Math 112 Section 10 Lecture notes, 1/7/04

Size: px
Start display at page:

Download "Math 112 Section 10 Lecture notes, 1/7/04"

Transcription

1 Math 11 Section 10 Lecture notes, 1/7/04 Section 7. Integration by parts To integrate the product of two functions, integration by parts is used when simpler methods such as substitution or simplifying the integrand algebraically don t work. The formula for integration by parts is udv = uv vdu. Here u and v are functions, and dv and du are simply abbreviations for dv and du, respectively. So v is actually an antiderivative of dv. We can compute this antiderivative without the arbitrary constant, as long as we remember to add the constant at the end of the problem. Eample 1: To evaluate cos, let u = and dv =cos. Then du =, v =sin, and cos = sin sin = sin +cos + C. Guidelines for choosing u and dv 1. Try letting u be a function whose derivative is simpler than u.. Try letting dv be a part of the integrand that is easy to integrate. Ineample1,wechoseu = because its derivative, 1, is simpler than. Eample : Evaluate ln. We can t let dv =ln, becausewedon tknowhowtointegrateln yet. So let u =ln, dv =, du = /, v =. Then ln = ln = ln = ln + C. Eample 3: Evaluate e 3. If we let u = e 3, then du =3e 3, which is not simpler than u. So try letting u = and dv = e 3. Then du = and v = 1 3 e3. So e 3 = 1 3 e3 3 e3 = 3 e3 1 9 e3 + C. 1

2 Eample 4: Evaluate e This one actually can t be done using integration by parts. However, if we make the substitution u =, du = 1,= du, then the integral becomes e u du = e u du =e u + C =e + C. Eample 5: Evaluate ln. We could let dv =ln, but then dv wouldn t be easy to integrate. u =ln, dv = 3, du = /, v = 1. Then ln 3 = 1 ln 1 = 1 ln = 1 ln C. Eample 6: Evaluate arccos. 3 So let We should let dv =, because if we let dv = arccos then dv wouldn t be easy to integrate. So u = arccos, du =, and v =. 1 arccos = arccos = arccos To evaluate the last integral, make the substitution u =1, du =, = du. Then the right hand side of ( ) becomes µ du arccos + u = arccos + du u = arccos 1 u 1/ du = arccos u 1/ + C = arccos (1 ) 1/ + C. ( )

3 Eample 7: Evaluate ( +1) 100. This can be done by subsitution, but integration by parts works too. If we try letting u =( +1) 100, then du = 100( +1)99, which is not simpler than u. So try letting u =, dv =( +1) 100,du=, v = ( +1)101. Then ( +1) 100 = 101 ( 1 +1) ( +1)101 = 101 ( 1 +1) ( +1)10 + C. Integrals requiring two integrations by parts Eample 8: Evaluate cos. Since the derivative of is simpler than itself, let s let u =. dv =cos, v =sin, and du =. Thus cos = sin sin = sin sin. Then We have to evaluate another integral using integration by parts. This time, let u =, dv =sin, du =, v = cos. Then continuing the work above, we get cos = sin sin = sin cos cos = sin cos + cos = sin [ cos +sin + C] = sin +cos sin + K. Eample 9: Evaluate (ln ). 3

4 Since we don t know yet how to integrate (ln ), we ll let dv =, u =(ln), du = ln, v =. Then (ln ) = (ln ) ln = (ln ) ln. Now, from Eample (which was also done using integration by parts), we know that R ln = ln + C. Therefore (ln ) = (ln ) ln = (ln ) [ln + C] = (ln ) ln + +C = (ln ) ln + + K. Eample 10: Evaluate e cos To begin, let I = R e cos. It s not at all obvious what u and dv should be, but let s try u =cos, dv = e, du = sin, v = e. Then I = e cos e sin = e cos + e sin. It doesn t look as though we ve made any progress. But let s try another integration by parts. Let u = sin, dv = e, du = cos, v = e. Continuing the work above, we obtain I = e cos + e sin = e cos + e sin e cos Soweendupwiththeequation (Notice that the last integral is I!) = e cos + e sin I. I = e cos + e sin I Solving for I, then adding an arbitrary constant, gives us I = e cos + e sin + C. 4

5 Actually, if we had done this problem by letting u = e and dv =a trigonometric function in both integrations by parts, we would have obtained the same final answer. Integrals requiring substitution and integration by parts. Eample 11: Evaluate e. Using the substitution y =, we get dy = 1 = 1, so that =ydy. y e = e y ydy= ye y dy. We can now evaluate the integral using integration by parts. Let u = y, dv = e y, du = dy, v = e y. Then e = ye y dy = (ye y e y dy) = (ye y e y + C) = ( e e + C) = e e +C = e e + K. 5

Integration by Parts

Integration by Parts Calculus 2 Lia Vas Integration by Parts Using integration by parts one transforms an integral of a product of two functions into a simpler integral. Divide the initial function into two parts called u

More information

Worksheet Week 7 Section

Worksheet Week 7 Section Worksheet Week 7 Section 8.. 8.4. This worksheet is for improvement of your mathematical writing skill. Writing using correct mathematical epression and steps is really important part of doing math. Please

More information

Trigonometric integrals by basic methods

Trigonometric integrals by basic methods Roberto s Notes on Integral Calculus Chapter : Integration methods Section 7 Trigonometric integrals by basic methods What you need to know already: Integrals of basic trigonometric functions. Basic trigonometric

More information

6.1 Antiderivatives and Slope Fields Calculus

6.1 Antiderivatives and Slope Fields Calculus 6. Antiderivatives and Slope Fields Calculus 6. ANTIDERIVATIVES AND SLOPE FIELDS Indefinite Integrals In the previous chapter we dealt with definite integrals. Definite integrals had limits of integration.

More information

Integration. Section 8: Using partial fractions in integration

Integration. Section 8: Using partial fractions in integration Integration Section 8: Using partial fractions in integration Notes and Eamples These notes contain subsections on Using partial fractions in integration Putting all the integration techniques together

More information

Section: I. u 4 du. (9x + 1) + C, 3

Section: I. u 4 du. (9x + 1) + C, 3 EXAM 3 MAT 168 Calculus II Fall 18 Name: Section: I All answers must include either supporting work or an eplanation of your reasoning. MPORTANT: These elements are considered main part of the answer and

More information

Outline. 1 Integration by Substitution: The Technique. 2 Integration by Substitution: Worked Examples. 3 Integration by Parts: The Technique

Outline. 1 Integration by Substitution: The Technique. 2 Integration by Substitution: Worked Examples. 3 Integration by Parts: The Technique MS2: IT Mathematics Integration Two Techniques of Integration John Carroll School of Mathematical Sciences Dublin City University Integration by Substitution: The Technique Integration by Substitution:

More information

VII. Techniques of Integration

VII. Techniques of Integration VII. Techniques of Integration Integration, unlike differentiation, is more of an art-form than a collection of algorithms. Many problems in applied mathematics involve the integration of functions given

More information

Methods of Integration

Methods of Integration Methods of Integration Essential Formulas k d = k +C sind = cos +C n d = n+ n + +C cosd = sin +C e d = e +C tand = ln sec +C d = ln +C cotd = ln sin +C + d = tan +C lnd = ln +C secd = ln sec + tan +C cscd

More information

Integration by Parts. MAT 126, Week 2, Thursday class. Xuntao Hu

Integration by Parts. MAT 126, Week 2, Thursday class. Xuntao Hu MAT 126, Week 2, Thursday class Xuntao Hu Recall that the substitution rule is a combination of the FTC and the chain rule. We can also combine the FTC and the product rule: d dx [f (x)g(x)] = f (x)g (x)

More information

Announcements. Topics: Homework:

Announcements. Topics: Homework: Announcements Topics: - sections 7.3 (the definite integral +area), 7.4 (FTC), 7.5 (additional techniques of integration) * Read these sections and study solved examples in your textbook! Homework: - review

More information

INTEGRATION 1. SIX STANDARD INTEGRALS

INTEGRATION 1. SIX STANDARD INTEGRALS . sin c a a INTEGRATION. SIX STANDARD INTEGRALS. a tan a c a. log e a a c. log e a a c 5. a a log e c a a 6. a a log e c a a Note: Integrals - appear on the Standard Sheet of Integrals. Integrals 5 and

More information

Announcements. Topics: Homework:

Announcements. Topics: Homework: Announcements Topics: - sections 7.5 (additional techniques of integration), 7.6 (applications of integration), * Read these sections and study solved examples in your textbook! Homework: - review lecture

More information

Integration by Triangle Substitutions

Integration by Triangle Substitutions Integration by Triangle Substitutions The Area of a Circle So far we have used the technique of u-substitution (ie, reversing the chain rule) and integration by parts (reversing the product rule) to etend

More information

1 Introduction; Integration by Parts

1 Introduction; Integration by Parts 1 Introduction; Integration by Parts September 11-1 Traditionally Calculus I covers Differential Calculus and Calculus II covers Integral Calculus. You have already seen the Riemann integral and certain

More information

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals 8. Basic Integration Rules In this section we will review various integration strategies. Strategies: I. Separate

More information

Calculus Integration

Calculus Integration Calculus Integration By Norhafizah Md Sarif & Norazaliza Mohd Jamil Faculty of Instrial Science & Technology norhafizah@ump.e.my, norazaliza@ump.e.my Description Aims This chapter is aimed to : 1. introce

More information

Worksheet Week 1 Review of Chapter 5, from Definition of integral to Substitution method

Worksheet Week 1 Review of Chapter 5, from Definition of integral to Substitution method Worksheet Week Review of Chapter 5, from Definition of integral to Substitution method This worksheet is for improvement of your mathematical writing skill. Writing using correct mathematical expressions

More information

Math 106: Review for Exam II - SOLUTIONS

Math 106: Review for Exam II - SOLUTIONS Math 6: Review for Exam II - SOLUTIONS INTEGRATION TIPS Substitution: usually let u a function that s inside another function, especially if du (possibly off by a multiplying constant) is also present

More information

HW 9, Math 319, Fall 2016

HW 9, Math 319, Fall 2016 HW 9, Math 39, Fall Nasser M. Abbasi Discussion section 447, Th 4:3PM-: PM December, Contents HW 9. Section. problem................................... Part a....................................... Part

More information

Announcements. Topics: Homework:

Announcements. Topics: Homework: Announcements Topics: - sections 7.4 (FTC), 7.5 (additional techniques of integration), 7.6 (applications of integration) * Read these sections and study solved examples in your textbook! Homework: - review

More information

Chapter 5: Integrals

Chapter 5: Integrals Chapter 5: Integrals Section 5.5 The Substitution Rule (u-substitution) Sec. 5.5: The Substitution Rule We know how to find the derivative of any combination of functions Sum rule Difference rule Constant

More information

Techniques of Integration: I

Techniques of Integration: I October 1, 217 We had the tenth breakfast yesterday morning: If you d like to propose a future event (breakfast, lunch, dinner), please let me know. Techniques of Integration To evaluate number), we might

More information

f(x) g(x) = [f (x)g(x) dx + f(x)g (x)dx

f(x) g(x) = [f (x)g(x) dx + f(x)g (x)dx Chapter 7 is concerned with all the integrals that can t be evaluated with simple antidifferentiation. Chart of Integrals on Page 463 7.1 Integration by Parts Like with the Chain Rule substitutions with

More information

Chapter 5: Integrals

Chapter 5: Integrals Chapter 5: Integrals Section 5.3 The Fundamental Theorem of Calculus Sec. 5.3: The Fundamental Theorem of Calculus Fundamental Theorem of Calculus: Sec. 5.3: The Fundamental Theorem of Calculus Fundamental

More information

DRAFT - Math 102 Lecture Note - Dr. Said Algarni

DRAFT - Math 102 Lecture Note - Dr. Said Algarni Math02 - Term72 - Guides and Exercises - DRAFT 7 Techniques of Integration A summery for the most important integrals that we have learned so far: 7. Integration by Parts The Product Rule states that if

More information

Applied Calculus I. Lecture 29

Applied Calculus I. Lecture 29 Applied Calculus I Lecture 29 Integrals of trigonometric functions We shall continue learning substitutions by considering integrals involving trigonometric functions. Integrals of trigonometric functions

More information

Assignment 13 Assigned Mon Oct 4

Assignment 13 Assigned Mon Oct 4 Assignment 3 Assigned Mon Oct 4 We refer to the integral table in the back of the book. Section 7.5, Problem 3. I don t see this one in the table in the back of the book! But it s a very easy substitution

More information

11.4. Differentiating ProductsandQuotients. Introduction. Prerequisites. Learning Outcomes

11.4. Differentiating ProductsandQuotients. Introduction. Prerequisites. Learning Outcomes Differentiating ProductsandQuotients 11.4 Introduction We have seen, in the first three Sections, how standard functions like n, e a, sin a, cos a, ln a may be differentiated. In this Section we see how

More information

Final Problem Set. 2. Use the information in #1 to show a solution to the differential equation ), where k and L are constants and e c L be

Final Problem Set. 2. Use the information in #1 to show a solution to the differential equation ), where k and L are constants and e c L be Final Problem Set Name A. Show the steps for each of the following problems. 1. Show 1 1 1 y y L y y(1 ) L.. Use the information in #1 to show a solution to the differential equation dy y ky(1 ), where

More information

Math 142 (Summer 2018) Business Calculus 6.1 Notes

Math 142 (Summer 2018) Business Calculus 6.1 Notes Math 142 (Summer 2018) Business Calculus 6.1 Notes Antiderivatives Why? So far in the course we have studied derivatives. Differentiation is the process of going from a function f to its derivative f.

More information

Integration Techniques for the AB exam

Integration Techniques for the AB exam For the AB eam, students need to: determine antiderivatives of the basic functions calculate antiderivatives of functions using u-substitution use algebraic manipulation to rewrite the integrand prior

More information

Methods of Integration

Methods of Integration Methods of Integration Professor D. Olles January 8, 04 Substitution The derivative of a composition of functions can be found using the chain rule form d dx [f (g(x))] f (g(x)) g (x) Rewriting the derivative

More information

Practice Problems: Integration by Parts

Practice Problems: Integration by Parts Practice Problems: Integration by Parts Answers. (a) Neither term will get simpler through differentiation, so let s try some choice for u and dv, and see how it works out (we can always go back and try

More information

Math 111 lecture for Friday, Week 10

Math 111 lecture for Friday, Week 10 Math lecture for Friday, Week Finding antiderivatives mean reversing the operation of taking derivatives. Today we ll consider reversing the chain rule and the product rule. Substitution technique. Recall

More information

Practice Midterm Solutions

Practice Midterm Solutions Practice Midterm Solutions Math 4B: Ordinary Differential Equations Winter 20 University of California, Santa Barbara TA: Victoria Kala DO NOT LOOK AT THESE SOLUTIONS UNTIL YOU HAVE ATTEMPTED EVERY PROBLEM

More information

Mathematics 116 HWK 14 Solutions Section 4.5 p305. Note: This set of solutions also includes 3 problems from HWK 12 (5,7,11 from 4.5).

Mathematics 116 HWK 14 Solutions Section 4.5 p305. Note: This set of solutions also includes 3 problems from HWK 12 (5,7,11 from 4.5). Mathematics 6 HWK 4 Solutions Section 4.5 p305 Note: This set of solutions also includes 3 problems from HWK 2 (5,7, from 4.5). Find the indicated it. Use l Hospital s Rule where appropriate. Consider

More information

Calculus II Practice Test Problems for Chapter 7 Page 1 of 6

Calculus II Practice Test Problems for Chapter 7 Page 1 of 6 Calculus II Practice Test Problems for Chapter 7 Page of 6 This is a set of practice test problems for Chapter 7. This is in no way an inclusive set of problems there can be other types of problems on

More information

Integration Techniques for the BC exam

Integration Techniques for the BC exam Integration Techniques for the B eam For the B eam, students need to: determine antiderivatives of the basic functions calculate antiderivatives of functions using u-substitution use algebraic manipulation

More information

42. Change of Variables: The Jacobian

42. Change of Variables: The Jacobian . Change of Variables: The Jacobian It is common to change the variable(s) of integration, the main goal being to rewrite a complicated integrand into a simpler equivalent form. However, in doing so, the

More information

Chapter 6. Techniques of Integration. 6.1 Differential notation

Chapter 6. Techniques of Integration. 6.1 Differential notation Chapter 6 Techniques of Integration In this chapter, we expand our repertoire for antiderivatives beyond the elementary functions discussed so far. A review of the table of elementary antiderivatives (found

More information

EXAM. Practice for Second Exam. Math , Fall Nov 4, 2003 ANSWERS

EXAM. Practice for Second Exam. Math , Fall Nov 4, 2003 ANSWERS EXAM Practice for Second Eam Math 135-006, Fall 003 Nov 4, 003 ANSWERS i Problem 1. In each part, find the integral. A. d (4 ) 3/ Make the substitution sin(θ). d cos(θ) dθ. We also have Then, we have d/dθ

More information

7.3 Hyperbolic Functions Hyperbolic functions are similar to trigonometric functions, and have the following

7.3 Hyperbolic Functions Hyperbolic functions are similar to trigonometric functions, and have the following Math 2-08 Rahman Week3 7.3 Hyperbolic Functions Hyperbolic functions are similar to trigonometric functions, and have the following definitions: sinh x = 2 (ex e x ) cosh x = 2 (ex + e x ) tanh x = sinh

More information

1.4 Techniques of Integration

1.4 Techniques of Integration .4 Techniques of Integration Recall the following strategy for evaluating definite integrals, which arose from the Fundamental Theorem of Calculus (see Section.3). To calculate b a f(x) dx. Find a function

More information

EXACT EQUATIONS AND INTEGRATING FACTORS

EXACT EQUATIONS AND INTEGRATING FACTORS MAP- EXACT EQUATIONS AND INTEGRATING FACTORS First-order Differential Equations for Which We Can Find Eact Solutions Stu the patterns carefully. The first step of any solution is correct identification

More information

Lesson 50 Integration by Parts

Lesson 50 Integration by Parts 5/3/07 Lesson 50 Integration by Parts Lesson Objectives Use the method of integration by parts to integrate simple power, eponential, and trigonometric functions both in a mathematical contet and in a

More information

Integration by parts (product rule backwards)

Integration by parts (product rule backwards) Integration by parts (product rule backwards) The product rule states Integrating both sides gives f(x)g(x) = d dx f(x)g(x) = f(x)g (x) + f (x)g(x). f(x)g (x)dx + Letting f(x) = u, g(x) = v, and rearranging,

More information

MATH 104 FINAL EXAM SOLUTIONS. x dy dx + y = 2, x > 1, y(e) = 3. Answer: First, re-write in standard form: dy dx + 1

MATH 104 FINAL EXAM SOLUTIONS. x dy dx + y = 2, x > 1, y(e) = 3. Answer: First, re-write in standard form: dy dx + 1 MATH 4 FINAL EXAM SOLUTIONS CLAY SHONKWILER () Solve the initial value problem x dy dx + y =, x >, y(e) =. Answer: First, re-write in standard form: dy dx + x y = x. Then P (x) = x and Q(x) = x. Hence,

More information

Math F15 Rahman

Math F15 Rahman Math - 9 F5 Rahman Week3 7.3 Hyperbolic Functions Hyperbolic functions are similar to trigonometric functions, and have the following definitions: sinh x = (ex e x ) cosh x = (ex + e x ) tanh x = sinh

More information

Substitutions and by Parts, Area Between Curves. Goals: The Method of Substitution Areas Integration by Parts

Substitutions and by Parts, Area Between Curves. Goals: The Method of Substitution Areas Integration by Parts Week #7: Substitutions and by Parts, Area Between Curves Goals: The Method of Substitution Areas Integration by Parts 1 Week 7 The Indefinite Integral The Fundamental Theorem of Calculus, b a f(x) dx =

More information

MATH 1010E University Mathematics Lecture Notes (week 8) Martin Li

MATH 1010E University Mathematics Lecture Notes (week 8) Martin Li MATH 1010E University Mathematics Lecture Notes (week 8) Martin Li 1 L Hospital s Rule Another useful application of mean value theorems is L Hospital s Rule. It helps us to evaluate its of indeterminate

More information

Math 181, Exam 2, Fall 2014 Problem 1 Solution. sin 3 (x) cos(x) dx.

Math 181, Exam 2, Fall 2014 Problem 1 Solution. sin 3 (x) cos(x) dx. Math 8, Eam 2, Fall 24 Problem Solution. Integrals, Part I (Trigonometric integrals: 6 points). Evaluate the integral: sin 3 () cos() d. Solution: We begin by rewriting sin 3 () as Then, after using the

More information

MATH 250 TOPIC 13 INTEGRATION. 13B. Constant, Sum, and Difference Rules

MATH 250 TOPIC 13 INTEGRATION. 13B. Constant, Sum, and Difference Rules Math 5 Integration Topic 3 Page MATH 5 TOPIC 3 INTEGRATION 3A. Integration of Common Functions Practice Problems 3B. Constant, Sum, and Difference Rules Practice Problems 3C. Substitution Practice Problems

More information

5.5. The Substitution Rule

5.5. The Substitution Rule INTEGRALS 5 INTEGRALS 5.5 The Substitution Rule In this section, we will learn: To substitute a new variable in place of an existing expression in a function, making integration easier. INTRODUCTION Due

More information

Handout 1. Research shows that students learn when they MAKE MISTAKES and not when they get it right. SO MAKE MISTAKES, because MISTAKES ARE GOOD!

Handout 1. Research shows that students learn when they MAKE MISTAKES and not when they get it right. SO MAKE MISTAKES, because MISTAKES ARE GOOD! Handout Research shows that students learn when they MAKE MISTAKES and not when they get it right. SO MAKE MISTAKES, because MISTAKES ARE GOOD! Review:. The Substitution Rule Indefinite f (g()) g ()d =

More information

Page 1. These are all fairly simple functions in that wherever the variable appears it is by itself. What about functions like the following, ( ) ( )

Page 1. These are all fairly simple functions in that wherever the variable appears it is by itself. What about functions like the following, ( ) ( ) Chain Rule Page We ve taken a lot of derivatives over the course of the last few sections. However, if you look back they have all been functions similar to the following kinds of functions. 0 w ( ( tan

More information

MA1131 Lecture 15 (2 & 3/12/2010) 77. dx dx v + udv dx. (uv) = v du dx dx + dx dx dx

MA1131 Lecture 15 (2 & 3/12/2010) 77. dx dx v + udv dx. (uv) = v du dx dx + dx dx dx MA3 Lecture 5 ( & 3//00) 77 0.3. Integration by parts If we integrate both sides of the proct rule we get d (uv) dx = dx or uv = d (uv) = dx dx v + udv dx v dx dx + v dx dx + u dv dx dx u dv dx dx This

More information

A1. Let r > 0 be constant. In this problem you will evaluate the following integral in two different ways: r r 2 x 2 dx

A1. Let r > 0 be constant. In this problem you will evaluate the following integral in two different ways: r r 2 x 2 dx Math 6 Summer 05 Homework 5 Solutions Drew Armstrong Book Problems: Chap.5 Eercises, 8, Chap 5. Eercises 6, 0, 56 Chap 5. Eercises,, 6 Chap 5.6 Eercises 8, 6 Chap 6. Eercises,, 30 Additional Problems:

More information

Example. Evaluate. 3x 2 4 x dx.

Example. Evaluate. 3x 2 4 x dx. 3x 2 4 x 3 + 4 dx. Solution: We need a new technique to integrate this function. Notice that if we let u x 3 + 4, and we compute the differential du of u, we get: du 3x 2 dx Going back to our integral,

More information

Homework Solutions: , plus Substitutions

Homework Solutions: , plus Substitutions Homework Solutions: 2.-2.2, plus Substitutions Section 2. I have not included any drawings/direction fields. We can see them using Maple or by hand, so we ll be focusing on getting the analytic solutions

More information

Integration Techniques for the AB exam

Integration Techniques for the AB exam For the AB eam, students need to: determine antiderivatives of the basic functions calculate antiderivatives of functions using u-substitution use algebraic manipulation to rewrite the integrand prior

More information

Lecture 7: Differential Equations

Lecture 7: Differential Equations Math 94 Professor: Padraic Bartlett Lecture 7: Differential Equations Week 7 UCSB 205 This is the seventh week of the Mathematics Subject Test GRE prep course; here, we review various techniques used to

More information

Chapter 6. Techniques of Integration. 6.1 Differential notation

Chapter 6. Techniques of Integration. 6.1 Differential notation Chapter 6 Techniques of Integration In this chapter, we expand our repertoire for antiderivatives beyond the elementary functions discussed so far. A review of the table of elementary antiderivatives (found

More information

Integration Using Tables and Summary of Techniques

Integration Using Tables and Summary of Techniques Integration Using Tables and Summary of Techniques Philippe B. Laval KSU Today Philippe B. Laval (KSU) Summary Today 1 / 13 Introduction We wrap up integration techniques by discussing the following topics:

More information

Lesson 53 Integration by Parts

Lesson 53 Integration by Parts 5/0/05 Lesson 53 Integration by Parts Lesson Objectives Use the method of integration by parts to integrate simple power, eponential, and trigonometric functions both in a mathematical contet and in a

More information

4.4 Using partial fractions

4.4 Using partial fractions CHAPTER 4. INTEGRATION 43 Eample 4.9. Compute ln d. (Classic A-Level question!) ln d ln d ln d (ln ) + C. Eample 4.0. Find I sin d. I sin d sin p d p sin. 4.4 Using partial fractions Sometimes we want

More information

x n cos 2x dx. dx = nx n 1 and v = 1 2 sin(2x). Andreas Fring (City University London) AS1051 Lecture Autumn / 36

x n cos 2x dx. dx = nx n 1 and v = 1 2 sin(2x). Andreas Fring (City University London) AS1051 Lecture Autumn / 36 We saw in Example 5.4. that we sometimes need to apply integration by parts several times in the course of a single calculation. Example 5.4.4: For n let S n = x n cos x dx. Find an expression for S n

More information

Section 7.4 #1, 5, 6, 8, 12, 13, 44, 53; Section 7.5 #7, 10, 11, 20, 22; Section 7.7 #1, 4, 10, 15, 22, 44

Section 7.4 #1, 5, 6, 8, 12, 13, 44, 53; Section 7.5 #7, 10, 11, 20, 22; Section 7.7 #1, 4, 10, 15, 22, 44 Math B Prof. Audrey Terras HW #4 Solutions Due Tuesday, Oct. 9 Section 7.4 #, 5, 6, 8,, 3, 44, 53; Section 7.5 #7,,,, ; Section 7.7 #, 4,, 5,, 44 7.4. Since 5 = 5 )5 + ), start with So, 5 = A 5 + B 5 +.

More information

OBJECTIVES Use the area under a graph to find total cost. Use rectangles to approximate the area under a graph.

OBJECTIVES Use the area under a graph to find total cost. Use rectangles to approximate the area under a graph. 4.1 The Area under a Graph OBJECTIVES Use the area under a graph to find total cost. Use rectangles to approximate the area under a graph. 4.1 The Area Under a Graph Riemann Sums (continued): In the following

More information

1993 AP Calculus AB: Section I

1993 AP Calculus AB: Section I 99 AP Calculus AB: Section I 90 Minutes Scientific Calculator Notes: () The eact numerical value of the correct answer does not always appear among the choices given. When this happens, select from among

More information

Calculus II Practice Test 1 Problems: , 6.5, Page 1 of 10

Calculus II Practice Test 1 Problems: , 6.5, Page 1 of 10 Calculus II Practice Test Problems: 6.-6.3, 6.5, 7.-7.3 Page of This is in no way an inclusive set of problems there can be other types of problems on the actual test. To prepare for the test: review homework,

More information

Practice Differentiation Math 120 Calculus I Fall 2015

Practice Differentiation Math 120 Calculus I Fall 2015 . x. Hint.. (4x 9) 4x + 9. Hint. Practice Differentiation Math 0 Calculus I Fall 0 The rules of differentiation are straightforward, but knowing when to use them and in what order takes practice. Although

More information

MAT 271 Recitation. MAT 271 Recitation. Sections 7.1 and 7.2. Lindsey K. Gamard, ASU SoMSS. 30 August 2013

MAT 271 Recitation. MAT 271 Recitation. Sections 7.1 and 7.2. Lindsey K. Gamard, ASU SoMSS. 30 August 2013 MAT 271 Recitation Sections 7.1 and 7.2 Lindsey K. Gamard, ASU SoMSS 30 August 2013 Agenda Today s agenda: 1. Review 2. Review Section 7.2 (Trigonometric Integrals) 3. (If time) Start homework in pairs

More information

Calculus II. Calculus II tends to be a very difficult course for many students. There are many reasons for this.

Calculus II. Calculus II tends to be a very difficult course for many students. There are many reasons for this. Preface Here are my online notes for my Calculus II course that I teach here at Lamar University. Despite the fact that these are my class notes they should be accessible to anyone wanting to learn Calculus

More information

MATH 101 Midterm Examination Spring 2009

MATH 101 Midterm Examination Spring 2009 MATH Midterm Eamination Spring 9 Date: May 5, 9 Time: 7 minutes Surname: (Please, print!) Given name(s): Signature: Instructions. This is a closed book eam: No books, no notes, no calculators are allowed!.

More information

Prelim 2 Math Please show your reasoning and all your work. This is a 90 minute exam. Calculators are not needed or permitted. Good luck!

Prelim 2 Math Please show your reasoning and all your work. This is a 90 minute exam. Calculators are not needed or permitted. Good luck! April 4, Prelim Math Please show your reasoning and all your work. This is a 9 minute exam. Calculators are not needed or permitted. Good luck! Trigonometric Formulas sin x sin x cos x cos (u + v) cos

More information

Math 106: Review for Exam II - SOLUTIONS

Math 106: Review for Exam II - SOLUTIONS Math 6: Review for Exam II - SOLUTIONS INTEGRATION TIPS Substitution: usually let u a function that s inside another function, especially if du (possibly off by a multiplying constant) is also present

More information

Section 5.6. Integration By Parts. MATH 126 (Section 5.6) Integration By Parts The University of Kansas 1 / 10

Section 5.6. Integration By Parts. MATH 126 (Section 5.6) Integration By Parts The University of Kansas 1 / 10 Section 5.6 Integration By Parts MATH 126 (Section 5.6) Integration By Parts The University of Kansas 1 / 10 Integration By Parts Manipulating the Product Rule d dx (f (x) g(x)) = f (x) g (x) + f (x) g(x)

More information

INTEGRATION: THE FUNDAMENTAL THEOREM OF CALCULUS MR. VELAZQUEZ AP CALCULUS

INTEGRATION: THE FUNDAMENTAL THEOREM OF CALCULUS MR. VELAZQUEZ AP CALCULUS INTEGRATION: THE FUNDAMENTAL THEOREM OF CALCULUS MR. VELAZQUEZ AP CALCULUS RECALL: ANTIDERIVATIVES When we last spoke of integration, we examined a physics problem where we saw that the area under the

More information

Differentiation of Logarithmic Functions

Differentiation of Logarithmic Functions Differentiation of Logarithmic Functions The rule for finding the derivative of a logarithmic function is given as: If y log a then dy or y. d a ( ln This rule can be proven by rewriting the logarithmic

More information

2t t dt.. So the distance is (t2 +6) 3/2

2t t dt.. So the distance is (t2 +6) 3/2 Math 8, Solutions to Review for the Final Exam Question : The distance is 5 t t + dt To work that out, integrate by parts with u t +, so that t dt du The integral is t t + dt u du u 3/ (t +) 3/ So the

More information

Integrated Calculus II Exam 1 Solutions 2/6/4

Integrated Calculus II Exam 1 Solutions 2/6/4 Integrated Calculus II Exam Solutions /6/ Question Determine the following integrals: te t dt. We integrate by parts: u = t, du = dt, dv = e t dt, v = dv = e t dt = e t, te t dt = udv = uv vdu = te t (

More information

Integration Techniques for the BC exam

Integration Techniques for the BC exam Integration Techniques for the B eam For the B eam, students need to: determine antiderivatives of the basic functions calculate antiderivatives of functions using u-substitution use algebraic manipulation

More information

Exploring Substitution

Exploring Substitution I. Introduction Exploring Substitution Math Fall 08 Lab We use the Fundamental Theorem of Calculus, Part to evaluate a definite integral. If f is continuous on [a, b] b and F is any antiderivative of f

More information

Lecture 31 INTEGRATION

Lecture 31 INTEGRATION Lecture 3 INTEGRATION Substitution. Example. x (let u = x 3 +5 x3 +5 du =3x = 3x 3 x 3 +5 = du 3 u du =3x ) = 3 u du = 3 u = 3 u = 3 x3 +5+C. Example. du (let u =3x +5 3x+5 = 3 3 3x+5 =3 du =3.) = 3 du

More information

The Definite Integral. Day 5 The Fundamental Theorem of Calculus (Evaluative Part)

The Definite Integral. Day 5 The Fundamental Theorem of Calculus (Evaluative Part) The Definite Integral Day 5 The Fundamental Theorem of Calculus (Evaluative Part) Practice with Properties of Integrals 5 Given f d 5 f d 3. 0 5 5. 0 5 5 3. 0 0. 5 f d 0 f d f d f d - 0 8 5 F 3 t dt

More information

Math 102 Spring 2008: Solutions: HW #3 Instructor: Fei Xu

Math 102 Spring 2008: Solutions: HW #3 Instructor: Fei Xu Math Spring 8: Solutions: HW #3 Instructor: Fei Xu. section 7., #8 Evaluate + 3 d. + We ll solve using partial fractions. If we assume 3 A + B + C, clearing denominators gives us A A + B B + C +. Then

More information

Review of elements of Calculus (functions in one variable)

Review of elements of Calculus (functions in one variable) Review of elements of Calculus (functions in one variable) Mainly adapted from the lectures of prof Greg Kelly Hanford High School, Richland Washington http://online.math.uh.edu/houstonact/ https://sites.google.com/site/gkellymath/home/calculuspowerpoints

More information

Techniques of Integration

Techniques of Integration Chapter 8 Techniques of Integration 8. Trigonometric Integrals Summary (a) Integrals of the form sin m x cos n x. () sin k+ x cos n x = ( cos x) k cos n x (sin x ), then apply the substitution u = cos

More information

Solutions for the Practice Final - Math 23B, 2016

Solutions for the Practice Final - Math 23B, 2016 olutions for the Practice Final - Math B, 6 a. True. The area of a surface is given by the expression d, and since we have a parametrization φ x, y x, y, f x, y with φ, this expands as d T x T y da xy

More information

Math 122 Fall Unit Test 1 Review Problems Set A

Math 122 Fall Unit Test 1 Review Problems Set A Math Fall 8 Unit Test Review Problems Set A We have chosen these problems because we think that they are representative of many of the mathematical concepts that we have studied. There is no guarantee

More information

Test 2 - Answer Key Version A

Test 2 - Answer Key Version A MATH 8 Student s Printed Name: Instructor: CUID: Section: Fall 27 8., 8.2,. -.4 Instructions: You are not permitted to use a calculator on any portion of this test. You are not allowed to use any textbook,

More information

MA Spring 2013 Lecture Topics

MA Spring 2013 Lecture Topics LECTURE 1 Chapter 12.1 Coordinate Systems Chapter 12.2 Vectors MA 16200 Spring 2013 Lecture Topics Let a,b,c,d be constants. 1. Describe a right hand rectangular coordinate system. Plot point (a,b,c) inn

More information

dx. Ans: y = tan x + x2 + 5x + C

dx. Ans: y = tan x + x2 + 5x + C Chapter 7 Differential Equations and Mathematical Modeling If you know one value of a function, and the rate of change (derivative) of the function, then yu can figure out many things about the function.

More information

Chapter 8: Techniques of Integration

Chapter 8: Techniques of Integration Chapter 8: Techniques of Integration Section 8.1 Integral Tables and Review a. Important Integrals b. Example c. Integral Tables Section 8.2 Integration by Parts a. Formulas for Integration by Parts b.

More information

SYDE 112, LECTURE 7: Integration by Parts

SYDE 112, LECTURE 7: Integration by Parts SYDE 112, LECTURE 7: Integration by Parts 1 Integration By Parts Consider trying to take the integral of xe x dx. We could try to find a substitution but would quickly grow frustrated there is no substitution

More information

Section 4.8 Anti Derivative and Indefinite Integrals 2 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I

Section 4.8 Anti Derivative and Indefinite Integrals 2 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I Section 4.8 Anti Derivative and Indefinite Integrals 2 Lectures College of Science MATHS 101: Calculus I (University of Bahrain) 1 / 28 Indefinite Integral Given a function f, if F is a function such that

More information

( ) ( ) ( ) 2 6A: Special Trig Limits! Math 400

( ) ( ) ( ) 2 6A: Special Trig Limits! Math 400 2 6A: Special Trig Limits Math 400 This section focuses entirely on the its of 2 specific trigonometric functions. The use of Theorem and the indeterminate cases of Theorem are all considered. a The it

More information

Lecture 5: Integrals and Applications

Lecture 5: Integrals and Applications Lecture 5: Integrals and Applications Lejla Batina Institute for Computing and Information Sciences Digital Security Version: spring 2012 Lejla Batina Version: spring 2012 Wiskunde 1 1 / 21 Outline The

More information