:. t cos t dt Let u t, du t dt and v sin t, dv cos t dt Let u t, du dt and v cos t, dv sin t dt t cos t dt u v v du t sin t t sin t dt [ t sin t u v ] v du [ ] t sin t

More information

Calculus II Practice Test Problems for Chapter 7 Page 1 of 6

Calculus II Practice Test Problems for Chapter 7 Page 1 of 6 Calculus II Practice Test Problems for Chapter 7 Page of 6 This is a set of practice test problems for Chapter 7. This is in no way an inclusive set of problems there can be other types of problems on

More information

Solutions to Exam 1, Math Solution. Because f(x) is one-to-one, we know the inverse function exists. Recall that (f 1 ) (a) =

Solutions to Exam 1, Math Solution. Because f(x) is one-to-one, we know the inverse function exists. Recall that (f 1 ) (a) = Solutions to Exam, Math 56 The function f(x) e x + x 3 + x is one-to-one (there is no need to check this) What is (f ) ( + e )? Solution Because f(x) is one-to-one, we know the inverse function exists

More information

HOMEWORK SOLUTIONS MATH 1910 Sections 8.2, 8.3, 8.5 Fall 2016

HOMEWORK SOLUTIONS MATH 1910 Sections 8.2, 8.3, 8.5 Fall 2016 HOMEWORK SOLUTIONS MATH 191 Sections 8., 8., 8.5 Fall 16 Problem 8..19 Evaluate using methods similar to those that apply to integral tan m xsec n x. cot x SOLUTION. Using the reduction formula for cot

More information

Chapter 7: Techniques of Integration

Chapter 7: Techniques of Integration Chapter 7: Techniques of Integration MATH 206-01: Calculus II Department of Mathematics University of Louisville last corrected September 14, 2013 1 / 43 Chapter 7: Techniques of Integration 7.1. Integration

More information

Techniques of Integration

Techniques of Integration Chapter 8 Techniques of Integration 8. Trigonometric Integrals Summary (a) Integrals of the form sin m x cos n x. () sin k+ x cos n x = ( cos x) k cos n x (sin x ), then apply the substitution u = cos

More information

Math 102 Spring 2008: Solutions: HW #3 Instructor: Fei Xu

Math 102 Spring 2008: Solutions: HW #3 Instructor: Fei Xu Math Spring 8: Solutions: HW #3 Instructor: Fei Xu. section 7., #8 Evaluate + 3 d. + We ll solve using partial fractions. If we assume 3 A + B + C, clearing denominators gives us A A + B B + C +. Then

More information

t 2 + 2t dt = (t + 1) dt + 1 = arctan t x + 6 x(x 3)(x + 2) = A x +

t 2 + 2t dt = (t + 1) dt + 1 = arctan t x + 6 x(x 3)(x + 2) = A x + MATH 06 0 Practice Exam #. (0 points) Evaluate the following integrals: (a) (0 points). t +t+7 This is an irreducible quadratic; its denominator can thus be rephrased via completion of the square as a

More information

Math 106: Review for Exam II - SOLUTIONS

Math 106: Review for Exam II - SOLUTIONS Math 6: Review for Exam II - SOLUTIONS INTEGRATION TIPS Substitution: usually let u a function that s inside another function, especially if du (possibly off by a multiplying constant) is also present

More information

Methods of Integration

Methods of Integration Methods of Integration Essential Formulas k d = k +C sind = cos +C n d = n+ n + +C cosd = sin +C e d = e +C tand = ln sec +C d = ln +C cotd = ln sin +C + d = tan +C lnd = ln +C secd = ln sec + tan +C cscd

More information

Mathematics 1052, Calculus II Exam 1, April 3rd, 2010

Mathematics 1052, Calculus II Exam 1, April 3rd, 2010 Mathematics 5, Calculus II Exam, April 3rd,. (8 points) If an unknown function y satisfies the equation y = x 3 x + 4 with the condition that y()=, then what is y? Solution: We must integrate y against

More information

Solutions to Tutorial Sheet 12 Topics: Integration by Substitution + Integration by the Method of Partial Fractions + Applications to Geometry

Solutions to Tutorial Sheet 12 Topics: Integration by Substitution + Integration by the Method of Partial Fractions + Applications to Geometry The University of Sydney School of Mathematics and Statistics Solutions to Tutorial Sheet Topics: Integration by Substitution + Integration by the Method of Partial Fractions + Applications to Geometry

More information

MATH1231 CALCULUS. Session II Dr John Roberts (based on notes of A./Prof. Bruce Henry) Red Center Room 3065

MATH1231 CALCULUS. Session II Dr John Roberts (based on notes of A./Prof. Bruce Henry) Red Center Room 3065 MATH1231 CALCULUS Session II 2007. Dr John Roberts (based on notes of A./Prof. Bruce Henry) Red Center Room 3065 Jag.Roberts@unsw.edu.au MATH1231 CALCULUS p.1/66 Overview Systematic Integration Techniques

More information

Fall 2013 Hour Exam 2 11/08/13 Time Limit: 50 Minutes

Fall 2013 Hour Exam 2 11/08/13 Time Limit: 50 Minutes Math 8 Fall Hour Exam /8/ Time Limit: 5 Minutes Name (Print): This exam contains 9 pages (including this cover page) and 7 problems. Check to see if any pages are missing. Enter all requested information

More information

Assignment 11 Assigned Mon Sept 27

Assignment 11 Assigned Mon Sept 27 Assignment Assigned Mon Sept 7 Section 7., Problem 4. x sin x dx = x cos x + x cos x dx ( = x cos x + x sin x ) sin x dx u = x dv = sin x dx du = x dx v = cos x u = x dv = cos x dx du = dx v = sin x =

More information

Calculus II. Philippe Rukimbira. Department of Mathematics Florida International University PR (FIU) MAC / 1

Calculus II. Philippe Rukimbira. Department of Mathematics Florida International University PR (FIU) MAC / 1 Calculus II Philippe Rukimbira Department of Mathematics Florida International University PR (FIU) MAC 2312 1 / 1 5.4. Sigma notation; The definition of area as limit Assignment: page 350, #11-15, 27,

More information

Math 181, Exam 1, Spring 2013 Problem 1 Solution. arctan xdx.

Math 181, Exam 1, Spring 2013 Problem 1 Solution. arctan xdx. Math, Exam, Sring 03 Problem Solution. Comute the integrals xe 4x and arctan x. Solution: We comute the first integral using Integration by Parts. The following table summarizes the elements that make

More information

MATH 1231 MATHEMATICS 1B Calculus Section 1: - Integration.

MATH 1231 MATHEMATICS 1B Calculus Section 1: - Integration. MATH 1231 MATHEMATICS 1B 2007. For use in Dr Chris Tisdell s lectures: Tues 11 + Thur 10 in KBT Calculus Section 1: - Integration. 1. Motivation 2. What you should already know 3. Useful integrals 4. Integrals

More information

Calculus for Engineers II - Sample Problems on Integrals Manuela Kulaxizi

Calculus for Engineers II - Sample Problems on Integrals Manuela Kulaxizi Calculus for Engineers II - Sample Problems on Integrals Manuela Kulaxizi Question : Solve the following integrals:. π sin x. x 4 3. 4. sinh 8 x cosh x sin x cos 7 x 5. x 5 ln x 6. 8x + 6 3x + x 7. 8..

More information

Calculus II. George Voutsadakis 1. LSSU Math 152. Lake Superior State University. 1 Mathematics and Computer Science

Calculus II. George Voutsadakis 1. LSSU Math 152. Lake Superior State University. 1 Mathematics and Computer Science Calculus II George Voutsadakis Mathematics and Computer Science Lake Superior State University LSSU Math 52 George Voutsadakis (LSSU) Calculus II February 205 / 88 Outline Techniques of Integration Integration

More information

DRAFT - Math 102 Lecture Note - Dr. Said Algarni

DRAFT - Math 102 Lecture Note - Dr. Said Algarni Math02 - Term72 - Guides and Exercises - DRAFT 7 Techniques of Integration A summery for the most important integrals that we have learned so far: 7. Integration by Parts The Product Rule states that if

More information

SOLUTIONS FOR PRACTICE FINAL EXAM

SOLUTIONS FOR PRACTICE FINAL EXAM SOLUTIONS FOR PRACTICE FINAL EXAM ANDREW J. BLUMBERG. Solutions () Short answer questions: (a) State the mean value theorem. Proof. The mean value theorem says that if f is continuous on (a, b) and differentiable

More information

5.3 SOLVING TRIGONOMETRIC EQUATIONS

5.3 SOLVING TRIGONOMETRIC EQUATIONS 5.3 SOLVING TRIGONOMETRIC EQUATIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Use standard algebraic techniques to solve trigonometric equations. Solve trigonometric equations

More information

Math 106: Review for Exam II - SOLUTIONS

Math 106: Review for Exam II - SOLUTIONS Math 6: Review for Exam II - SOLUTIONS INTEGRATION TIPS Substitution: usually let u a function that s inside another function, especially if du (possibly off by a multiplying constant) is also present

More information

18.01 Single Variable Calculus Fall 2006

18.01 Single Variable Calculus Fall 2006 MIT OpenCourseWare http://ocw.mit.edu 18.01 Single Variable Calculus Fall 2006 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Exam 4 Review 1. Trig substitution

More information

Math F15 Rahman

Math F15 Rahman Math - 9 F5 Rahman Week3 7.3 Hyperbolic Functions Hyperbolic functions are similar to trigonometric functions, and have the following definitions: sinh x = (ex e x ) cosh x = (ex + e x ) tanh x = sinh

More information

Mathematics 136 Calculus 2 Everything You Need Or Want To Know About Partial Fractions (and maybe more!) October 19 and 21, 2016

Mathematics 136 Calculus 2 Everything You Need Or Want To Know About Partial Fractions (and maybe more!) October 19 and 21, 2016 Mathematics 36 Calculus 2 Everything You Need Or Want To Know About Partial Fractions (and maybe more!) October 9 and 2, 206 Every rational function (quotient of polynomials) can be written as a polynomial

More information

Chapter 7 Notes, Stewart 7e. 7.1 Integration by Parts Trigonometric Integrals Evaluating sin m xcos n (x)dx...

Chapter 7 Notes, Stewart 7e. 7.1 Integration by Parts Trigonometric Integrals Evaluating sin m xcos n (x)dx... Contents 7.1 Integration by Parts........................................ 2 7.2 Trigonometric Integrals...................................... 8 7.2.1 Evaluating sin m xcos n (x)dx..............................

More information

Math 181, Exam 2, Study Guide 2 Problem 1 Solution. 1 + dx. 1 + (cos x)2 dx. 1 + cos2 xdx. = π ( 1 + cos π 2

Math 181, Exam 2, Study Guide 2 Problem 1 Solution. 1 + dx. 1 + (cos x)2 dx. 1 + cos2 xdx. = π ( 1 + cos π 2 Math 8, Exam, Study Guide Problem Solution. Use the trapezoid rule with n to estimate the arc-length of the curve y sin x between x and x π. Solution: The arclength is: L b a π π + ( ) dy + (cos x) + cos

More information

Mar 10, Calculus with Algebra and Trigonometry II Lecture 14Undoing the Marproduct 10, 2015 rule: integration 1 / 18

Mar 10, Calculus with Algebra and Trigonometry II Lecture 14Undoing the Marproduct 10, 2015 rule: integration 1 / 18 Calculus with Algebra and Trigonometry II Lecture 14 Undoing the product rule: integration by parts Mar 10, 2015 Calculus with Algebra and Trigonometry II Lecture 14Undoing the Marproduct 10, 2015 rule:

More information

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved.

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved. Analytic Trigonometry Copyright Cengage Learning. All rights reserved. 7.4 Basic Trigonometric Equations Copyright Cengage Learning. All rights reserved. Objectives Basic Trigonometric Equations Solving

More information

Integration by parts Integration by parts is a direct reversal of the product rule. By integrating both sides, we get:

Integration by parts Integration by parts is a direct reversal of the product rule. By integrating both sides, we get: Integration by parts Integration by parts is a direct reversal of the proct rule. By integrating both sides, we get: u dv dx x n sin mx dx (make u = x n ) dx = uv v dx dx When to use integration by parts

More information

6.2 Trigonometric Integrals and Substitutions

6.2 Trigonometric Integrals and Substitutions Arkansas Tech University MATH 9: Calculus II Dr. Marcel B. Finan 6. Trigonometric Integrals and Substitutions In this section, we discuss integrals with trigonometric integrands and integrals that can

More information

Integration by Substitution

Integration by Substitution November 22, 2013 Introduction 7x 2 cos(3x 3 )dx =? 2xe x2 +5 dx =? Chain rule The chain rule: d dx (f (g(x))) = f (g(x)) g (x). Use the chain rule to find f (x) and then write the corresponding anti-differentiation

More information

x n cos 2x dx. dx = nx n 1 and v = 1 2 sin(2x). Andreas Fring (City University London) AS1051 Lecture Autumn / 36

x n cos 2x dx. dx = nx n 1 and v = 1 2 sin(2x). Andreas Fring (City University London) AS1051 Lecture Autumn / 36 We saw in Example 5.4. that we sometimes need to apply integration by parts several times in the course of a single calculation. Example 5.4.4: For n let S n = x n cos x dx. Find an expression for S n

More information

MathsGeeks. Everything You Need to Know A Level Edexcel C4. March 2014 MathsGeeks Copyright 2014 Elite Learning Limited

MathsGeeks. Everything You Need to Know A Level Edexcel C4. March 2014 MathsGeeks Copyright 2014 Elite Learning Limited Everything You Need to Know A Level Edexcel C4 March 4 Copyright 4 Elite Learning Limited Page of 4 Further Binomial Expansion: Make sure it starts with a e.g. for ( x) ( x ) then use ( + x) n + nx + n(n

More information

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals 8. Basic Integration Rules In this section we will review various integration strategies. Strategies: I. Separate

More information

Summary: Primer on Integral Calculus:

Summary: Primer on Integral Calculus: Physics 2460 Electricity and Magnetism I, Fall 2006, Primer on Integration: Part I 1 Summary: Primer on Integral Calculus: Part I 1. Integrating over a single variable: Area under a curve Properties of

More information

MATH 31B: MIDTERM 2 REVIEW. sin 2 x = 1 cos(2x) dx = x 2 sin(2x) 4. + C = x 2. dx = x sin(2x) + C = x sin x cos x

MATH 31B: MIDTERM 2 REVIEW. sin 2 x = 1 cos(2x) dx = x 2 sin(2x) 4. + C = x 2. dx = x sin(2x) + C = x sin x cos x MATH 3B: MIDTERM REVIEW JOE HUGHES. Evaluate sin x and cos x. Solution: Recall the identities cos x = + cos(x) Using these formulas gives cos(x) sin x =. Trigonometric Integrals = x sin(x) sin x = cos(x)

More information

Final Exam Review Quesitons

Final Exam Review Quesitons Final Exam Review Quesitons. Compute the following integrals. (a) x x 4 (x ) (x + 4) dx. The appropriate partial fraction form is which simplifies to x x 4 (x ) (x + 4) = A x + B (x ) + C x + 4 + Dx x

More information

Math 181, Exam 2, Fall 2014 Problem 1 Solution. sin 3 (x) cos(x) dx.

Math 181, Exam 2, Fall 2014 Problem 1 Solution. sin 3 (x) cos(x) dx. Math 8, Eam 2, Fall 24 Problem Solution. Integrals, Part I (Trigonometric integrals: 6 points). Evaluate the integral: sin 3 () cos() d. Solution: We begin by rewriting sin 3 () as Then, after using the

More information

Math 112 Section 10 Lecture notes, 1/7/04

Math 112 Section 10 Lecture notes, 1/7/04 Math 11 Section 10 Lecture notes, 1/7/04 Section 7. Integration by parts To integrate the product of two functions, integration by parts is used when simpler methods such as substitution or simplifying

More information

Math 205, Winter 2018, Assignment 3

Math 205, Winter 2018, Assignment 3 Math 05, Winter 08, Assignment 3 Solutions. Calculate the following integrals. Show your steps and reasoning. () a) ( + + )e = ( + + )e ( + )e = ( + + )e ( + )e + e = ( )e + e + c = ( + )e + c This uses

More information

Partial Fractions. Calculus 2 Lia Vas

Partial Fractions. Calculus 2 Lia Vas Calculus Lia Vas Partial Fractions rational function is a quotient of two polynomial functions The method of partial fractions is a general method for evaluating integrals of rational function The idea

More information

Final Examination F.5 Mathematics M2 Suggested Answers

Final Examination F.5 Mathematics M2 Suggested Answers Final Eamination F.5 Mathematics M Suggested Answers. The (r + )-th term C 9 r ( ) 9 r r 9 C r r 7 7r For the 8 term, set 7 7r 8 r 5 Coefficient of 8 C 9 5 5. d 8 ( ) set d if > slightly, d we have

More information

Section 8.3 Partial Fraction Decomposition

Section 8.3 Partial Fraction Decomposition Section 8.6 Lecture Notes Page 1 of 10 Section 8.3 Partial Fraction Decomposition Partial fraction decomposition involves decomposing a rational function, or reversing the process of combining two or more

More information

Math 226 Calculus Spring 2016 Exam 2V1

Math 226 Calculus Spring 2016 Exam 2V1 Math 6 Calculus Spring 6 Exam V () (35 Points) Evaluate the following integrals. (a) (7 Points) tan 5 (x) sec 3 (x) dx (b) (8 Points) cos 4 (x) dx Math 6 Calculus Spring 6 Exam V () (Continued) Evaluate

More information

Announcements. Topics: Homework:

Announcements. Topics: Homework: Announcements Topics: - sections 7.3 (the definite integral +area), 7.4 (FTC), 7.5 (additional techniques of integration) * Read these sections and study solved examples in your textbook! Homework: - review

More information

Partial Fractions. Combining fractions over a common denominator is a familiar operation from algebra: 2 x 3 + 3

Partial Fractions. Combining fractions over a common denominator is a familiar operation from algebra: 2 x 3 + 3 Partial Fractions Combining fractions over a common denominator is a familiar operation from algebra: x 3 + 3 x + x + 3x 7 () x 3 3x + x 3 From the standpoint of integration, the left side of Equation

More information

MA1131 Lecture 15 (2 & 3/12/2010) 77. dx dx v + udv dx. (uv) = v du dx dx + dx dx dx

MA1131 Lecture 15 (2 & 3/12/2010) 77. dx dx v + udv dx. (uv) = v du dx dx + dx dx dx MA3 Lecture 5 ( & 3//00) 77 0.3. Integration by parts If we integrate both sides of the proct rule we get d (uv) dx = dx or uv = d (uv) = dx dx v + udv dx v dx dx + v dx dx + u dv dx dx u dv dx dx This

More information

A Library of Functions

A Library of Functions LibraryofFunctions.nb 1 A Library of Functions Any study of calculus must start with the study of functions. Functions are fundamental to mathematics. In its everyday use the word function conveys to us

More information

Chapter 3. Integration. 3.1 Indefinite Integration

Chapter 3. Integration. 3.1 Indefinite Integration Chapter 3 Integration 3. Indefinite Integration Integration is the reverse of differentiation. Consider a function f(x) and suppose that there exists another function F (x) such that df f(x). (3.) For

More information

MAT 271 Recitation. MAT 271 Recitation. Sections 7.1 and 7.2. Lindsey K. Gamard, ASU SoMSS. 30 August 2013

MAT 271 Recitation. MAT 271 Recitation. Sections 7.1 and 7.2. Lindsey K. Gamard, ASU SoMSS. 30 August 2013 MAT 271 Recitation Sections 7.1 and 7.2 Lindsey K. Gamard, ASU SoMSS 30 August 2013 Agenda Today s agenda: 1. Review 2. Review Section 7.2 (Trigonometric Integrals) 3. (If time) Start homework in pairs

More information

EXAM. Practice for Second Exam. Math , Fall Nov 4, 2003 ANSWERS

EXAM. Practice for Second Exam. Math , Fall Nov 4, 2003 ANSWERS EXAM Practice for Second Eam Math 135-006, Fall 003 Nov 4, 003 ANSWERS i Problem 1. In each part, find the integral. A. d (4 ) 3/ Make the substitution sin(θ). d cos(θ) dθ. We also have Then, we have d/dθ

More information

Integration Techniques

Integration Techniques Integrtion Techniques. Integrtion of Trigonometric Functions Exmple. Evlute cos x. Recll tht cos x = cos x. Hence, cos x Exmple. Evlute = ( + cos x) = (x + sin x) + C = x + 4 sin x + C. cos 3 x. Let u

More information

Mathematics 104 Fall Term 2006 Solutions to Final Exam. sin(ln t) dt = e x sin(x) dx.

Mathematics 104 Fall Term 2006 Solutions to Final Exam. sin(ln t) dt = e x sin(x) dx. Mathematics 14 Fall Term 26 Solutions to Final Exam 1. Evaluate sin(ln t) dt. Solution. We first make the substitution t = e x, for which dt = e x. This gives sin(ln t) dt = e x sin(x). To evaluate the

More information

Partial Fractions. June 27, In this section, we will learn to integrate another class of functions: the rational functions.

Partial Fractions. June 27, In this section, we will learn to integrate another class of functions: the rational functions. Partial Fractions June 7, 04 In this section, we will learn to integrate another class of functions: the rational functions. Definition. A rational function is a fraction of two polynomials. For example,

More information

Integration by parts (product rule backwards)

Integration by parts (product rule backwards) Integration by parts (product rule backwards) The product rule states Integrating both sides gives f(x)g(x) = d dx f(x)g(x) = f(x)g (x) + f (x)g(x). f(x)g (x)dx + Letting f(x) = u, g(x) = v, and rearranging,

More information

Section 5.5 More Integration Formula (The Substitution Method) 2 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I

Section 5.5 More Integration Formula (The Substitution Method) 2 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I Section 5.5 More Integration Formula (The Substitution Method) 2 Lectures College of Science MATHS : Calculus I (University of Bahrain) Integrals / 7 The Substitution Method Idea: To replace a relatively

More information

Math 181, Exam 1, Study Guide 2 Problem 1 Solution. =[17ln 5 +3(5)] [17 ln 1 +3(1)] =17ln = 17ln5+12

Math 181, Exam 1, Study Guide 2 Problem 1 Solution. =[17ln 5 +3(5)] [17 ln 1 +3(1)] =17ln = 17ln5+12 Math 8, Exam, Study Guide Problem Solution. Compute the definite integral: 5 ( ) 7 x +3 dx Solution: UsingtheFundamentalTheoremofCalculusPartI,thevalueof the integral is: 5 ( ) 7 [ ] 5 x +3 dx = 7 ln x

More information

Chapter 8 Integration Techniques and Improper Integrals

Chapter 8 Integration Techniques and Improper Integrals Chapter 8 Integration Techniques and Improper Integrals 8.1 Basic Integration Rules 8.2 Integration by Parts 8.4 Trigonometric Substitutions 8.5 Partial Fractions 8.6 Numerical Integration 8.7 Integration

More information

Final Examination Solutions

Final Examination Solutions Math. 5, Sections 5 53 (Fulling) 7 December Final Examination Solutions Test Forms A and B were the same except for the order of the multiple-choice responses. This key is based on Form A. Name: Section:

More information

7.3 Hyperbolic Functions Hyperbolic functions are similar to trigonometric functions, and have the following

7.3 Hyperbolic Functions Hyperbolic functions are similar to trigonometric functions, and have the following Math 2-08 Rahman Week3 7.3 Hyperbolic Functions Hyperbolic functions are similar to trigonometric functions, and have the following definitions: sinh x = 2 (ex e x ) cosh x = 2 (ex + e x ) tanh x = sinh

More information

Math 222 Spring 2013 Exam 3 Review Problem Answers

Math 222 Spring 2013 Exam 3 Review Problem Answers . (a) By the Chain ule, Math Spring 3 Exam 3 eview Problem Answers w s w x x s + w y y s (y xy)() + (xy x )( ) (( s + 4t) (s 3t)( s + 4t)) ((s 3t)( s + 4t) (s 3t) ) 8s 94st + 3t (b) By the Chain ule, w

More information

HOMEWORK 3 MA1132: ADVANCED CALCULUS, HILARY 2017

HOMEWORK 3 MA1132: ADVANCED CALCULUS, HILARY 2017 HOMEWORK MA112: ADVANCED CALCULUS, HILARY 2017 (1) A particle moves along a curve in R with position function given by r(t) = (e t, t 2 + 1, t). Find the velocity v(t), the acceleration a(t), the speed

More information

MATH 162. Midterm Exam 1 - Solutions February 22, 2007

MATH 162. Midterm Exam 1 - Solutions February 22, 2007 MATH 62 Midterm Exam - Solutions February 22, 27. (8 points) Evaluate the following integrals: (a) x sin(x 4 + 7) dx Solution: Let u = x 4 + 7, then du = 4x dx and x sin(x 4 + 7) dx = 4 sin(u) du = 4 [

More information

Course Notes for Calculus , Spring 2015

Course Notes for Calculus , Spring 2015 Course Notes for Calculus 110.109, Spring 2015 Nishanth Gudapati In the previous course (Calculus 110.108) we introduced the notion of integration and a few basic techniques of integration like substitution

More information

Lecture 5: Integrals and Applications

Lecture 5: Integrals and Applications Lecture 5: Integrals and Applications Lejla Batina Institute for Computing and Information Sciences Digital Security Version: spring 2012 Lejla Batina Version: spring 2012 Wiskunde 1 1 / 21 Outline The

More information

Lecture 4: Integrals and applications

Lecture 4: Integrals and applications Lecture 4: Integrals and applications Lejla Batina Institute for Computing and Information Sciences Digital Security Version: autumn 2013 Lejla Batina Version: autumn 2013 Calculus en Kansrekenen 1 / 18

More information

APPENDIX : PARTIAL FRACTIONS

APPENDIX : PARTIAL FRACTIONS APPENDIX : PARTIAL FRACTIONS Appendix : Partial Fractions Given the expression x 2 and asked to find its integral, x + you can use work from Section. to give x 2 =ln( x 2) ln( x + )+c x + = ln k x 2 x+

More information

Calculus I Sample Exam #01

Calculus I Sample Exam #01 Calculus I Sample Exam #01 1. Sketch the graph of the function and define the domain and range. 1 a) f( x) 3 b) g( x) x 1 x c) hx ( ) x x 1 5x6 d) jx ( ) x x x 3 6 . Evaluate the following. a) 5 sin 6

More information

Chapter 6. Techniques of Integration. 6.1 Differential notation

Chapter 6. Techniques of Integration. 6.1 Differential notation Chapter 6 Techniques of Integration In this chapter, we expand our repertoire for antiderivatives beyond the elementary functions discussed so far. A review of the table of elementary antiderivatives (found

More information

Math 201 Solutions to Assignment 1. 2ydy = x 2 dx. y = C 1 3 x3

Math 201 Solutions to Assignment 1. 2ydy = x 2 dx. y = C 1 3 x3 Math 201 Solutions to Assignment 1 1. Solve the initial value problem: x 2 dx + 2y = 0, y(0) = 2. x 2 dx + 2y = 0, y(0) = 2 2y = x 2 dx y 2 = 1 3 x3 + C y = C 1 3 x3 Notice that y is not defined for some

More information

Reform Calculus: Part II. Marcel B. Finan Arkansas Tech University c All Rights Reserved

Reform Calculus: Part II. Marcel B. Finan Arkansas Tech University c All Rights Reserved Reform Calculus: Part II Marcel B. Finan Arkansas Tech University c All Rights Reserved PREFACE This supplement consists of my lectures of a sophomore-level mathematics class offered at Arkansas Tech University.

More information

Chapter 6. Techniques of Integration. 6.1 Differential notation

Chapter 6. Techniques of Integration. 6.1 Differential notation Chapter 6 Techniques of Integration In this chapter, we expand our repertoire for antiderivatives beyond the elementary functions discussed so far. A review of the table of elementary antiderivatives (found

More information

MATH MIDTERM 4 - SOME REVIEW PROBLEMS WITH SOLUTIONS Calculus, Fall 2017 Professor: Jared Speck. Problem 1. Approximate the integral

MATH MIDTERM 4 - SOME REVIEW PROBLEMS WITH SOLUTIONS Calculus, Fall 2017 Professor: Jared Speck. Problem 1. Approximate the integral MATH 8. - MIDTERM 4 - SOME REVIEW PROBLEMS WITH SOLUTIONS 8. Calculus, Fall 7 Professor: Jared Speck Problem. Approimate the integral 4 d using first Simpson s rule with two equal intervals and then the

More information

MATH1120 Calculus II Solution to Supplementary Exercises on Improper Integrals Alex Fok November 2, 2013

MATH1120 Calculus II Solution to Supplementary Exercises on Improper Integrals Alex Fok November 2, 2013 () Solution : MATH Calculus II Solution to Supplementary Eercises on Improper Integrals Ale Fok November, 3 b ( + )( + tan ) ( + )( + tan ) +tan b du u ln + tan b ( = ln + π ) (Let u = + tan. Then du =

More information

Assignment 6 Solution. Please do not copy and paste my answer. You will get similar questions but with different numbers!

Assignment 6 Solution. Please do not copy and paste my answer. You will get similar questions but with different numbers! Assignment 6 Solution Please do not copy and paste my answer. You will get similar questions but with different numbers! This question tests you the following points: Integration by Parts: Let u = x, dv

More information

Announcements. Topics: Homework:

Announcements. Topics: Homework: Announcements Topics: - sections 7.4 (FTC), 7.5 (additional techniques of integration), 7.6 (applications of integration) * Read these sections and study solved examples in your textbook! Homework: - review

More information

Calculus II Practice Test 1 Problems: , 6.5, Page 1 of 10

Calculus II Practice Test 1 Problems: , 6.5, Page 1 of 10 Calculus II Practice Test Problems: 6.-6.3, 6.5, 7.-7.3 Page of This is in no way an inclusive set of problems there can be other types of problems on the actual test. To prepare for the test: review homework,

More information

Math 1B Final Exam, Solution. Prof. Mina Aganagic Lecture 2, Spring (6 points) Use substitution and integration by parts to find:

Math 1B Final Exam, Solution. Prof. Mina Aganagic Lecture 2, Spring (6 points) Use substitution and integration by parts to find: Math B Final Eam, Solution Prof. Mina Aganagic Lecture 2, Spring 20 The eam is closed book, apart from a sheet of notes 8. Calculators are not allowed. It is your responsibility to write your answers clearly..

More information

Math Final Exam Review

Math Final Exam Review Math - Final Exam Review. Find dx x + 6x +. Name: Solution: We complete the square to see if this function has a nice form. Note we have: x + 6x + (x + + dx x + 6x + dx (x + + Note that this looks a lot

More information

Math Calculus II Homework # Due Date Solutions

Math Calculus II Homework # Due Date Solutions Math 35 - Calculus II Homework # - 007.08.3 Due Date - 007.09.07 Solutions Part : Problems from sections 7.3 and 7.4. Section 7.3: 9. + d We will use the substitution cot(θ, d csc (θ. This gives + + cot

More information

Integration 1/10. Integration. Student Guidance Centre Learning Development Service

Integration 1/10. Integration. Student Guidance Centre Learning Development Service Integration / Integration Student Guidance Centre Learning Development Service lds@qub.ac.uk Integration / Contents Introduction. Indefinite Integration....................... Definite Integration.......................

More information

Final Exam 2011 Winter Term 2 Solutions

Final Exam 2011 Winter Term 2 Solutions . (a Find the radius of convergence of the series: ( k k+ x k. Solution: Using the Ratio Test, we get: L = lim a k+ a k = lim ( k+ k+ x k+ ( k k+ x k = lim x = x. Note that the series converges for L

More information

MATH 151 Engineering Mathematics I

MATH 151 Engineering Mathematics I MATH 151 Engineering Mathematics I Fall 2017, WEEK 14 JoungDong Kim Week 14 Section 5.4, 5.5, 6.1, Indefinite Integrals and the Net Change Theorem, The Substitution Rule, Areas Between Curves. Section

More information

CHAIN RULE: DAY 2 WITH TRIG FUNCTIONS. Section 2.4A Calculus AP/Dual, Revised /30/2018 1:44 AM 2.4A: Chain Rule Day 2 1

CHAIN RULE: DAY 2 WITH TRIG FUNCTIONS. Section 2.4A Calculus AP/Dual, Revised /30/2018 1:44 AM 2.4A: Chain Rule Day 2 1 CHAIN RULE: DAY WITH TRIG FUNCTIONS Section.4A Calculus AP/Dual, Revised 018 viet.dang@humbleisd.net 7/30/018 1:44 AM.4A: Chain Rule Day 1 THE CHAIN RULE A. d dx f g x = f g x g x B. If f(x) is a differentiable

More information

Review For the Final: Problem 1 Find the general solutions of the following DEs. a) x 2 y xy y 2 = 0 solution: = 0 : homogeneous equation.

Review For the Final: Problem 1 Find the general solutions of the following DEs. a) x 2 y xy y 2 = 0 solution: = 0 : homogeneous equation. Review For the Final: Problem 1 Find the general solutions of the following DEs. a) x 2 y xy y 2 = 0 solution: y y x y2 = 0 : homogeneous equation. x2 v = y dy, y = vx, and x v + x dv dx = v + v2. dx =

More information

Integration by Parts. MAT 126, Week 2, Thursday class. Xuntao Hu

Integration by Parts. MAT 126, Week 2, Thursday class. Xuntao Hu MAT 126, Week 2, Thursday class Xuntao Hu Recall that the substitution rule is a combination of the FTC and the chain rule. We can also combine the FTC and the product rule: d dx [f (x)g(x)] = f (x)g (x)

More information

Study 7.4 # 1 11, 15, 17, 21, 25. Class Notes: Prof. G. Battaly, Westchester Community College, NY. x x 2 +4x+3. How do we integrate?

Study 7.4 # 1 11, 15, 17, 21, 25. Class Notes: Prof. G. Battaly, Westchester Community College, NY. x x 2 +4x+3. How do we integrate? Goals: 1. Recognize that rational expressions may need to be simplified to be integrable. 2. Use long division to obtain proper fractions, with the degree of the numerator less than the degree of the denominator.

More information

Worksheet Week 7 Section

Worksheet Week 7 Section Worksheet Week 7 Section 8.. 8.4. This worksheet is for improvement of your mathematical writing skill. Writing using correct mathematical epression and steps is really important part of doing math. Please

More information

18.01 EXERCISES. Unit 3. Integration. 3A. Differentials, indefinite integration. 3A-1 Compute the differentials df(x) of the following functions.

18.01 EXERCISES. Unit 3. Integration. 3A. Differentials, indefinite integration. 3A-1 Compute the differentials df(x) of the following functions. 8. EXERCISES Unit 3. Integration 3A. Differentials, indefinite integration 3A- Compute the differentials df(x) of the following functions. a) d(x 7 + sin ) b) d x c) d(x 8x + 6) d) d(e 3x sin x) e) Express

More information

UNIVERSITY OF SOUTHAMPTON. A foreign language dictionary (paper version) is permitted provided it contains no notes, additions or annotations.

UNIVERSITY OF SOUTHAMPTON. A foreign language dictionary (paper version) is permitted provided it contains no notes, additions or annotations. UNIVERSITY OF SOUTHAMPTON MATH055W SEMESTER EXAMINATION 03/4 MATHEMATICS FOR ELECTRONIC & ELECTRICAL ENGINEERING Duration: 0 min Solutions Only University approved calculators may be used. A foreign language

More information

Chapter 6: Messy Integrals

Chapter 6: Messy Integrals Chapter 6: Messy Integrals Review: Solve the following integrals x 4 sec x tan x 0 0 Find the average value of 3 1 x 3 3 Evaluate 4 3 3 ( x 1), then find the area of ( x 1) 4 Section 6.1: Slope Fields

More information

More Final Practice Problems

More Final Practice Problems 8.0 Calculus Jason Starr Final Exam at 9:00am sharp Fall 005 Tuesday, December 0, 005 More 8.0 Final Practice Problems Here are some further practice problems with solutions for the 8.0 Final Exam. Many

More information