M152: Calculus II Midterm Exam Review

Size: px
Start display at page:

Download "M152: Calculus II Midterm Exam Review"

Transcription

1 M52: Calculus II Midterm Exam Review Chapter : Mean Value Theorem. - Know the statement and idea of Mean Value Theorem. - Know how to find values of c making the theorem true. - Realize the importance of the Mean Value Theorem for the Fundamental Theorem of Calculus. - Know that the only functions with f (x) = are constant functions. 4.9 : Antiderivatives. - Know how to find basic antiderivatives (including guessing). - Understand how to use an initial condition to find a particular antiderivative (instead of a general family). - Know all the basic rules for finding antiderivatives. Chapter : Areas. - Understand how to find approximate areas under curves given by data and by functions. - Know how to use rectangles to approximate areas under curves using right (or left) endpoints. - Understand summation notation and how to use it. - Recognize the role the limit plays in finding areas. 5.2 : The Definite Integral. - Understand the notation for the definite integral: b a f(x). - Know the definition of the definite integral using sums (same as in 5.). - Be able to find the definite integral of basic functions using the definition. - Understand how to manipulate sums to help evaluate a limit (pg. 38). - Know how to find general points x i as well as x for given problems. - Know how to find the definite integral by interpreting the area geometrically. - Know the properties of the definite integral (pg ). - Understand what the definite integral computes ( signed area ). 5.3 : Fundamental Theorem. - Know the statement of the Fundamental Theorem of Calculus and why it s important. - Understand how to interpret the function g(x) = x a f(t)dt. - Be able to apply the FTC to find derivatives of functions like the one above. Understand the role of the chain rule. - Understand the inverse process between derivatives and integrals. - Know that there are situations where the FTC cannot be used. - Be able to use the FTC to evaluate definite integrals using antiderivatives. 5.4 : Indefinite Integrals. - Understand the notation for the indefinite integral: f(x). - Understand the difference between b a f(x) and f(x). - Be able to clearly describe the two notations given above. - Know all of the basic indefinite integrals and rules for indefinite integrals (pg. 43). - Understand that a definite integral measures net change. - Be able to use definite integrals to measure total distance traveled as well as displacement. - Be comfortable with interpreting information from graphs to figure out different areas.

2 2 5.5 : Substitution. - Understand how to perform substitutions to evaluate indefinite and definite integrals. - Be able to try different substitutitions to find the right answer. - Understand that when substituting you must make sure every part of the integral gets changed to the new variable. - Understand that substitution is changing your frame of reference and that there are many consequences of your choice for a substitution. - Be comfortable working both symbolically and with real functions. - Know how to interpret definite integrals for even and odd functions. Chapter : Area Between Curves. - Know how to find the area between two curves by interpreting the area as an indefinite integral. - Understand how the area depends on the situation of the problem (which curve is on top) and that you may have to break problems up in to pieces to solve them. - Be comfortable setting up area problems as definite integrals and then solving these integrals. - Understand the difference of using y as a independent variable instead of x in order to make some problems easier. - Know how to find intersection points of curves to break problems into pieces. 6.2 & 6.3 : Volumes. - Understand how to interpret distances using the x-y coordinate system. - Be comfortable working with small cross-sections (i.e. differential elements) and understanding how to produce geometric information about these elements. - Understand the different shapes that these differential elements form depending how you rotate them. - Know how to find areas of the different shapes produced by the differential elements. - Know how to find the volume of a differential element depending on a particular problem. - Understand the role the definite integral plays in finding the volume of a solid. - Be comfortable with drawing graphs of functions and understanding intersection points as well as what rotation about an axis means. - Understand how to think about cross-sections (as above) and determine information. - Be comfortable working with x or y as your variable (depending on different situations). Chapter : Integration by Parts. - Know how integration by parts works and where it comes from. - Understand the integration by parts formula and how to use it. - Be comfortable using integration by parts multiple times and looking for patterns. - Be comfortable using integration by parts to find definite integrals. 7.2 : Trigonometry Identities. - Be comfortable with the major trigonometry identities (they will be supplied for you, but be comfortable with them). - Be able to find integrals of the form cos m (x) sin n (x) using identities and substitution. - Be able to find integrals of the form sec m (x) tan n (x) using identities and substitution. - Be comfortable with the basic integrals for sin(x), cos(x), sec(x), and csc(x). - Understand how to use the double angle identities (e.g. sin 2 (x) = 2 2 cos(2x)). 7.3 : Substitution with Trigonometric Functions. - Know how to recognize expressions that look like the three standard trigonometry identities. - Be comfortable substituting trigonometric functions (sin(θ), sec(θ) or tan(θ)) for x. - Know how the trig functions relate to a right triangle and be able to get necessary information from these triangles.

3 Review Problems. Please note that these are examples of problems. Do not expect to see exactly the same problems on the exam with different numbers. I expect some amount of problem solving on the exam. Also, do not expect the exam to be anywhere near as long as this set. Before Quiz. () What are the antiderivatives of the following basic functions (find the general form): 3 (a) f(x) = cos(x) (b) g(x) = x 2/3 (c) h(x) = 4x 7 + x (d) f(x) = sec 2 (x). (e) g(x) = x 2 (f) h(x) = e x sin(x) sec(x) tan(x) (2) Suppose that F (x) = 32x 3 + e x. Find F (x) satisfying F () = 5. (3) When we estimate distances from velocity data (as the area under the graph of velocity), it is sometimes necessary to use times t, t,... that are not equally spaced. Use the following data and right endpoints to estimate the distance above earth of the space shuttle Endeavour 62 seconds after liftoff. Time Velocity Hint: remember you are using rectangles, but the bases may be different for each rectangle. (4) Using the definition, write the expression for 8 (5) Use the definition of the definite integral to compute (6) Based on your previous answer, what is 2 (7) Using the definition of the definite integral, compute negative? (8) Explain what is meant by of Calculus. 6 (9) Draw a graph of f(x) = x 2. Determine () Let h(x) = () Compute d (2) Suppose that (3) Suppose that x x 2 ln(x) (you do not need to compute this). 2 (x 2 + ). (x 2 + )? How do you know? 2 (x 4). Can you explain why your answer is (x + 3). Compute this without using limits or the Fundamental Theorem sin(t) cos(t)dt. Find h (x). [ x (4u ln(u) + e 4u ]. u 3 )du b a 7 4 g(x) = and f(x) = 2 and c a 4 (4) Explain in your own words what is meant by f(x). g(x) = 3. Determine g(x) =. Determine b a q(x). c b 7 4 g(x). (f(x) g(x)).

4 4 (5) Can you use the Fundamental Theorem of Calculus to compute 5 5 x? (6) Explain how you would use the Fundamental Theorem of Calculus to compute these instructions? Why or why not? (7) Explain the importance of the Fundamental Theorem of Calculus. (8) Describe the function g(x) = x (9) In your own words describe the notation t 2 dt. You may use a picture if necessary. x 7 and what it means. 9 ln(x). Can you follow (2) Find the following integrals using any method you want: x x (a) (i) x (b) 5x (j) (c) (sin 2 (x) + cos 2 (x)) (k) (d) cot(x) (l) tan(x) sec 99 (x) 8 5 (x + 4x cos(x 2 )) x 3 x sin(x). cos(5x + 3) (e) (f) (g) (h) e t + 5 dt 8 5 e t (x 2 + 3x 2 ln(x)) cos(x 3 ln(x)) e 8x (x + ) + 2x + x 2 (m) (n) (o) (p) x 2 x 6 sec(θ) tan(θ) π + sec(θ) dθ π cos(x)f(sin(x)) 6 4x (2) Use algebra, trigonometry and substitution to explain why (22) Can we find (23) Find (24) Find e x dt. e π. (25) Suppose that Post Quiz. 4 e x2 using the tools we have? Explain how or why not. x 3 e x = 862. Find 6 3xe x. () Find the area bounded by the curves x = y 2 2, y =, y = and x = e y. (2) Find the area enclosed by the curves y = x 3 x + 6 and y = 3x + 6. π 2xe x 2 represents the same area as e sin(x) sin(2x)

5 (3) Use definite integrals to find the area bound by the curves y = x, y = 2 2x and y =. Check your answer using geometry. (4) The following is a graph of f(x) = x 5 (a) Suppose we take the region bounded by y = x, x = and x = 6 and rotate the region around the x-axis. Describe this by drawing a picture. (b) Draw a picture of a differential element being rotated the same way. (c) Find the volume of the solid drawn above. (d) Repeat the process, but revolve the region around the y-axis this time. (e) What is different between the two previous processes? (5) Below is a graph of the functions y = 6x, y = 3x and y = 3. (a) Find the volume of the solid when rotating around the y-axis. (b) Find the volume of the solid when rotating around the x-axis. (6) Find the volume of the solid generated by rotating the region bounded by y = x 2, y = and x = around the line x = 2. (7) Plot f(x) = cos(x) over the interval [ π 2, 3π ] 2. Find the volume of the solid obtained by rotating this region about the x-axis. Do the same for rotating about the y-axis. (8) Find the following indefinite integrals: (a) x sin(πx). (b) e x sin(x). (c) sin 5 (x) cos(x). (d) sin 2 (x) cos 2 (x). (e) sin 4 (x) cos 5 (x). (f) x x 2 8 (g) x 2 +4 x (h) 6 x 2

6 6 (9) Find the following definite integrals: (a) e x2 ln(x). (b) ex sin(x). (c) π sin2 (t) cos 2 (t)dt. (d) 5 (e) 2 5x 2 x 2 +4 x (f) x 2. () Draw the area for the region described in part f of the previous problem. Do you know a geometry formula for this area or not? () Suppose that 5 (2) Find 2 2t (t 3) 2 dt. x = M. Find 4x+ in terms of M. (3) We know that t t dt = 2 t + ln( t ) ln( t + ) + C. Find 4 + e x. (4) Suppose that ex sec 2 (x) = (according to a computer). Find ex tan(x). (5) Find π/3 π/4 ln(tan(x)) sin(x) cos(x). (6) For the following integrals, say which integration technique you would employ (or try) first. (a) tan (x) x 2. (b) e x + e 2x (c) (π 7 + ) (d) x 2 +x 2 (e) x 2 +x 2 (f) sin 3 (x) cos 5 (x). (g) x 3 cos(x). (h) 3 ( t 2 ) 3 2 dt (7) If we use integration by parts with u = x to evaluate x sec(x) tan(x), what integral are we left with determining instead?

Math 1552: Integral Calculus Final Exam Study Guide, Spring 2018

Math 1552: Integral Calculus Final Exam Study Guide, Spring 2018 Math 55: Integral Calculus Final Exam Study Guide, Spring 08 PART : Concept Review (Note: concepts may be tested on the exam in the form of true/false or short-answer questions.). Complete each statement

More information

Section 4.4. Using the Fundamental Theorem. Difference Equations to Differential Equations

Section 4.4. Using the Fundamental Theorem. Difference Equations to Differential Equations Difference Equations to Differential Equations Section 4.4 Using the Fundamental Theorem As we saw in Section 4.3, using the Fundamental Theorem of Integral Calculus reduces the problem of evaluating a

More information

There are some trigonometric identities given on the last page.

There are some trigonometric identities given on the last page. MA 114 Calculus II Fall 2015 Exam 4 December 15, 2015 Name: Section: Last 4 digits of student ID #: No books or notes may be used. Turn off all your electronic devices and do not wear ear-plugs during

More information

Math 152 Take Home Test 1

Math 152 Take Home Test 1 Math 5 Take Home Test Due Monday 5 th October (5 points) The following test will be done at home in order to ensure that it is a fair and representative reflection of your own ability in mathematics I

More information

Fall 2016, MA 252, Calculus II, Final Exam Preview Solutions

Fall 2016, MA 252, Calculus II, Final Exam Preview Solutions Fall 6, MA 5, Calculus II, Final Exam Preview Solutions I will put the following formulas on the front of the final exam, to speed up certain problems. You do not need to put them on your index card, and

More information

Learning Objectives for Math 165

Learning Objectives for Math 165 Learning Objectives for Math 165 Chapter 2 Limits Section 2.1: Average Rate of Change. State the definition of average rate of change Describe what the rate of change does and does not tell us in a given

More information

Practice problems from old exams for math 132 William H. Meeks III

Practice problems from old exams for math 132 William H. Meeks III Practice problems from old exams for math 32 William H. Meeks III Disclaimer: Your instructor covers far more materials that we can possibly fit into a four/five questions exams. These practice tests are

More information

Using this definition, it is possible to define an angle of any (positive or negative) measurement by recognizing how its terminal side is obtained.

Using this definition, it is possible to define an angle of any (positive or negative) measurement by recognizing how its terminal side is obtained. Angle in Standard Position With the Cartesian plane, we define an angle in Standard Position if it has its vertex on the origin and one of its sides ( called the initial side ) is always on the positive

More information

Inverse Trig Functions

Inverse Trig Functions 6.6i Inverse Trigonometric Functions Inverse Sine Function Does g(x) = sin(x) have an inverse? What restriction would we need to make so that at least a piece of this function has an inverse? Given f (x)

More information

b n x n + b n 1 x n b 1 x + b 0

b n x n + b n 1 x n b 1 x + b 0 Math Partial Fractions Stewart 7.4 Integrating basic rational functions. For a function f(x), we have examined several algebraic methods for finding its indefinite integral (antiderivative) F (x) = f(x)

More information

Chapter 5 Integrals. 5.1 Areas and Distances

Chapter 5 Integrals. 5.1 Areas and Distances Chapter 5 Integrals 5.1 Areas and Distances We start with a problem how can we calculate the area under a given function ie, the area between the function and the x-axis? If the curve happens to be something

More information

Spring 2015, MA 252, Calculus II, Final Exam Preview Solutions

Spring 2015, MA 252, Calculus II, Final Exam Preview Solutions Spring 5, MA 5, Calculus II, Final Exam Preview Solutions I will put the following formulas on the front of the final exam, to speed up certain problems. You do not need to put them on your index card,

More information

AP CALCULUS SUMMER WORKSHEET

AP CALCULUS SUMMER WORKSHEET AP CALCULUS SUMMER WORKSHEET DUE: First Day of School, 2011 Complete this assignment at your leisure during the summer. I strongly recommend you complete a little each week. It is designed to help you

More information

Welcome to AP Calculus!!!

Welcome to AP Calculus!!! Welcome to AP Calculus!!! In preparation for next year, you need to complete this summer packet. This packet reviews & expands upon the concepts you studied in Algebra II and Pre-calculus. Make sure you

More information

Math 226 Calculus Spring 2016 Exam 2V1

Math 226 Calculus Spring 2016 Exam 2V1 Math 6 Calculus Spring 6 Exam V () (35 Points) Evaluate the following integrals. (a) (7 Points) tan 5 (x) sec 3 (x) dx (b) (8 Points) cos 4 (x) dx Math 6 Calculus Spring 6 Exam V () (Continued) Evaluate

More information

(e) 2 (f) 2. (c) + (d). Limits at Infinity. 2.5) 9-14,25-34,41-43,46-47,56-57, (c) (d) 2

(e) 2 (f) 2. (c) + (d). Limits at Infinity. 2.5) 9-14,25-34,41-43,46-47,56-57, (c) (d) 2 Math 150A. Final Review Answers, Spring 2018. Limits. 2.2) 7-10, 21-24, 28-1, 6-8, 4-44. 1. Find the values, or state they do not exist. (a) (b) 1 (c) DNE (d) 1 (e) 2 (f) 2 (g) 2 (h) 4 2. lim f(x) = 2,

More information

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle! 1. (a) (b) (c) (d) (e) 2. (a) (b) (c) (d) (e) (a) (b) (c) (d) (e) 4. (a) (b) (c) (d) (e)...

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle! 1. (a) (b) (c) (d) (e) 2. (a) (b) (c) (d) (e) (a) (b) (c) (d) (e) 4. (a) (b) (c) (d) (e)... Math, Exam III November 6, 7 The Honor Code is in effect for this examination. All work is to be your own. No calculators. The exam lasts for hour and min. Be sure that your name is on every page in case

More information

a x a y = a x+y a x a = y ax y (a x ) r = a rx and log a (xy) = log a (x) + log a (y) log a ( x y ) = log a(x) log a (y) log a (x r ) = r log a (x).

a x a y = a x+y a x a = y ax y (a x ) r = a rx and log a (xy) = log a (x) + log a (y) log a ( x y ) = log a(x) log a (y) log a (x r ) = r log a (x). You should prepare the following topics for our final exam. () Pre-calculus. (2) Inverses. (3) Algebra of Limits. (4) Derivative Formulas and Rules. (5) Graphing Techniques. (6) Optimization (Maxima and

More information

5 Integrals reviewed Basic facts U-substitution... 4

5 Integrals reviewed Basic facts U-substitution... 4 Contents 5 Integrals reviewed 5. Basic facts............................... 5.5 U-substitution............................. 4 6 Integral Applications 0 6. Area between two curves.......................

More information

MATH 162 R E V I E W F I N A L E X A M FALL 2016

MATH 162 R E V I E W F I N A L E X A M FALL 2016 MATH 6 R E V I E W F I N A L E X A M FALL 06 BASICS Graphs. Be able to graph basic functions, such as polynomials (eg, f(x) = x 3 x, x + ax + b, x(x ) (x + ) 3, know about the effect of multiplicity of

More information

MATH 408N PRACTICE FINAL

MATH 408N PRACTICE FINAL 05/05/2012 Bormashenko MATH 408N PRACTICE FINAL Name: TA session: Show your work for all the problems. Good luck! (1) Calculate the following limits, using whatever tools are appropriate. State which results

More information

Mth Review Problems for Test 2 Stewart 8e Chapter 3. For Test #2 study these problems, the examples in your notes, and the homework.

Mth Review Problems for Test 2 Stewart 8e Chapter 3. For Test #2 study these problems, the examples in your notes, and the homework. For Test # study these problems, the examples in your notes, and the homework. Derivative Rules D [u n ] = nu n 1 du D [ln u] = du u D [log b u] = du u ln b D [e u ] = e u du D [a u ] = a u ln a du D [sin

More information

Integrals. D. DeTurck. January 1, University of Pennsylvania. D. DeTurck Math A: Integrals 1 / 61

Integrals. D. DeTurck. January 1, University of Pennsylvania. D. DeTurck Math A: Integrals 1 / 61 Integrals D. DeTurck University of Pennsylvania January 1, 2018 D. DeTurck Math 104 002 2018A: Integrals 1 / 61 Integrals Start with dx this means a little bit of x or a little change in x If we add up

More information

Chapter 5: Integrals

Chapter 5: Integrals Chapter 5: Integrals Section 5.3 The Fundamental Theorem of Calculus Sec. 5.3: The Fundamental Theorem of Calculus Fundamental Theorem of Calculus: Sec. 5.3: The Fundamental Theorem of Calculus Fundamental

More information

Section 4.8 Anti Derivative and Indefinite Integrals 2 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I

Section 4.8 Anti Derivative and Indefinite Integrals 2 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I Section 4.8 Anti Derivative and Indefinite Integrals 2 Lectures College of Science MATHS 101: Calculus I (University of Bahrain) 1 / 28 Indefinite Integral Given a function f, if F is a function such that

More information

Math 180, Final Exam, Fall 2012 Problem 1 Solution

Math 180, Final Exam, Fall 2012 Problem 1 Solution Math 80, Final Exam, Fall 0 Problem Solution. Find the derivatives of the following functions: (a) ln(ln(x)) (b) x 6 + sin(x) e x (c) tan(x ) + cot(x ) (a) We evaluate the derivative using the Chain Rule.

More information

CK- 12 Algebra II with Trigonometry Concepts 1

CK- 12 Algebra II with Trigonometry Concepts 1 14.1 Graphing Sine and Cosine 1. A.,1 B. (, 1) C. 3,0 D. 11 1, 6 E. (, 1) F. G. H. 11, 4 7, 1 11, 3. 3. 5 9,,,,,,, 4 4 4 4 3 5 3, and, 3 3 CK- 1 Algebra II with Trigonometry Concepts 1 4.ans-1401-01 5.

More information

MATH 1080 Test 2 -Version A-SOLUTIONS Fall a. (8 pts) Find the exact length of the curve on the given interval.

MATH 1080 Test 2 -Version A-SOLUTIONS Fall a. (8 pts) Find the exact length of the curve on the given interval. MATH 8 Test -Version A-SOLUTIONS Fall 4. Consider the curve defined by y = ln( sec x), x. a. (8 pts) Find the exact length of the curve on the given interval. sec x tan x = = tan x sec x L = + tan x =

More information

MATH 250 TOPIC 13 INTEGRATION. 13B. Constant, Sum, and Difference Rules

MATH 250 TOPIC 13 INTEGRATION. 13B. Constant, Sum, and Difference Rules Math 5 Integration Topic 3 Page MATH 5 TOPIC 3 INTEGRATION 3A. Integration of Common Functions Practice Problems 3B. Constant, Sum, and Difference Rules Practice Problems 3C. Substitution Practice Problems

More information

Mathematics 1052, Calculus II Exam 1, April 3rd, 2010

Mathematics 1052, Calculus II Exam 1, April 3rd, 2010 Mathematics 5, Calculus II Exam, April 3rd,. (8 points) If an unknown function y satisfies the equation y = x 3 x + 4 with the condition that y()=, then what is y? Solution: We must integrate y against

More information

Questions from Larson Chapter 4 Topics. 5. Evaluate

Questions from Larson Chapter 4 Topics. 5. Evaluate Math. Questions from Larson Chapter 4 Topics I. Antiderivatives. Evaluate the following integrals. (a) x dx (4x 7) dx (x )(x + x ) dx x. A projectile is launched vertically with an initial velocity of

More information

Solutions to Math 41 Final Exam December 10, 2012

Solutions to Math 41 Final Exam December 10, 2012 Solutions to Math 4 Final Exam December,. ( points) Find each of the following limits, with justification. If there is an infinite limit, then explain whether it is or. x ln(t + ) dt (a) lim x x (5 points)

More information

MA 113 Calculus I Fall 2016 Exam Final Wednesday, December 14, True/False 1 T F 2 T F 3 T F 4 T F 5 T F. Name: Section:

MA 113 Calculus I Fall 2016 Exam Final Wednesday, December 14, True/False 1 T F 2 T F 3 T F 4 T F 5 T F. Name: Section: MA 113 Calculus I Fall 2016 Exam Final Wednesday, December 14, 2016 Name: Section: Last 4 digits of student ID #: This exam has five true/false questions (two points each), ten multiple choice questions

More information

One of the powerful themes in trigonometry is that the entire subject emanates from a very simple idea: locating a point on the unit circle.

One of the powerful themes in trigonometry is that the entire subject emanates from a very simple idea: locating a point on the unit circle. 2.24 Tanz and the Reciprocals Derivatives of Other Trigonometric Functions One of the powerful themes in trigonometry is that the entire subject emanates from a very simple idea: locating a point on the

More information

Math Final Exam Review

Math Final Exam Review Math - Final Exam Review. Find dx x + 6x +. Name: Solution: We complete the square to see if this function has a nice form. Note we have: x + 6x + (x + + dx x + 6x + dx (x + + Note that this looks a lot

More information

Practice Exam I. Summer Term I Kostadinov. MA124 Calculus II Boston University

Practice Exam I. Summer Term I Kostadinov. MA124 Calculus II Boston University student: Practice Exam I Problem 1: Find the derivative of the functions T 1 (x), T 2 (x), T 3 (x). State the reason of your answers. a) T 1 (x) = x 2t dt 2 b) T 2 (x) = e x ln(t2 )dt c) T 3 (x) = x 2

More information

Integration by Substitution

Integration by Substitution Integration by Substitution Dr. Philippe B. Laval Kennesaw State University Abstract This handout contains material on a very important integration method called integration by substitution. Substitution

More information

Chapter 1. Functions 1.3. Trigonometric Functions

Chapter 1. Functions 1.3. Trigonometric Functions 1.3 Trigonometric Functions 1 Chapter 1. Functions 1.3. Trigonometric Functions Definition. The number of radians in the central angle A CB within a circle of radius r is defined as the number of radius

More information

f(x) g(x) = [f (x)g(x) dx + f(x)g (x)dx

f(x) g(x) = [f (x)g(x) dx + f(x)g (x)dx Chapter 7 is concerned with all the integrals that can t be evaluated with simple antidifferentiation. Chart of Integrals on Page 463 7.1 Integration by Parts Like with the Chain Rule substitutions with

More information

Grade: The remainder of this page has been left blank for your workings. VERSION E. Midterm E: Page 1 of 12

Grade: The remainder of this page has been left blank for your workings. VERSION E. Midterm E: Page 1 of 12 First Name: Student-No: Last Name: Section: Grade: The remainder of this page has been left blank for your workings. Midterm E: Page of Indefinite Integrals. 9 marks Each part is worth 3 marks. Please

More information

Calculus II (Fall 2015) Practice Problems for Exam 1

Calculus II (Fall 2015) Practice Problems for Exam 1 Calculus II (Fall 15) Practice Problems for Exam 1 Note: Section divisions and instructions below are the same as they will be on the exam, so you will have a better idea of what to expect, though I will

More information

1.4 Techniques of Integration

1.4 Techniques of Integration .4 Techniques of Integration Recall the following strategy for evaluating definite integrals, which arose from the Fundamental Theorem of Calculus (see Section.3). To calculate b a f(x) dx. Find a function

More information

PRELIM 2 REVIEW QUESTIONS Math 1910 Section 205/209

PRELIM 2 REVIEW QUESTIONS Math 1910 Section 205/209 PRELIM 2 REVIEW QUESTIONS Math 9 Section 25/29 () Calculate the following integrals. (a) (b) x 2 dx SOLUTION: This is just the area under a semicircle of radius, so π/2. sin 2 (x) cos (x) dx SOLUTION:

More information

Algebra 2/Trig AIIT.17 Trig Identities Notes. Name: Date: Block:

Algebra 2/Trig AIIT.17 Trig Identities Notes. Name: Date: Block: Algebra /Trig AIIT.7 Trig Identities Notes Mrs. Grieser Name: Date: Block: Trigonometric Identities When two trig expressions can be proven to be equal to each other, the statement is called a trig identity

More information

Derivative and Integral Rules These are on the inside of the back cover of your text.

Derivative and Integral Rules These are on the inside of the back cover of your text. Derivative and Integral Rules These are on the inside of the back cover of your text. General Derivative Rule General Integral Rule d dx u(x) r = r u(x) r - 1 u(x) u(x)r u(x) dx = u(x) r1 r1 + C r U -1

More information

Dear Future CALCULUS Student,

Dear Future CALCULUS Student, Dear Future CALCULUS Student, I am looking forward to teaching the AP Calculus AB class this coming year and hope that you are looking forward to the class as well. Here a few things you need to know prior

More information

MA1021 Calculus I B Term, Sign:

MA1021 Calculus I B Term, Sign: MA1021 Calculus I B Term, 2014 Final Exam Print Name: Sign: Write up your solutions neatly and show all your work. 1. (28 pts) Compute each of the following derivatives: You do not have to simplify your

More information

AP CALCULUS SUMMER WORKSHEET

AP CALCULUS SUMMER WORKSHEET AP CALCULUS SUMMER WORKSHEET DUE: First Day of School Aug. 19, 2010 Complete this assignment at your leisure during the summer. It is designed to help you become more comfortable with your graphing calculator,

More information

Friday 09/15/2017 Midterm I 50 minutes

Friday 09/15/2017 Midterm I 50 minutes Fa 17: MATH 2924 040 Differential and Integral Calculus II Noel Brady Friday 09/15/2017 Midterm I 50 minutes Name: Student ID: Instructions. 1. Attempt all questions. 2. Do not write on back of exam sheets.

More information

Math 230 Mock Final Exam Detailed Solution

Math 230 Mock Final Exam Detailed Solution Name: Math 30 Mock Final Exam Detailed Solution Disclaimer: This mock exam is for practice purposes only. No graphing calulators TI-89 is allowed on this test. Be sure that all of your work is shown and

More information

Prelim 1 Solutions V2 Math 1120

Prelim 1 Solutions V2 Math 1120 Feb., Prelim Solutions V Math Please show your reasoning and all your work. This is a 9 minute exam. Calculators are not needed or permitted. Good luck! Problem ) ( Points) Calculate the following: x a)

More information

The Fundamental Theorem of Calculus Part 3

The Fundamental Theorem of Calculus Part 3 The Fundamental Theorem of Calculus Part FTC Part Worksheet 5: Basic Rules, Initial Value Problems, Rewriting Integrands A. It s time to find anti-derivatives algebraically. Instead of saying the anti-derivative

More information

Multiple Choice Answers. MA 113 Calculus I Spring 2018 Exam 2 Tuesday, 6 March Question

Multiple Choice Answers. MA 113 Calculus I Spring 2018 Exam 2 Tuesday, 6 March Question MA 113 Calculus I Spring 2018 Exam 2 Tuesday, 6 March 2018 Name: Section: Last 4 digits of student ID #: This exam has 12 multiple choice questions (five points each) and 4 free response questions (ten

More information

Math Calculus II Homework # Due Date Solutions

Math Calculus II Homework # Due Date Solutions Math 35 - Calculus II Homework # - 007.08.3 Due Date - 007.09.07 Solutions Part : Problems from sections 7.3 and 7.4. Section 7.3: 9. + d We will use the substitution cot(θ, d csc (θ. This gives + + cot

More information

Calculus & Analytic Geometry I

Calculus & Analytic Geometry I TQS 124 Autumn 2008 Quinn Calculus & Analytic Geometry I The Derivative: Analytic Viewpoint Derivative of a Constant Function. For c a constant, the derivative of f(x) = c equals f (x) = Derivative of

More information

Dear Future CALCULUS Student,

Dear Future CALCULUS Student, Dear Future CALCULUS Student, I am looking forward to teaching the AP Calculus AB class this coming year and hope that you are looking forward to the class as well. Here a few things you need to know prior

More information

Section 5.6. Integration By Parts. MATH 126 (Section 5.6) Integration By Parts The University of Kansas 1 / 10

Section 5.6. Integration By Parts. MATH 126 (Section 5.6) Integration By Parts The University of Kansas 1 / 10 Section 5.6 Integration By Parts MATH 126 (Section 5.6) Integration By Parts The University of Kansas 1 / 10 Integration By Parts Manipulating the Product Rule d dx (f (x) g(x)) = f (x) g (x) + f (x) g(x)

More information

MATH 151 Engineering Mathematics I

MATH 151 Engineering Mathematics I MATH 151 Engineering Mathematics I Fall 2017, WEEK 14 JoungDong Kim Week 14 Section 5.4, 5.5, 6.1, Indefinite Integrals and the Net Change Theorem, The Substitution Rule, Areas Between Curves. Section

More information

Substitutions and by Parts, Area Between Curves. Goals: The Method of Substitution Areas Integration by Parts

Substitutions and by Parts, Area Between Curves. Goals: The Method of Substitution Areas Integration by Parts Week #7: Substitutions and by Parts, Area Between Curves Goals: The Method of Substitution Areas Integration by Parts 1 Week 7 The Indefinite Integral The Fundamental Theorem of Calculus, b a f(x) dx =

More information

MA 110 Algebra and Trigonometry for Calculus Spring 2017 Exam 3 Tuesday, 11 April Multiple Choice Answers EXAMPLE A B C D E.

MA 110 Algebra and Trigonometry for Calculus Spring 2017 Exam 3 Tuesday, 11 April Multiple Choice Answers EXAMPLE A B C D E. MA 110 Algebra and Trigonometry for Calculus Spring 017 Exam 3 Tuesday, 11 April 017 Multiple Choice Answers EXAMPLE A B C D E Question Name: Section: Last digits of student ID #: This exam has twelve

More information

WeBWorK assignment 1. b. Find the slope of the line passing through the points (10,1) and (0,2). 4.(1 pt) Find the equation of the line passing

WeBWorK assignment 1. b. Find the slope of the line passing through the points (10,1) and (0,2). 4.(1 pt) Find the equation of the line passing WeBWorK assignment Thought of the day: It s not that I m so smart; it s just that I stay with problems longer. Albert Einstein.( pt) a. Find the slope of the line passing through the points (8,4) and (,8).

More information

Multiple Choice Answers. MA 114 Calculus II Spring 2013 Final Exam 1 May Question

Multiple Choice Answers. MA 114 Calculus II Spring 2013 Final Exam 1 May Question MA 114 Calculus II Spring 2013 Final Exam 1 May 2013 Name: Section: Last 4 digits of student ID #: This exam has six multiple choice questions (six points each) and five free response questions with points

More information

Grade: The remainder of this page has been left blank for your workings. VERSION D. Midterm D: Page 1 of 12

Grade: The remainder of this page has been left blank for your workings. VERSION D. Midterm D: Page 1 of 12 First Name: Student-No: Last Name: Section: Grade: The remainder of this page has been left blank for your workings. Midterm D: Page of 2 Indefinite Integrals. 9 marks Each part is worth marks. Please

More information

Final Exam 2011 Winter Term 2 Solutions

Final Exam 2011 Winter Term 2 Solutions . (a Find the radius of convergence of the series: ( k k+ x k. Solution: Using the Ratio Test, we get: L = lim a k+ a k = lim ( k+ k+ x k+ ( k k+ x k = lim x = x. Note that the series converges for L

More information

Turn off all cell phones, pagers, radios, mp3 players, and other similar devices.

Turn off all cell phones, pagers, radios, mp3 players, and other similar devices. Math 25 B and C Midterm 2 Palmieri, Autumn 26 Your Name Your Signature Student ID # TA s Name and quiz section (circle): Cady Cruz Jacobs BA CB BB BC CA CC Turn off all cell phones, pagers, radios, mp3

More information

Math 180 Written Homework Assignment #10 Due Tuesday, December 2nd at the beginning of your discussion class.

Math 180 Written Homework Assignment #10 Due Tuesday, December 2nd at the beginning of your discussion class. Math 18 Written Homework Assignment #1 Due Tuesday, December 2nd at the beginning of your discussion class. Directions. You are welcome to work on the following problems with other MATH 18 students, but

More information

Final Exam SOLUTIONS MAT 131 Fall 2011

Final Exam SOLUTIONS MAT 131 Fall 2011 1. Compute the following its. (a) Final Exam SOLUTIONS MAT 131 Fall 11 x + 1 x 1 x 1 The numerator is always positive, whereas the denominator is negative for numbers slightly smaller than 1. Also, as

More information

Math 106: Review for Exam II - SOLUTIONS

Math 106: Review for Exam II - SOLUTIONS Math 6: Review for Exam II - SOLUTIONS INTEGRATION TIPS Substitution: usually let u a function that s inside another function, especially if du (possibly off by a multiplying constant) is also present

More information

Summer Term I Kostadinov. MA124 Calculus II Boston University. Evaluate the definite integrals. sin(ln(x)) x

Summer Term I Kostadinov. MA124 Calculus II Boston University. Evaluate the definite integrals. sin(ln(x)) x student: Exam I Problem : Evaluate the indefinite integrals 2e x + cos(x) dx 8x 3 + 5 4 x dx Problem 2: Evaluate the definite integrals 4 3 x + x dx π/2 π/6 sin(x) dx Problem 3: Evaluate the definite integrals

More information

4. Theory of the Integral

4. Theory of the Integral 4. Theory of the Integral 4.1 Antidifferentiation 4.2 The Definite Integral 4.3 Riemann Sums 4.4 The Fundamental Theorem of Calculus 4.5 Fundamental Integration Rules 4.6 U-Substitutions 4.1 Antidifferentiation

More information

1. (16pts) Use the graph of the function to answer the following. Justify your answer if a limit does not exist. lim

1. (16pts) Use the graph of the function to answer the following. Justify your answer if a limit does not exist. lim Spring 10/MAT 250/Exam 1 Name: Show all your work. 1. (16pts) Use the graph of the function to answer the following. Justify your answer if a limit does not exist. lim x 1 +f(x) = lim x 3 f(x) = lim x

More information

Math Exam 02 Review

Math Exam 02 Review Math 10350 Exam 02 Review 1. A differentiable function g(t) is such that g(2) = 2, g (2) = 1, g (2) = 1/2. (a) If p(t) = g(t)e t2 find p (2) and p (2). (Ans: p (2) = 7e 4 ; p (2) = 28.5e 4 ) (b) If f(t)

More information

Mathematics 1161: Final Exam Study Guide

Mathematics 1161: Final Exam Study Guide Mathematics 1161: Final Exam Study Guide 1. The Final Exam is on December 10 at 8:00-9:45pm in Hitchcock Hall (HI) 031 2. Take your BuckID to the exam. The use of notes, calculators, or other electronic

More information

DRAFT - Math 102 Lecture Note - Dr. Said Algarni

DRAFT - Math 102 Lecture Note - Dr. Said Algarni Math02 - Term72 - Guides and Exercises - DRAFT 7 Techniques of Integration A summery for the most important integrals that we have learned so far: 7. Integration by Parts The Product Rule states that if

More information

5 Integrals reviewed Basic facts U-substitution... 5

5 Integrals reviewed Basic facts U-substitution... 5 Contents 5 Integrals reviewed 5. Basic facts............................... 5.5 U-substitution............................. 5 6 Integral Applications 0 6. Area between two curves.......................

More information

Final exam for MATH 1272: Calculus II, Spring 2015

Final exam for MATH 1272: Calculus II, Spring 2015 Final exam for MATH 1272: Calculus II, Spring 2015 Name: ID #: Signature: Section Number: Teaching Assistant: General Instructions: Please don t turn over this page until you are directed to begin. There

More information

Math 250 Skills Assessment Test

Math 250 Skills Assessment Test Math 5 Skills Assessment Test Page Math 5 Skills Assessment Test The purpose of this test is purely diagnostic (before beginning your review, it will be helpful to assess both strengths and weaknesses).

More information

1.1 Definition of a Limit. 1.2 Computing Basic Limits. 1.3 Continuity. 1.4 Squeeze Theorem

1.1 Definition of a Limit. 1.2 Computing Basic Limits. 1.3 Continuity. 1.4 Squeeze Theorem 1. Limits 1.1 Definition of a Limit 1.2 Computing Basic Limits 1.3 Continuity 1.4 Squeeze Theorem 1.1 Definition of a Limit The limit is the central object of calculus. It is a tool from which other fundamental

More information

3. On the grid below, sketch and label graphs of the following functions: y = sin x, y = cos x, and y = sin(x π/2). π/2 π 3π/2 2π 5π/2

3. On the grid below, sketch and label graphs of the following functions: y = sin x, y = cos x, and y = sin(x π/2). π/2 π 3π/2 2π 5π/2 AP Physics C Calculus C.1 Name Trigonometric Functions 1. Consider the right triangle to the right. In terms of a, b, and c, write the expressions for the following: c a sin θ = cos θ = tan θ =. Using

More information

MATH 1207 R02 MIDTERM EXAM 2 SOLUTION

MATH 1207 R02 MIDTERM EXAM 2 SOLUTION MATH 7 R MIDTERM EXAM SOLUTION FALL 6 - MOON Name: Write your answer neatly and show steps. Except calculators, any electronic devices including laptops and cell phones are not allowed. () (5 pts) Find

More information

Math 122 Fall Unit Test 1 Review Problems Set A

Math 122 Fall Unit Test 1 Review Problems Set A Math Fall 8 Unit Test Review Problems Set A We have chosen these problems because we think that they are representative of many of the mathematical concepts that we have studied. There is no guarantee

More information

Power Series. x n. Using the ratio test. n n + 1. x n+1 n 3. = lim x. lim n + 1. = 1 < x < 1. Then r = 1 and I = ( 1, 1) ( 1) n 1 x n.

Power Series. x n. Using the ratio test. n n + 1. x n+1 n 3. = lim x. lim n + 1. = 1 < x < 1. Then r = 1 and I = ( 1, 1) ( 1) n 1 x n. .8 Power Series. n x n x n n Using the ratio test. lim x n+ n n + lim x n n + so r and I (, ). By the ratio test. n Then r and I (, ). n x < ( ) n x n < x < n lim x n+ n (n + ) x n lim xn n (n + ) x

More information

University Calculus I. Worksheet # 8 Mar b. sin tan e. sin 2 sin 1 5. b. tan. c. sec sin 1 ( x )) cos 1 ( x )) f. csc. c.

University Calculus I. Worksheet # 8 Mar b. sin tan e. sin 2 sin 1 5. b. tan. c. sec sin 1 ( x )) cos 1 ( x )) f. csc. c. MATH 6 WINTER 06 University Calculus I Worksheet # 8 Mar. 06-0 The topic covered by this worksheet is: Derivative of Inverse Functions and the Inverse Trigonometric functions. SamplesolutionstoallproblemswillbeavailableonDL,

More information

Math 229 Mock Final Exam Solution

Math 229 Mock Final Exam Solution Name: Math 229 Mock Final Exam Solution Disclaimer: This mock exam is for practice purposes only. No graphing calulators TI-89 is allowed on this test. Be sure that all of your work is shown and that it

More information

Antiderivatives. DEFINITION: A function F is called an antiderivative of f on an (open) interval I if F (x) = f(x) for all x in I EXAMPLES:

Antiderivatives. DEFINITION: A function F is called an antiderivative of f on an (open) interval I if F (x) = f(x) for all x in I EXAMPLES: Antiderivatives 00 Kiryl Tsishchanka DEFINITION: A function F is called an antiderivative of f on an (open) interval I if F (x) = f(x) for all x in I EXAMPLES:. If f(x) = x, then F(x) = 3 x3, since ( )

More information

5, tan = 4. csc = Simplify: 3. Simplify: 4. Factor and simplify: cos x sin x cos x

5, tan = 4. csc = Simplify: 3. Simplify: 4. Factor and simplify: cos x sin x cos x Precalculus Final Review 1. Given the following values, evaluate (if possible) the other four trigonometric functions using the fundamental trigonometric identities or triangles csc = - 3 5, tan = 4 3.

More information

Calculus I Review Solutions

Calculus I Review Solutions Calculus I Review Solutions. Compare and contrast the three Value Theorems of the course. When you would typically use each. The three value theorems are the Intermediate, Mean and Extreme value theorems.

More information

10. e tan 1 (y) 11. sin 3 x

10. e tan 1 (y) 11. sin 3 x MATH B FINAL REVIEW DISCLAIMER: WHAT FOLLOWS IS A LIST OF PROBLEMS, CONCEPTUAL QUESTIONS, TOPICS, AND SAMPLE PROBLEMS FROM THE TEXTBOOK WHICH COMPRISE A HEFTY BUT BY NO MEANS EXHAUSTIVE LIST OF MATERIAL

More information

MATH 101: PRACTICE MIDTERM 2

MATH 101: PRACTICE MIDTERM 2 MATH : PRACTICE MIDTERM INSTRUCTOR: PROF. DRAGOS GHIOCA March 7, Duration of examination: 7 minutes This examination includes pages and 6 questions. You are responsible for ensuring that your copy of the

More information

Calculus 1 Exam 1 MAT 250, Spring 2011 D. Ivanšić. Name: Show all your work!

Calculus 1 Exam 1 MAT 250, Spring 2011 D. Ivanšić. Name: Show all your work! Calculus 1 Exam 1 MAT 250, Spring 2011 D. Ivanšić Name: Show all your work! 1. (16pts) Use the graph of the function to answer the following. Justify your answer if a limit does not exist. lim x 2 f(x)

More information

Chapter 6: The Definite Integral

Chapter 6: The Definite Integral Name: Date: Period: AP Calc AB Mr. Mellina Chapter 6: The Definite Integral v v Sections: v 6.1 Estimating with Finite Sums v 6.5 Trapezoidal Rule v 6.2 Definite Integrals 6.3 Definite Integrals and Antiderivatives

More information

1 Chapter 1: Areas, Volumes, and Simple Sums

1 Chapter 1: Areas, Volumes, and Simple Sums Syllabus Summary This is a living list and will be updated throughout the semester. In this list I summarize the material from the syllabus indicating which material is very important, of normal importance,

More information

OCR A2 Level Mathematics Core Mathematics Scheme of Work

OCR A2 Level Mathematics Core Mathematics Scheme of Work OCR A Level Mathematics Core Mathematics Scheme of Work Examination in June of Year 13 The Solomen press worksheets are an excellent resource and incorporated into the SOW NUMERICAL METHODS (6 ) (Solomen

More information

AP Calculus AB Summer Math Packet

AP Calculus AB Summer Math Packet Name Date Section AP Calculus AB Summer Math Packet This assignment is to be done at you leisure during the summer. It is meant to help you practice mathematical skills necessary to be successful in Calculus

More information

3 Algebraic Methods. we can differentiate both sides implicitly to obtain a differential equation involving x and y:

3 Algebraic Methods. we can differentiate both sides implicitly to obtain a differential equation involving x and y: 3 Algebraic Methods b The first appearance of the equation E Mc 2 in Einstein s handwritten notes. So far, the only general class of differential equations that we know how to solve are directly integrable

More information

Goal: Approximate the area under a curve using the Rectangular Approximation Method (RAM) RECTANGULAR APPROXIMATION METHODS

Goal: Approximate the area under a curve using the Rectangular Approximation Method (RAM) RECTANGULAR APPROXIMATION METHODS AP Calculus 5. Areas and Distances Goal: Approximate the area under a curve using the Rectangular Approximation Method (RAM) Exercise : Calculate the area between the x-axis and the graph of y = 3 2x.

More information

SOLUTIONS FOR PRACTICE FINAL EXAM

SOLUTIONS FOR PRACTICE FINAL EXAM SOLUTIONS FOR PRACTICE FINAL EXAM ANDREW J. BLUMBERG. Solutions () Short answer questions: (a) State the mean value theorem. Proof. The mean value theorem says that if f is continuous on (a, b) and differentiable

More information

Math 181, Exam 2, Study Guide 2 Problem 1 Solution. 1 + dx. 1 + (cos x)2 dx. 1 + cos2 xdx. = π ( 1 + cos π 2

Math 181, Exam 2, Study Guide 2 Problem 1 Solution. 1 + dx. 1 + (cos x)2 dx. 1 + cos2 xdx. = π ( 1 + cos π 2 Math 8, Exam, Study Guide Problem Solution. Use the trapezoid rule with n to estimate the arc-length of the curve y sin x between x and x π. Solution: The arclength is: L b a π π + ( ) dy + (cos x) + cos

More information

Review for Final Exam, MATH , Fall 2010

Review for Final Exam, MATH , Fall 2010 Review for Final Exam, MATH 170-002, Fall 2010 The test will be on Wednesday December 15 in ILC 404 (usual class room), 8:00 a.m - 10:00 a.m. Please bring a non-graphing calculator for the test. No other

More information

5.5. The Substitution Rule

5.5. The Substitution Rule INTEGRALS 5 INTEGRALS 5.5 The Substitution Rule In this section, we will learn: To substitute a new variable in place of an existing expression in a function, making integration easier. INTRODUCTION Due

More information